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Abstract

Fine-tuning studies whether some physical parameters, or relevant ratios between them, are located within so-
called life-permitting intervals of small probability outside of which carbon-based life would not be possible.
Recent developments have found estimates of these probabilities that circumvent previous concerns of
measurability and selection bias. However, the question remains whether fine-tuning can indeed be known. Using a
mathematization of the concepts of learning and knowledge acquisition, we argue that most examples that have
been touted as fine-tuned cannot be formally assessed as such. Nevertheless, fine-tuning can be known when the
physical parameter is seen as a random variable and it is supported in the nonnegative real line, provided the size of
the life-permitting interval is small in relation to the observed value of the parameter.

Unified Astronomy Thesaurus concepts: Anthropic principle (48); Bayesian statistics (1900); Analytical
mathematics (38); Cosmological constant (334); Cosmological parameters (339)

1. Introduction

Cosmological fine-tuning (FT) says that some physical
parameters, some ratios between them, and some boundary
conditions must pertain to intervals of small probability to
permit the existence of carbon-based life (Lewis &
Barnes 2016). FT started to spark the interest of the scientific
community when Carter (1974) brought it to light, calling it the
anthropic principle, a term that, according to Lewis & Barnes
(2016), was popularized and modified by Barrow & Tipler
(1988). Since then, considerable effort has been made to
determine the length of these so-called life-permitting intervals
(LPIs), constituting the area on which the scientific literature
has primarily focused (see, e.g., Davies 1982; Barnes 2012;
Adams 2019). For this reason, some have linked FT with the
small lengths of the intervals, with no regard for their
probability (see, e.g., Helbig 2023). This evokes the idea of
“naturalness” in physics, where a good theory is assumed to
present numbers that are close to unity, and departures from it
point to ad hoc explanations trying to fit observations to theory,
as Mercury epicycles in the Ptolemaic model (Hossen-
felder 2020). FT goes beyond naturalness, asserting that,
according to our current theories, such unnaturalness is needed
if carbon-based life is going to exist (Barnes 2021). The
existence of life sets a specification; i.e., a subset of possible
outcomes of parameters for which life is permitted. These
outcomes maximize a function f that quantifies how specified
outcomes are, and it is stochastically independent of the
original random variable. In cosmological FT, this random
variable is a physical parameter, whose value is assumed to be
independent of the requisites for carbon-based life existence,
and the LPI maximizes an indicator function f that determines if
life is possible or not. Therefore, the tuning of a physical
constant for life is fine if and only if the probability of its LPI is
small (Díaz-Pachón & Hössjer 2022).

FT divides the scientific and philosophical communities
between those who dismiss it as mere speculation (e.g., McGrew
et al. 2001; Colyvan et al. 2005; Hossenfelder 2020) and those
who consider it a serious scientific endeavor (e.g., Davies 2008;
Tegmark 2015; Lewis & Barnes 2016). One of the main
criticisms, even among those who see it as a legitimate question,
is the lack of a valid probability distribution to impose over the
parameters (Adams 2019). In this direction, Hossenfelder asks:
“how do you make a statement about probability without a
probability distribution?” (Hossenfelder 2020, p. 205). The
problem is indeed daunting: it requires estimating the probability
of the LPI using a biased sample of size 1 taken from an
unknown distribution supported in an unknown space. More
explicitly, and to establish some notation, let  be the possible
values of a random physical parameter X. FT is about inferring
the probability of its LPI ℓX when the only observation we
possess is x0, the observed value of X in our Universe; moreover,
such an observation suffers from selection bias because that
Universe harbors life; and the only information about the
probability distribution F= FX of X is that F is supported on 
and Îx0  . Moreover, assuming Carter’s definition, it is just
natural to assume that F corresponds to a prior distribution of X
that maximizes the entropy (Carter 1974).
Past efforts to find the probabilities of LPIs use mainly

uniform distributions over the set of possible values that
constants might take (see, e.g., Tegmark et al. 2006;
Barnes 2019–2020; Sandora 2019a). Nonetheless, this approach
attests to the difficulty of the task, since the choice of the
uniform distribution is based on Bernoulli’s Principle of
Insufficient Reason (Bernoulli 1713), which requires knowledge
that the sample space is finite—a strong assumption that cannot
be warranted for cosmological FT. This legitimate criticism of
FT measurements came from philosophy, where it was called the
normalization problem (McGrew et al. 2001, 2018; Colyvan
et al. 2005; McGrew & McGrew 2005).
Thus, the tuning problem can be divided into two steps.

