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Abstract

We address the question of which combination of channels can best translate other channels in ultraviolet (UV) and
extreme UV (EUV) observations. For this, we compare the image translations among the nine channels of the
Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) using a deep-learning
(DL) model based on conditional generative adversarial networks. In this study, we develop 170 DL models: 72
models for single-channel input, 56 models for double-channel input, and 42 models for triple-channel input. All
models have a single-channel output. Then we evaluate the model results by pixel-to-pixel correlation coefficients
(CCs) within the solar disk. Major results from this study are as follows. First, the model with 131Å shows the best
performance (average CC= 0.84) among single-channel models. Second, the model with 131 and 1600Å shows
the best translation (average CC= 0.95) among double-channel models. Third, among the triple-channel models
with the highest average CC (0.97), the model with 131, 1600, and 304Å is suggested in that the minimum CC
(0.96) is the highest. Interestingly, they represent coronal, upper photospheric, and chromospheric channels,
respectively. Our results may be used as a secondary perspective in addition to primary scientific purposes in
selecting a few channels of an UV/EUV imaging instrument for future solar satellite missions.

Unified Astronomy Thesaurus concepts: The Sun (1693); Solar instruments (1499); Solar ultraviolet emission
(1533); Solar extreme ultraviolet emission (1493); Convolutional neural networks (1938)

1. Introduction

Over the past 25 yr, ultraviolet (UV) and extreme UV (EUV)
phenomena of the Sun have been continuously observed in
multi-wavelengths. The Solar and Heliospheric Observatory
(SOHO; Domingo et al. 1995), launched in 1995, observed the
low corona in four channels of 171, 195, 284, and 304Å of the
Extreme ultraviolet Imaging Telescope (EIT; Delaboudinière
et al. 1995). The Transition Region and Coronal Explorer
(TRACE; Handy et al. 1999), launched in 1998, provided
observations from the solar photosphere to the upper atmos-
phere in seven channels of 1700, 1600, 1550, 1216, 284, 195,
and 171Å. The Extreme Ultraviolet Imager (EUVI; Wuelser
et al. 2004; Howard et al. 2008) on board the Solar Terrestrial
Relationships Observatory (STEREO; Kaiser et al. 2008),
launched in 2006, has made it possible to observe the farside of
the Sun in 171, 195, 284, and 304Å, similar to SOHO/EIT.
Launched in 2010, the Atmospheric Imaging Assembly (AIA;
Lemen et al. 2012) on board the Solar Dynamics Observatory
(SDO; Pesnell et al. 2012) has provided high-resolution full-
disk images with high time cadences of about 12 s. The AIA
has nine channels of 1700, 1600, 335, 304, 211, 193, 171, 131,
and 94Å.

Such a large amount of single- or multi-channel paired data
allows us to do various applications of deep learning (DL), one
of the artificial intelligence (AI) models. First, super-resolution
methods that enhance the original resolution of data have been
developed (Díaz Baso & Asensio Ramos 2018; Jia et al. 2019;
Rahman et al. 2020). Second, reconstruction and synthesis of
data have been considered (Felipe & Asensio Ramos 2019;
Galvez et al. 2019; Kim et al. 2019; Park et al. 2019; Salvatelli
et al. 2019; Szenicer et al. 2019; Jeong et al. 2020; Shin et al.
2020; Zhang et al. 2020; Lee et al. 2021a). Third, processes of

reducing noise in data have been proposed (Díaz Baso et al.
2019; Park et al. 2020). Fourth, predictions of future data have
been studied (Galvez et al. 2019; Ji et al. 2020; Lee et al.
2021b).
There are two types of approaches in the reconstruction and

