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ABSTRACT

Understanding the thermodynamic state of the hot intracluster medium (ICM) in a galaxy cluster requires
knowledge of the plasma transport processes, especially thermal conduction. The basic physics of thermal
conduction in plasmas with ICM-like conditions has yet to be elucidated, however. We use particle-in-cell
simulations and analytic models to explore the dynamics of an ICM-like plasma (with small gyroradius, large mean
free path, and strongly sub-dominant magnetic pressure) driven by the diffusive heat flux associated with thermal
conduction. Linear theory reveals that whistler waves are driven unstable by electron heat flux, even when the heat
flux is weak. The resonant interaction of electrons with these waves then plays a critical role in scattering electrons
and suppressing the heat flux. In a 1D model where only whistler modes that are parallel to the magnetic field are
captured, the only resonant electrons are moving in the opposite direction to the heat flux, and the electron heat flux
suppression is small. In 2D or more, oblique whistler modes also resonate with electrons moving in the direction of
the heat flux. The overlap of resonances leads to effective symmetrization of the electron distribution function and
a strong suppression of heat flux. The results suggest that thermal conduction in the ICM might be strongly
suppressed, possibly to negligible levels.
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1. INTRODUCTION

Over 80% of the baryonic matter in a galaxy cluster resides
in an atmosphere of hot plasma, the intracluster medium (ICM),
which is in a state of approximate hydrostatic equilibrium
within the gravitational potential of the cluster’s dark matter
halo. In many clusters, X-ray measurements of the electron
number density (ne∼10−3

–10−1 cm−3) and temperature
(T∼107–108 K) reveal ICM cores that have short cooling
times (tcool<109 years) and depressed temperatures
(Fabian 1994). If unchecked, the radiative losses in these
cool-core clusters would lead to significant accumulations of
cold gas within the central galaxy, resulting in star formation
rates of 100–1000Me yr−1, and central galaxies with stellar
masses of 1013Me or more (Croton et al. 2006). Observed star
formation rates and total stellar masses in these systems are an
order of magnitude smaller, demonstrating that the radiative
losses of the ICM must be largely offset. The current paradigm
is that energy injection by a central jetted active galactic
nucleus (AGN) is thermalized in the ICM (Churazov
et al. 2000, 2002; Reynolds et al. 2002). Thermal conduction
within the ICM is very likely to play a central role in these
astrophysical processes by dissipating weak shocks and sound
waves driven by the AGN and strongly modifying local
thermal instabilities (Binney & Cowie 1981; Fabian et al. 2005;
Yang & Reynolds 2016 and references therein). The direct
transport of heat from the outer (hotter) regions of the ICM may
also be a source of heat for the ICM cool-core.

Thermal conduction in the ICM plasma remains poorly
understood. At these densities and temperatures, the electron
mean free path is λ∼0.1–1 kpc. With measured magnetic fields
of B∼1–10μG, the electron gyroradius ρe∼108 cm is many
orders of magnitude smaller so transport is highly anisotropic.

Most current treatments of the ICM adopt a fluid description,
taking the thermal conductivity to have the canonical Spitzer
value (Spitzer 1956) along the local magnetic field and complete
suppression in the orthogonal direction. However, Spitzer
conductivity is not likely to be valid in the low collisionality
ICM plasma where collisional mean free paths and temperature
scale lengths can be comparable. Furthermore, the fact that the
ratio of thermal-to-magnetic pressure is large, β≡8πnT/
B2∼100, suggests that the ICM is susceptible to instabilities
driven by pressure anisotropies and heat fluxes that are expected
to impede thermal conduction (Gary & Li 2000; Li et al. 2012;
Kunz et al. 2014; Rincon et al. 2015).
In this Letter, we explore how self-generated turbulence

impacts the thermal conductivity of a high-β ICM plasma.
Unlike in earlier models in which the pressure anisotropy in the
high-β medium is a source of turbulence that impacts thermal
conduction (Komarov et al. 2016; Riquelme et al. 2016), we
focus directly on the electron heat flux as a source of free
energy. We show that whistler waves driven by the heat flux
are generically unstable in the ICM. Particle-in-cell (PIC)
simulations of the turbulence reveal strong heat flux suppres-
sion. A comparison of the results of 1D and 2D simulations
with an analytic model reveals the importance of the resonant
interaction between the electrons and waves and associated
particle trapping in facilitating strong scattering.