First, determining the size of the LPI for a given constant of
nature—a task of physics; and second, determining the
probability of the LPI—a mathematical task. For this reason,
we formally define FT next.
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Definition 1 (Fine-tuning). FT happens if and only if ( )F ℓX0 is
small, where =F FX0 is the assumed true distribution of X,
which is supported on . In more detail, there is FT if and only
if there exists a real-valued d > 0 such that

d( ) ( )F ℓ 1. 1X0 

If the tuning is not fine, we will call it coarse.

Recently, Díaz-Pachón, Hössjer, and Marks developed
Algorithm 1 to find an upper bound on the probability of the
known LPI ℓX of a parameter X (Díaz-Pachón et al. 2021, 2023).
Algorithm 1 can be viewed as a statistical test, where the null
hypothesis H0 that the tuning of X is coarse is tested against the
alternative hypothesis H1 that X is fine-tuned. The first two steps
of Algorithm 1 ask for the input: a parameter space  (e.g., ,
+ , , n , , or some subset thereof) and the constraints to

impose on the prior distributions FX supported on  (e.g., if
some event ÌB  has a known probability, if some of the
moments of X are finite, etc.). In the third step, a collection

q q= Î Q{ (· ) }F: ; ;

of all the possible maximum entropy (maxent) priors F is
determined that satisfy these constraints. These priors are
indexed by a hyperparameter θ that varies over a hyperpara-
meter space Θ. In particular, we will assume that the true
distribution of X satisfies

q= Î(· ) ( )F F ; 20 0 

for some θ0äΘ. In the fourth step of Algorithm 1, the
maximum probability TPmax of the LPI ℓX is found over the
collection of all the posterior probabilities {F(ℓX; θ); θ äΘ}
induced by the priors in  . That is, for each θ äΘ, we first
define the corresponding marginal probability of ℓX as

òq q=( ) ( ∣ ) ( )F ℓ P ℓ x F dx; ; ,X X


by integrating over all possible outcomes x of X∼ F(· ; θ). We
refer to F(ℓX; θ) as a tuning probability. By maximizing this
tuning probability over Θ, the maximum tuning probability

q=
qÎQ

( )TP F ℓ: max ;Xmax

is obtained. In the fifth step, the outcome of Algorithm 1 is
produced: if the test statistic TPmax is small (�δ according to
Definition 1), we reject the null hypothesis H0 and conclude
there is FT. If TPmax is not small, the algorithm is inconclusive.
In this case, we cannot reject H0. This does not mean that X is
not fine-tuned, though. Indeed, H1 may still be true when H0 is
not rejected, since F0(ℓX) may be larger or smaller than δ

when d>TPmax .

Algorithm 1. Algorithm for Testing FT

Input: choose the set of possible values  of X.
Input: define constraints on the distribution =F FX of X.
Find the family q q= Î Q{ (· ) }F ; ; of maxent distributions F with support
 , subject to the constraints in Step 2, and assume (A) that the true dis-
tribution of X satisfies q= Î(· )F F ;0 0  for some q Î Q0 .

Find the maximum tuning probability = Î{ ( ) }TP F ℓ F: max ;Xmax  over  for
the LPI ℓX .

Output: if TPmax is small ( d ), there is FT (reject the assumption that
Equation (1) is false; H0); otherwise, the test is inconclusive (do not
reject H0).

Algorithm 1 has some important properties. First, the upper
bound TPmax is sharp because if the family  is made of a
single maxent distribution F0, then = ( )TP F ℓXmax 0 . For
instance, assume that Step 1 selects = +  , and in Step 2 it
is assumed that the first moment is finite and known (e.g.,
E0X= θ0). Then the family of Step 3 is made of a single
distribution with density q q q¢ = = q-( ) ( )F x f x e; ; x

0 0 00 , the
exponential with mean θ0, since this distribution is maxent
among all the distributions with mean θ0 that are supported in
+ . Consequently, ò q= = q-( )TP F ℓ e dxX ℓ

x
max 0 0

X

0 // .

