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Abstract

Observationally, fast radio bursts (FRBs) can be divided into repeating and apparently nonrepeating (one-off) ones.
It is unclear whether all FRBs repeat and whether there are genuine nonrepeating FRBs. We attempt to address
these questions using Monte Carlo simulations. We define a parameter Tc at which the accumulated number of
nonrepeating sources becomes comparable to the total number of repeating sources, which is a good proxy to
denote the intrinsic repeater fraction among FRBs. Assuming that both types of sources exist and their burst
energies follow power-law distributions, we investigate how the observed repeater fraction evolves with time for
different parameters. If the lifetime of repeaters is sufficiently long that the evolutionary effect can be neglected
within the observational time span, unless Tc→∞ (i.e., there is no genuine nonrepeating FRB source), the
observed repeater fraction should increase with time first, reach a peak, and then decline. The peak time Tp and
peak fraction Fr,obs,p depend on Tc and other repeating rate parameters. With the current data, we pose a lower limit
Tc>0.1 day for reasonable parameter values. We predict that future continuous monitoring of FRBs with CHIME
or similar wide-field radio telescopes would obtain an Fr,obs less than 0.04. The detection of a smaller peak value
Fr,obs,p<0.04 in the near future would disfavor the ansatz that “all FRB sources repeat.”

Unified Astronomy Thesaurus concepts: Radio transient sources (2008)

1. Introduction

Fast radio bursts (FRBs) are mysterious transients originat-
ing from a distant point in the universe (Lorimer et al. 2007;
Thornton et al. 2013; Cordes & Chatterjee 2019; Petroff et al.
2019). Even though early observations only detected one-off
events, the discovery of multiple bursts from FRB 121102
(Spitler et al. 2016) suggested that at least some are repeating
sources. Recent observations by CHIME revealed that repeat-
ing FRBs are commonly observed (CHIME/FRB Collabora-
tion et al. 2019a, 2019b).

One intriguing question is whether there exist genuinely
nonrepeating FRBs. The difficulty in addressing this problem
lies in the wide range of repeating waiting times (Palaniswamy
et al. 2018; Caleb et al. 2019) and FRB luminosities (Luo et al.
2018, 2020; Lu & Piro 2019). It is highly likely that some
apparently nonrepeating FRBs are actually repeaters. The
nondetection of the repeated bursts could be because of the
long waiting time or low flux of the repeating bursts
(Palaniswamy et al. 2018). The high event rate of FRBs may
suggest that the majority of FRBs are repeaters (Ravi 2019). On
the other hand, deep follow-up observations of some FRBs
(e.g., the famous “Lorimer” event) did not reveal repeated
bursts (Petroff et al. 2015). Palaniswamy et al. (2018) and
Caleb et al. (2019) argued that active repeaters such as FRB
121102 are abnormally active. If all FRBs are similar to FRB
121102, many one-off bursts should have been detected as
repeaters.

However, repeating FRBs may have different repetition
levels. If FRBs have a wide range of repetition rates, it is
possible that the ansatz “all FRB sources repeat” is true (e.g.,
Lu et al. 2020). Are there indeed genuine nonrepeaters? If so,
how can we find out that they exist? What are the true fractions
of repeaters and nonrepeaters?

In this letter, we attempt to address these questions through
Monte Carlo simulations. The basic formalism of our approach

is described in Section 2. The simulation methodology is
outlined in Section 3, and the results are presented in Section 4.
Section 5 presents conclusions with some discussion.

2. Basic Formalism

A repeating FRB source can produce a sequence of bursts,
but only those with energy exceeding a threshold value are
detectable. Below, we follow Lu et al. (2020) to calculate the
repeating rate of repeaters but add a population of genuine
nonrepeaters. We assume that the threshold fluence for a
detector to trigger an FRB event is Fth. For a source at the
luminosity distance DL, the threshold energy for a burst to be
detectable is

p= + a-E D F z4 1 , 1Lth
2
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where a k-correction has been introduced and α is the intrinsic
spectral index of the burst (Sν∝ν−α), with α=1.5 adopted.
Consider that the repeating rate of a repeating FRB source is

related to the intrinsic energies of the bursts as a power-law
function, i.e.,
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where γ=1.92 is inferred from the current repeating FRB
sample (Lu et al. 2020). We set E0=1030and

