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Abstract

The light from an extragalactic source at a distance d will arrive at detectors separated by 100 au at times that differ
by as much as 120(d/100Mpc)−1 nanoseconds because of the curvature of the wave front. At gigahertz
frequencies, the arrival time difference of a point source can be determined to better than a nanosecond with
interferometry. If the spacetime positions of the detectors are known to a few centimeters, comparable to the
accuracy to which very long baseline interferometry baselines and global navigation satellite systems (GNSS)
geolocations are constrained, nanosecond timing would allow competitive cosmological constraints. We show that
a four-detector constellation at Solar radii of 10 au could measure geometric distances to individual sources with
subpercent precision. The precision increases quadratically with baseline length. Fast radio bursts (FRBs) are the
only known bright extragalactic radio source that are sufficiently point-like for this experiment, and the simplest
approach would target the population of repeating FRBs. Galactic scattering limits the timing precision at 3 GHz,
whereas at higher frequencies the precision is set by removing the differential dispersion between the detectors.
Furthermore, for baselines greater than 100 au, Shapiro time delays limit the precision, but their effect can be
cleaned at the cost of two additional detectors. Outer solar system accelerations that result in ∼1 cm uncertainty in
detector positions could be corrected for with weekly GNSS-like trilaterations between members of the
constellation. The proposed interferometer would not only provide a geometric constraint on the Hubble constant,
but also could advance solar system, pulsar, and gravitational wave science.

Unified Astronomy Thesaurus concepts: Cosmology (343); Cosmological constant experiments (335);
Cosmological parameters (339)

1. Introduction

Fast radio bursts (FRBs) are millisecond radio transients that
are generally of extragalactic origin (Lorimer et al. 2007;
Thornton et al. 2013; Tendulkar et al. 2017; Bannister et al.
2019; Cordes & Chatterjee 2019; Petroff et al. 2022). Hundreds
of FRBs have been discovered to date, tens of which have been
found to be repeating, with ∼104 on the sky per day above 1
Jy ms—a detectable fluence for many radio telescopes (Spitler
et al. 2016; CHIME/FRB Collaboration et al 2021). Not only
are FRBs interesting for identifying and studying the extreme
radiative processes that create them, likely associated with
magnetars (Bochenek et al. 2020; CHIME/FRB Collaboration
et al 2020), but propagation effects that alter the received
electromagnetic waves can be used as a tool to study the
missing baryon problem, the circumgalactic media of galaxies,
and the cosmic reionization history (McQuinn 2014; Prochaska
et al. 2019; Ravi 2019; Beniamini et al. 2021; Heimersheim
et al. 2021).

Several studies have also identified potential ways to use
FRBs for precision cosmology. The simplest of which is to use
that the frequency dependence of the wave front arrival to infer
the column of electrons along the sightline and create a Hubble
diagram-like electron column versus redshift relation. While it is
unlikely that the host galaxy electron column will be small
enough to allow a precise determination of this relation
(Macquart et al. 2020), a way around this uncertainty is to

instead usecorrelations between sightlinesare only sensitive to
the cosmological density fluctuations (Masui & Sigurdson 2015).
This idea would map the fluctuating electron density to constrain
cosmological parameters, somewhat analogous to a weak lensing
survey.
An alternative route to cosmological constraints uses a key

attribute of FRBs—that their arrival time can be measured
very accurately. The point-like nature of FRBs allows
coherent timing with precision of better than the inverse of
their frequency, a nanosecond at a gigahertz. FRBs could be
timed much more precisely than the slowly varying quasars
that are used in current strong lensing time delay analyses,
which are starting to put competitive constraints on the
Hubble constant (Li et al. 2018). Unfortunately, uncertainties
in the mass modeling of the lens system (Kochanek 2021) as
well as in the projected mass (Bar-Kana 1996) may prevent
percent-level cosmology with lensing time delays regardless
of the timing precision. One potential way around these
limitations involves lensed, repeating FRBs. Measuring the
∼10−3 s yr−1 evolution in the time between lensed images
due to the evolving redshift of the lens and source would
constrain the cosmology (Zitrin & Eichler 2018; Wucknitz
et al. 2021), although this rate is comparable to that from the
mass assembly of the lens.
In this article, we propose a new geometric approach to

constrain cosmology with FRBs. The wave front of an FRB
will have a small curvature when it reaches our solar system.
By measuring the arrival time of the same FRB at four separate
radiometers, this curvature can be measured directly and used
to infer the distance. (A similar idea has been applied to pulsar
timing arrays in D’Orazio & Loeb 2021 and McGrath et al.
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2022.) An illustration of this idea is shown in Figure 1. We will
show that a constellation of detectors separated by 100 au and
observing at 3 GHz would be able to measure the
cosmological distance to an FRB at 100Mpc with an accuracy
of ∼0.1%. Subpercent distances translate to subpercent
constraints on cosmological parameters via the redshift–
distance relation once sufficiently into the Hubble flow. This
idea also has the appeal of being a geometric measurement of
distance in cosmology akin to parallax, not requiring the
assumptions of other distance methods (e.g., the standardiza-
tion of Type Ia supernovae; Phillips 1993; or the Λ-cold dark
matter (ΛCDM) model for cosmological density fluctuations;
Dodelson 2003).

The proposed experiment requires measuring the arrival times
of FRBs with subnanosecond precision for solar system-sized
baselines. Subnanosecond timing is regularly done with very
long baseline interferometry (VLBI; Schuh & Behrend 2012).
With Earth-scale baselines, VLBI timing has allowed measuring
the angular coordinates of thousands of radio sources with
milliarcsecond errors (Beasley et al. 2002; and ∼10μarcsec for
Sagittarius A* and the black hole at the center of M87; Event
Horizon Telescope Collaboration et al. 2019). VLBI has also
been done in space, with the 10m dish on the Spektr-R satellite
as part of the RadioAstron program, successfully finding
correlations with a 30 Earth radius baseline (Hirabayashi et al.
1998; Kardashev et al. 2013). VLBI is now regularly being
done on FRBs (Marcote et al. 2017, 2020; Kirsten et al. 2022).

We also require the detectors to be localized with an
accuracy of several centimeters over solar system scales.
Modern positioning systems can localize global navigation
satellite systems (GNSS; such as the United State’s GPS,
Russia’s GLONASS, China’s BeiDou, and Europe’s Galileo)
to meter or even centimeter precision (e.g., Misra &
Enge 2012). Millimeter accuracies on distance measurements
are obtained with optimizations (longer integrations, having
well-localized places on Earth for a differential measurement)
that are able to break the integer wavelength ambiguity in the
carrier phase. Using very similar methods to GNSS systems,
precision ranging is regularly performed to NASA satellites

across the solar system by the Deep Space Network,1 reaching
several meter precision in the separation and with the potential
for improvement (Border & Paik 2009). The Deep Space
Network has executed precise radio ranging to the Pioneer,
Voyager, and New Horizons missions to the outer solar system.
While placing radio telescopes on different sides of the solar

system would require a significant effort, a further motivation is
that cosmology is near the end of how well we can measure
parameters with traditional techniques. Much of the useful
cosmic volume for constraining dark energy will soon be
mapped, and known techniques for constraining cosmological
parameters cannot achieve errors below ∼1% on most
parameters. Currently there are 10% tensions in the Hubble
parameter determined with the most accepted techniques,
namely the cosmic microwave background and Type Ia
supernovae calibrated with parallaxes and then Cepheid
variable stars (Riess et al. 2019; Di Valentino et al. 2021). If
future measurements indicate a few-percent deviation from the
ΛCDM expectation, would the community believe it? The
proposed experiment offers a potential way forward, enabling
geometric subpercent distance measurements where the major
sources of error appear to be under the instrumentalist’s
control. We show that a single FRB at d= 200Mpc could be
used to make a 1% measurement of the Hubble constant for
radio telescopes at Solar radii 20 au, with the 1% set by the
uncertainty in the peculiar velocity of the host galaxy. This
measurement is comparable to the SHOES 1% measurement of
the Hubble constant using ≈100 Type Ia supernovae with a
median distance of d= 200Mpc (Riess et al. 2022). Each
supernova provides a 10% distance measurement, and so ≈100
supernovae are required for 1% precision; similar averaging
can be done in our proposed experiment to achieve subpercent
measurements of the Hubble constant. We further show that
∼100 au baselines could achieve 1% constraints on a single
FRB out to d= 3000Mpc or z= 1.

Figure 1. Example of a detector configuration that can be used to measure the distance to a source from the curvature of its wave front. The signal will arrive at
detector B before it is seen at detectors A or C. By comparing the arrival times at the three detectors we can infer the distance to the source. Note that we can only
measure the difference in arrival times, not the distances di directly. With two detectors the distance to the source is degenerate with the angular position on the sky θ.
With three detectors in two dimensions, or four detectors in three dimensions, this degeneracy is broken and the distance to the source can be inferred.

1 https://www.nasa.gov/directorates/heo/scan/services/networks/deep_
space_network/
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Perhaps the most apt comparison is with gravitational wave
standard sirens. Forecasts for a proposed next-generation
instrument, the Einstein Telescope, are ∼1% distance errors
to a low redshift and ∼5% percent to z= 1 (Maggiore et al.
2020), with these predictions reliant on assumptions about
source demographics and the identification of electromagnetic
counterparts. Our proposal offers the potential for higher
precision even from a single FRB.

There are several applications beyond the obvious Hubble
constant and dark energy science. Another cosmological
parameter for which it would be interesting to push beyond
current constraints is the spatial curvature. If slow-roll inflation
starts with a comoving Hubble radius that is comparable to our
present-day horizon, the universe could be more curved than
the one part in 105 inflationary expectation, and there might be
anthropic reasons for why we inhabit a region with an
enhanced negative spatial curvature (Freivogel et al. 2006).
Additionally, the proposed extremely long baseline instrument
could potentially measure the mass distribution in the outer
solar system, the distance to Galactic pulsars, constrain clumpy
dark matter models, resolve the radio emission from pulsars,
more directly measure the density fluctuation spectrum of
interstellar medium (ISM) turbulence, and reach interesting
sensitivities to <100 μHz gravitational waves.

This paper is organized as follows. We present the idea for
distance constraints from wave front curvature in Section 2,
and we argue that FRBs are likely the only extragalactic source
that is sufficiently point-like for this method in Section 3. We
then show that various systematics, namely ISM scattering,
dispersion, and gravitational time delays, appear to be under
control for ν 3 GHz, with gravitational time delays limiting
the precision for 100 au antenna separations (Section 4; but
also fully removable with two more detectors). We discuss the
feasibility of calibrating the antennas’ spacetime locations to
within one wavelength in Section 6. Finally, Section 7
synthesizes our estimates for the timing noise to forecast the
achievable cosmic distance constraints, and Section 8 high-
lights other sciences applications that could be addressed with
solar system-scale interferometry. Appendix A generalizes our
calculations to curved space, and the other appendixes add
details to some of the systematics calculations.

2. Geometric Distance Measurements with Time Delays

Here we describe how direct cosmological distances can be
ascertained using the time delays between radiometers. This
section presents a Euclidean-space derivation, which gives the
essential idea and is a good approximation for sources that are
not at appreciable redshifts. We generalize this derivation to
Friedman–Robertson–Walker (FRW) spacetimes in
Appendix A. In flat FRW spacetimes, the distances in the
Euclidean derivation are simply mapped to the comoving light-
travel distances such that the following carries over directly.

Let us first consider the case of two radiometers. Without
loss of generality, we label one of our detectors the “reference
detector,” and we define a coordinate system so that this
detector is at the origin. We label the position of the source as
d, the position of a second detector as x, and the vector between
the second detector and the source as dx. Symbols in bold
characters refer to vectors, while symbols in regular fonts refer
to the lengths of the corresponding vectors. An illustration of
this configuration is shown in Figure 2.

