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Abstract

Gravitational waves from the distant sources are gravitationally lensed during their propagation through the
intervening matter inhomogeneities before arriving at detectors. It has been proposed in the literature that the
variance of the lensed waveform can be used to extract information of the matter power spectrum at very small
scales and of low-mass dark halos. In this Letter, we show that the variance of the amplitude fluctuation and that of
the phase fluctuation of the lensed waveform obey a simple relation irrespective of the shape of the matter power
spectrum. We study conditions under which this relation can be violated and discuss some potential applications of
the relation. This relation may be used to confirm the robustness of claimed observations of gravitational lensing of
gravitational waves and the subsequent reconstruction of the matter power spectrum.

Unified Astronomy Thesaurus concepts: Gravitational lensing (670); Gravitational waves (678)

1. Introduction

Direct detections of gravitational waves (GWs) have opened
the golden era of GW astronomy (Abbott et al. 2021). It is
highly expected that many new discoveries by the GW
experiments will excite us in the coming decades and progress
our understanding about the universe (e.g., Bailes et al. 2021).
One of such discoveries is the gravitational lensing of the GWs
(Schneider et al. 1992). General relativity (GR) predicts that
GWs propagating in the gravitational potential sourced by
matter distribution are gravitationally lensed in a similar
manner to light (Misner et al. 1973). Gravitational lensing
typically magnifies gravitational-wave amplitude and may
significantly contribute to the high mass tail of the mass
distribution of the black hole binaries (Dai et al. 2017;
Oguri 2018). One notable difference between the gravitational
lensing of the GWs and that of light is that, due to the long-
wavelength nature of the GWs from astrophysical sources,
wave effects such as diffraction become important in some
cases for which wave optics must be used, while the
geometrical optics is an excellent approximation for light
(Ohanian 1974; Nakamura 1998; Nakamura & Deguchi 1999).1

In the regime of wave optics, the amplification factor, which
represents the amount of distortion of the wave by the
gravitational lensing, depends on the wave frequency differ-
ently from what it does in the geometrical optics (Nakamura &
Deguchi 1999). Because of this, the lensed waveform in the
wave optics provides us with additional information about the
lensing objects that the geometrical optics does not. For
instance, even if the source position is outside the Einstein
radius, for which there is only a single path in the geometrical
optics, the mass of the lensing object may be extracted in the
wave optics (Takahashi & Nakamura 2003). Another important

feature of the wave effects is that the waves are insensitive to
structures smaller than the Fresnel scale rF, which scales with
the wave frequency f as µ f1 (Macquart 2004; Takaha-
shi 2006). Thus, measurement of the amplification factor at
different frequencies, which is possible for GWs whose
frequency varies in time as is the case for the GWs emitted
from the chirping binaries, allows us to probe the matter
distribution at different Fresnel scales (Takahashi 2006; Oguri
& Takahashi 2020; Gil Choi et al. 2021).
In Takahashi (2006), a novel idea was proposed that

measurements of the variance of the amplitude and phase
fluctuations of the amplification factor enable us to determine
the matter power spectrum at the Fresnel scale. As an example,
for the GWs in the decihertz range, which corresponds to the
sensitivity range of the future space interferometers such as
DECIGO (Seto et al. 2001), the Fresnel scale is about 1 pc (see
Equation (12)). The matter inhomogeneities at this scale are
supposed to be dominated by low-mass dark halos, and
information of the matter power spectrum around that scale will
provide us with the fundamental properties of dark matter and
possibly new knowledge of the primordial power spectrum. In
Oguri & Takahashi (2020), as an extension of the previous
work (Takahashi 2006), detectability of the low-mass dark
halos as well as the primordial black holes has been
investigated, and it is concluded that the measurements of the
gravitational lensing variance are a promising achievement in
the future GW observations. Because of the fundamental
importance of the variance of the amplification factor of the
GWs, there is a good motivation to study its basic properties.
In this Letter, we point out that there is an intriguing

consistency relation between the variance of the amplitude and
the phase fluctuations of the amplification factor that has not
been given in the literature. Remarkably, this relation holds true
irrespective of the shape of the matter power spectrum. Thus,
this relation may provide a consistency test to evaluate if the
observational determination of the variance of the gravitational
lensing has been done correctly and allow us to conduct the
subsequent reconstruction of the matter power spectrum on a
solid basis. We also study in which situations the consistency
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1 However, there is an exception. For the very compact lensing objects such
as primordial black holes, the wave optics plays an important role even for light
(Gould 1992; Sugiyama et al. 2020).
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relation can be violated and discuss some potential applications
of the consistency relation.