Second, the selection of the class  as a family of maxent
distributions simultaneously solves both the normalization and
selection bias problems (for a detailed discussion, see Díaz-
Pachón et al. 2023), maybe the two biggest concerns raised by
physicists (Tegmark et al. 2006; Adams 2019; Hossen-
felder 2020, 2021) and philosophers (McGrew et al. 2001;
Bostrom 2002; Colyvan et al. 2005) alike. On one side,
considering more general classes of maxent distributions than
uniform ones solves the normalization problem. At the same
time, by considering the whole class  , and not only the
distribution induced by an estimate of θ0, from the observed
value of X in our Universe, the selection bias problem is solved.
Consider, for instance, the case when = +  and  is the class
of exponential distributions with expected value q Î + . It can
then be shown that the maximum likelihood estimator of θ0 is
q =ˆ X0 . But we still have no guarantee that q=( ) ( )F ℓ F ℓ ;X X0 0 

q( ˆ )F ℓ ;X 0 . On the other hand, by Equation (2) we know that
( )F ℓ TPX0 max . Thus, considering all possible values of θ

removes the bias induced by the weak anthropic principle, since
the class  includes F(· , θ0), but is not reduced to it.
Third, Algorithm 1 reveals that the output heavily depends

on the input, namely the sample space  for X and the
constraints to impose on the family  of prior distributions F
of X. Moreover, Díaz-Pachón, Hössjer, and Marks proved a
theorem (Appendix 3 of Díaz-Pachón et al. 2023, summarized
in Table 1 below and explained in Remark 1) where they show
that subtle changes in the input might produce extremely
different outcomes. This can be seen, for instance, from rows 4
to 5 of Table 1, when considering families  of distributions
over =  that depend on a scale parameter only: if 0 ä ℓX, it
will provoke =TP 1max , regardless of the size of the interval ℓX
(therefore the level of tuning cannot be assessed), whereas

Table 1
Maximal Tuning Probabilities TPmax

  Θ Constraint TPmax

Scale + ò = 1 2òC1
+ Form and

scale
´+ +  None 1

Form and
scale

´+ +  S/N � T, T ? 1,  T1 C T2 2

Scale + 0 ∉ ℓX, ò= 1 2òC1

Scale + 0 ä ℓX 1
 Location   ( )Cmin 1 , 13 2òC3

Location
and
scale

´ +  S/N � T,  ( )Tmin 1 , 1 +( )C T C2 3 1

Location
and
scale

´ +  None 1

2
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0 ∉ ℓX with a midpoint x0 of ℓX will produce a small TPmax,
provided the relative half-size ò= |ℓX|/(2x0) of the interval is
small. In the same direction, when = +  (=) and the form
and scale (location and scale) family  is considered, TPmax
jumps from very small to 1, depending on whether the maximal
signal-to-noise ratio (S/N) T of the prior distributions ÎF 
in rows 2–3 (7–8) is bounded or not.

Remark 1. The results of Table 1 are presented for LPIs of the
form

= - +[ ] ( )ℓ x 1 , 1 , 3X 0  

where ò is a dimensionless quantity representing the relative
half-size of the interval and x0 is the observed value of X, taken
to be the middle point of the interval (if x0 does not coincide
with the middle point of ℓX , nothing is lost by assuming the two
values coincide and the notation is greatly simplified). When
> 0 is small, FT probabilities are computed as a function of ò

for diverse parametric families  of prior distributions F of a
randomly generated universe X. These TPmax are presented
given certain constraints on ℓX and/or q Î Q, the latter of
which includes one or two variable hyperparameters of the
prior densities q q= ¢( ) ( )f x F x; ; in  . The different choices
of  correspond to a prior density q q( )f x for the scale
family with scale parameter θ, a prior density q q q( )f x ;2 1 2

for the form and scale parameter with form parameter q1 and
scale parameter q2, and a prior density q q q-(( ) )f x 1 2 2 for
the location and scale family with location parameter q1 and
scale parameter q2. When  involves two hyperparameters, the
constraints on these hyperparameters are formulated in terms
of the maximal value T of the signal-to-noise-ratio =S N/

( ) ( )E X XVar2 / , that is, the maximal value of the ratio of
the squared first moment and variance of the distribution F.
There is also a constant associated to each family: ; =C1

> ( )xf xmaxx 0 for the scale family; p=C 1 22 for the form
and scale family; and = Î ( )C f xmaxx3  for the location and
location scale families.