= -E 10 erg Hzmax
34 1 (Lu & Piro 2019). Here r0 is a

normalization parameter, which stands for the intrinsic
repeating rate of the bursts at E=E0. For FRB 121102, the
measured value is r0=0.1 hr−1 (Law et al. 2017; James 2019).
Then, the effective repeating rate of bursts above Eth could be
calculated as
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where x=E/E0 and xth=Eth/E0. In view of the detection of
the Galactic FRB 200428 (Bochenek et al. 2020; the CHIME/
FRB Collaboration et al. 2020), we also introduce a low-energy
cutoff energy at = -E 10 erg Hzmin

28 1.
As a function of r, the distribution of time intervals (δ)

between two adjacent bursts could be described by a Weibull
probability density function (Oppermann et al. 2018), which
reads

d d d= G + d- - G + k r k r k e, 1 1 , 4k r k1 1 1 k( ∣ ) [ ( )] ( )[ ( )]

where k is the shape parameter. When k=1, the time interval
distribution reduces to the exponential distribution; when
k<1, the bursts are clustered; and when k>1, the bursts
tend to be periodic. A detailed discussion of the time interval
distribution is shown in the Appendix.

For nonrepeating FRBs to be detectable, they should also
exceed the threshold energy shown in Equation (1). Assume
that the energy of nonrepeating FRBs follows a simple power-
low distribution as

µ g-dN

dE
E , 5n ( )

with < <E E En,min n,max, and we take
= -E 10 erg Hzn,min

30 1, = -E 10 erg Hzn,max
34 1, and

γn=1.8 (Lu & Piro 2019; Luo et al. 2020).3

2.1. Nonevolving Repeaters

In a steady state, the birth and death rates of the repeating
sources would balance each other, so that the total number of
sources in the sky would be a constant. Assuming that the
lifetimes of the repeaters are much longer than the observa-
tional timescale and that the bursts from each source are
produced with a constant repeating rate, one can approximately
regard that the repeaters are not evolving. The intrinsic
repeating rate for each individual repeater may not be the
same but rather follow a certain distribution. In this subsection,
we deal with this case and defer the evolving case to the next
subsection.

For genuine nonrepeating sources, the progenitor of the FRB
produces an FRB once in its lifetime. The number of
nonrepeating sources accumulates linearly with time with a
constant event rate density. Let us denote the total number of
repeating sources in the universe as Nr and the total event rate
of nonrepeating FRBs in the universe as Nn . One can define a
characteristic timescale,

ºT
N

N
, 6c

r

n
( )

at which the number of repeating and nonrepeating sources in
the sky becomes comparable.4

Depending on the effective repeating rate r, a repeating
source may be recognized as a repeater (if r is large enough) or

an apparent nonrepeater (if r is smaller) or not detected at all (if
r is extremely small). We use frr and frn to denote the fractions
of repeating sources being recognized as repeating and
nonrepeating sources, respectively. For nonrepeating sources,
only a fraction, fnn, are detected with a fluence above Fth.
Therefore, for a sample of observed FRB sources, the fraction
of identified repeating sources among all detected sources
should be
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which is a function of the observational time t. Here W¢ is the
field of view of the telescope, and Ω is the total sky solid angle
the telescope can cover.

2.2. Evolving Repeaters

The evolution of repeaters has two meanings: (1) their
intrinsic repeating rates evolve with time, and (2) old sources
die and new sources are born all the time in the sky. If the
characteristic timescales for these evolution effects are not
much longer than the observational timescale, these evolution
effects should be considered.
For the repeating rates, we assume that any individual

repeater is born with an intrinsic repeating rate =r r0 0,max,
which decreases with time as the source ages and finally
reaches =r r0 0,min as the source dies. Assume all of the
repeaters have the same lifetime, denoted as Tl. In a steady
state, the birth and death rates of the repeating sources would
balance each other, so that the total number of sources in the
sky would be a constant at any time. But during the
observational timescale, Nr would be an accumulated number.
In principle, Equation (7) is still valid under these

assumptions, even though the evolution is included. Since a
constant parameter is needed to describe the true fraction of
repeaters, while Tc, in this case, would be a function of time,
we adjust the definition of Tc slightly. Here we use ¢Tc to
represent the modified characteristic timescale, which reads

¢ = = ´T
N

N
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n
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where Nr,0 represents the total number of repeating sources at a
specific time, and F=Nr/Nr,0 is a factor for evolution.
Consequently, we should also replace frr and frn with ¢ =f f Frr rr

and ¢ =f f Frn rn . Hence, we rewrite Equation (7) as
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When the lifetime of sources is much longer than the
observational timescale (Tl?t), it would reduce to the
nonevolving approximation with F∼1. Hereafter, we only
distinguish Tc and ¢Tc when necessary, but we only use Tc when
discussing them together. Similar to the notations Tc and ¢Tc , we
do not distinguish between frr and frn, or between ¢frr and ¢frn
unless it is necessary.

