THE PLANETARY SCIENCE JOURNAL, 2:204 (12pp), 2021 October
© 2021. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

https://doi.org/10.3847 /PSJ /ac1f22

CrossMark

The Road to an Archival Data Format—Data Structures

Anne Raugh1

and J. Steven Hughes2

! Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA; araugh@umd.edu
2 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
Received 2020 September 21; revised 2021 August 8; accepted 2021 August 17; published 2021 September 28

Abstract

The current data formatting and labeling standards for the Planetary Data System (PDS) are known as the PDS4
Standards. They supersede the PDS3 Standards, but they represent a complete redesign of the requirements and
implementation, rather than even a major incremental revision, from the previous standard. At the heart of the
PDS4 Standards lies a fundamental, philosophical change from the PDS3 paradigm: the PDS4 Standards clearly
and specifically constrain the way that the bytes comprising observational data may be stored in their data files—
that is, the data structures—to a much greater degree than the PDS3 Standards ever did, even in their most mature
realization. In PDS4, the PDS has defined data structures optimized for the long-term preservation of observational
data. We explore the history of the PDS and its standards through the examination of a single, simple data structure
(the 2D image), to understand the evolutionary pressures on the data and on the PDS that led to the development of
the archival data structure requirements for observational data at the core of the PDS4 standards.

Unified Astronomy Thesaurus concepts: Astroinformatics (78)

1. Introduction

File formats are essentially functional. The typical contempor-
ary file format combines a data structure with metadata providing
structural details (data types and byte order, for example),
processing history, geolocation data, and so on. The same logical
content can be formatted in myriad ways, and which way is
“best” is a primarily subjective assessment. The “best” format
might be the one that a preferred software tool reads and writes,
or the format that is small enough to fit 100,000 files on one
thumb drive, or the format that preserves all the depth and
precision of the original source data. Each environment, each
application has its own criteria for “best,” or even just “usable.”

The Planetary Data System (PDS) has been operating since
1990, charged with preserving planetary mission data in a
usable form for future generations. The question of the “best”
format for PDS data has been and still is a source of constant
debate. The original PDS design took the view that the “best”
format was the one the mission scientists used, and that PDS
should bridge any gap for nonmission users via software,
documentation, and support. That view, however, evolved—
along with every other aspect of information technology—over
the first two decades of PDS operations.

In this discussion, we focus on the lowest-level starting point
for “PDS format”—the storage structures; we examine the
effects of changing technology, budgets, and user expectations
on the data structures described in the original standards; and
we define the characteristics of the data structures laid out in
the new PDS4 standard® that make them specifically suited for
archiving observational data.

3 Planetary Data System (2021). Note that the PDS4 Standards Reference is
kept synchronized with the Information Model and reissued in a parallel
version with each biannual release. The current version is posted at https://pds.
nasa.gov /datastandards /documents/sr/current.

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

Note, however, that the data products composing the whole
of the PDS archive are many and widely varied: images, maps,
spectra in every wavelength regime, particle counts, EM field
measurements, radar shape models, laser ranging measure-
ments, Deep Space Network tracking files, gravity models,
atmospheric experiments, and so on. Not surprisingly, each
discipline specialty has its favorite tools and preferred file
formats for analysis and archiving. In order to focus on the
issues at the core of the PDS data structure evolution rather
than the details of specific file formats from various disciplines,
we will make a case study of the simplest data structure in the
PDS archives: 2D raster images. The complications arising
even with this generally well-understood structure illustrate the
problems found in more complex structures and their related
file formats.

We start by placing the development of the PDS and its
standards in historical context.

2. A Brief History of the PDS

The PDS was established to ensure that data collected by and
essential to NASA’s planetary missions became part of a
national resource—a high-quality research archive that would
serve the needs of specialist and interdisciplinary researchers
now and for the indefinite future. The PDS was created in
response to what was widely perceived as a data crisis:

“It is noted with increasing alarm by many in
the science community that valuable data sets
are disappearing. Some become lost because of
deterioration of the media upon which they are
stored. Some sets are effectively lost because
the documentation was not retained or the
software required to read and interpret the data
no longer compiles on current computer sys-
tems. In a few cases, the knowledgeable indi-
viduals (of the data set) have left the field
through career changes, retirement, or death.
Loss of data knowledge can be expected to

https://orcid.org/0000-0002-8300-9443
https://orcid.org/0000-0002-8300-9443
https://orcid.org/0000-0002-8300-9443
https://orcid.org/0000-0003-4851-293X
https://orcid.org/0000-0003-4851-293X
https://orcid.org/0000-0003-4851-293X
mailto:araugh@umd.edu
http://astrothesaurus.org/uat/78
https://doi.org/10.3847/PSJ/ac1f22
https://crossmark.crossref.org/dialog/?doi=10.3847/PSJ/ac1f22&domain=pdf&date_stamp=2021-09-28
https://crossmark.crossref.org/dialog/?doi=10.3847/PSJ/ac1f22&domain=pdf&date_stamp=2021-09-28
http://creativecommons.org/licenses/by/4.0/
https://pds.nasa.gov/datastandards/documents/sr/current
https://pds.nasa.gov/datastandards/documents/sr/current

THE PLANETARY SCIENCE JOURNAL, 2:204 (12pp), 2021 October

accelerate in the next few years unless appro-
priate action is taken.”*

2.1. CODMACI and the Planetary Data Workshop

In 1978, The Space Science Board formed the Committee on
Data Management and Computation (CODMAC) and charged
it to investigate the state of data resulting from spacecraft
observations, to identify problems, and to make recommenda-
tions. The first of several resulting reports (National Research
Council 1982) did precisely that, laying out seven “Principles
for Successful Scientific Data Mamagement.”5 This, in turn,
seeded the creation of a number of data system projects, among
them the Pilot PDS (sponsored by NASA Code EC) to
investigate the technological aspects of data curation and
distribution, and the PDS project (sponsored by NASA Code
EL) to work out the user requirements. The Planetary Data
Workshop was held at Goddard Space Flight Center in late
1983 to assess the current state of planetary data and make
recommendations for the nascent PDS (Kieffer et al. 1984). In
1985 the two NASA projects were merged under the PDS
rubric, and development proceeded in earnest.

2.2. The PDS—Original Concept

The original concept and design for the PDS was for a
central archiving node and distributed discipline nodes.® The
central node would be the permanent repository for the archival
data, the location of the high-level catalog used for finding data
within the system, and the primary physical distribution center
for whole data sets. Users would log into the catalog system,
select data sets based on attributes stored in the high-level
catalog, and then request that copies of the selected data either
be provided or be directed to a discipline node for further
assistance. Note that this was the mid-1980s. “Distribution”
was expected to involve making copies of reels of magnetic
tape and shipping them over land to the recipient for large
volumes of data, although the version 1.0 specification did
include tasks to develop electronic data transfer capabilities,
where that was feasible, and lists “CDROM” as a desired
output format for PDS data.

The central node would also develop software to support
activities at the discipline nodes, including the software for the
detailed catalog databases and interfaces, data format transfor-
mation software, and analytical software. The software would
be developed centrally and then deployed to each discipline
node to provide a uniform user experience.