synthesis of solar data. First, several authors have studied the
translation between data from currently operated instruments.
Galvez et al. (2019) translated Helioseismic and Magnetic
Imager (HMI) vector magnetograms into AIA nine-channel
observations. Park et al. (2019) also generated AIA nine-
channel images using HMI line-of-sight magnetograms.
Szenicer et al. (2019) mapped from AIA images to spectral
irradiance measurements. Salvatelli et al. (2019) reconstructed
one AIA channel from three other channels among 94, 171,
193, and 211Å. Second, there have been several studies using
DL models to compensate for the absence of observational
data. Kim et al. (2019) generated farside magnetograms from
STEREO/EUVI 304Å. Felipe & Asensio Ramos (2019)
developed a method to improve the quality of farside seismic
maps by using HMI magnetograms and farside phase-shift
maps. Jeong et al. (2020) constructed extrapolated global
magnetic fields using observed frontside and DL-generated
farside magnetograms from STEREO/EUVI 171, 195, and
304Å. Shin et al. (2020) generated past HMI-like magneto-
grams using Ca II K images from the Rome Observatory. Lee
et al. (2021a) generated HMI-like magnetograms and AIA-like
(E)UV images in 1612 using Galileo sunspot drawings. Zhang
et al. (2020) generated Nobeyama Radioheliograph image from
SDO/AIA 171, 193, 211, 304, and 335Å.
The above studies presented a sufficient possibility of a

“virtual observatory” that can generate real-like observational
data sets (Salvatelli et al. 2019). In this study, we address a
question of what combination of channels can best translate
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other channels in UV and EUV observations. For this, we use
data from the nine SDO/AIA channels. Here, we consider three
types of DL models: (1) 72 models with single-channel input
and single-channel output, (2) 56 models with double-channel
input and single-channel output, and (3) 42 models with triple-
channel input and single-channel output. We also compare the
performance of these 170 models in view of a metric. This
Letter is organized as follows. In Section 2, we describe the
data and method. Section 3 gives the results of the translations
with discussion. A brief summary and conclusion are given in
Section 4.

2. Data and Method

SDO/AIA is so far the most suitable instrument to consider
a large number of multi-(E)UV observations. Thus, we use the
AIA observations in two UV channels (1600 and 1700Å) and
seven EUV channels (94, 131, 171, 193, 211, 304, and 335Å)
with 12 hr cadence from 2011 to 2017. These nine channels
observe from the photosphere to the corona and cover the
plasma temperature between about 5000 K and 20 MK (Lemen
et al. 2012). All data are pre-processed by calibrating, rotating,
centering, exposure correction, and degradation correction as
mentioned in Park et al. (2019). All nine-channel data are set to
have the same solar disk size, scaled down to 1024 by 1024.

Considering the solar cycle phase, we divide the data set into
training, validation, and test as follows. Data for September and
October of each year are used for the test, and data for July and
August of each year for the validation, thereby separating the
training and test sets. The remaining data are for training. The
number of data per channel for training, validation, and testing
are 3,299, 825, and 821, respectively.

We adjust the dynamic range of each wavelength using the
aia_intscale. pro routine to make physically important features
of the Sun stand out well at each wavelength. For this reason,
the model outputs could be used for quantitative study within
the limited dynamic range. Note that it takes much time to set
up 170 DL models with full dynamic ranges, which is reserved
for a future study. After the dynamic range is adjusted for each
channel, all the pixel values are scaled by 255. Then, they are
considered as the input of the model. The output of the model is
data with values between 0 and 255 like the input. Between
inputs and outputs, the data is scaled between −1 and 1 and
processed. The output data is inversely transformed to the
dynamic range for each channel before calculating a metric in
the test set.

In this study, three types of models are considered as follows.
We first consider models that translate from single-channel input
to single-channel output. The number of single-channel models
for nine channels is 72, which can be calculated using a
permutation that selects two out of nine elements without
overlapping, 9P2. Among the single-channel models, we select
one channel, referred to as Channel-A, that best translates the other
channels on average. Second, we consider models that translate
from double-channel input to single-channel output while keeping
Channel-A as an input. The number of double-channel models is
56, 8P2. Then, among the double-channel models, we select one
combination, referred to as Channel-A+Channel-B, showing the
best performance. Lastly, we consider models that translate from
triple-channel input to single-channel output while keeping
Channel-A and Channel-B as an input. The number of triple-
channel models is 42, 7P2. A total of 170 models are trained for
this study.

We consider a DL method called “Model B” in Park et al.
(2019) based on pix2pix of Isola et al. (2017) with two
networks “generator” and “discriminator”. A detailed descrip-
tion of this method is presented in GitHub3 (Park 2019) and the
Appendix in Park et al. (2019). We use the same hyperpara-
meters as in Appendix C of Park et al. (2019). Because this
method is for single-channel input, we modify it to be able to
input multiple channels for this study.