The distance between the second detector and the source can
be written as

∣ ∣ · ( )= - = + -d x x dd d x 2 . 1x
2 2

Since x= d (i.e., the distance between the two detectors is
much smaller than the distance to the source), we expand the
previous equation in x/d, yielding

 · ( ( · ) ) ( ) ( )= - + - +x d x dd d
d

x x d
1

2
, 2x

2 2 3 2

where d is the unit vector in the direction of d.
The arrival time of the signal at the second detector relative

to the first one is then given by

  
 · ( ( · ) ) ( )

D = -

= - + - +

D

x d x d

c t d d

d
x

x

d

1

2
. 3

x

c t

2 2
3

2

d

⎜ ⎟
⎛
⎝

⎞
⎠

The ·-x d term is the difference in time for a flat wave front to
travel past each of the detectors. The second term in the
equation labeled Δtd is the “distance-dependent time delay”
and is quadratic in x due to the fact that the wave front is not
flat when the source is at a finite distance.
Assuming that the detector geometry is known to better than

the timing precision (the details of which will be discussed in
Section 6), this equation has three unknown variables: two for
the angular position of the source on the sky and one for the
distance to the source. With at least four detectors measuring
three independent time delays this system is fully constrained
and can be used to infer the distance to the source.2 The exact

Figure 2. The triangular configuration of two detectors and the source used for
timing.

2 Another way of doing the constraint counting is to note that four detectors
yield the four equations: ∣ ∣ ( )- = -d x c t ti i

2 2
FRB

2, where i indexes each
detector. The time of the FRB tFRB is one unknown and so this leaves just
enough constraints to measure d, assuming that the spacetime positions of the
detectors are known. This is not unlike the four satellites for precise GNSS
positioning; there the fourth unknown is the signal arrival time at the receiver,
as in the typical setup the receiver does not have a high precision clock.
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accuracy of this measurement depends on the full detector
configuration. For typical configurations, we can approximate
the fractional distance uncertainty σd/d as

( )s s
~

Dd t
, 4d t

d

where σt is the accuracy of a time delay measurement on a
given detector pair. This expression was confirmed experi-
mentally using Fisher matrix calculations as well as a Markov
Chain Monte Carlo (MCMC) implementation in the emcee
package (Foreman-Mackey et al. 2013). For a range of different
four-detector configurations where the detectors are all
separated by similar projected baselines, we find that the error
is approximately Δtd. The errors quickly become smaller for
more than four detectors owing to the large number of detector
pairs, scaling roughly as ( )( )µ - - -N n N n1 1 2A p A p ,
where NA is the number of detectors and np is the number of
additional parameters, being np= 2 for the minimal scenario
considered in this section where the additional parameters are
the source angular coordinates—the scenario that we find
applies until the baselines surpass 100 au (Section 7).

The distance-dependent time delay Δtd can be rewritten as

( )D = =^ ^
-

t
x

c d

x d

2
120 ns

100 au 100 Mpc
, 5d

2 2 1

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where 1 au is the Earth–Sun distance and

 ( · )º -x̂ x x d d

is the projection of the detector separation x that is
perpendicular to the line of sight.

This time delay is small, but in principle can be measured by
correlating the electromagnetic waves at each detector, using
the detectors as an extremely large baseline for VLBI. As will
be shown in Section 4, a couple factors conspire so that for
wide bandwidth measurements the time delays likely can be
measured with an uncertainty of σt∼ ν−1 for ν 3 GHz. The
fractional distance uncertainty of a single measurement can
then be approximated as

( )( )
( ) ( )

( )

~ =

´

s s s
n

n

D

-^
-0.17%

. 6

d t

x

d

100au

2

100 Mpc

5 GHz

d t

d

t
1

Thus, the sensitivity scales with the square of the baseline, and
baselines of at least several astronomical units are required to
make cosmologically interesting distance measurements at any
frequency where VLBI has been performed. A system with a
baseline of 100 au observing at 5 GHz could obtain subpercent
geometric distance measurements to individual sources out to
several hundred megaparsecs.

The curvature wave front effect is related to the more
astronomically familiar parallax effect, as the extra delay from
curvature can be thought of as different baselines detecting the
source at slightly different locations on the sky. Indeed, if we
have three equally spaced detectors each in a line with a
spacing of x⊥, the parallax angle between the centers of the left
and right baseline is x⊥/d and each pair of adjacent antennas
has an angular resolution of σθ∼ c σt/x⊥. Therefore d can be
measured to a fractional precision of σθ/(x⊥/d)∼ σt/Δtd, the
same relation we found from timing considerations. In the

language of parallax, the reason four detectors are needed is
that each baseline localizes the position of a source to a line
with a girth of σθ (i.e., the angular position is unconstrained
perpendicular to the baseline). Thus, only when the three
detectors are in perfect alignment is this sufficient to measure
the parallax, but alignment is no longer required once a fourth
detector is added.

3. FRBs as the Best Source Candidate

Interferometric time delay measurements require the angular
size of the source to be smaller than (or at least comparable to)
the angular resolution of the baselines for the two antennas
to receive identical (or nearly so) wave forms. This means
that the source must be smaller than q l= = ´x̂ 8

( )( )n m-
^

-x10 100 au 5 GHz4 1 arcsec, where λ= c/ν is the
wavelength, or equivalently that the physical size of the source
must satisfy3

( )

l n
= ´

´

^ ^

-
ℓ

d

x x

d

1 10
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cm. 7

12
1

⎜ ⎟

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
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⎞
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We can rewrite this equation in terms of the fractional distance
and timing errors as

( )( ) ( )s n s -
^ℓ d x

1

2
, 8d t

1

( ) ( )
( ) ( ) ( )

=
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s
n s

s
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n- -
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cm, 9

c d d d d

2
12.5
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1 2

0.01

1 2

1 2

5 GHz

1 2

d

t

d

t

2

1

where we used that s s s= D ~ ^d t c d x2d t d t
2 and have

grouped terms in a manner that reflects the timing noise σt is
likely to be of the order of ν−1 (Section 4). Equation (8)
suggests that, for a timing precision of σt∼ ν−1, the source
needs to be 100× smaller than the baseline separation for
percent-level cosmology.
One potential source candidate in the submillimeter band

is the shadows of supermassive black holes (Falcke et al.
2000; Event Horizon Telescope Collaboration et al. 2019).
Supermassive black hole shadows have sizes of
∼3GM/c2= 4×1014(MBH/10

9 Me) cm. Thus, to be unre-
solved in the submillimeter band at ν∼ 200 GHz, a black
hole mass of 106(d/100 Mpc)1/2Me is required for 1%
distance constraints if the timing can be performed to
σt∼ ν−1. It is unlikely there are bright enough candidates at
these masses: this emission is relatively faint as a visible
shadow requires the accretion disk to be in a radiatively
inefficient state, with the 6× 109 Me M87 black hole at just
16 Mpc having a flux density of ∼0.5 Jy in the submilli-
meter band and with this black hole being more luminous
than other similarly distant active galactic nuclei with
compact radio emission (Nyland et al. 2016). M87 is
accreting at ∼10−5 its Eddington limit, and a radiatively
inefficient state may still be possible even for 10−2, with the

3 Technically the d that appears here is the angular diameter distance, unlike
in all other sections, where (in flat space) it is the comoving light-travel
distance.
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luminosity scaling quadratically with the mass accretion rate
(Narayan & McClintock 2008), such that it is not impossible
that such a favorable class of black hole shadows exist.

Another source candidate is the faint radio afterglows of
gamma-ray bursts (GRBs). The afterglow emission region has a
size of ℓ∼ ctθJ= 3× 1013 (t/1 day)(θJ/0.01) cm, where mea-
surements indicate that the smallest jet opening angles have
θJ∼ 0.01 (Piran 2004). Therefore, even when observed a day
after the GRB, which is unusually early (Piran 2004), GRB
radio afterglows are somewhat too large for this experiment.

Another possibility is to abandon the radio and do
interferometry in the optical, where distance estimates with
precision σd/d= 0.01 for a source at d= 100Mpc requires a
baseline of just 0.1 au if timing can be performed to σt= ν−1.
Now, looking past the impediment that direct interferometry of
the optical light from the two paths is likely required, making
achieving such baselines difficult to say the least, the most
obvious optical point source—quasars’ accretion disks—are
still too large for the compactness requirement of ℓ 1010 cm
in the optical band, with inferred sizes of thousands of
astronomical units (Morgan et al. 2010).

This brings us to FRBs, our best source candidate. Typical
FRB durations of milliseconds put an upper bound on the
variability timescale, δtvar, which suggests that the under-
lying source is cδtvar or 1000 km, 4–5 orders of
magnitude smaller than the size requirement at gigahertz
frequencies for baselines capable of precision cosmology.
Some FRBs even show variability on microsecond or even
nanosecond timescales (Nimmo et al. 2021, 2022). There is
substantial evidence that FRB emission originates from
magnetars (which are highly magnetized neutron stars;
Petroff et al. 2019), including the detection of an FRB from
a Galactic magnetar (Andersen et al. 2020; Bochenek et al.
2020). In one class of magnetar models, the FRB originates
from near the ∼10 km surface of the neutron star (e.g.,
Kumar & Bošnjak 2020). However, in the alternative class of
magnetar emission models, the FRB originates from a
relativistic shock further out (e.g., Metzger et al. 2019). In
this model, the observed emission region should be
ℓ< (2Γ2cδtvar)/Γ, i.e., larger by a factor of the Lorentz
factor Γ relative to cδtvar, but still smaller than we require for
Γ 104.5 if we take δtvar = 1 ms, which is well above what is
allowed for some FRBs, and the terms in parentheses in
Equation (9) evaluate to unity (furthermore the shock would
be at an immense radius of 1017 cm).

Multipath diffractive propagation from electron
inhomogeneities in the FRB host galaxy can make the effective
image size larger.4 This effect is called “scattering.”
The scattered image size is related to the scattering
timescale by t q~c dsc screen

2
screen, where θscreen is the angle

from the FRB to the illuminated part of the scattering
screen at a distance dscreen. Then the effective size of the
FRB emission region is q t= = = ´ℓ d c d 1screen screen sc screen

( ) ( ( ) ) ( )t n -d10 0.1 pc 1 GHz 1 ms 5 GHz11
screen

1 2
sc

1 2 2 cm,
assuming that the scattering time scales in the standard way as
ν−4 (Section 4.1). A τsc(1 GHz)∼ 1 ms scattering timescale
contributed by the host galaxy is detected in a significant
fraction of FRBs (Thornton et al. 2013; Qiu et al. 2020),
although for some τsc(1 GHz) is constrained to be 1 μs at
ν= 1 GHz (Cho et al. 2020; Nimmo et al. 2021). The choice

dscreen= 0.1 pc is motivated by the radius of the magnetized
nebula hundreds of years after the supernova, a timescale
which explains the persistent radio emission observed around
some repeating FRBs (Margalit et al. 2018). Indeed Marcote
et al. (2017) constrained with VLBI the persistent radio
emission to be <0.7 pc for FRB 121102. In conclusion, unless
the millisecond scattering occurs at dscreen 60(ν/5 GHz)3 pc,
the scattered image of an FRB at d= 100Mpc is likely
sufficiently small.

4. Timing Measurement Accuracy

The proposed experiment correlates the electromagnetic
waves at each detector, using the detectors as an extremely
large baseline for VLBI. Often for VLBI astrometry, timing is
done using the group delay, which is the rate of change of
phase over the band (not requiring the absolute phase). This
leads to a timing error of

( )s
p n

=
D

1

2 S N
, 10t,group

VLBI

RMS

( )n
=

D - -

110.016 ns
1 GHz

S N

10
,RMS

1 1
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where S/N is the signal-to-noise ratio at which correlations
between two detectors are detected and [ ]nD º ´-S NRMS

2 2

{ }([ ] ) ([ ] )ò òn n n n n n-d d d d d dS N S N2 2 2 2
⎡⎣ ⎤⎦ is the

effective rms bandwidth squared (Rogers 1970; Thompson
et al. 2017).5 For a uniform S/N over a continuous bandwidth
ofΔν then ( )n nD = D 2 3RMS . While the group delay is less
prone to systematics (namely clock phases and the Earth’s
atmosphere), using the absolute phase improves the timing
noise over st,group

VLBI by approximately the factor ΔνRMS/ν. One
gains from using the phase delay once the spacetime detector
positions are known more precisely than the group delays,
although sufficient bandwidth is needed to discriminate the
correct phase fringe (ν/Δν= S/N). See Appendix B for more
discussion and we return to this timing when we discuss
dispersion in Section 4.2.
Other considerations also affect the timing precision.