The discipline nodes were conceived as centers of research,
managed by scientists with a research interest in the data they
were supporting. Discipline nodes would maintain detailed
catalogs for the data of interest to their discipline clients and
would have local copies of the data—possibly in a more
computationally convenient format than the archive format—
that could be used directly with locally hosted software to
perform some level of analysis. The discipline nodes would be
able to distribute small quantities of data, would advise users
who needed assistance selecting or understanding data
holdings, and would also be involved in creating archive
submissions.

4 Kieffer et al. (1984, p. 1).

5 National Research Council (1982, pp. 6-7).
6 Planetary Data System Design Team (PDS-DT) (1986, p. 10).

Raugh & Hughes

2.3. Requirements Reviews

A review of the PDS system requirements was held in 1986
July. The proposed time line for development contained a
three-stage rollout over the course of 5 yr, with the stages
identified as PDS V1.0, PDS V2.0, and PDS V3.0, with PDS
V3.0 being the final, fully operational system of Central Node
(at JPL) and discipline nodes selected by competitive proposal.

Significantly, the final presentation of that 1986 review was
by Project Manager J. T. Renfrow, who noted in his “Issues
and Concerns” that “the current scope of the complete
statement of the functional capability for Version 1.0 does
not match the resources (schedule and dollars) available.”’ He
then lists nine major issues related to this topic alone, ranging
from scope of various software development efforts to division
of responsibilities between Central and discipline nodes, and a
recognition that “node personnel are already overextended and
are not contractually committed to PDS system software
development.”®

Requirements development continued, and a Functional
Requirements Review was held, most likely in 1987-88.
Surviving documents from that review could not be found, but
the community feedback from that review had an influence on
changes to the original concept. The community recommended a
change from the centralized archive/distribution hub with
discipline research centers to a distributed archive model where
the discipline nodes were the primary data curators for their
discipline data, in addition to supporting end users and the
creation of new archive data sets. In this model Central Node
would be the first-line archive backup location for all nodes’ and
would develop system software for use by all discipline nodes.
Note that this shifted some of the burden for software
development, in particular for discovery and distribution, to
the nodes.

2.4. PDS1, PDS2, PDS3

The system delivery review for the PDS V1.0 operational
release was held in 1990 February, the discipline nodes having
been selected about 5 months previously. The Version 2.0
release followed shortly after, in 1992. The Version 3.0 release
came in 1994 and included some modifications to cataloging
and labeling requirements, resulting from the early node
experiences with archiving legacy data and working with
new data providers for missions in development. This last
release came to be known as “PDS3” for the acronym used as a
version identifier in the corresponding labels. The last minor
revision of the PDS3 standards was version 3.8, released in
2009 February (although the data dictionary database is even
now updated regularly for the PDS3 data sets still in
grandfathered production).

Despite the resource shortfalls noted by Renfrow in 1986
and the redesign work needed to respond to the community
feedback, the PDS3 released in 1994 retained the same basic
outline as the original concept. There was a Central Node
supporting the work done at the discipline nodes, for example,
and there was a basic documentation set and supporting
software. What was lost were the additional tiers of software

7" Renfrow et al. (1986, p. 194).
8 Renfrow et al. (1986, p. 195).

® In 1986 the PDS and the then NSSDC signed a Memorandum of
Understanding establishing the NSSDC as the deep archive for all PDS data.

THE PLANETARY SCIENCE JOURNAL, 2:204 (12pp), 2021 October

support originally envisioned—the format transformations and
analytical tools.

2.5. PDS3 Format

It is important to note that “PDS3 Format” is a bit of a
misnomer. The designers of the original standards were
developing a labeling language that could describe existing
file structures and augment those with additional metadata,
rather than creating a new format “from scratch.” The labeling
language, created at JPL, was called Object Description
Language (ODL), where “object” was in reference to the data
objects of object-oriented programming, a rising technology at
the time. ODL had applications beyond PDS, because it was
essentially a parsing standard (like XML), defining the
keyword=value syntax, the OBJECT statement for grouping,
the END statement to signal the end of a label, and so on. It
was up to the application environment to develop the keywords
comprising the project-dependent metadata. The PDS designers
developed the Planetary Science Data Dictionary (PSDD) to
define the keywords that would be used in PDS labels. In PDS
labels the keywords were constrained—all keywords appearing
in PDS labels had to be formally defined in the PSDD.

The PSDD also contained OBJECT definitions—sets of
keywords that were used to provide input/output parameters
and other metadata related to the structure and content of the
data objects. The PSDD listed required and optional keywords
for each OBJECT. Objects could be nested inside other objects,
and so it was possible to define hierarchical metadata to
describe the storage format of any file a planetary mission was
likely to produce. And if the PSDD could describe the data
object structure, then software should be able to parse out the
necessary information from the label to read the data. (The
canonical validator software, lvtool, referenced a flat-file
version of the PSDD to validate label content).

This descriptive approach to labeling was in keeping with
the comments regarding data format in the documents that led
to the creation of the PDS. The National Research Council
(1982), for example, mentions data format in its “Principles for
Successful Data Management”:

“The data formats should strike a balance
between flexibility and the economies of non-
changing record structure. They should be
designed for ease of use by the scientist.”'"

The second CODMAC report (National Research Council
1986) talks about archives containing “basic science data in
various forms” accompanied by “the basic software tools
needed to access the data.”'' Kieffer et al. (1984) include a
section on “Standardization Recommendations for Digital
Data” that suggests an approach similar to the Flexible Image
Transport System (FITS) and Video Image Communication
and Retrieval (VICAR) System formats for archive data—that
is, a format consisting of a standardized header describing the
data structure that follows, recognizable to processing software.

These existing file formats, which themselves combined
metadata with data structures, served as the models for the
PDS3 label development. The initial collection of defined data
object structures was based on archetypes from the first data

19 National Research Council (1982, p. 6).
' National Research Council (1986, p. 36).

Raugh & Hughes

sets added to the archive, and they were defined with the
intention of being sufficiently flexible to cover the data
structures found in any file format likely to be created by a
mission science team.

Although we will focus on images, these first data structures
also included ASCII and binary tables, text files for
documentation, and a few other formats to support the more
complex data types returned by instruments other than simple
framing cameras.

2.6. The Object Access Library (OAL)

A software library was produced internally for use in
standardizing PDS label and file operations as part of the
design and development phases of PDS V1.0. During the early
operational years of PDS, this code was adapted to V2.0 and
V3.0 and was ultimately released for public use in 1995 as the
Object Access Library (OAL), providing read and write access
to label keywords and data objects.

The OAL was the basis for the PDS data display tool
NASAView and the canonical validator for PDS labels, 1vtool.
As the core library of the PDS services, the OAL was essential
to archive verification and validation. The ability of the PDS to
maintain usability of the data depended critically on the OAL
and its successors being able to read every label in the PDS
archive and, among other things, use the data structure
description therein to access the data.

The OAL was released as a precompiled, shareable object
library; users needed to link it into their own compiled source
in order to use its subroutines. The OAL, in turn, was based on
an ODL parsing library known as the Label Library Lite (L3),
which was also released as a shareable object library.