3 We take a higher minimum energy for nonrepeaters than repeaters. This is
because nonrepeaters are supposed to originate from catastrophic events, which
likely have higher energies than repeaters in general. For repeaters, the energy
of some bursts could, in principle, be below Emin. For the observational
configurations we simulate (similar to that of CHIME), these low-energy bursts
are not detectable at cosmological distances.
4 One may also define r rºTc r n , where ρr is the local density of repeating
sources and rn is the local event rate density of nonrepeating sources. The
following discussion remains the same if the redshift distributions of the
repeating and nonrepeating sources are roughly the same.
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3. Monte Carlo Simulations

In this section, we use Monte Carlo simulations to estimate
frr, frn, and fnn and then predict the observed fraction of
repeating bursts Fr,obs(t) at a certain observational time t. The
results depend on several parameters, such as Fth, Tl, Tc, and r0.
We consider the repeating sources under both the “none-
volving” and “evolving” assumptions separately.

3.1. Nonevolving Repeaters

For nonevolving repeaters, we generate the time sequences
of bursts following four steps.

1. Generate a series of repeating sources with a certain
redshift distribution.

2. Assign each repeating source an intrinsic repeating rate
r0.

3. Calculate the effective repeating rate for each simulated
repeating source.

4. Generate burst time intervals according to the Weibull
distribution (given a particular k value) and form a time
sequence of the repeated bursts from each repeating FRB
source.

In our simulations, we assume that the redshift distributions
for both repeating and nonrepeating sources follow the star
formation rate (SFR) history. We adopt an analytical fitting
formula given by Yüksel et al. (2008),

µ + +
+
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where η=−10. We generate Nr redshift values according to
Equation (10) and assign each value to one repeating FRB
source. Choosing appropriate values of Fth and r0 for each
repeater, we calculate its effective repeating rate r using
Equations (1)–(3).

Assume the observation starts from T0. A waiting time needs
to be introduced to describe how long it takes to detect the first
burst from each source. In our simulations, we randomly
generate a time interval δ1 according to Equation (4) and then
randomly generate a waiting time tw in the range of [0,δ1].

5

Hence, the first burst appears at T1=T0+tw. For the sake of
convenience, we set T0=0. For each repeating source, we
simulate N bursts, which appear at d= + å =T Ti j

i
j1 2 , where

i=1, 2, 3 ... N.

3.2. Evolving Repeaters

The main procedure to generate the time sequences of bursts
for evolving repeaters follows five steps.

1. Generate a series of repeating sources with a certain
redshift distribution.

2. Assign each source an intrinsic repeating rate (r0) and an
age (Ta).

3. Calculate the effective repeating rate for each simulated
repeating source.

4. Generate one burst time interval for each repeater
according to the Weibull distribution (given a particular
k value). Update the intrinsic repeating rate and age.

5. Repeat the previous step until the end of the time
sequence exceeds the lifetime of the repeater. Then
replace this source with a newly born one.

Under the assumption that the total number of repeaters in
the sky at an arbitrary specific time is unchanged because the
birth and death rates balance each other, the age of the repeaters
(Ta) in the sky should distribute uniformly from zero to their
lifetimes. Generate a series of Ta randomly and assign to each
source. For each source, every time a burst is produced, we
check whether Ti exceeds the lifetime Tl. If so, we record and
stop this time sequence and replace it with a new one. Set the
new one with the same redshift as the dead one, with Ta=0.
The time sequence of the new source’s bursts starts from
(Tl−Ta,i). The evolution of r0 could be introduced when the
function of dr0/dt is given. Update r0 every time a new time
interval is produced.
In principle, we can evolve r0 and Ta independently. With a

similar method as that in Section 3.1, we can obtain a time
sequence Ti for each repeater under the evolving assumption.