Namely, inhomogeneities in the intervening plasma that alter
the path traveled by light (scattering; Section 4.1) and ones that
result in a relative difference in the average group velocity
between the detectors’ sightlines (differential dispersion;
Section 4.2). Additionally, gravitational time delays turn out
to be important for baselines of x 100 au (Section 4.3).

4.1. Scattering

Scattering refers to the geometric time delay and smearing of
the arrived waveform from density inhomogeneities in the
intervening plasma. The Milky Way’s ISM can lead to different
delays and smearing along the sightline to each detector.
Observations of pulsars and some FRBs above the Galactic

4 This image broadening also happens from plasma interactions within the
Milky Way, which we discuss in Section 4.1.

5 If correlating two instruments with different flux sensitivities, the S/Nthat
appears in Equation (11) is the geometric mean of the S/N of each instrument
to detect the flux.
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disk suggest a scattering time of

( ) ( )s
n

~
-

-30 ns
1 GHz

sin b 12t
sc

4
2.5⎛

⎝
⎞
⎠

for Galactic latitude (b) sightlines above the disk, with
sightlines having a factor of several scatter around this
“average” (Cordes & Lazio 2002; Cordes et al. 2016; Nimmo
et al. 2021, 2022), and the coefficient in Equation (12) is the
NE2001 model value given in the first reference. The frequency
scaling of st

sc is important as most measurements of scattering
are at smaller frequencies than are ideal for the proposed
experiment. We adopt a ν−4 scaling in Equation (12), which is
used in our later forecasts. A slightly steeper scaling of ν−4.4 is
the expectation from Kolmogorov turbulence (Blandford &
Narayan 1985). In models where the scattering owes to the
refractive lensing of a small number of current sheets (which
have been developed to explain pulsar scintillation data; Pen &
Levin 2014), the average scaling would be ν−4 and with
system-to-system scatter about this scaling. Measurements are
on average consistent with ν−4 and show significant system-to-
system scatter (Löhmer et al. 2004; Krishnakumar et al. 2019;
Oswald et al. 2021).

For the baselines and frequencies we are considering, the
structures that contribute to the scattering at each antenna are
approximately uncorrelated, as this scattering time corresponds
to light taking paths that differ by a transverse length of

( )( )
( )

( )

s= ~

´ n

-

-

R L c b2 0.006 au sin

. 13

T t

L

sc 1.3

5 GHz

2

1 kpc

1 2

Since RT is much less than our x? 1 au baseline lengths for
relevant frequencies, the scattering seen by each detector will
be approximately uncorrelated.

When the scattering is strong (s n-t
sc 1), the light travels

over multiple paths with significant phase differences resulting
in the paths interfering at the antennas. This interference smears
out the electric field correlations, making them harder to detect
(Narayan 1992). Thus, it becomes increasingly difficult with
decreasing frequency to measure the time delays between
different detectors. When s n-t

sc 1 the different paths add
constructively and the scattering becomes weak. Using
Equation (12), this corresponds to ( )n - b3 sin 0.8 GHz. Weak
scattering has the effect of adding an additional delay to each
sightline but not smearing out temporally the correlations. For a
given system, the frequency scaling of st

sc should be the same
across the weak and strong limits when there are enough
structures so that the phase field is Gaussian random (Goodman
& Narayan 1989) and, furthermore, weak refractive scattering
always scales as ν−4.

In conclusion, Milky Way ISM scattering favors targeting
ν 3 GHz, as at lower-frequency scattering will exceed our
ν−1 timing-noise goal and additionally its interfering nature
will make E-field correlations more challenging to detect.

4.2. Differential Dispersion

Dispersion in interstellar plasma will introduce a frequency-
dependent time delay owing to the wave front traveling with a
group velocity that is less than the speed of light. This delay is

equal to òt k= n dxd
d

e0
, where κ= e2/(2πmecν

2). Here ne is

the electron density and this integral is performed along the
entire line of sight to the source. For observations at 5 GHz,

and a typical ò n dx
d

e0
(called the “dispersion measure”) in

current FRB samples of 500 pc cm−3, the corresponding time
delay is 100 ms. For this experiment the overall τd does not
affect the timing, but differences in τd between the radiometer
sightlines do. If large enough—which we show is likely—these
delays need to be fit for and removed. (The higher-order effect
from deviations from straight-line paths is included in the
scattering delay considered in Section 4.1.)
The largest contribution to τd differences to each detector

is likely turbulence in the ionized ISM. Appendix C considers
this case for a power spectrum parameterized as

( ) ( )p= -P k C k2e n
3 2 11 3 and finds that the contribution that

looks like wave front curvature is

( )
( ) ( ) ( )

( )

s »

´

n -

´

^

- -

90 ns

. 14

t
L x

C

disp
0.1 kpc

1 2
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5 6
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2

5 10 cm

1 2
n
2

17 20 3

In the Solar neighborhood measurements find ~ ´C 5n
2

- -10 cm17 20 3 (Armstrong et al. 1981; Draine 2011). We have
chosen L so that when the parentheses evaluate to unity the
scattering measure º = ´ = ´- - -C LSM 5 10 kpc cm 1 10n

2 18 20 3 4

kpc m−20/3 aligns with high Galactic latitude values in the
NE2001 model (Cordes & Lazio 2002). Models where the
scattering does not owe to turbulence but instead to
astronomical unit-scale current sheets (which better describe
pulsar scintillation data) would result in smaller st

disp owing to
the bluer Pe (Goldreich & Sridhar 2006; Pen & Levin 2014).
In addition, more local gaseous structures can contribute to

the dispersive delays. The differential electron column from the
heliosphere at RHS≈ 100 au can give rise to a time delay just
like ISM density fluctuations. Outside the heliosphere, the
density rises by almost a factor of one hundred to
nIS= 0.1 cm−3 (Gurnett et al. 2013). The differences in
electron column from these positional differences result in
timing differences of

( )s k
n

~ =^
-

^n x

R

x
0.5 ns

5 GHz 100 au
. 15t

disp IS
2

HS

2 2
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

While this component scales similarly with x⊥ as Δtd, it is also
small. Additionally, if a terrestrial antenna is used in the
proposed constellation, the Solar wind leads to several
nanosecond dispersive delays at 5 GHz (Border & Paik 2009).
There are also timing differences from cosmological

structures such as circumgalactic clouds, but we find that these
are negligible owing to their large extents.
Pulsar timing arrays empirically constrain dispersion variations.

Most pulsars followed by the NANOGrav timing array show
variations in their dispersion measure of∼100 ns (5GHz/ν)2 over
∼10 yr of monitoring, which probes electron variations on lengths
of ∼100 au (Jones et al. 2017). For most, the dispersion changes
may be dominated by the pulsar motion in its overdense vicinity,
but the variation is surprisingly close to our estimate from ISM
turbulence.
Thus, the differential dispersive delays are likely to be much

larger than the ν−1 timing precision specification at the
ν 10 GHz at which FRBs have been detected. Fortunately,
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dispersive delays can be removed by fitting simultaneously for
them using their distinct ν−2 frequency dependence. Fitting out
differential dispersion requires a wide bandwidth to not incur
too large of a cost to the wave front timing sensitivity. In
Appendix B, we find that the timing noise with marginalization
over dispersion is given by s 2t,group

VLBI in the case where the
absolute phase is used (and by [ ]s n nD10 0.2t,group

VLBI in the less
applicable case where only the group delay is used), assuming a
continuous bandwidth of Δν and a uniform S/N over this
bandwidth. This phase delay timing error increases over the
case without fitting for dispersion by a factor of ≈ν/(2ΔνRMS).
Importantly, the error bars from correcting the dispersive
delays do not depend on the size of these delays. This
independence is well known from GNSS applications, where
not correcting for the relative dispersion from Earth’s
atmosphere can result in 20 m errors.

4.3. Gravitational Time Delays

There will be stars, solar system bodies, and even large-scale
structure along the line of sight to an FRB that will introduce
different gravitational time delays to each detector. For a mass
at a distance dM for which the impact parameter is much less
than both {dM, |d− dM|}, the difference in the Shapiro time
delays between the detector at x and the one at origin is given
by (Shapiro 1964)

( ) ( )d
D =

+
t

GM

c

b

b

2
ln , 16b

grav 3

2

2

where M is the mass of the star, b is the impact parameter for
the first path (perpendicular to d), and
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is the difference in the impact parameter for the second path,
which this expression relates to x. (Recall that x is our antenna
separation vector.) Hats denote unit vectors, and vectors are the
same as indicated in Figure 2. The term  ( · )- x d d projects out
the line-of-sight component of x. Assuming that the difference
in the impact parameter is small relative to the impact
parameter itself, we can expand Equation (16) in terms of
δb/b to obtain
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where θ is the angle between x⊥ and b. The last line used

 [ ( · ) ] ( · ) ( · ) ( )q- - = - = -^ ^ ^x d x b x bx x x2 2 cos 2 ,2 2 2 2 2 2

and Equation (20) organizes the expansion into a dipole,
quadrupole, etc.

The linear-in-x⊥ dipolar term accounts for the majority of the
contribution to Δtgrav. However, the linear term is identical to
changing the direction of the FRB, which had resulted in

·-x d c in Δtd in Equation (3). Thus, the linear effect of the

Shapiro time delay manifests as a small shift in the apparent
direction of the source so that it appears in the direction

( )a a- +d b 1 2 , where α= 4GM/(c2b), which one might
recognize as the deflection angle from lensing. The effective α
when accounting for the accumulation of all gravitational
deflections is dominated by the large-scale structure of the
universe for sources at cosmological distances, resulting in
arcminute-scale deflections for sources at high redshifts—well
known from studies of the cosmic microwave background
(Lewis & Challinor 2006).6

The quadratic-in-x⊥ quadrupolar Shapiro term is a source of
noise for our distance measurement, with a value given by
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Let us concentrate first on the stellar case for which
Equation (21) is expressed. The stellar surface density from
the Solar Circle out of the Galactic disk is estimated to be
2Me lt-yr−2 (McKee et al. 2015). For the case of Poisson
sampling of stellar locations from a spatially uniform
probability density, the quadratic Shapiro term will be
dominated by the closest stars to the sightline and so the
parameters that yield ( )qD = -t 0.025 cos 2grav

quad ns in
Equation (21) should be in line with the typical Shapiro delay
from stars in the Galactic disk.7

Regarding dark matter halos and large-scale structure, most
sightlines out to a gigaparsec will pass within the 300 kpc virial
radius of a 1012Me halo (McQuinn 2014). Thus, this fact
combined with Equation (22) suggests that the delay from dark
matter halos is comparable to that of Galactic disk stars.
However, a more detailed calculation in Appendix D shows
that the dark matter halo contribution is generally larger (with
an rms of 0.1 ns for d= 100Mpc and x⊥= 100 au) and
increases roughly as the square root of the distance to the FRB.
The µx̂2 dependence of the quadratic Shapiro delay means

that, if this term is not removed, eventually increasing the
baseline length does not increase the precision to which Δtd
can be measured. We find in Section 7 that the Shapiro delay
can become the dominant noise source at x⊥ 100 au. As the
quadratic Shapiro term is quadrupolar (see Equation (22)), it is
completely specified by two angular moments such that two
additional detectors over the minimal four-detector constella-
tion would enable isolating and subtracting it.
Now lets turn to near-field Shapiro delays from nearby solar

system bodies. For such bodies we cannot take the previous

6 A worry is that the full linear-in-x delay when adding the Shapiro effect to
the geometric delay is ( ) ·a-d b x c, where ( )a-d b is not a unit vector,
suggesting we might need an additional timing constraint to constrain the third
component. The nonunit vector term to leading order in α equals  · ( )a d x c22 ,
which is relatively large for cosmological values of the deflection angle α.
However, the presence of this term is confusing as the linear Shapiro effect acts
to tilt the wave front, which should be describable with a unit vector. The
resolution is that the Shapiro effect does not account for the additional path
length of the tilted wave front. Accounting for this exactly cancels this term.
7 If there is a stellar structure that has a large quadrupole moment, the
collective contribution of many stars would be important. The most obvious
structure is the Galactic disk; however, the disk mostly contributes a dipole (a
gradient) for high-latitude sightlines.
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distant mass limit as b∼ dM= d, where dM is the distance from
the body to a detector. We use primed values for these
distances to a second detector, where again ¢ ~ ¢b dM . Thus, we
require a more complete expression for the Shapiro delay,
given by
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+ +
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In this nearby limit, the relative Shapiro time delay difference
between two baselines is of order 2GM/c3. In the extreme
scenario in which all the mass in the outer solar system were
closer to one baseline than to another, the total effect would be of
the order of 2GM/c3= 3× 10−2(M/M⊕) ns. The Kuiper Belt is
estimated to have a mass of 10−2−0.1M⊕ and a similar mass for
known trans-Neptunian objects (Pitjeva & Pitjev 2018). Thus,
this amount of mass does not lead to problematic delays, and
really the systematic will be smaller than the above estimate,
likely reduced by the square root of the effective number of
systems that contribute (which for the ∼100 trans-Neptunian
objects would be a factor of ∼10 suppression).