2. Weak Gravitational Lensing of GWs

2.1. Amplification Factor

In this subsection, we briefly overview the formulation of the
gravitational lensing of GWs by the matter inhomogeneities.
This overview is intended to make this Letter self-contained
and hence the content is minimal. Those who want to know
more about individual equations and statements are recom-
mended to read Oguri & Takahashi (2020) and references
therein.

Ignoring the tiny variation of the polarization of the GWs by
the lensing objects, the amplitude f of the lensed GWs at the
detector’s position is represented, in the frequency domain, by
the product of the amplification factor F and the unlensed wave
f0 as

( ) ( ) ( ) ( )f f=f F f f . 10

Here f is the (comoving) frequency of the GWs. Throughout
this Letter, we assume weak lensing for which the deviation of
F from unity is given by the linear order in the gravitational
potential Φ sourced by the matter inhomogeneities (Born
approximation). In this regime, the amplification factor of the
GWs emitted from the source at the comoving distance χs from
the detector is given by (Takahashi et al. 2005)
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Here χ is the comoving distance from the detector, r is the two-
dimensional vector perpendicular to the line of sight, t(χ) is the
cosmic time when the wave is at χ, and Δt is the geometric
time delay given by
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See Figure 1 as a schematic picture representing the
configuration. For future convenience, we introduce the Fourier

transformation of Φ as
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Substituting this expression into Equation (2) and performing
integration over r, we obtain
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The amplification factor is a complex number. In physical
terms, the absolute value and the argument of complex of F
give the magnification and the phase shift, respectively. In
particular, in the high frequency limit (geometrical optics
limit), the phase shift of F becomes proportional to the
frequency with its coefficient being 2π times the Shapiro time
delay Δtg. We then define a quantity ĥ by subtracting the
Shapiro time delay from the phase shift, namely,

ˆ ( ) ( ) ( )h º -p- Df F f e 1, 6if t2 g

where the second term is added just to make ˆ ( )h f vanish in the
absence of the lensing potential. Observationally, it should be
in principle possible to determine ĥ for the lensed GWs if the
waveform covers a frequency range including both the
geometrical and wave optics regimes for which case we can
set the phase shift to zero in the high-frequency side.
Continuous measurements of GWs from the evolving binaries
may be promising for this purpose.
We introduce K( f ) and S( f ) by2

ˆ ( ) ( ( )) ( )( )h + = +f K f e1 1 . 7iS f

In Takahashi (2006), K( f ) was called amplitude fluctuation and
S( f ) was called phase fluctuation. In what follows, we adopt
these terminology.
Since the matter inhomogeneities are randomly distributed,

K( f ) and S( f ) also behave as stochastic variables for each GW
event. Therefore, the statistical properties of these quantities are
more useful to extract cosmological information than looking at
the individual lensed events. The two-point correlation function
of K( f ) and S( f ) is related to the power spectrum of Φ as3
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Figure 1. Schematic configuration of the gravitational lensing of the GWs by
the intervening matter inhomogeneities.

2 To the first order in the gravitational potential, Equation (7) leads to
( ) ( ( ))h=K f fRe and ( ) ( ( ))h=S f fIm . The variances of K( f ) and S( f )

given by Equations (8) and (9) are derived under this first-order approximation.
3 In Takahashi (2006) and Oguri & Takahashi (2020), 〈K2( f )〉 and 〈S2( f )〉 are
expressed in terms of the power spectrum of the matter density contrast δ. This
can be done by going through the Poisson equation. In Equations (8) and (9),
we instead use PΦ since it is the metric perturbations that cause the gravitational
lensing and Equations (8) and (9) manifest that they are free from the relation
between the density contrast and the metric perturbations. Please refer to the
discussions in Section 2.2 regarding this point.
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Here PΦ is the power spectrum of F̃ defined by