3.3. Observational Configuration

Since the bursts are simulated with an effective repeating rate
r (Equation (3)), all of them are above the flux threshold of a
telescope. Those that fall into the field of view of the telescope
at the burst time would be detected. In reality, the telescope
may not stare at one particular sky area all the time. Therefore,
for each repeating source, the observation is not continuous but
consists of a number of discrete short-term observations. We
assume te as the duration of each observation at a certain sky
area and tg as the gap between two observations at the same
area. For an observing time t (t<Ti=N) for a telescope, there
are n=t/(te+tg) observing periods. From a simulation, we
count the number of Ti for each source that satisfy
m(te+tg)<Ti<te+m(te+tg), where m=0,1,2 ...
n−1. If more than one burst was detected, it would be
recognized as a repeater; if exactly one burst was detected, it
would be recognized as an apparently nonrepeating source;
otherwise, the source would not be detected. Investigating all of
the sources in the simulation, we can obtain the values of frr and
frn.
Nonrepeating sources are generated following the redshift

(Equation (10)) and energy (Equation (5)) distributions. The
fraction fnn could be estimated through dividing the number of
detectable nonrepeating bursts by the total number of simulated
nonrepeating sources. Note that fnn is not a function of time.
In our simulations, we take the threshold fluence as

Fth=4Jyms, which is comparable to CHIME’s sensitivity
(CHIME/FRB Collaboration et al. 2019b; Fonseca et al. 2020).
We generate 106 nonrepeating sources with

< <E E En,min n,man, so that fnn can be determined as
∼0.0035. According to our definition, the total solid angle Ω
covered by the telescope would be observed once in te+tg,
and te is the effective observational time for the field of view
with a solid angle Ω′. We then have W¢ W = nt te .
Equations (7) and (9) can then be rewritten as

=
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5 When k=1 in Equation (4) is assumed, the distribution of tw is the same as
that of δ.
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4. Results

4.1. Evolution of Fr,obs

Our first goal is to investigate how the observed repeater
fraction, Fr,obs, evolves with time and how this evolution
depends on the parameter Tc, a characteristic parameter to
define the relative fractions between the genuine repeaters and
nonrepeaters: Tc→∞ means that all FRBs are repeaters, and
Tc→0 means that the majority of FRBs are genuine
nonrepeaters.

4.1.1. Nonevolving Repeaters

We first give an example by assuming that all repeaters are
as active as the first repeating source, FRB 121102 (r0=0.1
hr−1 (Law et al. 2017; James 2019), and last forever. The

observed fraction of repeating sources Fr,obs as a function of
observational time t is shown in the upper panel of Figure 1.
For Tc→∞, Fr,obs always increases, but the slope decreases
as a function of time. If Tc is a finite value, which means that
there are genuine nonrepeating sources, Fr,obs increases with
time first because of the fast increase of frr in the beginning.
Later on, the increase of frr slows down because one already
recognizes most of the repeaters. On the other hand, the
number of nonrepeating sources linearly increases with time, so
that Fr,obs reaches a peak and then starts to decline afterward.
In the following, we denote the expected maximum fraction

of repeating sources as the “peak fraction” (Fr,obs,p), and its
corresponding time is expressed as the “peak time” (Tp).
From the upper panel of Figure 1, we can see that the

distinction of Fr,obs curves for different Tc is insignificant when
t is short. A distinct feature occurs around the peak time. The
peak time and fraction are the most crucial observational
quantities that can be used to estimate Tc. A smaller Tc
corresponds to a more dominant nonrepeater population, which
corresponds to a smaller peak time and a lower peak fraction.

4.1.2. Evolving Repeaters

Keep r0=0.1 hr−1 and set a finite lifetime as Tl=30 yr for
all repeaters. The evolution of Fr,obs is shown in the lower
panel. The curves flatten when t?30 yr. Because the
observational timescale can totally cover the entire lifetime of
the repeaters, both repeating and nonrepeating bursts would
accumulate linearly with time with constant rates. Therefore,
Fr,obs may never approach 1 but rather balance at a certain level
smaller than 1, even if ¢  ¥Tc . If ¢Tc is small, a peak of Fr,obs

could be observed at Tp<Tl. Hence, with a large Tl, a peak
would still be expected. See the lower panel of Figure 1.