2. Mathematical Framework for Learning and Knowledge
Acquisition

The No Free Lunch theorems (Wolpert & Mac-
Ready 1995, 1997) assert that, on average, no search does
better than a blind one, and therefore a guided search infuses
information to the search problem. Active information was thus
defined to measure the amount of information introduced by a
programmer in order to reach a target, compared to a baseline
distribution that is usually, but not necessarily, in maxent
(Dembski & Marks 2009; Díaz-Pachón & Marks 2020a).
Formally, active information is defined as

=+( ) ( )
( )

( )P
P

I A
A

A
: log , 4

0

where the target A⊂Ω is a subset of a search space Ω, whereas
P and P0 are probability distributions on Ω that represent
searches of the programmer and blind search, respectively.

Since its inception, active information has been used in the
measurement of bias for machine-learning algorithms (Montañez
2017a, 2017b; Montañez et al. 2019, 2021), hypothesis testing

(Díaz-Pachón et al. 2020; Hom et al. 2023), statistical genetics
(Díaz-Pachón & Marks 2020b; Thorvaldsen & Hössjer 2023),
bump hunting (Díaz-Pachón et al. 2019; Liu et al. 2023), and the
estimation and correction of prevalence estimators of Covid-19
(Hössjer et al. 2023; Zhou et al. 2023), among others. In fact,
active information can be used as a measure of FT if the search
space Ω equals the sample space  of the physical parameter X,
Equation (4) is large for A= ℓX, with P0(A)=F0(A) as in
Equation (1) and d=( ) ( )P A Ax0 a one-point distribution at x0, the
observed value of X (or the midpoint of ℓX; Thorvaldsen &
Hössjer 2020; Díaz-Pachón & Hössjer 2022).
Based also on active information, a mathematical formaliza-

tion of the epistemological notions of learning and knowledge
acquisition was recently developed by Hössjer et al. (2022),
where knowledge is usually defined as “justified true belief”
(Gettier 1963; Ichikawa & Steup 2018; Schwitzgebel 2021).
This means that a subject or agent S knows a proposition p if

i. S believes p,
ii. p is true,
iii. Sʼs belief about p is justified.

If only properties i and ii are satisfied, we say that S learns p. In
other words, there is learning if and only if there is a true belief.
Thus, there is a hierarchization from belief to knowledge
through learning:

Ì Ìknowledge learning belief.

Moreover, the inclusions are proper, since it is possible to have
a belief in a false proposition so that such a belief does not
constitute learning; and it is also possible to learn p without
getting to know p, if the true belief cannot be justified.
As for the mathematical formalization, belief is defined as a

probability, as is customary in Bayesian theory (see, e.g.,
MacKay 2003; Berger 2010), whereas propositions are
parameters that have a true value. More explicitly, suppose
we want to learn whether a proposition p is either true or false.
A set of possible worlds Ω is defined, where one world ω0

represents the value of the parameter ω, referred to as the true
world, whereas all other ωäΩ⧹{ω0} are counterfactuals. The
set A of interest is made of the worlds in which the proposition
p is true. An ignorant person assigns beliefs to every subset of
Ω according to some initial distribution P0, whereas an agent S
with some data D and discernment  (corresponding to a σ-
algebra generated by the nontrivial events that data cannot
discern into smaller events) updates his beliefs to P, according
to Bayes’s rule,

=( ) ( ∣ ) ( )
( )

( )P
P

A
L D A A

L D
: , 50

with L(D|A) the likelihood of observing D given A. Then the
learning of p is defined as follows.

Definition 2 (Learning). (I) Agent S has learned about
proposition p, compared to an ignorant person, either when p
is true and the posterior belief P about p is higher than the prior
belief P0 about p, or when p is false and the posterior belief
about p is smaller than the prior belief about p. (II) The agent S
has fully learned p (regardless of the beliefs of the ignorant
person) if the posterior belief P about p is 1 (0) when p is true
(false).