The hypothesized “Planet 9,” with a mass of ∼10M⊕ and an
orbit of ∼500 au (Batygin et al. 2019), would lead to timing
noise at the 0.1 ns level and could be a concern. However, its
mass would likely be measured and corrected by our proposed
instrument, both by how its gravity deflects the orbits of the
antennas (Witten 2020; and Section 8) and by its effect on their
onboard clocks (Section 4).

5. FRB Rate

The clearest path is to target the known population of
repeating FRBs directly, for which about fifty are currently
known (Fonseca et al. 2020; Petroff et al. 2022; The CHIME/
FRB Collaboration et al. 2023; which has doubled since this
article was released as a preprint). The current sample of
repeating FRBs with a known galactic host include
FRB 20121102A (the original repeater) at a comoving light-
travel distance of d= 800Mpc, FRB 20180916B at
d= 150Mpc, FRB 20180301A and FRB 20190520B are
somewhat further away with d≈ 1000 Mpc, FRB 20181030A
is most likely at 20 Mpc, and FRB 20201124A at 400Mpc
(Bhardwaj et al. 2021; Petroff et al. 2022). Bright repeating
FRBs are at distances that are amenable to the proposed
experiment, with the number of confirmed repeating FRBs
constituting 2.6% of all FRB sources discovered by the
CHIME collaboration (The CHIME/FRB Collaboration
et al. 2023). Most of these are inferred to repeat on a timescale
of a few hours (CHIME/FRB Collaboration et al 2019; The
CHIME/FRB Collaboration et al. 2023), and they are known
to show spates of intense activity—FRB20201124A was
clocked at several registered bursts per hour (Main et al.
2021). As shown below, the repeating bursts generally have
flux densities at ∼1 GHz that our fiducial constellation
parameters of four satellites each equipped with 10 m dishes
would be sensitive to if they have similar flux densities at the
targeted frequency. Furthermore, if the FRB is detected on
Earth by a more sensitive instrument, this voltage time series

could be used to enhance the S/N effectively as the geometric
mean of the two instruments.
While we are hopeful that a sufficient sample of repeating

FRBs will be found for the proposed experiment, it could also
detect FRBs that occur in its field of view. We estimate here the
FRB detection rate assuming that the array is not assisted by a
more sensitive terrestrial telescope. The minimum specific
fluence the proposed constellation is sensitive to is (e.g., Burke
& Graham-Smith 2009):
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where D is the diameter of each dish, Nsat is the number of
satellites, Δν is the bandwidth, τ is the effective duration of the
FRB, Fν is the specific fluence, Tsys is the system temperature
of the receiver, and S/Ntot is the total S/N at which the array
detects the FRB. At gigahertz frequencies, Tsys≈ 20 K is
commonly achieved (Burke & Graham-Smith 2009). While on
earth this requires cryogenics, this may not be required in the
cool conditions in space. With just passive cooling Spektr-R
was able to achieve Tsys= 43 K in the L-band (Karashev et al.
2013). Such a radio telescope would have a beam with a solid
angle of ( ) ( ) ( )p n nW = = ´ - - -c D4 5 10 sr D 10 m 5 GHzbeam

2 2 2 5 2 2,
although, at the expense of large data rates and computation
that may not be possible in space, modern radio dishes can be
phased to generate hundreds beams, Nbeam, for a total solid
angle of Ωtot= NbeamΩbeam.
The all-sky rate of FRBs can be modeled as a power law

where the rate above some fluence limit is given by
( )> µn n

g-R F F . The CHIME survey has inferred 800 FRBs
occur per day above 5 Jy ms with γ= 1.4± 0.2 (Amiri et al.
2021), near the Euclidean-space scaling of γ= 3/2. Adopting
the Euclidean scaling, the rate of detections for our antennas is

·
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where Kν is a bolometric correction factor that corrects on average
the specific fluence for the observation as ν relative to the CHIME
400–800 MHz band. Observations of the first repeater
FRB 20121102 at 8 GHz show similar flux densities to those at
1 GHz (Gajjar et al. 2018). Bethapudi et al. (2022) found a scaling
of Fν∝ ν−1 for the repeater FRB 20180916B over 4–8 GHz (but
with fewer repetitions at these high frequencies relative to at
∼1 GHz) and a similar scaling is seen up to 6 GHz for the repeater
FRB 20190520B (Anna-Thomas et al. 2022). The scaling
Fν∝ ν−1.5±0.3 has been measured between 1.1 and 1.4 GHz for
the average spectrum of a large number bursts (Macquart et al.
2019). Even with the strong −1.5 scaling such that Kν= 0.1 for a
ν= 5 GHz observation, a rate of R≈ 20 yr−1 is anticipated for the
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fiducial specifications for which the parentheses in Equation (27)
evaluate to unity. This suggests that a nonnegligible rate is not
infeasible for D> 10m if Nbeam that have been achieved on the
ground are possible, despite the relatively high frequencies of
ν 3GHz that we find are required owing to Milky Way
scattering.

The design also does not have to consist of radio dishes.
Each satellite could instead be a plane of dipoles or small
dishes. If the effective collecting area is comparable to πD2/4,
this would enable the same sensitivity as our dish but allow up
to Ωtot∼ 4π and a huge number of FRBs per day. The
additional cost to this approach is the computation required to
phase all the dipoles to point simultaneously in hundreds or
thousands of directions. This would require onboard computa-
tion that is well beyond that on modern spacecraft.

If an individual satellite triggers on a burst, then it only needs to
save the electric field time series over the ∼1ms duration of the
FRB (or instead the ∼0.1(5 GHz/ν)2 s duration if the dispersive
sweep is not corrected). However, if the burst is not flagged by the
satellite, the satellite either needs to record the electric field time
series for longer than the time it takes to communicate with Earth-
based antennas, which would signal that an FRB had occurred.
This approach requires the satellite to store at least
Nbeamsr/2× 2Δν= 1013Nbeams(r/10 au)(Δν/1GHz) numbers,
each stored with at least one bit. (Even one bit is common in
VLBI, but comes with some signal loss; Thompson et al. 2017).
While this storage demand is likely prohibitively high for
Nbeams? 1, if the signal is flagged for an S/N threshold on a
single antennas, then the storage cost can be greatly reduced by a
factor of ( )~ - / /exp S N 22 until all of the storage is filled by the
actual FRB signal. The 5GHz electric field of a millisecond-long
FRB requires relaying back just ∼107 numbers for correlation.

6. Positional and Temporal Calibration

6.1. Sources of Acceleration and Calibration Timescales

The outer solar system is a lower-acceleration environment
than the medium-Earth orbit of most global positioning
satellites. Even at medium-Earth orbit, global navigation
satellites positions (ephemerides) are predicted to meter
accuracy one day in advance, allowing updated ephemeris
information to be uploaded to GNSS satellites only every
several hours (Misra & Enge 2012). A primary factor limiting
the precision of GNSS satellite ephemerides is various
stochastic accelerations, including variations in the Sun’s
irradiance. Stochastic acceleration sources also set the time-
scale that the satellite ephemerides in the proposed experiment
need to be calibrated, which in turn inform the types of
calibration systems that would be required. In what follows, we
estimate the magnitude of different sources of stochastic
accelerations for satellites in the outer solar system.

Sources of gravitational acceleration are the most concern-
ing, as an active system that adjusts in response to an
accelerometer the satellite orbit can potentially correct for
nongravitational accelerations.

6.1.1. Gravity from asteroids

Accelerations from the passages of asteroids that are close
enough so they occur over a much shorter timescale than their
orbital time are the main concern for calibration. Let us consider
the requirements to have a sufficient number of close passages for
calibration to be necessarily on a timescale of tcalib. The shorter
tcalib, the more challenging for calibration. In order to require

calibration every tcalib, sufficiently massive asteroids within a
distance vtcalib must be commonplace, where v is the satellite–
asteroid relative velocity. For that asteroid to displace the satellite
by 1 cm over a time tcalib, it must have a mass satisfying
m>mcr≡ v2× 1 cm/G, where G is Newton’s constant or,
assuming a mass density of 2 g cm−3 and a spherical body, a
radius of at least ( )-v3 1 km s 1 2 3 km. Here v∼ 1 km s−1 is
motivated as, if our satellites are in orbit, we expect passage at a
fraction of the ∼5 km s−1 Keplerian velocity at tens of
astronomical unit radii owing to the moderate eccentricities of
asteroids and possibly of our satellites. However, our favored
configuration would be unbound satellites that are drifting out at
10–100 km s−1, in which case gravitational accelerations from
asteroids would be even much smaller and due to larger
masses. For asteroid deflections to be commonplace requires a
number density of at least ( )= -n vtKB calib

3 or a total
number of NKB≈ 4π/ ( )qr3 sinKB

3
KB nKB= 4× 1012(rKB/

) ( ) (- -v t40 au 1 km s3 1 3
calib/ ) ( )q-1 week sin3

KB asteroids above
mcr, where θKB describes the asteroids’ angular extent above and
below the ecliptic. For θKB= 10° and rKB= 40 au characteristic
of the Kuiper Belt and an orbital relative velocity of v= 1
km s−1, an anomalous acceleration that results in a centimeter
displacement over a week requires a number density of
kilometer-sized asteroids that is 4–5 orders of magnitude higher
than in models that match observations (Kenyon &
Bromley 2004; Schlichting et al. 2009). (Optical observations
probe asteroids with radii of 10 km, with X-ray
diffraction constraining the abundance at ≈200 m.)
Similarly, the total mass we require is >N mKB cr

( ) ( ) ( ) ( )qÅ
- - -M r v t100 40 au 1 km s 1 week sinKB

3 1 1
calib

3
KB ,

much larger than the ∼0.01–0.1Me estimated mass for the
Kuiper Belt (Bernstein et al. 2004). If we instead calibrate to the
NKB∼ 108−9 asteroids with radii >3 km found in models that
are matched to Kuiper Belt constraints (Kenyon & Brom-
ley 2004; Schlichting et al. 2009), then following the above
logic, this indicates a calibration time of tcalib≈ 10weeks. Thus,
we estimate that the calibration time for a satellite on a bound
orbit within the Kuiper Belt is ∼10 weeks, and this time should
be longer if the satellite resides elsewhere or is unbound.