4.2. Effect of Key Parameters

As already known from Section 4.1, with a fixed r0, Tc is a
parameter that strongly influences Tp and Fr,obs,p. In this
section, we allow the value of r0 to vary among repeating FRBs
to get more realistic results.

4.2.1. Nonevolving Repeaters

Our simulation starts from nonevolving repeaters. The
evolution of r0 and the birth and death of sources are not
included. We consider that the values r0 for different sources
follow a power-law distribution, i.e.,

µ -dn

dr
r , 13q

0
0

* ( )

where dn* represents the number of repeating sources with the
intrinsic repeating rate in the range of r0∼r0+dr0. For this
distribution, one can introduce three parameters: two for the r0
range (r0,min and r0,max) and one for the power-law index (q).
Among these three parameters, r0,max is the most accessible
one, which could be directly measured from the most active
repeating sources in the universe (e.g., active repeaters at a
relatively large distance). The index q can also be obtained
observationally by fitting the repeaters’ repetition rate distribu-
tion. However, the value of rmin,0 is much more difficult to
determine, because observationally, it is hard to distinguish a
repeating source with a very low r0 from an intrinsically
nonrepeating burst.

Figure 1. Observed repeater fraction Fr,obs as a function of time. The colored
solid lines delineate the evolution of Fr,obs for different Tc values. Upper panel:
constant repeating rate (r0=0.1 hr−1) with infinity lifetime. The dashed line
marks the trajectory of the peak fraction vs. peak time as a function of Tc.
Lower panel: constant repeating rate (r0=0.1 hr−1) with lifetime Tl=30yr.
The following parameters are adopted for both panels: t=n(te+tg), where
te=0.2 hr and tg=23.8 hr; the Weibull parameter is adopted as k=0.3
(Oppermann et al. 2018).
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In our simulation, we adopt a fixed maximum repeating rate
= -r 10 hr0,max

0.5 1, which is obtained by fitting CHIME’s latest
repeating FRB sample (Lu et al. 2020). We then choose
different r0,min and q values to see how they influence the
simulation results. We fix one of these two parameters and vary
the other one in every simulation. The results are shown in
Figure 2 with solid lines denoting the locus of (Tp,Fr,obs,p) as

the parameters are varied. When we set a fixed index as
q=1.6 and vary the value of r0,min, the results are shown in
the middle-left and bottom-left panels of Figure 2. With the
same Tc, a lower r0,min would lead to a smaller Fr,obs,p and Tp.
When we set = - -r 10 hr0,min

5.5 1 and vary the value of q, the
results are shown in the middle-right and bottom-right panels of

Figure 2. Observed peak repeater fraction and peak time (Tp−Fr,obs,p) of repeating FRB sources for different model parameters under the “nonevolving repeater”
assumption. All panels allow an r0 distribution among repeating FRB sources, with different r0 distribution range and q values marked on top of each panel. Solid lines
stand for the locus (Tp,Fr,obs,p) when different Tc (thin solid colored lines) and k (thick solid colored lines) values are assumed. Dashed lines are the most conservative
constraints on Tc through the observational time t and observed fraction Fr,obs before a peak is reached. In the upper panel, the dotted–dashed lines show the evolution
of Fr,obs as a function of time as examples. The black dot in each panel stands for the observational time and fraction of repeating sources according to the CHIME
400-d observation results (Fonseca et al. 2020). All five figures make the assumption of t=n(te+tg), where te=0.2 and tg=23.8 hr.
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Figure 2. With the same Tc, a higher q would lead to a smaller
Fr,obs,p and Tp.

Both a lower r0,min and a higher q would make more
repeating sources with low r0 values. Consider that the increase
of frr slows down when most of the sources that repeat
frequently enough have been recognized as repeating sources.
If there are more low r0 sources, frr would have a smaller
absolute value, and its increase rate would become smaller.
This explains why both Fr,obs,p and Tp become smaller in these
cases.

4.2.2. Evolving Repeaters

In this section, we set r0 and Ta to have a one-to-one
correspondence. As assumed above, the birth and death of
repeaters balance each other, which means that their age
distribution is stable; thus, the r0 distribution should also be
stable. We then assume that all of the repeaters are born with

=r r0 0,max and die with =r r0 0,min with the same evolutionary
track, which can be derived from the r0 distribution at an
arbitrary time.