˜ ( ) ˜ ( ) ( ) ( ) ( ) ( )p dáF F ¢ ñ = + ¢Fk k k kt t P k t, , 2 , , 103

and rF is the Fresnel scale (Macquart 2004; Takahashi 2006)
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The Fresnel scale is determined by the ratio of the geometrical
distance (3) to the GW wavelength. This means the Fresnel
scale provides a rough indication of the length scale of the
matter inhomogeneities below which GWs are not sensitive to.
In mathematical language, this can be understood as the
trigonometric functions appearing in the integration for the
expressions of 〈K2( f )〉 and 〈S2( f )〉 and acting as erasing the
contributions of the modes shorter than the Fresnel scale. Thus,
frequency dependence of 〈K2( f )〉 and 〈S2( f )〉 contains
information of the matter power spectrum at the Fresnel scale,
and this fact enables us to probe the matter inhomogeneities on
the Fresnel scale. For the cosmological GW sources, a typical
value of the Fresnel scale is
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Thus, both space- and ground-based GW detectors can probe
the matter inhomogeneities on much smaller scales than on
cosmological scales. In particular, it has been suggested that the
matter perturbations around the parsec scales are dominated by
dark low-mass halos. Measuring the amplitude and the phase
fluctuations has the potential to probe how much the dark
matter is in the form of the gravitationally bound objects and
shed light on the nature of dark matter.

2.2. Universal Relation between the Amplitude and the Phase
Fluctuations

In Section 2.1, we gave a brief overview of the amplitude
and the phase fluctuations of the GWs lensed by the matter
inhomogeneities. Now, we point out that there is a consistency
relation between the variance of the amplitude fluctuation and
that of the phase fluctuation as

( ) ( ) ( ) ( )á ñ + á ñ = á ñK f S f K f2 . 132 2 2

This relation can be straightforwardly derived from
Equations (8) and (9). As far as we understand, this relation
has not been given in the literature, and Equation (13) is one of
the main result of this Letter. The purpose of this subsection is
to discuss potential use and consequences of this relation.

Let us first clarify the fundamental assumptions we have
made to arrive at the consistency relation to figure out the
domain in which the relation holds true and how universal the
relation is. The assumptions are as follows: (i) gravitational
lensing is weak (i.e., Born approximation is valid), (ii) GR is
valid, and (iii) statistical properties of the matter perturbations

respect the homogeneity and isotropy. Let us consider these
assumptions one by one.
First, as for the weak gravitational lensing, it has been

demonstrated that the typical amplitude of K( f ) and S( f ) is
( ) ( )-- - 10 102 3 in a frequency range of our interests for

the standard ΛCDM cosmology (Oguri & Takahashi 2020).4

These amplitudes are much smaller than unity, and corrections
from higher orders in the gravitational potential are suppressed
more than the leading-order one we have presented in
Section 2.1. Therefore, it is reasonable to expect that most
lensing events are in the weak gravitational lensing regime.
Second, as for point (ii), the formalism presented in the

previous subsection has been developed within the framework
of GR. However, the consistency relation can hold true even
for some alternative theories of gravity. For instance, the
simple class of the scalar-tensor theories only modifies the
scalar part of the metric perturbations, and the propagation
equation for the GWs is still the same as that in GR (De Felice
& Tsujikawa 2012; Bellini & Sawicki 2014; Saltas et al. 2014).
In such a case, the background metric on which the GWs
propagate can be written as

( ) ( )( ) ( )g= - + F + - F xds dt a t d1 2 1 2 , 142 2 2 2

where γ represents deviation from GR (γ= 1 in GR if we
ignore the anisotropic stress of the matter). In the scalar-tensor
theories, γ is in general a function of the cosmic time and the
length scales whose concrete form depends on the model under
consideration (Amendola et al. 2008). Following the derivation
of the amplification factor from the background metric given by
Equation (14) in the case of GR (γ= 1) (Nakamura &
Deguchi 1999) and applying it to the case with γ≠ 1, we find
that the modification to the amplification factor is only to
replace Φ with Fg+1

2
. Thus, both the amplitude fluctuation and

the phase fluctuation are rescaled by the same factor, and the
consistency relation is not modified. Generally, modifying the
scalar sector changes a relation between the matter density
contrast and the gravitational potential (i.e., Poisson equation;
Amendola et al. 2008) and leads to the deviation of the growth
rate of the matter inhomogeneities from GR, but change of the
matter power spectrum due to the different growth rate does not
affect at all the expressions of 〈K2( f )〉 and 〈S2( f )〉 since it is
the gravitational potential that causes the gravitational lensing.
In this sense, not all the elements in GR are equally crucial to
derive the relation (13).
Third, the statistical homogeneity and isotropy, namely