3. Results and Discussion

We compare 170 models using the average pixel-to-pixel
correlation coefficient (CC) between DL model outputs and the
corresponding real AIA images within the solar disk for the test
data set. The first to the ninth rows in Table 1 shows the
average CC values for single-channel models. The rms errors
between the CC value of each test data and the average CC
value are represented as uncertainties. The channels that best
translate 94, 131, 171, 193, 211, and 335Å are 335, 171, 131,
211, 193, and 211, respectively. They are all EUV channels.
This is not surprising in that the peak temperatures of 131 and
171Å (about 0.4 MK at lower peak temperature and 0.6 MK,
respectively), and 193 and 211Å (about 1.6 MK and 2 MK,
respectively) in the response function are almost similar to each
other (Lemen et al. 2012). Likewise, each UV channel has the
best performance to generate the other UV channel. The 304Å
has a higher average CC with the EUV channels than the UV
channels. Among the nine channels, 131Å is considered as the
Channel-A as it gives the highest average CC. Another
interesting result is as follows. The average CC (0.59) for the
translation from the higher atmospheric channels (94, 131, 171,
193, 211, and 335Å) to the lower atmospheric channels (1600
and 1700Å) is lower than that (0.78) for the translation from
the lower atmospheric channels to the higher atmospheric
channels. The result implies that observations from the lower
atmosphere of the Sun may have more information to infer the
characteristics of the higher atmosphere. This can be under-
stood from the origin of the solar activity coming from lower
atmosphere.
The tenth to the seventeenth rows in Table 1 shows the

average CC values with their uncertainties for double-channel
models with 131Å and another channel as inputs. The
performances of the models are much better than the single-
channel models. The average CCs of single-channel models
with EUV channels are distributed between 0.8 and 0.84,
whereas those of double-channel models are between 0.9 and
0.91. Since the combination of 131 and 1600Å best translates
other channels on average, 1600Å is selected as the Channel-B.
The eighteenth to the last rows in Table 1 show the average
CCs for triple-channel models with 131, 1600Å and another
channel as inputs. The performances of these models are all
similar or better than those of the single- and double-channel
models. The triple-channel models with the input including
171, 193, 211, 335, and 304Å give the highest average CC of
0.97. Among these, the model with 131, 1600, and 304Å is
selected as the best model because it has the highest minimum
CC (0.96).
Interestingly, the three channels are representative coronal,

upper photospheric, and chromospheric channels, respectively.
Of the three channels, the 1600Å has been considered in
TRACE and SDO, and 304Å has been considered in SOHO,

3 https://github.com/eunsu-park/solar_euv_generation
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Table 1
The Average Pixel-to-pixel CCs between the 170 DL Model Outputs and the Corresponding Real AIA Images, Calculated for the Test Data Set

Input Output Average
94 131 171 193 211 335 304 1600 1700

94 L 0.88 ± 0.03 0.86 ± 0.02 0.95 ± 0.02 0.92 ± 0.03 0.93 ± 0.03 0.76 ± 0.07 0.45 ± 0.05 0.65 ± 0.04 0.80
131 0.93 ± 0.04 L 0.93 ± 0.02 0.92 ± 0.03 0.91 ± 0.02 0.92 ± 0.03 0.86 ± 0.03 0.54 ± 0.04 0.68 ± 0.02 0.84
171 0.91 ± 0.04 0.92 ± 0.03 L 0.94 ± 0.01 0.89 ± 0.02 0.88 ± 0.03 0.84 ± 0.03 0.51 ± 0.03 0.68 ± 0.03 0.82
193 0.94 ± 0.04 0.89 ± 0.03 0.86 ± 0.03 L 0.96 ± 0.01 0.92 ± 0.03 0.83 ± 0.05 0.48 ± 0.05 0.78 ± 0.03 0.83
211 0.94 ± 0.03 0.87 ± 0.03 0.79 ± 0.03 0.96 ± 0.01 L 0.95 ± 0.03 0.85 ± 0.04 0.46 ± 0.04 0.67 ± 0.04 0.81
335 0.95 ± 0.02 0.89 ± 0.02 0.80 ± 0.03 0.93 ± 0.02 0.94 ± 0.02 L 0.85 ± 0.03 0.53 ± 0.04 0.68 ± 0.03 0.82
304 0.91 ± 0.03 0.80 ± 0.04 0.75 ± 0.03 0.90 ± 0.02 0.92 ± 0.02 0.92 ± 0.03 L 0.62 ± 0.03 0.71 ± 0.02 0.82
1600 0.85 ± 0.05 0.76 ± 0.04 0.69 ± 0.05 0.78 ± 0.04 0.80 ± 0.04 0.81 ± 0.06 0.73 ± 0.06 L 0.96 ± 0.004 0.80
1700 0.84 ± 0.05 0.75 ± 0.05 0.68 ± 0.04 0.77 ± 0.05 0.79 ± 0.04 0.81 ± 0.06 0.71 ± 0.06 0.94 ± 0.01 L 0.79
Average 0.91 0.85 0.80 0.89 0.89 0.89 0.80 0.57 0.73