Using the power-law distribution in Equation (13), Ta
changes with r0 as

=
- +
-- + - +

-dT

dr

T q

r r
r

1
, 14a l

q q
q

0 0,max
1
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1 0
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where Tl is the lifetime of the sources. Hence, the age of a
repeater could be estimated from its intrinsic repeating rate as
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The evolution of r0 follows
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Considering both the lifetime and evolution of the intrinsic
repeating rate, we conduct simulations with the same parameter
sets used in Section 4.2.1. We find that ¢Tc , r0,min, and q
influence Fr,obs,p and Tp with the same trend as that with
nonevolving repeaters, which is shown in Figure 3. For the
same (Tp, Fobs,p) pair, the required ¢Tc is slightly greater than Tc.
This is understandable because the repeating rate decreases
with time under the evolving assumption, which would lead to
fewer repeating sources to be recognized; hence, fewer genuine
nonrepeating sources are expected. However, the difference is
insignificant because the lifetime of repeaters is assumed to be
much longer than the observational timescale.

In Figures 2 and 3, we also allow the shape parameter k for
the Weibull distribution to vary in different simulations. We
find that the k value would dramatically influence the peak time
but only slightly influence the peak fraction when other
parameters are set to fixed values.

4.3. Constraints on Tc

Four parameters (Tc, r0,min, q, and k) have been discussed in
the previous sections. The latter three parameters are related to
repeating sources only, which may eventually be measured
from the observations of repeaters. The Tc parameter concerns
the true relative fractions of repeaters and nonrepeaters, which
cannot be measured directly from the repeater data only. It

may, however, be constrained from the observed Fr,obs as a
function of time or the measurement of (Tp−Fr,obs,p) if a peak
indeed exists. In principle, for a reasonable k range (e.g., from
0.3 to 1), once a peak is detected, one may find an appropriate
r0 distribution to make the observed peak point located in the
region of the predicted peak points within the assumed k range
(contours in Figures 2 and 3). Finding the Tc contour line that
goes through the observed peak point, one can then determine
both Tc and k. In reality, there might not be only one r0
distribution that can satisfy the observational constraint. Hence,
constraints on the r0 distribution from the repeating FRB data
would be helpful to make more stringent constraints on Tc.
According to our simulations, depending on parameters Tp

can be much longer than the observational timescale, e.g., up to
thousands of years. In general, even when the peak (if it exists),
i.e., (Tp,Fr,obs,p), has not been detected yet, one can still put
constraints on Tc. Similar to the case with an observed peak,
one can also find the Tc value corresponding to the current
Fr,obs and observational time t. This Tc value would serve as the
lower limit, since both Fr,obs,p and Tp increase with Tc. In the
case when Fr,obs and t do not appear in the solid Tc contour
region in Figures 2 and 3, we also plot the conservative
constraints on Tc with dashed lines in Figures 2 and 3. The
observational run by CHIME from 2018 August 28 to 2019
September 30 detected ∼700 new FRBs with nine repeaters
(Fonseca et al. 2020). We thus place the fraction 0.013 with
400 days of observation in each panel of Figures 2 and 3 to
denote the current data constraint.
The simulated evolution curve of Fr,obs should certainly pass

through the observational value. Once the predicted Fr,obs is
lower than the observed value even when Tc→∞, this
parameter set of repeaters should be ruled out. If the predicted
Fr,obs is higher than the truly observed value, one can still lower
the Tc value to meet the data constraint. Hence, under the
assumption that r0 satisfies a power-law distribution, since a
lower r0,min leads to a lower frr and thus a lower predicted Fr,obs,
the current data point could place a lower limit on r0,min. As
shown in the upper panel of Figure 4, for k=0.3 (the favored
value of k for FRB 121102; Oppermann et al. 2018),
r0<10−6.5 hr would be disfavored, since the evolution of
Fr,obs would never pass through the current data point.
However, if we relax the constraints on k, < -r 100,min

6.5 hr
would still be possible. For k=1, r0,min could be as low as
10−10.5 hr−1 without violating the current data point. If

= -r 100,min
14 hr, which corresponds to the Hubble timescale,

is chosen, the evolving curve of the observed fraction of
repeating FRBs would remain near zero all the time, because
repeating FRBs in this case are extremely hard to detect. This
figure is made under the “nonevolving” assumption. If
evolution is considered, as discussed in Section 4.2.2, the
results will be very similar. Hereafter, we will not discuss
“evolving” and “nonevolving” cases separately, because when
the distribution of r0 is considered, their results are very close.
We also test other q values from 1 to 2.6 It turns out that the
general trend does not change, with the results slightly differing
in numbers. This is reasonable because both frr and frn would