3
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Remark 2. Mathematically, the two parts of Definition 2 can be
phrased as follows. (I) We say that there is learning about p,
compared to an ignorant person, if

⎧
⎨⎩

w
w

<
>

+

+

( )
( )

( )
I A p

I A p

0 , and is true in the true world  ,

0 , and is false in the true world  .
60

0

(II) There is full learning about p (regardless of the beliefs of
the ignorant person) if =( )P A 1 ( =( )P A 0) when p is true
(false) in the true world w0.

In particular, a subject in a maximum state of ignorance is
represented by a maxent distribution P0 over Ω.

Nonetheless, learning does not necessarily entail a particular
belief about the true world, so it does not satisfy the conditions
of a justified true belief, which requires having a belief for the
right reasons. Knowledge acquisition is defined to cover
this gap.

Definition 3 (Knowledge). (I) Agent S has acquired knowledge
about p, compared to an ignorant person, if the following three
conditions are satisfied:

1. S has learned about p, compared to the ignorant person.
2. The true world w0 is among the pool of possibilities for S,

according to his posterior beliefs.
3. The belief in w0 under P is stronger than that under P0.

(II) Agent S has acquired full knowledge about p (regardless of
the beliefs of the ignorant person) if d= wP 0.

Remark 3. Mathematically, the three requirements of knowl-
edge acquisition for Part (I) of Definition 3 amount
respectively to:

1. The criteria of Part (I) of Definition 2 are satisfied.
2. The true world w0 is in ( )Psupp , the support of P.
3. For all > 0 , the closed ball w w= Î W[ ] {B : :0

w w( ) }d , 0  is such that w+( [ ])I B 00  , with strict
inequality for some > 0 , where d is a metric over Ω.

Condition 1 ensures that knowledge is a more stringent
concept than learning. Condition 2 is mathematically equiva-
lent to saying that S has a positive belief for every open ball
centered at ω0 (i.e., if for all ò> 0, P(Bò(ω0))> 0, where Bò(ω0):
={ωäΩ: d(ω, ω0)< ò} is the open ball of radius ò centered
at ω0), which in turn explains Condition 3.

3. Learning and Knowledge in Cosmology

It is pointless to think of different universes with different
laws of nature because they are beyond our comprehension.
Therefore, following the reasonable little question of Barnes
(2019–2020), we reduce the set of possible universes to those
with the same laws but possibly different constants. In such a
scenario, there is a one-to-one relation between  and the
multiverse, because each Îx  represents a universe with
value x for the parameter X. In other words, there is a bijective
function from  to the set of possible universes (Adams 2019;
Sandora 2019a, 2019b, 2019c, 2019d; Sandora et al. 2022,
2023a, 2023b, 2023c), with x0 being the actual value of the
constant of nature in our world, and any other Îx  being a
counterfactual universe.

The framework from Section 2 will be applied to analyze
conditions under which FT can be known. As a preparation, we
first consider the simpler proposition that our Universe harbors
life (which we know to be true).

Theorem 1. The proposition

p Our Universe harbors life:  1

can be fully learned and known. A sufficient condition for
learning and knowledge acquisition of p1, compared to an
ignorant person, is having <TP 1max .

Proof 1. Identify the set of possible worlds Ω for the learning
and knowledge acquisition problem with the set of possible
universes  , with w0 corresponding to the observed value
x0 of X for our Universe. According to Section 2, the set

=A A1 of worlds for which p1 is true coincides with ℓX , the
LPI of X.

Let P be given by our best current theories and data. Since
our theories and data admit knowledge of w = x0 0 (i.e., we
know that our Universe admits life as well as the observed
value x0 of X), it follows that d=P x0 has a one-point
distribution at x0. Since Îx ℓX0 , this implies

= =( ) ( ) ( )P PA ℓ 1. 7X1

Then, according to Part (II) of Definition 2 and Remark 2, we
fully learn p1 because =( )P A 1 and p1 is true. Since d=P x0,
it follows from Part (II) of Definition 3 that we also acquire full
knowledge about p1. This completes the proof of the first part
of Theorem 1.