131 + 94 L L 0.96 ± 0.02 0.98 ± 0.01 0.96 ± 0.02 0.96 ± 0.02 0.91 ± 0.03 0.72 ± 0.02 0.82 ± 0.02 0.90
131 + 171 0.96 ± 0.02 L L 0.97 ± 0.01 0.97 ± 0.01 0.96 ± 0.02 0.92 ± 0.02 0.72 ± 0.02 0.82 ± 0.02 0.90
131 + 193 0.97 ± 0.02 L 0.97 ± 0.02 L 0.98 ± 0.01 0.96 ± 0.02 0.92 ± 0.02 0.72 ± 0.03 0.81 ± 0.02 0.90
131 + 211 0.97 ± 0.02 L 0.97 ± 0.02 0.97 ± 0.004 L 0.97 ± 0.01 0.93 ± 0.02 0.72 ± 0.03 0.81 ± 0.03 0.91
131 + 335 0.97 ± 0.02 L 0.97 ± 0.02 0.97 ± 0.01 0.97 ± 0.01 L 0.93 ± 0.02 0.72 ± 0.03 0.81 ± 0.03 0.91
131 + 304 0.96 ± 0.02 L 0.97 ± 0.02 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.02 L 0.75 ± 0.03 0.83 ± 0.02 0.91
131 + 1600 0.96 ± 0.02 L 0.95 ± 0.02 0.95 ± 0.02 0.94 ± 0.02 0.95 ± 0.02 0.92 ± 0.02 L 0.98 ± 0.003 0.95
131 + 1700 0.96 ± 0.02 L 0.95 ± 0.02 0.95 ± 0.01 0.94 ± 0.02 0.94 ± 0.02 0.91 ± 0.02 0.96 ± 0.01 L 0.94
Average 0.96 L 0.96 0.96 0.96 0.96 0.92 0.76 0.84

131 + 1600 + 94 L L 0.96 ± 0.02 0.98 ± 0.01 0.96 ± 0.02 0.96 ± 0.02 0.93 ± 0.02 L 0.98 ± 0.003 0.96
131 + 1600 + 171 0.97 ± 0.02 L L 0.97 ± 0.01 0.97 ± 0.02 0.97 ± 0.02 0.93 ± 0.02 L 0.98 ± 0.003 0.97
131 + 1600 + 193 0.97 ± 0.02 L 0.97 ± 0.02 L 0.98 ± 0.01 0.96 ± 0.02 0.93 ± 0.02 L 0.98 ± 0.003 0.97
131 + 1600 + 211 0.97 ± 0.02 L 0.97 ± 0.02 0.99 ± 0.004 L 0.97 ± 0.01 0.94 ± 0.02 L 0.98 ± 0.003 0.97
131 + 1600 + 335 0.97 ± 0.02 L 0.97 ± 0.02 0.97 ± 0.01 0.97 ± 0.01 L 0.93 ± 0.01 L 0.98 ± 0.003 0.97
131 + 1600 + 304 0.96 ± 0.02 L 0.97 ± 0.02 0.96 ± 0.01 0.96 ± 0.02 0.97 ± 0.02 L L 0.98 ± 0.003 0.97
131 + 1600 + 1700 0.96 ± 0.02 L 0.96 ± 0.02 0.95 ± 0.01 0.94 ± 0.02 0.95 ± 0.02 0.92 ± 0.01 L L 0.95
Average 0.97 L 0.97 0.97 0.96 0.96 0.93 L 0.98

Note. The rms errors between CC value of each test data and the average value are represented as uncertainties. All values are calculated within the solar disk. The bold values are the highest average CC for each
wavelength.