6.1.2. Gaseous drag

The drag force on a surface of effective area Aeff traveling
through the Solar wind with densities of
n= 0.05(r/10 au)−2 cm−3 and particle velocities of approxi-
mately v= 500 km s−1 (Villanueva 1994) can be computed as
Fdrag= 1.4mpnv

2Aeff. Drag results in a 1 cm
displacement after a time of = ´ =t M F2 1 cmdrag sat drag

( ) ( ) ( )-A M r9 10m 10 kg 30 aueff
2 1 2

sat
3 1 2 days. The Voya-

ger spacecraft show factor of ∼2 variations in the density of the
Solar wind on the 27 day Solar rotation period (Villa-
nueva 1994; Richardson et al. 2003), which would result in a
somewhat longer time for the more relevant stochastic drag
relative to our homogeneous estimate. Neutrals from inter-
planetary space penetrate the solar system with the local
interstellar abundance of 0.1 cm−3 at a velocity of 30 km s−1

(Holzer 1977). Their drag results in a 1 cm displacement over
tdrag≈ 40 days, becoming the dominant drag at r 100 au.

6.1.3. Lorentz force on a charged spacecraft

The spacecraft will inevitably build up a charge, especially
since the radio dish is a large conducting element. The
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maximum possible charge is roughly set by that which is sufficient
to repel Solar wind protons from striking and further charging the
spacecraft, namely =m v Z e Rp

2
max

2 , where v is the velocity of
intersecting particles—the 500 km s−1 velocity of the Solar wind
—and R is the effective extent of the satellite. The Lorentz force,

( )Z e v c Bmax sat , acting on the satellite traveling through an
interplanetary magnetic field with B= 1μG (Villanueva 1994; and
with factor of ∼2 monthly variations) results in a displacement of
1 cm after ( ) ( ) ( ) ( )m- - - -R M v B G14 10 m 10 kg 50 km s 11 2

sat
3 1 2

sat
1 1 2 1 2

days. Spacecraft charging would be less important outside of the
heliosphere owing to the much smaller velocities of the incident
plasma.

6.1.4. Solar radiation pressure

Solar radiation pressure variations are a primary reason for
the meter ephemeris errors on day timescales in global
positioning satellites (Blewitt et al. 1988). Even though the
radiation pressure is down by a factor 10−3(r/30 au)−2 in the
outer solar system relative to our terrestrial environment, the
centimeter ephemeris accuracy requirement is two orders of
magnitude more stringent. During active periods, the Sun
shows 0.2% peak-to-peak variations on the timescale of its
27 day rotation period (Fröhlich & Lean 2004). If we
parameterize the correlation function of the variations as
∣ ( ) ( )∣ ( )x x- = -t t0 10 13.5 days3 1 2–motivated by the scal-
ing of the power spectrum of these fluctuations on 1−10 day
timescales (Fröhlich & Lean 2004)—we find that fluctuations
in the Solar irradiance will result in an acceleration of
∼|ξ(t)− ξ(0)|FeAeff/Msat and, integrating this acceleration
with respect to time, a 1 cm displacement of the satellite every

( ) ( ) ( )~ -A M r11 10 m 10 kg 30 au dayseff
2 0.4

sat
3 0.4 0.8 , where

Fe is the momentum flux of the Sun and Aeff is the effective
surface area of the satellite. Understanding thermal reemissions
of the absorbed light is also important.

6.1.5. Dust collisions

Collisions with dust particles will accelerate the spacecraft.
The Ulysses and Voyager spacecraft found that outside of 5 au
the population of ∼0.1 μm dust was dominated by an interstellar
population with impact speeds of v0.1μ= 30 km s−1 and a
resulting flux of ≈10−8 cm−2 s−1 (Gruen et al. 1994; Gurnett
et al. 2005). Such fluxes correspond to Ncoll≈ 100(Aeff/10m

2)
dust particles striking an effective area of Aeff per day, assuming
the spacecraft velocity is v0.1μ. The stochastic (e.g., N1 coll )
component of the acceleration is so small that it takes hundreds
of years to result in a 1 cm displacement for the Ulysses-inferred
average dust mass of 3× 10−14 g and a satellite mass of
Msat= 103 kg. More important are the larger dust grains seen in
zodiacal light. While outside of several astronomical units the
reflectance of these particles contributes negligibly to this diffuse
emission and hence the distribution of such tens-of-micron-sized
particles is unconstrained, within this radius it is found that an
order unity fraction of zodiacal particles is relatively isotropic
with density scaling radially as ∝r−1.3 (Gruen et al. 1985). For
the following, we assume that this radial scaling still holds well
beyond several astronomical units. If a 30μm grain with mass
8× 10−7 g is conservatively assumed with an abundance
normalized to match the zodiacal background (2× 10−17cm−3

at 5 au; Gruen et al. 1994), one particle would strike the satellite
every ( ) ( ) ( )- - -A r v1.4 10 m 10 au 100 km seff

2 1 1.3
sat

1 1 days.
A single particle would result in an acceleration that leads to a

1 cm displacement after ( )( )- -M v1.4 10 kg 100 km ssat
3

sat
1 1

days. These estimates for the timescale for zodiacal dust are
somewhat smaller than the other acceleration timescales
considered above, but we have evaluated with very conservative
values (a high vsat, a small r, and a large mass per particle8).
Thus, we suspect that dust collisions again require calibration
on a week or longer timescales.

6.1.6. Time dilation from solar system masses

The mass distribution in the solar system also affects onboard
clocks. Clocks run a factor of (1− 3rM/[2r]) slower when in orbit
at distance r around an enclosed (spherically symmetric) mass of
M relative to the global Schwarzschild time, where rM≡GM/c2 is
the gravitational radius, and the time dilation is similar for
unbound trajectories. For a bound orbit, a tenth of an Earth mass
uncertainty in the enclosed mass, near the upper limit on the mass
in the Kuiper Belt, would would result in a clock drift of
Δtclock= 0.03 (t/1week)(100 au/r) ns after a time t. Any
uncertainty in the enclosed mass would be easy to calibrate as
the timescale for this drift is long. Consider instead a passing outer
solar system object of mass M and distance dM—such as some
Kuiper Belt object. Its mass would contribute a clock drift rate of
∼rM/dM. Using that the cumulative mass distribution of Kuiper
Belt objects above mass M is found to be N(M)∼M−2 (e.g.,
Schlichting et al. 2009), we expect an object within a logarithmic
mass interval in M to come within a distance of
dM=N(M)−1/3=M2/3. Thus, M/dM=M1/3, suggesting that the
largest bodies create the largest timing errors. A worst case
scenario might be an Earth-massed object at a distance ℓsep= 1 au
from one detector, which would result in a detectably large drift of
∼3 ns day−1. Of course, this long-timescale drift (or even ones
that are hundreds of times smaller) should be detected in
calibration, and, hence, the M/ℓsep of the object measured. Clock
drifts on week or month timescales from the gravity of (small)
asteroids that make close enough approaches are negligible.

In conclusion, variations in Solar irradiance, dust collisions,
gaseous drag, and possibly charging require calibration on
10 days timescales for motivated specifications for the
proposed satellite constellation. Gravitational accelerations that
result in a 1 cm displacement occur over longer timescales.
Gravitational clock drifts owing to passing bodies that occur
over weeks or months should be negligible.

6.2. Calibration Methods

Measuring time delays to within (5 GHz)−1= 0.2 ns implies
that the relative detector positions must be modeled to 6 cm.
We suggest two possible strategies for achieving such
calibration. First, our favored calibration strategy is direct
trilateration between the satellites themselves. Our second
calibration method would combine satellite–Earth communica-
tions with calibration off of astrophysical sources.
We first consider a calibration strategy that relies on GNSS-

like trilaterations. On Earth, these techniques regularly provide
meter accuracy, if not centimeter to millimeter with longer
integrations that use the carrier phase: generally four satellites
are needed for geolocation, but, if the user possesses an
accurate clock, only three are required. In this calibration mode,

8 The number density of dust grains per log mass at 1 au is inferred to scale
with particle mass as m−0.5 (Gruen et al. 1985). Our estimate assuming all
particles are in very large 30 μm grains overestimates the acceleration.
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the proposed experiment would be a much enlarged version of
GNSS, where members of the constellation would relay signals
to measure each other’s distances. Modulo S/N effects,
enlargement itself does not affect the distance accuracy.

First, let us consider the power requirements. The proposed
experiment equips each satellite with a radio dish, which is
fortunate as this is also necessary for the dishes themselves to
broadcast strong enough signals for ranging. Ranging works by
modulating the carrier wave at frequency νcar with some code
with frequencies of ∼δν, which when multiplied by the carrier
approximately sets the bandwidth. For global positioning
satellites, δν∼ 1MHz is chosen to reduce computation and
radio frequency interference. The receiver then uses a matched
filter with different temporal delays to find the arrival time. The
error in the ranging delay from this “delay-lock-loop”
procedure is (e.g., Misra & Enge 2012, see their Section 10.5)

( )
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where we have used that the received power can be written as
Prec= πD2Pant/(4Ωbeamx

2), where Pant is the power broadcast
by the other antennas, and that the noise power is white with
PN= BkBTsys, where B is the bandwidth. Here t is the
integration time, and Tc is the duration of code chips such that
Tc∼ 1/(2δν). (The code for GNSS applications are “chips” of
zeros and ones with duration Tc. We are borrowing this
approach.) The parameter ò is the correlator spacing for the
delay lock loop—the circuit that attempts to phase up the
satellites matched code with the received signal. GNSS
applications have to filter for radio frequency interference
and this generally restricts ò> 0.1 (Misra & Enge 2012), but it
is likely in our case that smaller ò may be achievable with the
absolute minimum being ( ) » -BTc

1 (Braasch & van Dier-
endonck 1999).9 The above is for ranging using the low-
frequency code. Once the satellite is localized to better than
c/νcar so that integer wavelength ambiguities are resolved, the
carrier wave can then be used to measure the distance. The
carrier provides a precision that is even much higher and likely
limited by other considerations than S/N (Zhang et al. 2020).

However, it may also be possible to use a network of sources
to calibrate the distances rather than direct trilateration using
our satellite network. Since FRBs are likely the only
extragalactic radio object that appear point-like at solar

system-scale baselines (Section 3), they are also likely the only
extragalactic source that is useful for calibration. FRBs known to
be more distant than the distance reach of the array can be used
for calibration (but also FRBs with well-characterized distances).
Each distant FRB provides ND− 3 constraints after fitting for the
source’s angle on the sky and the FRB event time, where ND is
the number of detectors. Repeating FRBs are even more
valuable, with each repetition providing ND− 1 additional
constraints once the relative motion of the repeating FRB is
determined. The goal of calibration is to constrain the 4ND

satellite spacetime coordinates. In the case ND= 4 (6), to
calibrate the network requires 16 (8) one-off FRBs over a
calibration time or, instead, 6 (5) repeating FRBs. The
calculations in Section 5 suggest that it may be challenging to
detects 5–16 FRBs within the ∼1 week calibration time needed
if nongravitational sources of acceleration cannot be removed. If
so, a system that relies predominantly on distant FRBs for
calibration would need a precise accelerometer to correct for
nongravitational accelerations.10

Similarly, pulsars may be the only common point-like
Galactic source. See Section 8, as Galactic pulsars may not be
sufficiently point-like, especially for the longer baselines we
consider. However, calibration off of pulsars would be limited
to the small fraction of pulsars at high Galactic latitudes to
avoid ISM scattering.
The clocks on the satellites in our constellation must be kept

synchronized. The clock requirements for centimeter spacetime
precision and weekly calibration are somewhat more stringent
than those for the atomic clocks on GPS satellites, which err at
several nanoseconds a day rather than the few tenths of a
nanosecond per week that would be required to not be the
dominate error in the ephemerides. Such clock specifications
are somewhat more stringent than the 4 ns per 23 days
accuracy achieved by the Deep Space Atomic Clock mission, a
miniature atomic clock that was launched in 2019 to
demonstrate improved space-clock technology for future
NASA missions as well as for next-generation GPS (Burt
et al. 2021). The best atomic clocks in the world exceed the
performance of the Deep Space Atomic Clock by many orders
of magnitude (Ludlow et al. 2015). Less accurate clocks than
the tenths of nanosecond per week specification entails more
regular calibration or 1 cm ephemerides errors.