3. The Early PDS3 ERA, 1990-2000

By 1995, then, the PDS3 Standards Reference (SR) defining
the PDS archive content requirements and labeling rules was
fully fleshed out, the PSDD provided keyword content,
NASAView provided visualization, lvtool provided label
validation, and the OAL and L3 libraries were available to
support users and developers who wanted to code support for
PDS3 archive files. But even from these early days, PDS was
hearing complaints from users about the proliferation of “data
formats” within the archive, and developers showed little
interest in providing PDS3 support the way they had a decade
earlier for the FITS format. As years passed, the format
complaints became louder, few if any end users made use of the
OAL or L3 libraries, and third-party support for PDS3 labels
was conspicuous by its absence.

The FITS and VICAR formats mentioned as models by
Kieffer et al. (1984) had already enjoyed over two decades of
success in their respective user communities when they were
cited as models for PDS labeling standards. They were both
essentially image formats (FITS had not yet added table
structures to its standard extensions list). VICAR was a format
named after the software processing environment that produced
it, while FITS was a transport format that required read /write
support be written for each processing environment into which
it was incorporated.

As of this writing, 35 yr after Kieffer et al. (1984) held them
up as role models for the PDS standard, the FITS and VICAR
formats are still in use—but the PDS3 format was found to be
untenable and retired after barely 20 yr. To understand why, we

THE PLANETARY SCIENCE JOURNAL, 2:204 (12pp), 2021 October

need to understand how and why the PDS3 standards were
regularly modified and consider the sea changes in attitudes
and perceptions of users to the nebulous concept of data format.
Given the simplicity of the basic image data structure and the
fact that the model formats for PDS were both image formats,
we will focus on the issues arising with the IMAGE data
structure to characterize the problems encountered with the
wider range of PDS data structures.

3.1. A Brief Aside—Displaying an Image

Before digging into the details of image formats, it is worth
remembering the programmatic actions necessary to read an
image from a file and display it on a device. There are two
distinct processes that happen in succession: first, the data are
read from the file into program memory; second, the elements
of program memory are mapped to pixel locations on the
display device. File format definitions deal only with the first
process—that is, how a sequence of bytes is read from the file
and interpreted into program memory. This results in a section
of memory that is then treated as a two-dimensional structure
following the conventions of the software environment. It is
the software environment definition, often adjustable through
user settings, that defines how that program memory is
mapped onto a display device. In particular, it is the software
environment that determines whether the (1,1) pixel of an
image is located in the upper left corner or the lower left
corner on the display.

3.2. The First Signs of Trouble

The first data sets archived in the new PDS were legacy data
sets from recent planetary missions: Viking (the very first),
Voyager 1 and 2 (which are still returning data), Magellan, and
Galileo. Each of these spacecraft hosted a variety of
instruments, including imagers. The image data sets were all
produced by the Multimission Image Processing Laboratory
(MIPL), as it was then known, at the Jet Propulsion Laboratory.
This was also the group that developed the VICAR software.
Consequently, the archetypal images used as models for the
first IMAGE data objects were all in the VICAR file format.

The small bodies community, however, was developing a
fondness for the transportability of FITS format, and so the
Small Bodies Node saw PDS-labeled FITS images come to
review in the first years of operation (mainly from ground-
based observations like the coordinated observers of the
International Halley Watch). Reviewers using the new NASA-
View tool to inspect the images reported a problem: the images
as displayed by NASAView had their horizontal and vertical
axes swapped, whereas software reading the FITS labels
displayed the images correctly.

The reason for the discrepancy was easy enough to see when
the FITS and VICAR format definitions were directly
compared. Although both formats were considered “self-
describing,” that was only true to a point—the point at which
something in the format definition itself constrained the data
structure in the file. The FITS/VICAR label keywords
described only the aspects of the file structure that were
variable; their respective software support took care of the rest.
The VICAR format description'? specifies that a two-dimen-
sional image (a 2D array in program memory) is stored in a

12 Available at http://www-mipl.jpl.nasa.gov /external /VICAR_file_fmt.pdf,
accessed 2020 August 30.

Raugh & Hughes

VICAR file as a sequence of (horizontal) lines, or in row-major
order as it was known to programmers of the day. The FITS
standard, first defined by Wells et al. (1981),13 specifies that a
two-dimensional array (“image” being the most common
application for a 2D array) is stored in a FITS file as a
sequence of (vertical) columns, or in column-major order.
Figure 1 illustrates the difference in storage order resulting
from writing the elements of the same 2D array in memory first
in row-major order and then in column-major order. The
significance of file storage order only became apparent when
third-party software, like NASAView, attempted to read the
data files using only the information in the PDS3 labels and
displayed results that were at odds with software that read the
data using the native (VICAR or FITS) labels.

The first images archived with the PDS were VICAR
images. There was no keyword to indicate storage order in the
PSDD, and so the developers of NASAView interpreted the
common storage order of the first image data sets as an inherent
property of the PDS format and coded the display routine
accordingly. This resulted in swapped axes for FITS images, a
major question about images that might come in without either
FITS or VICAR headers, and a significant problem for PDS
image labels.

3.3. Further Complications

The solution to the storage order question would seem to be
simple: add a keyword to the PSDD that indicates storage order
and require all image objects to use it in their PDS3 labels.
NASAView and other programs could then check that keyword’s
value and take the appropriate action. But display confusion
resulted from more than just storage order, and adding a keyword
was not as simple or effective a fix as it first appeared.

Although the FITS and VICAR file format specifications do
indicate storage order, neither indicates which direction corre-
sponds to “up.” (Recall that the orientation of an image on a
display device is the province of the software environment, not the
file format specification). Figure 2 shows how the same storage
order for pixels could result in three different display orientations,
depending on the assumptions of the display software.

The PDS3 standard was also silent on the subject of image
display orientation. In the case of PDS archival data, however,
the display orientation could not be left as an exercise for the
user, because PDS3 labels could, and often did, contain
additional metadata beyond the simple fields required for
identification and input/output. These metadata supported
discovery and analysis and frequently included keywords for
observational geometry that were defined in terms of angles
related to “up” and ‘“clockwise.” The definitions of these
essential keywords presupposed a correct image display
orientation. A new keyword for storage order could sort out
lines versus samples, but it still could not tell a display routine
how to place the pixels correctly for interpretation.

3.4. The Solution

The solution applied was to define two new keywords for use
in describing image objects in PDS3 labels: LINE_DISPLAY _
DIRECTION and SAMPLE_DISPLAY_DIRECTION.'* Both

'3 Current and historical versions available at hitps: //fits.gsfc.nasa.gov /fits_
standard.html.

!4 pDS3 syntax requires keywords to be in uppercase and their constituent
terms separated by the underscore character (“_").

http://www-mipl.jpl.nasa.gov/external/VICAR_file_fmt.pdf
https://fits.gsfc.nasa.gov/fits_standard.html
https://fits.gsfc.nasa.gov/fits_standard.html

THE PLANETARY SCIENCE JOURNAL, 2:204 (12pp), 2021 October

Raugh & Hughes

Row 1 1-1 1-2

Row 2 2-1 2-2

Row 3 | 3-1 3-2

13 | 14
23 | 24
33 | 34

Col. 1

Col.2 Col.3 Col. 4

A) Simple 2D Array in program memory

1-1 1-2 1-3 1-4 21 2-2

2-3 2-4 3-1 3-2 3-3 3-4

B) Sequence of elements as stored in row-major order

1-1 2-1 3-1 1-2 2-2 3-2

1-3 2-3 3-3 1-4 2-4 3-4

C) Sequence of pixels as stored in column-major order

Figure 1. Element storage orders. (A) The conceptual diagram of a simple 2D array with its elements labeled by “row number—column number” as they might be
organized in program memory. (B) The sequential order of the elements written out in the row-major storage order used by, e.g., the VICAR file format. (C) The
sequential order of the same elements when the array is written out in the column-major order of the FITS file format.

keywords had the same set of four possible values, DOWN,
UP, LEFT, or RIGHT, to indicate the direction in which
successive pixels should be placed along the corresponding
axis. So rather than indicating storage order, the sense of “line”
and “sample” could be inverted for FITS images and the
display routine directed to draw the ‘“sample” dimension
from the top DOWN, for example, rather than the more usual
interpretation of left to RIGHT.