2. 1D INSTABILITY MODEL

We solve the linearized Vlasov–Maxwell equations to obtain
a dispersion relation for whistler-like modes propagating along
the local magnetic field ˆ=B xB0 . The temperature T is taken to
be uniform, but we include a heat flux as a source of free
energy. We neglect ion terms, which scale like m me i and are
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small in simulations (not shown). Making the standard whistler
assumptions, we obtain the dispersion relation for the
frequency ω of modes with wavevector k along B (Krall &
Trivelpiece 1986):
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where ( )w p= n e m4pe e0
2 1 2 is the plasma frequency,

W = eB m ce e0 is the cyclotron frequency, f0(v) is the initial
electron phase space distribution, ( )=v T m2Te e e

1 2 is the
thermal speed, ρe=vTe/Ωe is the Larmor radius, de=c/ωpe

the skin depth, and b p= n T B8e e0
2.

In the standard whistler ordering with ( )w ~ W ~ Wkde e e
2 and

kde∼1, waves in high beta plasmas resonate with bulk electrons,
b~ W ~ W ~v k d v 1x e e e Te e , and are therefore heavily

damped. Thus, whistlers with conventional ordering do not exist
in high beta plasmas. To obtain wave growth, we consider longer
wavelength modes with ( ) w ~ W Wkde e e

2 . Resonant particles
have ( )r~ W ~v k v kx e Te e . Requiring vxvTe yields kρe1
with ω∼Ωe/βe=Ωe.

To model heat flux instability we use a distribution function
from Levinson & Eichler (1992):
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3 2 2 and the term propor-

tional to ( )  n= v L 1Te ei T yields a heat flux (see also Ramani
& Laval 1978). Equation (2) was obtained by balancing a large-
scale temperature gradient (along B0) ∂T/∂x≡T/LT with a
Krook collision operator. f0 has no net drift (á ñ =v 0), and the
plasma pressure is isotropic. The sole driver for instability is the
heat flux, ( )= á ñ =q mn v v mn v2 5 8x x Te0 0
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3 . Using this
distribution function and taking ω=Ωe in Equation (1) the
frequency becomes
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h2 is only non-zero because of the heat flux, and the integral
over vx must go under the singularity at = -W ºv k vx e r, the
parallel resonant velocity. The real frequency ωr and growth
rate γ versus k for βe=32, 100, and ò=0.133 are presented in
Figure 1(a). The growth rate γ is peaked around kρe∼1 and
goes to zero for small and large kρe. The waves have whistler-
like dispersion for small k (although the frequency rolls over at
kρe;0.6) and have a characteristic phase speed vph=
ω/k∼ρeΩe/βe=vTe/βe=vTe. The resonant interaction is
with particles with vx∼−vr∼−vte. In Figure 1(b), the
maximum growth rate (with respect to k ) is plotted against
òβe. Instability exists for any non-zero value of ò, so there is no

threshold for the instability. This is highly relevant to the ICM,
for which ò=1 (Levinson & Eichler 1992). We now present
numerical simulations to verify (3) and to probe the impact on
the heat flux.

3. NUMERICAL METHODS

We simulate the instability using the PIC code p3d (Zeiler
et al. 2002). Particle trajectories are calculated using the
relativistic Newton–Lorentz equations, and the electromagnetic
fields are advanced using Maxwell’s equations. We present the
results of quasi-1D, collisionless simulations (3600 particles
per cell) with dimensions Lx×Ly=28.96ρe×1.80ρe (a finite
Ly increases the number of particles and reduces particle noise)
and a 2D simulation with Lx×Ly=28.96ρe×28.96ρe (800
particles per cell). Periodic boundary conditions are used in
both x and y with βe0=32. With these values of Lx and Ly,
many unstable modes of scale ρe can fit in the box. Ions form a
stationary, charge-neutralizing background.
There is no ambient temperature gradient, but we initialize

electrons with the distribution given in Equation (2). Since f0 is
not strictly positive, we adjust our initial distribution to ensure
that f0�0 and that it has no net drift or pressure anisotropy.
Since qx0 is also affected, we calculate an effective initial ò for
comparison with the stability theory. Our 1D simulations are
run to b= Wt 24.4 e e0 0 and a single 2D simulation is run
to b= Wt 30.6 e e0 0.