7. Distance Measurement Accuracy

The previous discussion motivates that the distance-depen-
dent time delays Δtd may be measurable with a solar system-
scale interferometer with an uncertainty that can approach
∼ν−1 or even better. Figure 3 shows the various time delays
calculated in Section 4 versus projected baseline length x⊥ for
ν= 4 GHz (top panel) and ν= 8 GHz (bottom panel). The solid
lines are the cosmological signal of interest that owes to wave
front curvature, Δtd, for d= 100Mpc (blue) and d= 1000
Mpc (red). The other lines are estimates for different
systematic delays: the scattering time (taken to be

[ ]s n= -50 ns 1 GHzt
sc 4, 2× larger than the mean NE2001

model at b= 90°; Equation (12)), the Shapiro time delay
(assuming the cosmological delay is dominant; Equation (D4)),

9 One can approximately derive Equation (28) from optimizing the location of a
matched filter. In ranging applications, the correlation function of matched code
with the signal offset by a time τ is chosen so that it is the triangle function
scaling as ( )t- T1 c

2, as happens for a random sequence of chips. This results
in a likelihood function  of ( ) ( ) t- = - ´P T k T B N2 log 1 c brec

2
sys ,

where N = 2Bt is the number of temporal samples and we have assumed one
polarization. The standard deviation which τ can be measured is then

( )s = -¶t
-logt

ranging 2 1 2 , which yields the result to the factor of  or so.
We suspect one reason for the  improvement over the “ideal” matched filter is
that the delay-lock-loop circuit has access to all lags and not the just a grid of
temporal samples that this matched filter estimate assumes.

10 FRBs are known to be highly polarized (Petroff et al. 2022), which
potentially provides an additional lever for calibration. The polarization should
be the same for all the detectors as the differential Faraday rotation on solar
system-scale baselines is likely negligible; Faraday rotation is dominated by
large-scale coherent magnetic fields.
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the VLBI group delay timing error st,group
VLBI (assuming S/N =5

for the baseline with d(S/N)/dν uniform over a band of
Δν= 0.2 ν; Equation (11)), and the differential dispersion
from the Galaxy (Equation (14) assuming SM
º = - -C L 10 kpc mn

2 4 20 3). While the differential dispersion
is even larger than our signal Δtd for the shorter baselines, it
can also be removed owing to its frequency dependence at the
cost of increasing the effective VLBI timing noise. While the
timing noise on the group delay is shown for the case of no
differential dispersion, we find that the delay from the absolute
phase when fitting out dispersion is half this value (see
Appendix B for discussion). Similarly the Shapiro time delay
can be removed with a six satellite configuration, as this adds
the two additional constraints needed to remove it using its
quadrupolar shape.

Figure 3 also shows how well cosmic distance could be
constrained by the proposed experiment as a function of the
typical baseline length. The baselines over which the solid lines
representing Δtd have a thick line style indicate those for which
the VLBI timing and scattering delays are each <3% of Δtd.
Here we are using st,group

VLBI and not half this value as we find is
possible. For ν= 4 GHz (top panel), the fiducial scattering
delay is important and so limits 3% precision to baselines of
>20 au for d= 100Mpc and >70 au for d= 1000Mpc. For
some sightlines the scattering will be lower and hence a higher
precision possible. At 8 GHz the scattering timescales are much
smaller, and a 3% measurement of Δtd is possible for
somewhat smaller baselines compared to 4 GHz.
Both scattering and dispersion become less problematic with

increasing frequency, whereas Shapiro time delays are

Figure 3. Time delays vs. projected baseline length x⊥ for ν = 4 GHz (top panel) and ν = 8 GHz (bottom panel). The solid lines are the cosmological delay owing to
wave front curvature, Δtd, for d = 100 Mpc (blue) and d = 1000 Mpc (red). The other lines are estimates for different systematics: the differential dispersion from the
Galaxy (Equation (14) assuming SMº = - -C L 10 kpc mn

2 4 20 3), the scattering time (taken to be [ ]s n= -50 ns 1 GHzt
sc 4, 2× larger than the mean NE2001 model

at b = 90°; Equation (12)), the Shapiro time delay for d = 103 Mpc (assuming the cosmological delay is dominant; Equation (D4)), and the VLBI group delay timing
error (assuming S/N = 5 andΔν = 0.2 ν; Equation (11)). Even though it is often larger than the signalΔtd, differential dispersion can be removed using its frequency
dependence (Section 4.2). The baselines over which the solid lines representing Δtd are thickest show where VLBI timing and scattering delays (all calculated in the
manner described above) are each <3% of Δtd. Shapiro delays, if not removed using their quadrupolar shape, limit <3% precision to d  103 Mpc.

12

The Astrophysical Journal Letters, 947:L23 (20pp), 2023 April 20 Boone & McQuinn



frequency independent and limit the precision at longer
baselines in a manner for which there is no benefit from
increasing the baseline length unless they are removed. For all
baseline lengths, Shapiro delays limit 3% precision to sources
within d≈ 1000Mpc. The Shapiro time delay becomes the
dominant noise for projected baselines of x⊥ 100 au.11

These estimates for the timing noise relative to Δtd suggest
that the proposed experiment would make cosmologically
interesting distance measurements with a detector separation of
at least x⊥≈ 10 au. Figure 4 quantifies this further. It shows
estimates for the fractional distance error, σd/d, to a single FRB
as a function of their distance, for observations at ν= 4 GHz
(top panel) and ν= 8 GHz (bottom panel). The fractional
distance error is calculated using our estimate that
σd/d≈ σt/Δtd when the NA− 1 equals the number of
constraints, where σtis determined by adding in quadrature
the scattering, Shapiro, and position+VLBI timing error δx/c.
While the former two errors assume the same specifications as
described for Figure 3, we have combine the VLBI timing error
and detector positional errors into the total geometric error δx.
For ν= 4 GHz we have chosen δx= 3 cm and for ν= 8 GHz
we have set δx= 1 cm, and we note that the VLBI absolute
phase timing error once marginalizing over dispersion is given
by ( )( [ ])s n= ´ Dc 2 0.4 cm 1 GHz 5 S Nt,group

VLBI
RMS and the

effective timing error decreases when more than four detectors
are used owing to the increase in baselines.

The different curves indicate different detector separations
x⊥: 12.5 au in brown, 25 au in orange, 50 au in green, 100 au in
red, and 200 au in purple. The highlighted regions vary δx over
a range of 1−10 cm for ν= 4 GHz and 0.5–2 cm for
ν= 8 GHz. Without Shapiro delay removal, four detectors
with roughly these separations are required to reach the quoted
precision (solid curves), and six are required for Shapiro delay
removal (dashed curves).12

The top panel in this figure considers ν= 4 GHz. The orange
curves show our estimate for the error from a constellation with
typical baselines of x⊥ ≈ 25 au on a single FRB. This
configuration would achieve σd/d≈ 0.05 out to d= 200Mpc
for our fiducial choice of δx= 3 cm. A distance of 200Mpc
corresponds to approximately z= 0.05 in the ΛCDM cosmol-
ogy (ΩM= 0.3 and h= 0.7; Appendix A), the median redshift
of the SHOES supernova sample. For the ν= 8 GHz case
shown in the bottom panel, scattering is no longer an important
timing error, allowing x⊥≈ 25 au to achieve σd/d≈ 0.1 out
past d= 1000Mpc for δx= 1 cm, with a 1% measurement to
d= 200Mpc. We emphasize that these forecasts are for a
single FRB.

Again considering our fiducial δx and moving to a
constellation with x⊥≈ 50 au (the green curves), while the
explanation for the trends are the same, at 4 GHz now 10%
measurements are possible out to d= 1000Mpc, with better
than a 2% precision for d= 200Mpc. At 8 GHz with again
x⊥≈ 50 au, 10% measurements are possible out to either
1000Mpc and 10,000Mpc, depending on whether Shapiro

delays are not or are removed. At x⊥≈ 100 au (the red curves),
the errors at small d improve by yet another factor of (50/100)2

owing to the larger Δtd, but cosmological Shapiro delay is
starting to become the limiting factor at large d for the solid
curves. Finally, for x⊥≈ 200 au, Shapiro delay cleaning is
becoming essential as there is little improvement over the
x⊥≈ 100 au case without cleaning. Once the Shapiro delay is
removed (as for the dashed curves), then subpercent measure-
ments to 104 Mpc (z≈ 5) in the concordance cosmology are
possible at 8 GHz. Thus, the scaling D µ ^t x dd

2 results in a
fast increase in the distance reach with increased average
baseline length.
The dotted curve in Figure 4 is the fractional redshift

uncertainty that arises if the peculiar velocity contribution to
the redshift can be corrected using large-scale structure
observations to δv= 200 km s−1, about half of the z= 0 rms
value for the line-of-sight component and in line with the
claimed removal in cosmological analyses of Type Ia super-
novae (Peterson et al. 2022). The fractional redshift uncertainty
is calculated as δv× (1+ z)/[cz]. While for certain configura-
tions the distance can be constrained to higher precision, there
is little gain in doing so below this peculiar velocity limit.
All of the previous results are on a per-source and per-burst

basis. Individual Type Ia supernova distances only constrain
distance to ≈10%, requiring about 100 supernova for the
current 1% measurement of H0 (Riess et al. 2022). Analogous
statistical improvements using multiple FRBs can of course be
done here. Furthermore, repeated observations of repeating
FRBs will offer a consistency check, especially since the
scattering time and differential dispersion to each detector
change on month to year timescales.

8. Other Potential Science

Additionally, we have identified several other potential
sciences to which the proposed experiment could contribute:

The mass distribution in the outer solar system: the
unaccounted gravitational accelerations of the satellites that
lead to 1 cm displacements owes to asteroids with radii of

( )-R v10 10 km s 1 2 3 km (Section 6). Such displacements
are potentially detectable if nongravitational accelerations can
be isolated. Additionally, in a toy picture where mass is
spherically distributed, an excess mass of just 10−7(r/
100 au)−1/2M⊕ interior to an orbiting satellite results in a
potentially measurable centimeter displacement in one year.
Similarly, this experiment may also be sensitive to dark matter
clumps with masses(200 km/s)2×1 cm/G= 10−6M⊕ (simi-
lar to the anticipated dark matter mass within a 100 au cube in
the Solar neighborhood), which some dark matter models
predict should be passing near the solar system with typically a
much larger velocity of ∼200 km s−1 compared to bound outer
solar system bodies.
Geometric distances to and radio emission from Milky Way
pulsars: as our system is capable of measuring distances out to
hundreds of megaparsecs, from a geometric standpoint it can
easily measure distances (even with 0.1 au baselines) to
sufficiently bright pulsars at all distances in the Milky Way,
with the caveat that individual pulses from most pulsars are
difficult to detect with 10m dishes especially at the higher
frequencies at which the pulsars have Δtd scattering times as
would be required. Such precise distances would enhance the
gravitational wave sensitivity of pulsar timing arrays (Boyle &

11 Our simple calculation for the cosmological Shapiro delay does not include
redshift evolution in the matter field, which likely leads to additional
inaccuracy for d  3000 Mpc.
12 The VLBI timing error on the more optimistic six-detector configuration
would be improved by a factor of ≈2.5 if Shapiro delays are not fit owing to
the increase in visibilities so that σd/d = σt/Δtd overestimates the error
(Section 2). Ignoring the Shapiro delays we find is appropriate at x⊥  100 au
and so the distance errors for this case could be even smaller than those quoted
in this section.
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Pen 2012) and even enable pulsar timing arrays to measure H0

(McGrath et al. 2022). Furthermore, the proposed experiment
could shed light on the nature of pulsar emission. It could
resolve their radio emission, as a baseline’s spatial resolution is

( ) ( ) ( )n= ^
- -ℓ x d10 km 100 au 5 GHz 1 kpc2 1 1 . The nature

of pulsar radio emission is still debated, with two classes of
models (e.g., Philippov & Kramer 2022). The first predicts that
the emission is from the inner magnetosphere at radii of
10–100 km. A 100 au baseline has the potential to resolve this
component, especially for the closest pulsars. The other class of
emission occurs at the ∼5000(τ/0.1 s) km light cylinder, where