Confusing as this might have been for those coming from the
FITS world, at least it would have solved the general display
direction /storage order problem had it been consistently and
universally applied across the PDS archive.

3.5. The Problem with the Solution

The solution, however, was neither consistently nor
universally applied across the PDS, for two reasons.

First, the ODL version of the PSDD used by lvtool to
validate labels had a relatively simple structure that supported
only limited capabilities for validation enforcement. Inside a
data object definition the only major validation constraint was
one of requirement. That is, if a keyword was required to be
present in, say, an IMAGE object and it was not found in the
label, lvtool could flag the error. If the keyword was optional
and not present, no flag was raised and the label passed
validation. There was no version tracking in the system that

would match keyword content in a PDS3 label to a particular
version of the PDS3 standards; neither could lvtool infer
whether there should be an additional keyword based on
information included in the PSDD. Whether or not optional
keywords were required in any particular set of labels was left
to the nodes and the external peer reviewers.'”

Second, the DISPLAY_DIRECTION keywords were not
added as required elements because of a concern that legacy
data would be “invalidated.” Certainly, if the requirement were
added and lvtool run on already-archived data, there would
be an error flagged. This unlikely scenario was considered
unacceptable. More practically, a programmer referencing the
PSDD in order to understand potential label content would
have been misled into assuming that all image data contained
DISPLAY_DIRECTION keywords if they were listed in the
PSDD as required. But legacy data, which of course were the
bulk of the archive holdings at the time, would never have
these keywords.

Why not add the DISPLAY_DIRECTION keywords to the
legacy data if they were that important? The bulk of the legacy
data sets were developed in the period 1987-1995, as part of
the pilot project and early operations. Over that period of time
CDROM supplanted magnetic tape as the long-term storage

15 All data sets accepted for archiving in the PDS must pass an external peer
review, convened by PDS.

THE PLANETARY SCIENCE JOURNAL, 2:204 (12pp), 2021 October

Raugh & Hughes

1-1 1-2 1-3 1-4 3-1 3-2 3-3 3-4 1-1 21 3-1 1-2
2-1 2-2 2-3 2-4 2-1 2-2 2-3 2-4 2-2 3-2 1-3 2-3
3-1 3-2 3-3 3-4 1-1 1-2 1-3 1-4 3-3 1-4 2-4 3-4

A) Rows displayed top to bottom

B) Rows displayed bottom to top

C) Result of reading and dis-
playing a FITS file using PDS3
default settings.

Figure 2. Effect of display settings. Once pixels are read from a file into memory, it is the purview of the software to arrange them on the display device. The same
sequence of pixels can be displayed in various ways depending on assumptions about pixel order (or explicit user settings). (A) shows the he pixels from the previous
example displayed in the PDS3 default display orientation, which places the first pixel in the upper left corner. (B) shows the same pixels, read in the same order, but
displayed in the default orientation of IDL, which places the first pixel in the lower left corner. For comparison, panel (C) shows what would result if the original
image had been stored in the column-major FITS format, but both read and displayed with the PDS3 default (row-major) settings.

medium of choice and the legacy data were, for the most part,
on CDROM. But these were commercially produced CDROMs
that were mastered and printed in runs of several hundred, then
shipped to waiting users. This was an expensive and time-
consuming process. The CDROM sets from a single mission
contained as many as several hundred individual disks. PDS
had no budget and no resources for updating labels for that
volume of data, let alone reproducing the archive disks
and redistributing them to the users who had received the
original sets.

Rather than incurring the expense of remaking the legacy
archives, the definitions of the DISPLAY_DIRECTION key-
words included default values to be assumed in their absence.
Unfortunately, not all data sets archived without DISPLAY_
DIRECTION keywords, most notably the earlier FITS files,
adhered to that default.

As time passed, image data came from more and more
sources, non-VICAR and non-FITS, and this solution turned
out to be just the first of many incorporated into the PSDD
without any programmatically enforceable validation require-
ments. For all data structures, not just images, constraints that
could not be enforced by lvtool were documented in the
human-readable definitions contained in the PSDD and SR
but relied on node personnel and reviewers for enforcement.
Other significant problematic cases affecting data in various
structures included geometric vectors that should have been
accompanied by a set of coordinate system keywords;
keywords that had different interpretations based on context,
as documented in the PSDD textual descriptions; and keywords
describing details of the QUBE data structure (primarily used
for spectral image cubes) that users were directed (by the SR)
to invent on the fly.

In short and in general, users had to consult the SR and the
human-readable definitions in the PSDD to correctly interpret
label content, and node personnel tasked with validating labels
had an ever more arduous task of detailed manual validation
as the years passed. Any programmer attempting to write
generalized access routines found very little solid ground to
work with.

3.6. Data Types

While pixel storage and display order were providing ample
confusion for users, another aspect of technological evolution
further complicated the process of simply reading the data.

When the first data structures where defined in the PSDD, the
hardware numeric data types were identified by the terminology
of the day, which tended to reference the manufacturer. The
PSDD included data types like “MAC_REAL,” “SUN_REAL,”
and “VAX_REAL.” But these data types were, more accurately,
tied to the manufacturer of the chipset, rather than the chassis, of
any given computer. As manufacturers diversified their chipset
offerings, the original PSDD tags for data types led to confusion
and mislabeling resulting from nameplate-based assumptions.
The most typical discrepancy came from byte ordering, but in the
case of the VAX formats there were some floating-point data
types that were unique to the VAX architecture and had no IEEE
equivalent.

In the case of images, at least, it is relatively simple to
recognize byte-order problems and, if necessary, determine the
correct data type through brute-force attempts to read the data
in all plausible formats. However, in more complex data
structures, like binary tables, data types vary from field to field.
Additional architectural considerations, like different byte
orders for integers and real numbers, or the possibility of
encountering BCD or EBCDIC fields, further complicate the
processes of reading and displaying the data when these data
types are encountered. As the data sets containing these data
type identifications age, the ability to interpret them correctly
becomes increasingly rare.

3.7. The Descriptive Approach

Finally, it is important to understand that for the first 10 yr of
operations, PDS had essentially no enforcement authority. It
could not require mission teams to format or reformat their
data; it could advise, coax, and cajole, but it could not require.
The worst penalty PDS could impose for noncompliance was to
report to NASA that a team failed to meet its archiving
requirement, and in those early years that had no practical
consequence. This impacted the PDS3 standards.