4. 1D SIMULATION RESULTS

The 1D simulation, which has an effective ò=0.246,
reveals that the heat flux drives waves to be unstable as
predicted by Equation (3). Magnetic fluctuations perpendicular
to B0 grow in time (Figure 2(a)) and saturate with
˜ B B0.1sat 0. The waves are right-hand circularly polarized
with By and Bz 90° out of phase (Figure 2(b)). The linear
growth rates from the simulation are in good agreement with
those obtained from the linear theory (Figure 1(a)).
The instability’s nonlinear evolution coincides with a

surprisingly weak reduction of the total heat flux
(Figure 2(a)). The reason for this behavior is linked to the
mechanism by which whistlers gain energy from particles and
then scatter the particles to reduce the heat flux. In the frame
moving with the wave, particles move along concentric circles
of constant energy (see Figure 3(d)). Resonant electrons
moving from high v⊥ to low v⊥ along the constant energy
contour in the wave frame lose energy in the simulation frame.
If more particles move in this direction than toward higher v⊥,
the waves grow. The portion of the distribution function
proportional to ò in Equation (2) and the associated heat flux
are shown in Figures 3(a) and (b). Resonant particles that drive
instability have v⊥>1.5. This picture is confirmed in
Figure 3(c), which shows the change in the electron distribution
function as a result of the instability. Note the depletion of
electrons with high v⊥ and negative vx. Saturation occurs when
this relatively small region is depleted of excess particles.
Figure 3(b) indicates that the bulk heat flux in phase space is
carried by vx>0 particles with high energy, where the
distribution function in Figure 3(c) is essentially unchanged.
Since positive velocity electrons cannot resonate with the 1D
whistler instability, significant heat flux suppression cannot
occur.

2
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5. 1D TRAPPING MODEL

Modest heat flux reduction in 1D is linked to constraints on
how electrons are scattered in a collisionless system. In 1D, it is
only electrons with velocity vx=−Ωe/k that resonantly drive
the instability (Figure 3(c)), and we will show that it is only
particles close to this resonance that scatter. The substantial
number of particles with vx>0, which carry the bulk of the
heat flux (Figures 3(b) and (c)), do not participate in heat flux
suppression. The importance of resonant interactions and
particle trapping in the scattering of particles by waves in
magnetized plasma has been discussed by Karimabadi et al.
(1992) based on a formal Hamiltonian theory.

We demonstrate this here by considering electrons in a
whistler propagating in the positive x-direction, ˜ ˜(ˆ=B yB sin
( ) ˆ ( ))w w- + -zkx t kx tcos . In the frame moving with the
whistler, the electric field is zero and the energy,

+ + =v v v vx y z
2 2 2

0
2, is conserved (Karimabadi et al. 1992).

The equation of motion in the wave frame is

ˆ
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2
0
2. The time variation of the particles in this

Figure 1. Analytic dispersion relation of the heat-flux-driven whistler-like wave in a plasma with βe = 32 (solid), 100 (dashed), and ò=0.133. (a) Real frequency
(blue) and growth rate (red) of the instability calculated from Equation (3). Red diamonds show growth rates at discrete values of k taken from a 1D simulation with
the same ò and β=32. (b) Growth rate of the maximally growing mode for a range of òβ.

Figure 2. 1D PIC simulation results. (a) Average heat flux and mean-squared value of the perturbed magnetic field. (b)Whistler-like phase relation between By and Bz.

3

The Astrophysical Journal Letters, 830:L9 (6pp), 2016 October 10 Roberg-Clark et al.



frame is completely controlled by W̃e. The phase variation of
the whistler, however, limits the excursion of v±. As v±
increases or decreases, v̄x changes due to energy conservation
and the wave phase ¯kx changes even if v̄x were initially zero.
Consequently, the change in v± eventually reverses and the
electrons are trapped (Figure 3(d)). To show this, we take the
time derivative of the energy relation and use Equation (6) to
obtain an equation for ¯̇ ¯=v ẍx ,