Equation (10), has been employed to arrive at Equations (8)
and (9). Violation of this assumption will in general lead to the
violation of the relation (13) but depending on how we
abandon the assumption the consistency relation may still be
satisfied. For instance, dropping the statistical isotropy only
replaces PΦ(k⊥; t(χ)) appearing in the integrands of
Equations (8) and (9) with the direction-dependent one
PΦ(k⊥; t(χ)). We can easily verify that such a replacement
does not change the consistency relation.
To summarize, there are a few assumptions imposed to

derive the relation (13), but depending on how one violates
those assumptions the consistency relation can be still satisfied
under less restrictive conditions. It is also worth mentioning

4 These typical magnitudes are values without accounting for selection of the
lensing signal beyond a certain signal-to-noise ratio (S/N).
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that as it is clear from how the consistency relation has been
derived, it holds irrespective of the shape of the matter power
spectrum. Thus, the consistency relation does not rely on the
physics that underlies the shape of the matter power spectrum
such as the nature of dark matter and the early-universe models
(inflation) characterizing the primordial power spectrum.

Having explained the underlying assumptions to obtain the
consistency relation, let us next discuss its potential applica-
tions. One practical application would be to use the relation as
an independent confirmation that the observational determina-
tion of the variances of K( f ) and S( f ) from the measurements
of many lensing events has been done correctly. Observation-
ally, measurements of the amplification factor is conducted by
comparing the data with the unlensed template waveform.
Thus, extracting the amplification factor correctly can be
achieved successfully only when we have the correct theor-
etical modeling of the unlensed GW waveform that requires
correct quantitative understanding of the GW sources. In other
words, incorrect modeling of the sources generates spurious
contributions to K( f ) and S( f ). Such undesired bias will lead to
the violation of the consistency relation. Given that the
expected amplitudes of K( f ) and S( f ) are

( ) ( )-- - 10 103 2 (Oguri & Takahashi 2020), we naively
suppose that the understanding of the GW sources at the same
level is requisite to avoid such bias. Conversely, confirmation
that the observationally determined 〈K2( f )〉 and 〈S2( f )〉 satisfy
the consistency relation provides us with a solid confidence that
the information of the gravitational lensing has been obtained
correctly, and we can safely use this observational result to
determine/constrain the small-scale power spectrum of the
matter inhomogeneities. In this sense, the consistency relation
will be useful to establish the matter power spectrum by the
measurements of the lensing of GWs.

A second potential application of the consistency relation is
to infer 〈K2( f )〉 at a higher frequency range that is out of the
GW measurements. The relation tells us that knowledge of
〈K2〉 and 〈S2〉 at a frequency f enables us to infer 〈K2〉 at twice
the frequency (2f ). Thus, it is possible to observationally
determine 〈K2〉 up to twice the maximum frequency that GW
detectors can reach.

A third potential application is a test of GR. As we have
already discussed, the consistency relation can be violated in
alternative theories of gravity for which the propagation
equation of the GWs deviates from that in GR. Therefore,
observational verification of the relation provides a new test if
the propagation of GWs obey what GR predicts. However,
propagation of GWs has been already constrained to be very

close to GR by the almost simultaneous detections of the GWs
and gamma rays from the neutron-star mergers (Abbott et al.
2017a, 2017b), and it is not clear how significantly the relation
can in principle be violated by changing the propagation
properties of the GWs without conflicting the existing
constraints. For the implications to the theories of modified
gravity deduced from the recent GW observations, see, e.g.,
Creminelli & Vernizzi (2017) and Langlois et al. (2018). After
all, it is possible that the new test is not as strong as the other
ones. Even in that case, the consistency relation may be used as
an independent confirmation of GR. Clarifying this issue
quantitatively is beyond the scope of this Letter. To summarize
this subsection, the universal relation between the amplitude
and the phase fluctuations has some interesting applications to
help our understanding of the universe.
Before closing this subsection, there is one comment that

may be worth noting. The consistency relation is given in a
simple form and fairly universal. Thus, we expect that there is a
clear physical explanation behind it, although we were not able
to find it.