τ is the spin period, which would be resolved with
x⊥ 10(τ/0.1 s)−1(ν/1GHz)−1 au.
The spectrum of density fluctuations from both ISM electrons
and dark matter: the dispersion delay differences between
different satellites should be easily detectable (Section 4.2).
Such measurements would constrain the spectrum of ISM
density fluctuations on the solar system-scale of our antenna
separations, complementing measurements on smaller and
larger scales. This would be interesting for measuring the
spectrum of turbulence (Armstrong et al. 1981) and also for
testing the picture of electron inhomogeneities from ∼1 au

Figure 4. Estimated fractional distance error, σd/d, to a single FRB as a function of distance d, for observations at ν = 4 GHz (top panel) and ν = 8 GHz (bottom
panel). The different colors indicate different detector separations x⊥: 12.5 au in brown, 25 au in orange, 50 au in green, 100 au in red, and 200 au in purple. The solid
curves assume to compute the timing error (σt) , that each baseline vector is constrained to a 1σ error of δx = 3 cm in the top and δx = 1 cm in the bottom panel,an
error which includes the VLBI timing error, in addition to including the noise from scattering and Shapiro time delays assuming the same specifications as used in
Figure 3. The highlighted regions show how these uncertainties change over the specified range of δx. The dashed curves, only shown for the three longest baselines,
are the same but assume the Shapiro delay is removed owing to its different angular dependence. The dotted curve is the fractional redshift uncertainty that arises if the
peculiar velocity can be corrected for using large-scale structure observations to 200 km s−1. The vertical lines show the comoving light-travel distance that
corresponds to redshifts of z = 0.05, 0.5, and 5 in a flat ΛCDM cosmology with ΩM = 0.3 and h = 0.7.
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current sheets invoked to explain some aspects of scattering
and scintillation (Goldreich & Sridhar 2006; Pen &
Levin 2014). For some sightlines the ISM scattering to each
antenna would also be constrained, further testing these
models. Our calculations also suggest that a six satellite
system with x 100 au would measure the quadrupolar
moments of the Shapiro time delay. In the standard
cosmology, these moments are most sensitive to the
abundance and profiles of 1010–1013Me dark matter halos,
but they can be shaped by much smaller structures in
clumpier dark matter models (Appendix D).
Microhertz gravitational waves: timing signals between
satellites is sensitive to gravitational wave strains with
frequencies 10−4(x/20 au)−1 Hz. Strains of 10−18

–10−16

around such frequencies are predicted from various Galactic
and cosmological sources (Sesana et al. 2021). While a
strong science case exists for the “midband” frequencies
between the nanohertz frequencies measured by pulsar
timing and the 10−4−1 Hertz frequencies probed by LISA
(Amaro-Seoane et al. 2017), they unfortunately are difficult
to target with traditional laser ranging in the inner solar
system (Fedderke et al. 2022). At our long baselines, radio
ranging is likely the more practical approach because the S/
N in the match-filtered electric field scales inversely with the
radiometer separation compared to the quadratic fall off in S/
N because of the dilution of laser photons (and the laser
power requirements are already challenging for 1 au base-
lines and reasonable mirror sizes; Fedderke et al. 2021;
Sesana et al. 2021). Here we consider detecting gravitational
waves by measuring baseline distances rather than the less-
ambitious Doppler ranging that has been applied to outer
solar system spacecraft (Armstrong 2006). How well the
carrier wave phase can be timed between two of our satellites
is limited by the frequency stability of the onboard atomic
clock on at least one satellite (as the signal from
other satellites can be phased to the incoming signal), with
a stability characteristic of the Deep Space Atomic
Clock allowing sensitivity to millimeter displacements
for gravitational waves with strain errors of d =h

( ) ( )n- - - - -x W10 10 Hz 100 au15
GW

5 1 2 1 1, where W is a
window function that is near unity for gravitational wave
frequencies of νGW∼ c/x= 2× 10−5(x/100 au)−1 Hz and
scales as W∼ νGWx/c at lower νGW (since x spans only a
fraction of a wavelength). The best atomic clocks in the
world have been improving rapidly and would best the
timing precision of the Deep Space Atomic Clock by five
orders of magnitude. Once no longer limited by the onboard
clock, the precision that the carrier wave can be timed as well
as stochastic sources of gravitational acceleration likely set
the error. The precision that the gravitational wave strain can
be measured when limited by timing of the carrier phase to
accuracy δtc is (Misra & Enge 2012)
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where this assumes continuous tracking over the full wave

period. Gravitational accelerations on the orbital timescales of
bodies likely sets the redward limit to νGW 0.01 μHz
assuming that the nongravitational accelerations can be
isolated.

9. Conclusions

We have described a new method for measuring cosmolo-
gical distances using the differences in arrival times to
cosmological sources as measured by extremely long baseline
interferometry. In order to improve future measurements of the
late-time expansion of the universe significantly, we think that
the proposed experiment may be our best option. Despite the
huge number of potentially complicating effects, the proposed
experiment seems possible for a surprisingly well-defined set of
mission specifications:

1. FRBs are the one source class that is bright enough and
sufficiently compact for this measurement.

2. We showed that once baselines reach x= 25 au, indivi-
dual FRBs can be used to measure percent-level distances
to d= 200Mpc (z= 0.05), and a ten percent measure-
ment to d= 2000Mpc (z= 0.5). Going up in scale to
x≈ 100 au, 1% measurements on the distance are
possible for a z= 1 FRB. In the limit where the detector
spacetime positions are known, the primary limitation on
the timing precision for baselines of x< 100 au is Milky
Way ISM scattering at 3 GHz and differential disper-
sion-marginalized VLBI timing errors at higher frequen-
cies, resulting in a timing noise of σt∼ ν−1 at ν 3 GHz.

3. The experiment is best at ν 3 GHz to minimize Milky
Way scattering. A wide bandwidth with Δν/ν 0.1 (or
multiple bands) is helpful for S/N considerations and to
subtract relative delays from dispersion based on their
frequency dependence; delays we find can be comparable
to the geometric delay of interest. The requirement to use
a higher frequency band than the ν∼ 1 GHz targeted by
most FRB surveys is perhaps the biggest uncertainty in
this proposal, as the FRB population is less studied there.
For baselines of x 100 au, the curvature in the total
Shapiro time delay limits the precision, and we showed
the cosmological contribution to this delay is typically
larger than the Milky Way contribution from stars. The
quadrupolar shape of the contaminating Shapiro delay
allows it to be removed at the cost of two additional
satellites.

4. The satellite positions need to be determined to several
centimeters for our forecasts to apply, with the error
increasing linearly with the positional uncertainty once
above this specification. We showed that GNSS-like
direct trilateration using the dishes themselves appears
feasible, although calibration may also be possible using
only distant FRBs themselves. The latter calibration
strategy likely requires a precise onboard accelerometer
to eliminate nongravitational accelerations and, thus,
extend the timescale needed between calibrations. We
estimate that gravitational accelerations from closely
passing asteroids should lead to a 1 cm error in satellite
ephemeris over a time of months at the very minimum,
but likely much longer. Without a precise accelerometer,
ephemeris calibration must be performed weekly to
account for accelerations from variations in the Solar
irradiance, dust collisions, gaseous drag, and possibly
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Lorentz forces acting on the satellites. For weekly
calibration, the satellites’ clock accuracy requirement is
in line with the demonstrated accuracy of NASA’s Deep
Space Atomic Clock.

5. The increasing catalog of FRB sources known to repeat
provides a list of targets for which many are likely to
yield an FRB after just hours of integration. The simplest
approach would be for the satellites to point to such a
source and store the voltage time series, telemetering it
back to Earth if prompted that a burst occurred. A more
ambitious approach that would require substantial
onboard computation is for each satellite to search the
voltages and identify FRBs on the fly. Then, 10 m
diameter dishes are necessary with tens of beams to detect
tens of FRBs a year, although there is substantial
uncertainty in how the observed ∼1 GHz FRB rates
extrapolate to 3 GHz. Possibilities that could greatly
increase the detection rates are (1) using a more sensitive
terrestrial radio telescope for a template of the electro-
magnetic waveform, and (2) employing phased elements
in each satellite rather than a single dish to observe much
of the sky simultaneously. A 10 m diameter instrument is
also convenient for ephemeris calibration by direct
trilateration, requiring only ∼10W broadcasts between
antennas separated by 100 au for ∼0.1 ns timing using a
modulating 10MHz code and minute integration times. A
fold-out design (as done for the D= 10 m Spektr-R
satellite that had a 30 R⊕ apogee) could allow a radio dish
to be deployed in a modest payload.

6. We favor unbound orbits where the baselines gradually
drift to larger and larger separations. As an example, the
New Horizons spacecraft achieved a terminal velocity of
10 km s−1 via gravity assists off of planets, enabling it to
travel 40 au in a decade. Unbound orbits would allow
nailing down science that can be accomplished at shorter
baselines first and a quadratic-with-time increase in the
size of Δtd, and hence the precision of distance
determinations, as the detectors drift apart. It might even
be possible to launch all the antennas in one rocket and
disperse them in different directions by scattering off a
solar system body.

Some studies have discussed the possibility of detecting the
parallaxes of cosmological objects (e.g., Ding & Croft 2009;
Chakrabarti et al. 2022). The proposed experiment to detect
wave front curvature can be thought of in terms of parallax
with instruments separated by ∼x⊥ and where the angular
resolution is set by ∼λ/x⊥ (Section 2). If we take our fiducial
specifications of x⊥= 100 au and ν= 5 GHz, such an experi-
ment’s angular resolution is more than five orders of magnitude
more precise than the state-of-the-art ∼100 μarcsec astrometric
localizations that the Gaia satellite achieves toward the
brightest quasars (Gaia Collaboration et al. 2016). Hence the
effective sensitivity of our method for measuring distance is
improved by a similar factor (times the additional factor of
∼x⊥/(2 au) when comparing to annual parallax).

We also identified several other interesting sciences that
could be accomplished with the proposed instrument
(Section 8). These include measuring the distance and
resolving the radio emission region of Galactic pulsars,
constraining the mass distribution in the outer solar system at
the millionths of Earth mass-level (interesting both for solar
system and dark matter science), direct constraints on the

density distribution in the ISM on x⊥ scales, and potentially
interesting sensitivities to ∼0.01–100 μHz gravitational waves.
The proposed instrument not only would provide a more direct
means to constrain distance in cosmology, but also contribute
to answering other key questions.
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Appendix A
FRW Spacetime Derivation

In flat space, the distances that appear in the main text are
really the effective distance from the accumulated phase in the
wavefronts. Namely

( )
( )ò òl

l
= =d

c dt c dz

H z
, A1

t

t z

obs
0em

obs

and similarly for dx (see Figure 2), where tem and tobs are,
respectively, the emission and observation times and
λ= λobs/(1+ z) relates the wavelength to its observed (red-
shifted) value. These reduce to the Euclidean distance at low
redshift. The rightmost integral in Equation (A1) is just the
comoving light-travel distance. Thus, one is free to draw the
antenna–antenna–FRB triangle in Figure 2 at the present time,
ignoring the time dependence of FRW expansion. The same
result is well established for lensing time delays (Narayan &
Bartelmann 1996).
To generalize our calculation to curved FRW spacetimes,

Figure 2 should be redrawn as a triangle in an open or closed
geometry and, rather than using the law of cosines to calculate
dx (see Equation (1)), we use these spaces’ generalization of

( )( ) ( ) ( ) ( ) ( ) ( )q q q q q= +  - A2cos cos cos sin sin cos ,d d x d x d xx

( )( ) ( ) ( ) ( )q q q q» - +  -cos 1 2 sin cos , A3d x d x d x
2

where ∠d-x denotes the angle adjoining the line segments d and
x in the triangle and θr≡ kr/R, with r as a stand-in for other
distance variables. The value k= 1 corresponds to a closed
geometry and k= i to an open one, where ∣ ∣º W-R H ck

1
0 is

the present-day radius of curvature.13 Equation (A3) takes
the applicable limit that θx is much less than one. To
simplify further, we note that ( ) ( )q q» -cos cosd dx

( ) ( ) ( )[ ( ) ]q q- - -k d d R k d d Rsin cos 2d x d x
2 . An equation

13 These relations for the law of cosines can be found on Wikipedia, with
references dating into the nineteenth century. The identification with the
curvature space density Ωk for FRW cosmologies is given in many cosmology
textbooks (e.g., Peacock 1999).
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quadratic in dx− d results, which solving yields the root
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where the second line reapplies the limit x/R= 1 and
( )º ^ -x x sin d x . Equation (A6) shows that a measurement

of the time delay between local detectors is sensitive to the
cosmological distance ( )qR tan d . This distance is similar to the
luminosity and angular diameter distances that many cosmo-
logical observables are sensitive to, which are given by

( )qR sin d up to factors of (1+ z).
In conclusion, the curved-space generalization of the time

delay owing to curvature of the wave front is

( )
( )

q
D » ^t

kx

cR2 tan
. A8d

d

2

In the limit that the space’s radius of curvature R is much larger
than d, this reduces to our Euclidean result in Section 2 but
with Equation (A1) for the distance.