For a proof of the second part of Theorem 1, we also need
to consider the beliefs P0 of the ignorant person about the value
of X. Recall that P0 is in maxent over W =  , given the
restrictions imposed by  , the class of distributions considered
in Table 1. This implies ÎP0  and consequently

= =
Î

( ) ( ) ( )P PA ℓ F ℓ TPmax .X
F

X0 1 0 max




Assume <TP 1max . From this assumption and Equation (2), it
follows that <( ) ( )P PA A0 1 1 , which, according to Part (I) of
Definition 2 and Remark 2, implies learning about p1 compared
to an ignorant person, since p1 is true. The assumption

<TP 1max also implies knowledge acquisition about p1
compared to an ignorant person, since Conditions 2 and 3 of
Definition 3 are satisfied as well.

Remark 4. Notice that p1 does not include the concept of FT.

After having dealt with learning and knowledge acquisition
of our Universe harboring life, let us now study whether it is
possible to learn and know that our Universe is fine-tuned. This
corresponds to the proposition

-p : Our Universe is fine tuned.2

We prove the following result.

Theorem 2. Let F0 be the actual distribution of X and
d<0 1 the upper-bound probability for FT, as stated in

Definition 1. Assume the agent S believes that the assumption

Î ( )F A0 

4

The Astrophysical Journal Supplement Series, 271:56 (8pp), 2024 April Díaz-Pachón, Hössjer, & Mathew



in the third step of Algorithm 1 is true. The active information
for the set of worlds A for which p2 is true satisfies

d=+ - -( ) ( ( ) ( )) ( )I A TPmin log , log , 8max
1 1

from which

-+( )I A TPlog max
follows.

Proof 2. Let W = ( ]0, 1 be the set of possible values of ( )F ℓX0 ,
whereas w Î W0 is the actual value of ( )F ℓX0 . Moreover, notice
that ( )F ℓ TP0 X0 max  because of Equation (A). It follows
from Definition 1 that d= = ( ]A A 0,2 is the set of possible
values of ( )F ℓX0 that corresponds to a fine-tuned universe, that
is, the set of values of ( )F ℓX0 for which p2 is true.

Since Ω is a bounded set, the maxent prior distribution
~ ( )P U 0, 10 is uniform. Consequently, d=( )P A0 2 . Interpret-

ing the agent’s belief in Equation (A) as new data D, and since
P0 is uniform, it follows from Equation (5) that the posterior
distribution ~ ( )P U TP0, max is uniform as well. Therefore,

d=( ) ( )P A TPmin , 12 max . From this, it follows that

d
d

d= =+ - -( ) ( ) ( )I A
TP

TPlog
min , 1

logmin , .2
max

max
1 1

Corollary 2.1. Assume that p2 is true, so that Equation (1) is
satisfied for some d<0 1. Then

< ( )TP 1 9max

is enough to learn p2, that X is fine-tuned for life, whereas
knowing p2 requires more. For instance, Equation (A) is a
sufficient additional condition to assure that knowledge about
p2 has been acquired.

Proof 2.1. Since p2 is true by assumption, learning follows from
Part (I) of Definition 2 and the fact that >+( )I A 0, which
follows from Equations (8), (9), and d < 1. Note that although
the agent’s belief in Equation (A) was used to construct the
posterior belief P in Theorem 2, it is not required that
Equation (A) is true to derive P and the formula in Equation (8)
for +( )I A .

If only Equations (1) and (9), but not Equation (A), hold, then
it may occur that w d<TPmax 0  , so that for small enough
> 0 , we have w w= < =( [ ]) ( [ ])P PB B0 20 0 0  . Whenever

this happens, Condition 3 of Definition 3 is violated. On the other
hand, if Equations (1), (9), and (A) hold, it is clear that
w Î ( )TP0,0 max . Since ~ ( )P U 0, 10 and ~ ( )P U TP0, max , it
follows from Definition 3 that the agent has acquired knowledge
about p2 compared to the ignorant person.

Remark 5. Note that even though we assumed the agent’s belief
in Equation (A) to construct P, this condition is not needed for
him to learn about FT. Comparing Theorem 1 with Corollary
2.1, corresponding with intuition, we find that more is required
to learn that our Universe is fine-tuned (p2) than to learn that it
harbors life (p1).

Theorem 3. Equation (A) and

d ( )TP 1 Bmax 
are sufficient for establishing, learning, and knowing that X is
fine-tuned for life.