THE PLANETARY SCIENCE JOURNAL, 2:204 (12pp), 2021 October

Raugh & Hughes

Image Table
Row1 | 1-1 12 | 13 | 14 1-A 1-B 1-C 1-D 1-E
Row 2 2-1 2-2 2-3 2-4 2-A 2-B 2-C 2-D 2-E
Row 3 3-1 3-2 3-3 3-4 3-A 3-B 3-C 3-D 3-E

Col.1 Col.2 Col.3 Col. 4 Field A

Field B Field C Field D Field E

A) Image and Table. The image pixels have been labeled as before. The table fields are identified

by row number-field letter.

1-2 1-2 1-3 1-4 1-A 1-B

1-C 1-D 1-E 2-1 2-2

B) Interleaved data structures result in the stream of pixels being interrupted by rows of the table, and conversely.

Figure 3. Interleaved Data Objects. (A) The logical view of two data objects—and image and a table—stored in the same file. The image pixels are labeled as in
previous figures; the table fields have been labeled using letters to distinguish them from pixels. PDS3 allowed tables like this to be described as “suffix bytes” of the
image rows, and the image rows to be described as “prefix bytes” of the table rows. This resulted in the interleaved data structure shown in panel (B), where the byte
stream coming from the data file must be decoded into rows of pixels alternating with rows of table fields. PDS4 explicitly prohibits such interleaving to minimize and
localize the effect of misreading any one logical part of the data. An error in the length of table field A, for example, would not only corrupt the interpretation of the
remainder of the table record but also lead to bytes from the table being taken for part of the image.

Recall that the PDS3 label language was intended to be able
to describe any format that might be submitted for observa-
tional data. As more planetary missions were selected and
funded, flight hardware became more sophisticated, as did the
related processing pipelines. These pipelines organized their
data files for efficiency within their local environments. When
it came time to create the PDS archive submissions for their
data, the archive developers looked at the PDS SR for the
closest match to the pipeline data structure, and then the
negotiation began.

Because the PDS3 labeling system was supposed to be
descriptive (as opposed to prescriptive) and PDS had no
authority to demand compliance with any specific format, the
argument was made (and repeatedly won) that if something was
not specifically prohibited by the SR, then it must be allowable.
If a new accommodation in the SR was requested and it was
comparable in any sense to something that was already
allowed, then the SR should be modified, if needed, to include
the new variation.

For example, the PDS3 IMAGE object, used to describe
image arrays of two or three dimensions, had an option for each
line to contain “prefix bytes” (or “suffix bytes,” depending on
the location) not considered part of the image. When in some
cases these prefix/suffix bytes contained archival information,
they needed to be described by another data structure, like a
TABLE object (a fixed-width character or binary table format).
The standards were expanded to allow prefix/suffix bytes on
the ends of each row of a table. This led to file formats in
which, for example, the left half of a file record could contain a

scan line of an image and the right half could contain a row of a
table (a structure known as “interleaved data objects,”
illustrated in Figure 3).

In another case, a mission produced simple two-dimensional
images but decided to deliver them to PDS not as IMAGE
objects but as degenerate QUBE objects. The QUBE object
described the file structure used by the Integrated Software for
Imagers and Spectrometers (ISIS) package for processing
spectral image cubes with backplanes and sideplanes. The
central cube and additional planes were interleaved in the data
file. The choice of data object made these simple images
inaccessible to non-ISIS users, because the QUBE object in the
PDS3 label was not recognizable to their existing software.

In perhaps the most notable case, the Mars Global Surveyor
(MGS) Thermal Emission Spectrometer (TES) instrument and
the Cassini Composite Infrared Spectrometer (CIRS) instru-
ment pipelines both produced data using a software package
called Vanilla. The file format output by Vanilla included heap
storage—an unstructured block of bytes accessed via a look-up
table as an unordered set of variable-length records. This space-
efficient design was at least partly in response to what was
anticipated as being an overwhelming quantity of data to be
returned—data volumes on the order of 100 TB at a time when
data were stored and distributed on CDROM (~450-700 MB
per disk) and DVD (4-8 GB per disk). The archive developers
argued that the PDS3 standards contained a FILE object that
did not require any structural description and therefore could be
used to label the heap storage, and that the look-up table was a
simple TABLE object. Therefore, the data format could be

THE PLANETARY SCIENCE JOURNAL, 2:204 (12pp), 2021 October

described by the PDS3 label standards and should be accepted
as archivable. And so, even though no PDS software, not even
NASAView, could correctly interpret this label structure and
display the data, the data sets were accepted in that format. The
source code for Vanilla was included in the archive volumes,
but software is not supported by PDS, which is not a software
house.

Note also that both MGS and Cassini were archiving based
on budgets set prior to the beginning of the operational PDS, so
even if PDS had had the authority to enforce a format
requirement, it is doubtful that either mission would have had
the budget for a major reformatting effort.

3.8. Making the Standards Fit the Data

Even in cases where the PDS SR clearly did not support the
intended format, data preparers successfully argued that it was
the SR that should adapt. The most prominent example for this
is compression. Frequently missions in planning expect to
produce quantities of data that push the limits on contemporary
physical storage. When this happens, the PDS node expecting
to receive these data must find a way to handle the volume in
the archive. Compression often seems like a good solution, but
compression requires software support and software does not
have archival lifetimes. Appendix I of the final, 3.8 version of
the PDS Standards Reference describes two types of compres-
sion approved for use in the PDS3 archive: JPEG 2000 and
ZIP. JPEG 2000 is an ISO standard that is not freely available;
the URL for the Info-ZIP Consortium is no longer valid. If
either of these formats ever becomes unsupported, PDS will
need to rescue the data and migrate it to a new format.

4. Fewer, Simpler Formats

Throughout the history of PDS there has been a call from
users for “fewer, simpler formats,” but the perception of what
constitutes data format is somewhat subjective. From the point
of view of the PDS designers, a data format was what was
defined by a standard. FITS was a format, VICAR was a
format, and the PDS3 SR defined a format that was general
enough to encompass both of those and many others as well.
PDS users, however, had a different view.

4.1. The User View

Imagine a user wishing to compare PDS archived images
from multiple data sources—some of which produced FITS
images, some VICAR, and some PDS format with only the
PDS3 label to document the image raster. In order to read all
these images into the same analysis environment, this user is
almost certainly going to have to write code to read at least one
of these formats. If she chooses the PDS3 label as the common
format, her code needs to account for the following variations:

1. Storage order as inferred from LINE_DISPLAY_DIR-
ECTION and SAMPLE_DISPLAY_DIRECTION, if
those keywords are present (checking for the presence
of a FITS label in the data file if they are not).

2. The possible existence of prefix bytes on the beginning of
each image scan line.

3. The possible existence of suffix bytes on the end of each
image scan line.

Raugh & Hughes

4. The possibility of a third dimension indicated as “bands,”
and the three possible physical storage options for that
third dimension.

5. The effect of the presence of “bands” on the storage of
any prefix /suffix bytes on the image scan lines.

6. The hardware storage format for the pixels, specifically
whether byte order is significant and, if so, if it is the
same as the byte order of the computer reading the data.

This is complex logic to code just to read the data into memory.

The typical PDS data consumer is a researcher who writes
code to support his own analysis and so tends to code to the
data in hand rather than to a model. When that researcher
obtains archive data “in PDS format” from a different data
source and finds that his existing IMAGE-reading code cannot
read the new data because of differences in the IMAGE data
structure used in the new labels, he tends to view that as a
difference in data format, irrespective of how the PDS
designers viewed the issue.