6 If q>2, most of the repeaters are located at the lower end of the r0
distribution, which makes it extremely difficult to observe a burst produced
from them. It is even more difficult to detect them as repeaters. This means that
the observed Fr,obs would remain very small for a long time; thus, it would be
inefficient to pose a lower limit on Tc. However, a large q value is already
disfavored by the current date because it would not lead to an Fr,obs value as
large as 0.013. In the following, we do not consider the case with q>2.
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decrease with a lower r0,min or larger q. Thus, the decrease of
Fr,obs would not be very significant.

On the other hand, with a certain r0 distribution and a
reasonable range of k assumed, one can put both upper and
lower limits on Tc. Compared with the lower limit obtained
from the peak fraction constraint discussed above, the lower
limit of Tc here would be more conservative, because here we
do not involve the assumption that the observed fraction of
repeaters has not yet reached the peak value.

Considering that the current CHIME data point of the
observed fraction of repeaters is relatively low, we have reason
to expect a higher Fr,obs with a longer observational timescale
in the future. Even if the current data point has passed the peak
fraction, the current observed fraction should still be around the
peak value. Hence, we adopt the lower limit obtained from
Figures 2 and 3 while using the evolution curve of Fr,obs to get
its upper limit, as shown in the lower panel of Figure 4.
In Table 1, we summarize the constraints on Tc with the

CHIME data point t and Fr,obs values for the assumed range of

Figure 3. Observed peak repeater fraction and peak time of repeating FRB sources under the “evolving repeater” assumption. All notations are the same as those of
Figure 2.
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k. For each parameter set, combining the lower and upper limits
together, one can constrain Tc to a small range. However, since
some parameters of the repeaters’ population have not yet been
determined, the range of the possible Tc would be very large,
which is 0.1 day<Tc<∞. Considering those constraints on
Tc, we could predict the observed fraction of repeaters in the
future with a CHIME-like telescope array, with a duty cycle as
assumed in this paper. Our predictions are shown in Table 2.
The bold font represents the cases in which the peak should
have appeared, whereas the regular font represents the cases in
which the peak may not have appeared yet. We find that for all
of the parameter sets, there would not be a significant increase
of Fr,obs with 3, 10, or even 30 yr observations. In most cases,
the peak would be observed in 30 yr. The peak fraction of
repeaters would not be more than 0.04 in all cases.

5. Conclusions and Discussion

We have introduced a parameter Tc ( ¢Tc for evolving
repeaters; defined in Equation (6), or Equation (8) for the
evolving case) to describe the real fraction of repeating FRB
sources in the entire universe. A smaller Tc means a larger
fraction of genuinely nonrepeating sources per unit time. The
ansatz that all FRBs repeat corresponds to Tc→∞.

Considering that not all repeating sources can be recognized,
we performed a set of Monte Carlo simulations to investigate
how the observed repeating source fraction Fr,obs is related to
the true fraction (Tc as a proxy).
Assuming that all repeaters have the same intrinsic repeating

rate, we found the following.

1. If all repeaters are nonevolving, once a finite Tc is
introduced, Fr,obs will not always increase with time but
instead shows a turnover after reaching a peak value
Fr,obs,p at a peak time Tp. The expected turnover point is
highly dependent on Tc, with a larger Tc corresponding to
a higher Fr,obs,p and later Tp.

2. If the evolution of repeaters is considered, a turnover
point is expected only if Tp is smaller than their
characteristic lifetime Tl. When the observational time-
scale is longer than Tl, Fr,obs would roughly be a constant.
The curve of Fr,obs would be flattened even if ¢  ¥Tc .

The (Tp,Fr,obs,p) pair also depends on the repeating rate
distribution of the repeaters, as well as the time distribution
function of the bursts (the Weibull parameter k). Assume the
intrinsic repeating rate r0 satisfies a power-law distribution with
an index q in the range of r0,rmin[ , r0,rmax] and fix r0,max (which
could be measured from known repeaters). We found the
following.

1. In the nonevolving repeater approximation, a higher q
and lower r0,min would both result in a distribution with
more inactive repeating sources, which would lead to a
lower Fr,obs,p and an earlier Tp. With other parameters
fixed, the k parameter would dramatically influence Tp
but only slightly change Fr,obs,p.