3

T
h
e
A
stro

ph
y
sica

l
Jo
u
rn

a
l
L
etters,

915:L
31

(9pp),
2021

July
10

L
im

et
al.



Figure 1. Comparison of full-disk images between real (AIA observations at 00:00 UT on 2014 October 31) and AI-generated from three models. Each row from the
top to the bottom shows 94, 171, 193, 211, and 335 Å, respectively. The first column shows the output results from Model 1 using single-channel (131 Å) input. The
second column shows the output results from Model 2 using double-channel (131 and 1600 Å) inputs. The third column shows the output results from Model 3 using
triple-channel (131, 1600, and 304 Å) inputs. The fourth column shows the real AIA images.
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STEREO, and SDO (Delaboudinière et al. 1995; Handy et al.
1999; Howard et al. 2008; Lemen et al. 2012). However, 131Å
is selected first by the SDO (Lemen et al. 2012). The reason
why these three channels are selected from the perspective of
the metric could be understood as follows. The 131Å is

selected first as it can observe not only the transition region but
also the corona, i.e., it has double peaks at low and high
temperatures (about 0.4 and 10 MK) in the response function.
The 1600Å is selected second because it can generate the
1700Å much better than the other channels and is the most

Figure 2. Comparison images between real and AI-generated from three models. The first row shows the full-disk images with the boundary for the CH (SPoCA
2453) represented in the red box in AIA 193 Å observation at 00:00 UT on 2011 September 11. The second row shows the magnified corresponding CH region. The
third row shows the full-disk images with the boundary for the AR (HARP 3119) represented in the red box in AIA 171 Å observation at 00:00 UT on 2013
September 3. The fourth row shows the magnified corresponding AR. Each column is the same as in Figure 1. The pixel-to-pixel CCs of the CH region between the
real image and the three DL model outputs are 0.92, 0.92, and 0.96 from the first column to the third, respectively. The pixel-to-pixel CCs of the AR region between
the real image and the three DL model outputs are 0.89, 0.96, and 0.97 from the first column to the third, respectively.
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unpredictable channel among the double-channel models. The
304Å seems to be considered third because it is also the most
difficult channel to be translated from the other channels of
AIA among the triple-channel models. There is a possibility
that the three prime channels could be selected even with the
average CC results of the single-channel models. Because of
the substantial difference between UV and EUV channels, one
channel in the UV needs to be the second channel. 1600Å can
be better transferred to 1700Å than the reverse, therefore
1600Å is selected. Then, in order to choose the third channel
among the rest of the channels, one just needs to choose the
channel with the lowest average CC (0.8) column-wise (i.e.,
harder to be reproduced by other channels) in Table 1, which
here are 171 and 304Å. It is difficult to select one out of 171
and 304Å by CC value alone, but 304Å could be selected to
represent the chromospheric activity. In terms of qualitative
scientific viewpoints, another combination could be selected.
For example, if a scientific target is coronal holes (CHs), then
the 193Å is preferable as the first selection channel because
CHs are well detected in 193Å (O’Dwyer et al. 2010; Caplan
et al. 2016). The remaining two channels can be determined in
a similar way as described above.