Even the professional programmers hired to produce archive
data were affected by the lack of PDS3 data structure
constraints. Without tight constraints on data structures, each
science pipeline modified existing structures to accommodate
the design of the new science data center or instrument-specific
data analysis and then expected the new design to become the
archival format. Consequently, code developed for one archive
production effort typically required substantial modifications
for every new instrument or mission preparing an archive.

4.2. Whither OAL?

But what about the shareable libraries OAL and L3? They
were provided to support users writing code to access PDS
archive data, after all. Why would a user code “from scratch”?

This is another case where technological evolution overtook
PDS development. Had PDS been operational even 5 yr earlier,
it is likely that the OAL/L3 libraries would have been adopted
by a fair number of users, who at that time were accustomed to
working in coding environments that required compilation and
linking. By the mid-1990s, however, users had several years’
experience with analysis environments like the Astronomical
Image Processing System (AIPS) and the Image Reduction and
Analysis Facility (IRAF), as well as with scripting in the
Interactive Data Language (IDL) and the Perl programming
language. Users increasingly preferred the immediate results
obtainable in those environments to the edit/compile/link
process required for code written in C or FORTRAN.
Consequently, the OAL and L3 libraries saw little use outside
of the PDS-produced tools.

Had these libraries provided the primary access to the PDS3
data, as was intended, the end user’s view of the PDS3 format
would have been substantially different. The PDS programmers
would have been managing the software changes required to
support the evolution of the PDS3 Standards, and end users
would have been insulated from the complexities of storage
order, interleaving, and the like; “PDS3 format” would have
been comparable to “FITS format” and “VICAR format” in
practice. As it was, the users who had come to prefer the
immediacy of scripting also had to deal personally with every
modification made to the PDS3 Standards, and “PDS3 format”
came to be viewed as an unpredictable conglomerate of
structural possibilities.

THE PLANETARY SCIENCE JOURNAL, 2:204 (12pp), 2021 October

5. PDS3, the Later Years

As PDS approached 15 yr of operations, it found itself firmly
in the middle of not two but three opposing forces over issues
of standards management and data formatting: first, there were
the data preparers who were trying to meet budget and calendar
deadlines and satisfy their NASA-imposed archiving require-
ments; second, there were the end users who wanted to be able
to download and immediately proceed to analysis with any
and all data they got from the PDS archives; and third, there
were the future generations of users who had few if any
contemporary advocates apart from the PDS itself. PDS was
supposed to be preserving the data and maintaining their
usability for those future generations, but in the early 2000s
significant problems arose with certain legacy data sets that
raised red flags for large sections of the archive.

5.1. Media Degradation

By about 2010, most PDS archival data were preserved via
redundant copies on spinning disk, as opposed to CDROM,
CDWO (CD-Write Once), or DVD. The Near-Earth Asteroid
Rendezvous (NEAR) mission, however, ended in 2001, and the
mission archives were written to DVD-R write-once media.
One copy was shelved at SBN, one copy was deposited with
the (then) National Space Science Data Center (NSSDC), and
one copy was placed into a DVD jukebox at SBN for public
access.

About a year later, users reported read failures attempting to
read the NEAR data from the DVD jukebox. SBN investigated
and found many read errors surfacing in all copies of these
disks—the service copy and backup copy at SBN, and the
deep-archive copy at the NSSDC. Other nodes were reporting
similar issues, and a broader investigation within PDS
determined that DVD-R was not a feasible archive medium
because manufacturing standards were both generally low and
unpredictable prior to purchasing the blank media. SBN
eventually recovered the entire NEAR archive from the various
DVD sets, but not without substantial effort and multiple
attempts to read failing disks.

Contemporary reporting also called into question the claimed
“100+ yr” shelf life for mastered CDs, and many of the CDs in
the PDS archives were CDWO, which generally made more
conservative claims for longevity. Clearly data on DVDs
needed to be rescued immediately, and PDS needed to plan for
media migration of data on CDs in the not-so-distant future.

5.2. Software-dependent Formats

The case of the Cassini CIRS data has already been
mentioned as an example of warping the interpretation of the
SR to fit the data format. Despite the size and importance of the
Cassini CIRS (and MGS TES) data, the Vanilla software has
not enjoyed wide community support. A version of the
software was included on the archive disks along with a now
20 yr old “preliminary draft” of a user’s guide, but ports were
not forthcoming. The data were effectively inaccessible to
anyone who did not have a working Vanilla installation, which
was essentially everyone not on the original instrument team.

Additionally, the data from the Cassini Visual and Infrared
Mapping Spectrometer (VIMS) instrument were archived in the
QUBE format. This format presents many challenges for users
attempting to write code to read these files: the central cube,
sideplanes, and backplanes are all interleaved; the backplane

Raugh & Hughes

dimensions (that is, record byte counts) do not match the cube
dimensions; and because of the various interleaved data types,
two-byte values do not always align with two-byte boundaries
in memory. Consequently, the VIMS data set is all but
unusable without the ISIS software.

In both cases, the PDS Ring-Moon Systems Node is
spending significant node resources on reformatting these
unique data sets into software-independent forms that can be
read using more conventional techniques.

5.3. Archive Maintenance and Format Migration

As PDS looks to the future of research data, including
assigning Digital Object Identifiers (DOIs) to data sets and
enabling the programmatic access to discoverability and
reusability that lie at the core of the FAIR Data Principles'®
(Wilkinson et al. 2016), the quantity and quality of metadata in
the legacy archive decrease at least linearly with age, as does
the surety with which the data can be incorporated into
contemporary, interdisciplinary analysis. Media migration of
data—copying data from old media to new, possibly different
media—is an expense that can be managed as existing media
age and new media are developed. Format migration—
transforming the storage structure of the data, as is being done
for the CIRS and VIMS data—is a far more resource-intensive
process that frequently depends on living memory for the first-
and second-generation PDS data sets. Data that are in orphaned
formats now are at risk of being lost forever. The process of
reformatting data is also potentially risky to the data, especially
when the orphaned format includes hardware encodings that
are no longer broadly supported, like VAX numerics or
EBCDIC characters. These conversions require additional
external peer review to verify that the reformatting has not
degraded or damaged the data.

Knowing that the legacy PDSI, PDS2, and even PDS3
metadata may be incomplete—missing DISPLAY_DIREC-
TION, for example—adds further complexity and risk to an
already costly process. The PDS3-to-PDS4 migration currently
being undertaken by the PDS science nodes is a format
migration, for example. For obsolete data types and data
structures not supported under PDS4, format migration of the
data files is required, with all the attendant validation,
verification, and review. Even in cases where no format
migration is required for the data files, the metadata in labels
must undergo their own format migration from PDS3 ODL as
defined by the PSDD to PDS4 XML as defined by the PDS4
Information Model. For older data the effort being spent to
locate and document rich metadata to supplement what is in the
original PDS3 labels in order to populate the PDS4 labels to the
fullest extent possible represents a significant reinvestment in
these legacy data.

Clearly, if an archive intends to preserve data for use by
future generations, it is essential that the data be preserved in a
way that maintains usability without requiring the periodic
undertaking of risky (and expensive) format migration.