2. Assume that the distribution of r0 at a specific time is
introduced by the evolution of r0 with time and that the
lifetime of the repeaters is longer than the observational
timescale. The trend of how different parameters
influence Tp and Fr,obs,p remains the same as that in the
nonevolving approximation case.

Available CHIME observations give Fr,obs∼0.013 at
t∼400 days. One may regard this as a lower limit of Fr,obs,p

and Tp, so that the data can already place a lower limit on Tc,
i.e., Tc>0.1 days with reasonable parameters. In the future, if
a higher value of Fr,obs is observed, a more stringent lower limit
on Tc can be obtained. The theoretical evolution curve of Fr,obs

should always pass through the current data point; thus, an
upper limit on Tc could also be obtained, albeit with a large
uncertainty. We predict that the observed fraction of repeaters
would remain smaller than 0.04 with 30 yr observations with
CHIME or similar telescope arrays. If a peak fraction smaller
than 0.04 is actually observed in the near future, the ansatz that
all FRB sources repeat would be disfavored.
All conclusions drawn in this paper are based on the

assumption that all of the repeaters have the same r0 or that the
r0 follows a power-law distribution. So far, there is no direct
measurement of the r0 distribution. However, such a distribu-
tion can be readily measured when more repeating FRBs are
closely monitored. If in the future, the r0 distribution is proven
not to be a power law, some of our conclusions need to be
reinvestigated.

S.A. and B.Z. acknowledge the Top Tier Doctoral Graduate
Research Assistantship (TTDGRA) at University of Nevada,

Figure 4. Upper panel: evolution of Fr,obs with different r0,min values adopted.
The black dot is the same as that in Figure 2, which represent the current data
point. The solid and dashed lines stand for the cases for k=1 and 0.3,
respectively. Lower panel: upper limit of Tc with the current observed fraction
of repeaters. The minimum value of r0 serves as the horizontal axis, while the
results with different q values are shown with different colors. The solid
triangles and lines stand for the nonevolving repeater case, while the hollow
triangle stands for the evolving repeater case. The upper limits are obtained
with k=0.3–1.
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Appendix
Weibull Distribution

The distribution of the time interval of two adjacent bursts in
a repeating source could be described by a Weibull function,
which reads

d d d= G + d- - G + k r k r k e, 1 1 , A1k r k1 1 1 k( ∣ ) [ ( )] ( )[ ( )]

where r represents the mean repeating rate, k is the shape
parameter, and Γ(x) stands for the gamma function.

When k=1, the distribution is reduced to the exponential (
i.e., Poisson) distribution. In this case, Equation (A1) is
simplified as

d = d- r re . A2r( ∣ ) ( )

The mean interval time is
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The variance of δ could be calculated as
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Assume that an observation starts at time ts after the first
burst, and the waiting time until the next burst appears is tw.
The probability that an observer would wait for at least a period
of t1 could be written as

d d> = > + > =
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Similarly, the probability of having a burst in t1 would be

< = - -P t t e1 , A6w
rt

1 1( ) ( )

which is independent of ts. The probability density function is

= - t r re , A7w
rtw( ∣ ) ( )

which is the same as that of the time interval δ. Therefore, the
mean waiting time is the same as the true mean interval time
between two adjacent bursts.

When k≠1, one can similarly calculate the mean time
interval as
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where x=[δrΓ(1+1/k)]k. Considering that
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The mean time interval does not change with k.
We can calculate the variance of the Weibull distribution to

study the clustering effect introduced by the shape parameter k.
The variance is
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Compared with exponential distribution, the variance of the
Weibull distribution is corrected by a factor of

=
G +
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as a function of k, which is shown in Figure 5.
When k<1, the variance of the Weibull distribution is

larger than 1/r2, which means that both longer and shorter time
intervals have more chances to appear. That would lead to the
case that some bursts are closer to each other, and some others
are more separated from each other. Hence, we tend to detect
“clusters” of bursts. When k>1, the variance of the Weibull
distribution would be smaller than 1/r2, which means that the
time intervals between bursts tend to be the same. In this case,
the repeating burst would appear to be more “periodic.”
In addition, when k≠1, the waiting time distribution is not

the same as the time interval distribution.
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Figure 5. Correcting factor f (k) of the variance of the Weibull distribution
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