We compare real images and AI-generated ones by the
following three models: the model with single-channel (131Å)
input (hereafter Model 1), the model with double-channel (131
and 1600Å) input (hereafter Model 2), and the model with
triple-channel (131, 1600, and 304Å) input (hereafter Model
3). Figure 1 shows the full-disk EUV images at 00:00 UT on
2014 October 31. It is found that the EUV channels are well
translated in view of the location and shape of the overall
structures, even if the single-channel input is used. In addition,
we compare local regions of interest such as active regions
(ARs) and CHs. For this, we consider 193 and 171Å, where
CHs and coronal loops of ARs are most visible, respectively.
We select 82 CHs detected by the spatial possibilistic clustering
algorithm (SPoCA; Verbeeck et al. 2014) during the test
period. 90 ARs detected as HMI Active Region Patch (HARP;
Bobra et al. 2014) are selected during the test period between
2012 and 2014, corresponding to the solar maximum phase.
The average CC within the 90 CHs is 0.84 for Model 1, 0.88
for Model 2, and 0.91 for Model 3. For 90 ARs, the average
CC is 0.89 for Model 1, 0.93 for Model 2, and 0.95 for Model
3. These results show that Model 3 has performs better
translations for the ARs and CHs than Model 1 and Model 2.

The first and second rows in Figure 2 shows the full-disk
images and the CH regions (SPoCA 2453) of the AIA 193Å at
00:00 UT on 2011 September 11. It is shown that Model 3
better translates the overall size and shape of the CH region
than Model 1 and Model 2. The average CC within the CH

region is 0.92 for Model 1, 0.92 for Model 2, and 0.96 for
Model 3. As in Table 1, the single-channel that best translates
193Å is 211Å. Thus, 211Å may give a better reconstruction
of CHs. The third and fourth rows in Figure 2 shows the full-
disk images and the AR regions (HARP 3119) of the AIA
171Å at 00:00 UT on 2013 September 3. Compared to the
results of Model 1 and Model 2, the result of Model 3 gives
more similar intensities to the observed intensities and shows
more clear coronal loops. The average CC within the AR is
0.89 for Model 1, 0.96 for Model 2, and 0.97 for Model 3.
Salvatelli et al. (2019) investigated translations from three
channels into one channel among the AIA 94, 171, 193, and
211Å. They showed that the translation error for 171Å out of
four channels is the lowest. Thus, an input combination of 94,
193, and 211Å using our DL method may be better for 171Å
translation than Model 1, 2, and 3. Figure 3 shows the
comparison between cutout real images and AI-generated ones
by the three models for the AIA 1700Å observations at 00:00
UT on 2014 October 31. The result of Model 1 does not well
translate the location and size of a sunspot and faculae, but
these features are greatly improved in the results of Models 2
and 3 that consider 1600Å as the input. The average CC within
the region is 0.68 for Model 1, 0.98 for Model 2, and 0.98 for
Model 3.
In order to demonstrate the performance of the DL model,

we consider a simple base model that is a multiple linear
regression of the intensities in log scales for the 131, 1600, and
304Å as follows.

= +
+ +

I a I b I

c I d

log log log

log , 1
pred,base obs,131 obs,1600

obs,304 ( )

where I is the intensity of the pixel, a, b, and c are a slope, and
d is a constant of a regression. The data used to make the base
model are pre-processed and scaled down to 1024 by 1024 as
in the DL models, but have a full dynamic range for each
channel. The data for the base model are chosen with 10 days
cadence in the training data set since the use of all data are too
much time consuming. For comparison with the base model,
we develop a DL model using data with the full dynamic range.
This model only consider the input combination of 131, 1600,
and 304Å (Model 3 that gives the highest CC among the DL
models). Hereafter, Model 3 refers to the DL model
considering the data with the full dynamic range.
For the quantitative comparison of the two-dimensional

distribution, we consider the joint probability density function
(JPDF) of the observed intensities (Iobs) and the model
predicted intensities (Ipred) as suggested in Salvatelli et al.
(2019). The JPDF is a function used to characterize the

Figure 3. Comparison cutout images between real (AIA 1700 Å observation at 00:00 UT on 2014 October 31) and AI-generated from three models. Each column is
the same as in Figure 1. The pixel-to-pixel CCs between the real image and the three DL model outputs are 0.68, 0.98, and 0.98 from the first column to the third,
respectively.
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Figure 4. JPDF of the observed intensities and the model predicted intensities for the base model (the first and third rows) and Model 3 (the second and fourth rows).
The color bar represents the log JPDF, in which the blue color indicates the higher probability of intensity distribution within the area. If the model predicts perfectly,
the JPDF would lie along the diagonal line (solid black line). The sum of JPDFs in all domains for each channel is 1.
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probability distribution of a finite domainΔIobsΔIpred. The sum
of JPDFs in all domains is 1. If the model predicts perfectly, the
JPDF would be lie along the diagonal line.