5.4. User Support

Even as PDS addresses the exigencies of preserving the
legacy archive, it must also address the needs of contemporary
users. Contemporary users expect to be able to search easily

16 «pAIR” is an acronym for “Findable, Accessible, Interoperable, and
Reusable,” four principles to be applied in the management of research data.

THE PLANETARY SCIENCE JOURNAL, 2:204 (12pp), 2021 October

across the entire PDS holdings, regardless of age, source, or
physical location of the data. They want data in a format they
can specify, so it can be immediately read into their preferred
processing environment regardless of what format it might be
in the archive. They expect the PDS holdings to be
“discoverable” in the broad, contemporary sense of that term.
The PDS holdings are now large enough, and the user
community diverse enough, that it is no longer reasonable to
assume that a PDS user knows what data are in the archive and
what instrument or mission produced them.

Even if all the necessary metadata for that standard of support
were in the PDS3 labels (they are not), the development of that
level of service cannot be accommodated in a budget that also
must account for repeated format migration of the aging archive.
An archival format that precludes the need for regular format
migration preserves resources for user services.

6. Characteristics of an Archival Data Format

As the first decade of the 2000s drew to a close, PDS
determined that it needed to redesign its archive from the ground
up, based on what it had learned in 20 yr of operations, in order
to provide contemporary and future users with the national,
interdisciplinary resource PDS was always intended to be.

It was clear that format migration would be needed in more
than a few cases, to add missing metadata and to remove
formats that had proved to be roadblocks to users. The PDS
Management Council understood the risks involved and
discussed the alternatives. If it had to be done, then certainly
it should never be done twice. The PDS4 Data Design Working
Group set to the task of defining a data format optimized for the
long-term preservation of observational data.

The design team settled on the following characteristics:

1. Software Independence.

2. Simple Data Structures.

3. Contiguous Data Structures.
4. Rich Metadata.

6.1. Software Independence

This characteristic means there should be no assumptions
about encoding, storage format, delimiters, etc. Everything
should be explicitly stated in the label, regardless of how
obvious it seems at the time of archiving. So, for example,
offsets within a file currently must have an explicit unit of
measure of “bytes” indicated, every time. Perhaps someday
offsets will be measured in different units for some data
structures (‘“characters” in Unicode files, for example), but if
the unit is explicitly stated all the time now, there will be no
need for defaults or assumptions documented elsewhere.
Everything needed to read the data into memory will be in
the label.

6.2. Simple Data Structures

In fact, there are four basic data structures in the PDS4
design, but only two are considered acceptable for observa-
tional data (the others are used for documentation and
supplemental additions like browse images and thumbnails).
These are arrays (multidimensional and homogeneous) and
tables (repeating record structures). Any data in a more
complex structure must be decomposed into a sequence of
arrays and tables.

10

Raugh & Hughes

The reason for this goes straight to the heart of preservation.
It is very difficult to misread a simple array or table, even if
new code is written from scratch to do it. In the event of a
coding error, the simplicity of the structures involved limits the
types of errors it is possible to make, and those errors tend to
leave a distinctive pattern in the data displayed. The same is
true for labeling errors. If a keyword describing the structure
makes it into the archive with an erroneous value, a standard
PDS4 visualization tool will very likely show the characteristic
error in its display. (Figure 4 illustrates some of the most
commonly encountered data errors and their distinctive effects
on image display.)

6.3. Contiguous Data Structures

Within the data file, the arrays and tables making up the data
structures must be distinct. Interleaved formats like those
created by prefix/suffix bytes on PDS3 TABLE and IMAGE
objects are forbidden. Structures like the PDS3 QUBE object
must be decomposed into the constituent parts, which may then
be labeled as individual arrays and tables.

Requiring that the simple arrays and tables making up a
complex data structure be separated into contiguous byte
streams tends to limit the effect an error in one simple structure
can have on reading the data in another. And again, the errors
likely to be encountered have characteristic patterns on output.
Misreading the start byte of an image array, for example,
creates a “bar” pattern down one side of the image. Mislabeling
the number of pixels in an image line creates a clear
“wrapping” pattern (shown in Figure 4(D)). These patterns,
as well as their potential sources, would be obscured if the
image were interleaved with table elements.

6.4. Rich Metadata

When PDS was designed, traditional documentation was
expected to supply the bulk of details regarding provenance,
processing, and interpretation of the data. Now this information
is expected to be in the metadata supplied in the label. Rich
metadata support discovery, analysis, reuse, automated proces-
sing, and any other application of the data users might imagine.
It can also support complex data transformations.

When a complex structure, like a PDS3 QUBE with
backplanes and sideplanes, is deconstructed into its logical
constituents, the associations between the logical pieces
inherent in the original form are significant and should not be
discarded. The PDS4 metadata system includes mechanisms for
defining relationships between and among data structures to
define and preserve these associations. So as new, complex
data formats are developed, it is possible to deconstruct the data
into their simple, logical components and define metadata for
reconstructing the original format. The advantage here is
twofold: first, a single program can be written to transform the
native format to the archival equivalent, making the constituent
simple data structures available to all applications without
further transformation; and second, a single program can be
written to transform any equivalent set of data structures to the
new native format, irrespective of what source(s) produced the
older data.

7. Trade-offs

As with any major system change, there are drawbacks and
benefits.

THE PLANETARY SCIENCE JOURNAL, 2:204 (12pp), 2021 October

A)

Raugh & Hughes

Figure 4. Effect of common read errors on a simple image. Panel (A) is a calibrated image from the Deep Impact mission High-Resolution Imager (McLaughlin
et al. 2014), properly read and displayed. The pixels in this image are four-byte real numbers. Panel (B) shows the characteristic compression of dynamic range that
results from misreading the same floating-point data as signed integer data. Panel (C) shows the telltale “snow” pattern that typically results from interpreting integer
data in the wrong byte order. (Interpreting real data in the wrong byte order usually results in fatal errors because of bit patterns that coincide with NaN, +Inf, or —Inf
values.) Finally, panel (d) shows the wrapping pattern that results when axes of unequal length are swapped or, as in this case, when one axis length is off by a small
number of bytes. (The original square image has a row of bright pixels very near the top border that produces the sharp diagonal lines in panel (D).) All four images
were produced by the PDS4_viewer from the same FITS data file, using rudimentary PDS4 labels with the specific errors introduced prior to reading the data and

applying a z scale to the display.

There are two major drawbacks for PDS4 label approach
compared to PDS3:

1. Data creators are now required to fit their data to the
PDS4 data structures. This is a stark difference from the
PDS3 approach, but PDS4 was designed to be pre-
scriptive rather than descriptive specifically to get some
measure of control over “data formats,” as perceived by
users.

2. The PDS4 archive format will require software support.
In general, users will want data in a format other than the
format that is in the archive. To date, the PDS-supplied
transformation tool is severely limited in what it can do.
As analytical environments become more sophisticated
and users seek to integrate data from various sources, this
demand is likely to increase.

The benefits to PDS and its present and future users,
however, are great:

1. Because the PDS format constraints are tight and the
data structures are explicitly defined in the PDS4
Information Model, programmers can code to the
model for basic access to the data. This is most

11

important for general read/write routines, of course.
Unlike PDS3, it is possible to write code to do basic
input and output on all array-type objects using the
information that is required to be present in the PDS4
labels, for example, regardless of what instrument or
mission produced the data.