We learned after submitting this manuscript to the preprint
server that a nearly identical derivation as above was done in
McGrath et al. (2022), considering the effect of curvature of the
wave front of gravitational waves on pulsar timing arrays.
Furthermore, Weinberg (1972) define the distance ( )qtan d as
the parallax distance. Since wave front timing can be thought of
in terms of parallax (Section 2), that wave front curvature
probes the parallax distance is not surprising.

Appendix B
Fitting For the Dispersion

Here we calculate how well the effects of dispersion to each
detector can be fit for and removed. We again use the notation
that Δt is our parameter for the geometric delay, and we adopt
Δτd their differential dispersive delay. We want to find the
delays p= (Δt,Δτd) that minimize ∣ ∣ c s= å -i i i i

2
,obs

2 2,
where  º á ñ*E Ei i i1 2 is the complex correlation of the electric
field in frequency channel νi between two detectors (the
“visibility”) computed by sampling different times across the
FRB, the subscript “obs” indicates the observed, whereas
without it is the modeled, and σi is the channel noise on i,obs.
Critically, since a time delay results in a phase in Fourier space,
delays alter i by giving it a complex phase of

[ ( ( ¯ ) )]pn t n nD + D -i texp 2 i d i
2 , where n̄ is the S/N-weighted

midpoint of the band. The Fisher information matrix (which
describes the curvature of the log likelihood) is given by

 c s= » å - *F d dp dp d dp d dp1 2nm n m i i i n i m
2 2 (e.g., Dodelson

2003), and the 1σ uncertainty on each delay parameter is given
for Δt by F−1/2|ΔtΔt. (We do not need to include the
amplitudes of the visibility as another parameter because they
are uncorrelated with the other parameters—F is diagonal in
this parameter—and so can be fit independently.)

First let us consider the case where we do not know the absolute
phase θi, defined as the phase at the frequency midpoint of the band
n̄ . The absolute phase can be complicated by clock phase errors—
and for terrestrial measurements by the atmosphere—and also the
spacetime position of the detectors must be known to better than a
wavelength for solutions for θi to not have a phase-wrapping
degeneracy. In this case, we rewrite the complex visibility phase as

[ { ( ¯ )( ( ¯ ) )}]q p n n t n n+ - D + D -i texp 2i i d i
2 . As Δt only

includes the phase across the band and the rest is absorbed into
θi, this case is measuring the equivalent of the group delay over the
band (df/dν when Δτd= 0). This yields the VLBI group delay
timing noise st,group

VLBI given by Equation (11) in the case where
differential dispersion is not a parameter so that F is a scalar. (We
do not need to consider θi as a parameter as referencing Δt to the
effective center of the band makes this parameter independent; see
Appendix 12.1 in Thompson et al. 2017.) One can check that it
does, noting that ( ¯ ) p n nD » -d d t i2i i. If we then sum over
all frequency channels assuming the S/N is channel independent,
this yields [ ]p n= DF 2 S NRMS

2, where ∣ ∣ s= åS N i i i
2 2 2 is

the total S/N on the intensity that the baseline measures. This
agrees with Equation (11), except there we wrote there the more
general expression for when the channel S/N varies with
frequency. In other references this result is derived by least squares
fitting directly to the phase (e.g., Rogers 1970; Thompson et al.
2017).
Now including dispersion in this group velocity limit where

we are only using the phase trends across the band, this
becomes a three parameter Fisher matrix calculation as θi is
weakly correlated with Δτd. In this case, the error becomes
significantly larger, ( )s n n» D10 0.2t,group

VLBI . For Δν/ν 0.1,
interesting cosmological constraints may still be possible with
such timing noises (Section 7).
However, there is no reason to throw away the absolute

phase information as the design of the proposed
experiment requires precise baseline measurements. When
using the full phase, the Fisher matrix becomes µF
[ ¯ ¯ ¯ ]ò òn n n n n n n n nD D

n nD D
-d d;2 2 2 4 2 . One can show that

the error on the dispersion-marginalized phase velocity is
exactly [ ] [ ]s p n= = D- -F 2 4 S Nt

1
0,0 ,group

VLBI
RMS

1. The
delay from the absolute phase is subject to a 2π phase-
wrapping degeneracy. The correct phase can be distinguished
with multiple frequencies or a broad band. The nth phase fringe
can be distinguished from the zeroth at 1σ once ν/Δν nS/N.
Global navigation systems often use a second frequency

band to remove ionospheric delays. Their signal template is
perfectly known, in contrast to the noisy “template” supplied
by the second VLBI receiver. However, the results carry over:
our dispersion-marginalized noise estimate in the narrow two-
channel limit increases the timing noise by the factor
( ) ( )n n n n+ -1

2
2
2

1
2

2
2 over the timing noise in either channel

in the absence of dispersion, reproducing the result known for
two-channel GNSS (Misra & Enge 2012).
We find that simultaneously fitting for a term ∝ν−4 to

remove weak refractive scattering (Section 4.1) comes at a
larger cost. When using the absolute phase, the error is
increased to ( )s n n» D5 0.2t,group

VLBI . However, since we favor
targeting frequencies where the scattering time delays are
ν−1, such marginalization is unnecessary to reach the timing
goal of σt∼ ν−1.
The above assumes that the dispersion is fit for each

visibility independently. One can also fit for the geometric
delay Δtd and the NA− 1 differential dispersion delays
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simultaneously. This approach incurs a similar cost for
marginalizing out dispersion, since dispersion is distinguished
from geometric time delays via its frequency dependence.

Appendix C
Dispersion Delays from ISM Turbulence

Here we estimate the delays from ISM turbulence leading to
varying electron columns along the sightlines to the different
detectors. The variance of the differences in dispersive delays
τd between pairs of sightlines is given by

[ ] ( )t t t t t- = áD ñ - áD D ñVar 2 2 , C1d d d d d,1 ,2 ,1
2

,1 ,2

where we write the difference in the dispersion time delay of
the sightline with path Pi relative to the mean value as Δτd,i,
angular brackets indicate an ensemble average, and

( ) ( ) ( )ò òt t káD D ñ = D Dx xdx n dx n , C2d d
P

e
P

e,1 ,2
2

1 1 2 2
1 2

where Δne is the 3D field of electron density fluctuations.
ReplacingΔne with its Fourier transform, the expectation value
becomes
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where we have used the property of real fieldsthat
Δne(k)

* =Δne(− k) and defined the electron density power
spectrum as ( ) ( ) ( ) ( ) ( )p dáD D ñ = -*k k k kn n P k2e e e

D
1 2

3
1 1 2 .

Evaluating the integral over the line-of-sight wavenumber
along P1 gives a δ-function that eliminates the line-of-sight
wavenumber integral. We next evaluate the spatial line-of-sight
integral along P2 to a length of L, representing the size of the
region containing electron density fluctuations (i.e., the extent
of the Milky Way’s ISM), yielding
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where the last equality assumed that the paths are parallel and
separated by a transverse distance of x⊥. We can use this
expression to evaluate the square of the standard deviation in
dispersion time delays between the two lines of sight defined in
Equation (C1), resulting in

[ ] ( )[ ( )] ( )òs t t k
p

- = -
¥

^L
dk

k P k J kx2
2

1 . C5d d e
2
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2

0
0

For the Milky Way, the electron density distribution is given by a
Kolmogorov-like power law ( ) ( )p= -P k C k2e n

3 2 11 3 between
some ∼109 cm inner and ∼1 pc outer length scales, where the
(2π)3 owes to our Fourier convention as we have adopted the
standard definition for Cn

2 (e.g., Draine 2011). In the Solar
neighborhood, measurements find ~ ´ - -C 5 10 cmn

2 17 20 3

(Armstrong et al. 1981; Draine 2011). This integral is not
sensitive to the inner or outer length scales, and evaluating the

square root yields the standard deviation
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Much of this contribution to [ ]s t t-d d,1 ,2 is from long-
wavelength modes that manifest as a gradient that is degenerate
with the ·-x d delay from the source location on the sky.
Crudely, only the contribution of modes in k> π/x⊥ could bias
the delay from wave front curvature. These wavenumbers (and
indeed the same holds when restricting to the even more
curvature-like modes with π/x⊥< k< 2π/x⊥) contribute only
10% of the integral in Equation (C4). Thus, the fraction that is
nonplanar and, hence, contaminates our distance measurement
is
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We use this expression for st
disp in Section 4.2 (e.g.,

Equation (14)).

Appendix D
Cosmological Contribution to the Shapiro Delay

This appendix calculates in detail the cosmological Shapiro
time delay from large-scale structure. As the Shapiro delay

along a sightline can be written as ò cFd
c

d2

03 , where Φ is the
Newtonian gravitational potential, the Shapiro delay between
two sightlines separated by x⊥ can be calculated via Taylor
expansion assuming the potential is smooth on the scale x⊥:

( )ò c D = F + F +^ ^ ^x x xt d ...
c

d
i j i j i jgrav

2

0

1

23 . The
quadratic-in-x⊥ term inside the integral can be rewritten as

p r^ ^



x x G4i j

1

2
i j

2 using Poisson’s equation for the Newtonian
gravitational potential and noting that only long-wavelength
modes in the line-of-sight direction contribute and so we can
ignore the line-of-sight derivatives. We can write the variance
of the cosmological component ofDtgrav

quad in terms of the matter
overdensity power spectrum using an approach nearly identical
to in Appendix C except the different angular weighting that
appears as
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where we have further assumed no evolution in the statistics of
the density field over the sightline (which should make this
inaccurate for d 3000Mpc, corresponding to z 1) and the
last approximation uses that the contribution to the integral
owes to structures with x⊥k⊥= 1, at least in the standard
cosmology. To evaluate the integral in Equation (D3), we adopt
the z= 0.1 HaloFit model for the nonlinear matter power
spectrum (Smith et al. 2003), finding that the standard
deviation of the cosmological Shapiro time delay is

( )s »
x̂ d

0.08 ns
100 au 100 Mpc

. D4t, grav
cosmo

2 1 2
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⎝

⎞
⎠

⎛
⎝

⎞
⎠

This is somewhat larger than our estimate for the delay from
stars in the Galactic disk. A significant fraction of this variance
can be reduced by selecting sightlines that do not pass near
large dark matter halos. (Half of the contribution to this integral
comes from halo virial radius scales of k ä 2π/[0.1−1Mpc],
and for sightlines with a significantly enhanced cosmological
Shapiro delay the contribution from large halos would be even
larger.) However, measuring this delay would itself be
interesting as it is a probe of nonlinear scales, with an identical
wavenumber weighting of modes as the rms magnification
from gravitational lensing, and so constraining st, grav

cosmo would be
very analogous to the supernova magnification constraints that
have placed limits on the clumpiness of dark matter (Dodelson
& Vallinotto 2006; Zumalacárregui & Seljak 2018).
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