¯ ˜ ( ¯ ) ( )f+ W + =^x v kx¨ cos 0, 7e

where we have written = f
 ^

v v e i . Because trapping limits
the excursion of v±, we can approximate v⊥ and f by their
initial values v̂ 0 and f0. The equation for the phase angle

¯q f p= + +kx 20 is

( )q w q+ =¨ sin 0, 8b
2

where ˜w = W^kvb e0 is the bounce frequency associated with
deeply trapped particles. Integrating once yields

· ( ) · ( )q w q q- - =
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2
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1

2
, 9b

2 2
0
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where
·q0 is the value of

·q at θ=0. The maximum excursion of
·q corresponds to the separatrix in the phase space of ˙q q- ,

which is defined by
·q = 00 . Thus,

·q wD = 2 b is the trapping
width. This corresponds to excursions
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in v⊥, where vr=Ωe/k. The same excursion was calculated for
ions moving in circularly polarized Alfvén waves (Mace
et al. 2012; Dalena et al. 2012). These bounds define the region
in velocity space where electrons are scattered. Electrons
outside of these ranges, which include all of the positive
velocity particles that carry the bulk of the heat flux, are not
scattered.

Figure 3. Phase space plots and particle trapping in 1D. (a) ( ) ( )- -f f f fmaxM M0 0 from the PIC simulation. (b) The local heat flux,
( ) [( ) ]- -f f v v f f v vmaxM x M x0

2
0

2 . (c) ( )d = -f f f f f0 0 0 from the PIC simulation at late time, b= Wt 9.34 e e0 0. (d) Trajectories of trapped test particles in the
wave frame of the 1D whistler for small (red) and large (blue) B̃ (lab frame marked with dashed lines). The initial parallel velocity is the resonant velocity −Ω/k. In (e)
temporal evolution of the angle ( )f = v̂ varctan x for the test particles in (d).
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To confirm the predictions of the trapping theory, we
initialize a particle in the frame of a whistler-like wave in 1D
with a resonant parallel velocity vx=−Ωe/k. The particle
trajectory in azimuthal angle ( )f = v̂ varctan x in Figure 3(e)
reveals the trapped bounce motion. The corresponding
excursion is shown in Figure 3(d). As predicted, both the
frequency and amplitude of oscillations depend on B̃ B0.
Particles outside of resonance (not shown) exhibit only small
amplitude oscillations.

6. 2D SIMULATIONS AND ANALYTIC THEORY

In contrast with the 1D simulations, the suppression of heat
flux in 2D is substantial: for an initial ò=0.246, the heat flux
decreases to ≈ 25% of its starting value (Figure 4(a)).
Perturbations grow at a rate similar to those in the 1D case,
have kρe∼1, and propagate (ω/k;vTe/βe) along and
perpendicular to the magnetic field (Figure 4(b)) with a
characteristic k⊥=kykx. The saturation time in 2D is only
slightly longer than that in 1D. At tΩe/βe;12.5, the
amplitude of magnetic perturbations reaches 0.4B0. A time
sequence of δf/f0 (Figures 4(d)–(g)) shows the development of

resonances that were not present in the 1D system. Measured
resonant velocities vx,res are a consequence of ¹k̂ 0 and are
given by the condition w - - W =k v n 0x x , where n is any
integer (Krall & Trivelpiece 1986, p. 368; Karimabadi
et al. 1992). In particular, we observe that the n=1(vx<0),
n=0(vx;0), and n=−1(vx>0) resonances all play crucial
roles. At the point of saturation, f is significantly more isotropic
in phase space than f0 (not shown). Furthermore, the region of
concentrated heat flux in Figure 3(b) (vxvTe) has been
drained of excess particles. Whereas in 1D the trapping
mechanism was unable to significantly reduce the heat flux, in
2D the availability of the n=0 and n=−1 resonances and
resonant overlap allow trapping to drive strong pitch-angle
scattering over a broad range of velocities. This scattering
isotropizes the distribution function by connecting the vx<0
and vx>0 regions of phase space.
Trapping equations in the 2D case were derived in