. Generic data structures that are not tied to any specific

processing environment are essential to supporting broad
investigations. A user should not have to understand the
differences between FITS, VICAR, and PDS3 IMAGE
data storage structures, for example, before being able to
compare images.

. If PDS does not have to allocate resources to format

migration, it can redirect those resources to user services.
An archive that needs constant maintenance and migra-
tion to remain viable will require ever-increasing
resources as the archive grows. A stable archive format
may not be the preferred format of contemporary users,
but the preferred format is only a transformation away.
Writing one transformation that will work on the entire
archive is far more cost-effective than repeated format
migration of archive content.

THE PLANETARY SCIENCE JOURNAL, 2:204 (12pp), 2021 October

8. Summary

The PDS was designed in an age where data were exchanged
on magnetic tape, users routinely programmed in compiled
languages like FORTRAN, and the greatest challenge users
faced was being able to find and lay hands on the data. The
PDS3 standards for labeling and formatting data sought to
emulate the success of the FITS and VICAR formats but were
overwhelmed by the technological evolution that saw online
access replace physical distribution, interactive environments
replace compiled code, and Google supplanting traditional
card-catalog searching.

The PDS3 standards were a descriptive approach to labeling
data that aimed to provide the flexibility to document any data
file structure provided, but they were themselves overtaken by
the complexity and variety of data organizations used by newer
and more sophisticated instruments. Ultimately, in order to
provide users with the core services now considered essential in
an archive, the PDS needed a data file format optimized for
archiving; a format that would provide a sound basis for
programmatic access, use, and reuse; and a format that would
be usable without change for generations, so that PDS
resources can be focused on user services rather than expensive
and risky maintenance operations on legacy data. The PDS4
data format is designed to meet those criteria.

This work was supported in part by the NASA PDS Small
Bodies Node through NASA grant NNX16ABI16A. The
authors would like to thank Mark Showalter and Mitch Gordon
from the NASA PDS Ring-Moon Systems Node for their
assistance and clarifications regarding the ongoing Cassini
VIMS and CIRS work.

12

Raugh & Hughes

The original data product and the modified version with
accompanying PDS4 label mock-ups used to create the images
in Figure 4 are available at doi:10.5281/zenodo.5171393.

ORCID iDs

Anne Raugh @ https: //orcid.org/0000-0002-8300-9443
J. Steven Hughes @ hittps: //orcid.org/0000-0003-4851-293X

References

National Research Council 1982, Data Management and Computation Volume
1: Issues and Recommendations (Washington, DC: The National Academy
Press), doi:10.17226/12366

National Research Council 1986, Issues and Recommendations Associated
with Distributed Computation and Data Management Systems for the Space
Sciences (Washington, DC: The National Academies Press), doi:10.17226/
12343

Kieffer, H., Arvidson, R. E., Baum, W. A, et al. 1984, Planetary Data Workshop,
NASA Conf. Pub. 2343, Part 1 (Washington, DC: NASA), 2343, https://
ntrs.nasa.gov /citations /19840026295

McLaughlin, S. A., Carcich, B., Sackett, S. E., et al. 2014, Deep Impact 9P/
Tempel Encounter—Reduced HRIV Images V3.0, DIF-C-HRIV-3/4-9P-
ENCOUNTER-V3.0, https://pdssbn.astro.umd.edu/holdings /dif-c-mri-3_
4-9p-encounter-v3.0/

Planetary Data System 2021, Planetary Data System Standards Reference,
Version 1.16.0, JPL D-7669 (Pasadena, CA: JPL, Caltech), https://pds.
nasa.gov /datastandards /documents /sr/v1/StdRef_1.16.0.pdf

Planetary Data System Design Team (PDS-DT) 1986, Planetary Data System
Version 1.0 Specification, Revision 1.0, JPL Document D-3454, doi:10.
17189/1519398

Renfrow, J. T., Martin, M. D., Jansma, P. A., et al. 1986, Planetary Data
System System Requirements Review, doi:10.17189/1519402

Wells, D. C., Greisen, E. W., & Harten, R. H. 1981, A&AS, 44, 363

Wilkinson, M., Dumontier, M., Aalbersberg, 1., et al. 2016, Scientific Data, 3,
160018

https://doi.org/10.5281/zenodo.5171393
https://orcid.org/0000-0002-8300-9443
https://orcid.org/0000-0002-8300-9443
https://orcid.org/0000-0002-8300-9443
https://orcid.org/0000-0002-8300-9443
https://orcid.org/0000-0002-8300-9443
https://orcid.org/0000-0002-8300-9443
https://orcid.org/0000-0002-8300-9443
https://orcid.org/0000-0002-8300-9443
https://orcid.org/0000-0003-4851-293X
https://orcid.org/0000-0003-4851-293X
https://orcid.org/0000-0003-4851-293X
https://orcid.org/0000-0003-4851-293X
https://orcid.org/0000-0003-4851-293X
https://orcid.org/0000-0003-4851-293X
https://orcid.org/0000-0003-4851-293X
https://orcid.org/0000-0003-4851-293X
https://doi.org/10.17226/12366
https://doi.org/10.17226/12343
https://doi.org/10.17226/12343
https://ntrs.nasa.gov/citations/19840026295
https://ntrs.nasa.gov/citations/19840026295
https://pdssbn.astro.umd.edu/holdings/dif-c-mri-3_4-9p-encounter-v3.0/
https://pdssbn.astro.umd.edu/holdings/dif-c-mri-3_4-9p-encounter-v3.0/
https://pds.nasa.gov/datastandards/documents/sr/v1/StdRef_1.16.0.pdf
https://pds.nasa.gov/datastandards/documents/sr/v1/StdRef_1.16.0.pdf
https://doi.org/10.17189/1519398
https://doi.org/10.17189/1519398
https://doi.org/10.17189/1519402
https://ui.adsabs.harvard.edu/abs/1981A&AS...44..363W/abstract
https://doi.org/10.1038/sdata.2016.18
https://ui.adsabs.harvard.edu/abs/2016NatSD...360018W/abstract
https://ui.adsabs.harvard.edu/abs/2016NatSD...360018W/abstract

	1. Introduction
	2. A Brief History of the PDS
	2.1. CODMAC1 and the Planetary Data Workshop
	2.2. The PDS—Original Concept
	2.3. Requirements Reviews
	2.4. PDS1, PDS2, PDS3
	2.5. PDS3 Format
	2.6. The Object Access Library (OAL)

	3. The Early PDS3 ERA, 1990–2000
	3.1. A Brief Aside—Displaying an Image
	3.2. The First Signs of Trouble
	3.3. Further Complications
	3.4. The Solution
	3.5. The Problem with the Solution
	3.6. Data Types
	3.7. The Descriptive Approach
	3.8. Making the Standards Fit the Data

	4. Fewer, Simpler Formats
	4.1. The User View
	4.2. Whither OAL?

	5. PDS3, the Later Years
	5.1. Media Degradation
	5.2. Software-dependent Formats
	5.3. Archive Maintenance and Format Migration
	5.4. User Support

	6. Characteristics of an Archival Data Format
	6.1. Software Independence
	6.2. Simple Data Structures
	6.3. Contiguous Data Structures
	6.4. Rich Metadata

	7. Trade-offs
	8. Summary
	References