2.3. On the Dependence of the Amplitude and the Phase
Fluctuations on the Source Distance

Although not explicitly written (just for the sake of
notational simplicity), both 〈K2( f )〉 and 〈S2( f )〉 are functions
of not only f but also the (comoving) distance to the source χs.
In other words, the ensemble average 〈L 〉 is performed for
fixed f and χs. Observationally, the ensemble average is
determined by measuring a sufficient number of the GW
events. However, since each GW event has a different distance
from us, strictly speaking, it is not possible to accumulate the
GW events having exactly the same distance. Furthermore,
there will be measurement errors of the distance for each GW
event. As a compromise, we need to group the GW events
having nearly the same source redshifts to compute the
ensemble average for a particular source redshift zs. This
procedure may induce the error of the observational estimation
of 〈K2( f, zs)〉 and 〈S2( f, zs)〉. (In this subsection, we explicitly
show the dependence of 〈K2( f )〉 and 〈S2( f )〉 on χs in terms of
the corresponding source redshift zs.) According to the results
presented in Takahashi (2006), 〈K2( f, zs)〉 and 〈S2( f, zs)〉
change by ( ) 1 by changing zs by ( ) 1 . Thus, crudely
speaking, the relative change of 〈K2( f, zs)〉 and 〈S2( f, zs)〉 by
shifting the source redshift by Δzs is ( )D zs . However, since
the consistency relation holds true at any zs, we may
circumvent the above difficulty by considering the consistency
relation integrated over some redshift range (e.g., z1< zs< z2)
covering the scatter of the redshifts of the GW events. In other
words, an estimator  constructed out of data
{ ( ) ( )}=K f z S f z, , ,i s i i s i i

N
, , 1 of N GW lensing events lying in

the redshift range (z1, z2) by

( ) ( ) ( ) ( )

º å

= + -

=
N

X

X K f z S f z K f z

1
,

where , , 2 , , 15

i
N

i

i i s i i s i i s i

1

2
,

2
,

2
,

yields, if the consistency relation holds, á ñ = 0 and
á ñ µ N12 . (Furthermore, for N? 1,  obeys the Gaussian
distribution thanks to the central limit theorem.) Therefore, if
we alternatively consider the averaged consistency relation
over some redshift range, the accuracy of its observational

Figure 2. Differential merger rate detectable by DECIGO above the signal-to-
noise ratio ρ = 100, 500, 1000.
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confirmation is limited solely by N, i.e., the number of the GW
lensing events.

In the above discussion, we have assumed that K and S for
each GW lensing event are measured perfectly without errors.
In reality, both K and S are determined with some errors caused
by the instrumental noises, which is another crucial factor that
hinders the observational verification of the consistency
relation. Detectability of the amplitude and the phase fluctua-
tions taking into account the noises is partially discussed in
Oguri & Takahashi (2020), but more detailed investigations
remain to be clarified. Since the main results in this work are to
show the existence of the consistency relation and to propose
its potential applications, we just give a crude estimation of N
for DECIGO above a certain S/N ρ following the method
presented in Ding et al. (2015) and Hou et al. (2021) before
closing this subsection. Figure 2 shows the differential merger
rate dR

dz
in the unit of yr−1 for which ò dz

z dR

dz0
gives the

detectable number of the merger events of equal mass binary
with a chirp mass 26.5Me within the redshift z above S/N
ρ= 100, 500, 1000. Given that the GW amplitude can be
measured with the accuracy∼ 1/ρ, ρ= 1000 will be a
representative value for determining 〈K2( f, zs)〉 and 〈S2( f,
zs)〉, whose typical values are about 10

−3. As an example, from
Figure 2, we expect that one year of operation of DECIGO will
detect ∼100 GW events having ρ> 1000 in the range
0.2< zs< 0.3. (Since the relative error of the determination
of the source distance is expected to be at most 0.01 (Camera &
Nishizawa 2013), the error of zs is not problematic if the
redshift range is taken to be larger.) This suggests that with
DECIGO we will be able to confirm the consistency relation or
detect its violation at ( ) 1 level in terms of the relative
difference.

3. Conclusion

Detections of the gravitational lensing of GWs are promising
in the near future. GWs from the cosmological distant sources
are gravitationally lensed by traveling through the matter
inhomogeneities before arriving at detectors. It has been
proposed in the literature (Takahashi 2006) that the variance
of the modulation of the GW waveform can be used to extract
information of the matter power spectrum at very small scales
and the low-mass dark halos. In this Letter, we have found that
the variance of the amplitude fluctuation and that of the phase
fluctuation of the amplification factor obey a consistency
relation given by Equation (13). This relation is universal in the
sense that it does not rely on the shape of the matter power
spectrum. We then investigated how universal the relation is

and in which cases the relation can be violated. We also
discussed some potential applications of the consistency
relation that include the confirmation of the observational
determination of the variances of the gravitational lensing.
After the variances have been determined observationally over
some frequency range, the consistency relation may be useful
to confirm the robustness of their determinations and enables us
to probe the matter spectrum at small scales with confidence by
solving either Equation (8) or Equation (9).
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