Karimabadi et al. (1990), and the results are similar in form
to (8) and (9). The results for the n=0 (Landau) and n=±1
(cyclotron) resonances are nearly identical to the 1D case and

have the form of Equation (8), where ˜w W^kvb e0 . To

Figure 4. 2D simulation results and trapping theory. (a) Averages of the heat flux and mean-squared values of the perturbed perpendicular and parallel magnetic fields
vs. time. (b) The 2D structure of the magnetic field Bz. (c) In the wave frame of a 2D whistler, the orbits of trapped test particles for two values of B̃. The vx − v⊥ phase
space of ( )d = -f f f f f0 0 0 at bW =t 5.31e e0 0 (d), 8.12 (e), 10.94 (f), and 30.6 (g).
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demonstrate the importance of these resonances, we evaluate
test particle orbits in the reference frame of a 2D off-angle
whistler wave. In this frame, the wave takes the form

ˆ ˜ ˆ ˆ ( )

ˆ ( )

= + - + +

+ +
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where ˜ ¹B 0x and the wave is elliptically, rather than
circularly, polarized. In evaluating the particle orbits, we take
ky = kx and consider two different values for B̃ B : 0.050 and
0.4. Particles are initialized with parallel velocities at the n=0,
±1 resonances. In the case of ˜ =B B 0.050 , we find that
trapping widths are small, as predicted by the nonlinear theory
(Figure 4(c)). However, when ˜ =B B 0.40 , a particle starting at
vx=Ωe/k experiences strong trapping and is scattered into the
domains of the other two resonances, reversing its original
parallel velocity. This is consistent with the results of
Karimabadi et al. (1992), in which it was found that resonant
overlap occurs when δB/B0;0.3. It is not a coincidence that
saturation takes place once perturbed amplitudes of this size are
reached, for it is by this mechanism, in which particles are
“handed off” between different resonances, that the particles
driving instability are scattered in phase space and wave growth
ceases.

7. CONCLUSIONS

We have shown using both PIC simulations and linear theory
that low-frequency (ω∼Ωe/βe) whistler-like modes in a high-
β collisionless plasma are driven unstable by thermal heat flux,
even when the pressure is isotropic. The nonlinear suppression
of the heat flux is negligible in 1D, but becomes substantial in
2D owing to overlapping Landau and cyclotron resonances that
lead to effective scattering of electrons. This strong suppression
of thermal heat fluxes may be important for understanding the
thermodynamics of the ICM in galaxy clusters.

In order to quantify the astrophysical importance of these
effects, we calculate an effective conductivity that can be
implemented into global, fluid models of the ICM atmosphere.
The electron distribution function was earlier calculated by
balancing the background temperature gradient with a Krook
collision operator, producing the distribution function given in
Equation (2), where the term proportional to ò=vTe/νeiLT
describes the heat flux (Levinson & Eichler 1992). Although
we have not carried out a scaling study of the rate of wave-
driven electron scattering νw with parameters, a reasonable
hypothesis is that νw is given by the peak linear growth rate
νw=γ=òΩe. Repeating the heat flux calculation by replacing
νei with νw yields  r= Le T and a heat flux qP given by

( )
r

µq v nT
L

. 12te e
e

T

This is reduced from the collisionless, free-streaming value by
the factor r Le T , which can be as small as 10−6 for the ICM.
A caveat is that our numerical models are run with large heat

fluxes (ò≈0.25), whereas typical heat fluxes in the ICM can
be much smaller. While linear theory shows that the whistler
instability exists for any non-zero heat flux, it is possible that
there exists a threshold heat flux below which whistler-
mediated scattering of electrons is ineffective. On the other
hand, our present simulations are initial value problems that
relax to an equilibrium system in a periodic box, while a more
realistic configuration would continually drive a heat flux down
a temperature gradient, explicitly linking heat flux and
temperature gradient. The unlimited supply of free energy into
the system would likely drive the large-amplitude perturbations
that satisfy the resonance overlap condition, δB/B00.3,
regardless of how small the driving heat flux is. This will likely
lead to a saturated state in which injection and disruption of
heat flux balance and so differ significantly from that of the
initial value problem in which heat flux relaxes to a low level.
Whistler turbulence from the heat flux instability might also be
damped or driven unstable by electron pressure anisotropies in
the ICM and may couple to ion-scale anisotropy-driven modes.
These issues will be explored in future work.

The authors wish to acknowledge NSF grant AST1333514
and NASA/SAO Chandra Theory grant TM617008X, and M.
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