Figure 4 shows the JPDF of the observed intensities and
model predicted intensities in the test set for the base model and
Model 3. For all six channels, the results of Model 3 are much
more distributed near the diagonal line than those of the base
model. This indicates that Model 3 can translate the intensity
more precisely within the corresponding range than the base
model. To quantify the distribution, we calculate the sum of
JPDFs along the diagonal (∑i=jJPDF(i, j)). A higher value
means better translation within the observed intensity range.
For the base model, ∑i=jJPDF(i, j) are 0.18, 0.2, 0.16, 0.11,
0.17, and 0.42 for 94, 171, 193, 211, 335, and 1700Å,
respectively. For Model 3, ∑i=jJPDF(i, j) are 0.2, 0.29, 0.32,
0.31, 0.23, and 0.52 for 94, 171, 193, 211, 335, and 1700Å,
respectively. It can be found that the performance of the DL
model is better than the base model as shown in Figure 4.
Among the six channels of Model 3 and the base model, the
1700Å has the higher sum of JPDFs along the diagonal line. In
this case, the average CC (0.98) is also the highest, as shown in
Table 1.

Although the DL model outperforms the base model in
reproducing the UV and EUV images, the accuracy is not good
enough to fully replace the real measurements based on the
quantitative comparison shown in Figure 4. To be useful for
reducing the telemetry of future solar missions, the DL model
accuracy has to be improved. The current DL model may be
further improved by considering the following. The first is to
use the data of SDO/AIA with the original size 4096 by 4096.
Then the information loss caused by binning could be reduced.
The second is to apply the “pix2pixHD” method that is
specifically devised for high-resolution image translation tasks
(Wang et al. 2017). In addition, another DL method that can
precisely translate the coronal loop strand should be considered
in the future.

4. Summary and Conclusion

In this Letter, we have addressed the question of what
combination of channels can best translate other channels in
UV and EUV observations. For this, we considered the SDO/
AIA observations in two UV channels (1600 and 1700Å) and
seven EUV channels (94, 131, 171, 193, 211, 304, and 335Å)
with 12 hr cadence from 2011 to 2017. We developed 170 DL
models based on pix2pix: 72 models for single-channel input,
56 models for double-channel input, and 42 models for triple-
channel input. All models have a single-channel output. To
quantitatively compare the image translations, we evaluated the
model results by pixel-to-pixel CCs within the solar disk. The
real images and AI-generated ones were also presented to
qualitatively compare the image translations.

The major results of this study are as follows. First, the model
with 131Å gives the highest average CC (0.84) among the single-
channel models. Second, the model with 131 and 1600Å shows
the best translation (average CC= 0.95) among double-channel
models. Third, among the triple-channel models with the highest
average CC (0.97), the model with 131, 1600, and 304Å has the
highest minimum CC (0.96). The model with 131, 1600, and
304Å better generates not only the full disk of the Sun but also
local regions (e.g., CHs and ARs) than the model with 131Å and
the model with 131 and 1600Å. The average CC (0.98) for the
1700Å translation by the model with 131 and 1600Å is more

significantly improved than that (0.68) by the model with 131Å.
The DL model with 131, 1600, and 304Å translates the intensity
more precisely than the base model using the multiple linear
regression with the same combination of channels.
In this study, we compared 170 DL translation models using

24 combinations of input channels. From this, we presented the
combination of channels that best translates the other channels.
Our results may be used as a secondary perspective in addition
to primary scientific purposes in selecting a few channels of an
UV/EUV imaging instrument for future solar satellite
missions. Our study could help design a DL model for a
specific scientific target. We focused on the image translation
performance depending on input combinations using one DL
method. According to scientific targets, another DL method
using multi-channel input may be considered (e.g., a DL
method for translation of the coronal loops). Although a large
number of models have been developed and compared, we do
not consider all input combinations. Thus, future studies of
other combinations not dealt with in this study may be needed.
As mentioned in Section 3, the current DL model could be
improved in the future, and it will show the possibility of
quantitative analysis such as differential emission measure.
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