Proof 3. Since Equations (A) and (B) imply Equation (1), they
are sufficient to establish FT (that p2 is true). Also,

Equation (B) implies Equation (9). Therefore, according to
Corollary 2.1, it follows that the agent has learned and known
FT compared to an ignorant person.

Remark 6. As seen in the proof of Corollary 2.1, it is possible to
learn the FT of X for the wrong reasons if Equations (1) and (B)
hold, but Equation (A) does not. However, this is unsatisfac-
tory, because it does not say anything about the real probability
w = ( )F ℓX0 0 of FT. Indeed, it is possible to falsely learn FT if
Equation (1) is false while Equation (9) is true. Therefore, if FT
cannot be known, learning is not useful. For this reason, we
only pay attention to scenarios where FT can be known.

4. On Knowing FT

4.1. The Crucial Choice of 

Theorem 3 says that it is enough to focus on Equations (A)
and (B), since these two equations imply that we can know that
X is fine-tuned for life. To analyze whether Equations (A) and
(B) are restrictive, recall that the first two steps of Algorithm 1
determine the size of the set  of prior distributions of X,
which represent possible beliefs of an ignorant person about
our Universe. It turns out that these two steps are of crucial
importance for the validity of Equations (A) and (B), and hence
for establishing that our Universe is fine-tuned. The less we
assume in Steps 1 and 2 of Algorithm 1 (the larger  is), the
easier it is to satisfy Equation (A), but the more difficult it is to
satisfy Equation (B). This has interesting implications for the
list of possible choices of  in Table 1.
First, since the maximal tuning probability TPmax is large for

rows 2, 5, and 8 of Table 1, Equation (B) is not satisfied and FT
can neither be established nor known in these cases.
On the other hand, rows 3, 4, 6, and 7 of Table 1 represent a

second scenario where  is smaller, making it easy to satisfy
Equation (B) but more difficult to satisfy Equation (A). For
instance, when the S/N of the distribution FX of X is bounded
(rows 3 and 7), it is still possible that Equation (A) does not
hold (e.g., in the =  case, if the true maxent distribution F0

of X is positive, with a very small standard deviation in relation
to its mean).

4.2. Random Distributions

For the second scenario of Section 4.1, when  is chosen so
small that Equation (B) holds but Equation (A) does not, one
may assume that the distribution F= FX of X is random. Under
appropriate conditions, this leads to a generalization of
Theorem 3, whereby the FT of X can be known, not with
certainty but still with a high probability.
In more detail, since FX= F(· ; θ), such an approach leads to

a having a random hyperparameter θ, with the true distribution
F0= F(· ; θ0) of X corresponding to an instantiated value θ0 of
θ. It follows from the proofs of Corollary 2.1 and Theorem 3
that if Equation (B) holds, we can know that X is fine-tuned,
with a high probability 1− P(E), if the event

q= > Ì Ï = Ï Q{ ( ) } { } { } ( )E F ℓ TP F 10X0 max 0 0

has low probability. (Note that P(E) being small is less
stringent than Equation (A) failing with a small probability.)
Showing that P(E) is small thus requires choosing the
distribution of F= F(· ; θ), for which a distribution Gθ of θ is
needed. This requires implementing Algorithm 1 on a new
class of hyperhyperparameters λ that parameterize the
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distribution Gθ=G(· ; λ) of θ, which in turn leads to new
restrictions λäΛ on the hyperhyperparameter. We thus end up
in an endless loop (Hofstadter 1999) because it requires
showing that the hyperparameters θ themselves are tuned to
obtain the FT of the physical parameters X. In other words, we
replace the FT question of the physical parameters X with a
tuning question of the hyperparameters θ.

4.3. Bounded Parameter Space

The strategy of Section 4.2, to regard FX as random, would
be great if the parameter space = [ ]a b, of X were finite and
Equation (B) was satisfied for the chosen class  of
distributions of X. If there are no asymmetric restrictions on
F, it is natural to regard [a, b] as a torus and assume that F is
translation invariant in the sense that F(· ) and F(·− x) have the
same distribution for all x. It can then be proven, as a
consequence of Markov’s inequality, that the probability of the
set in Equation (10) satisfies

= >
-

( ) [ ( ) ] ∣ ∣
[( ) ]

P E P F ℓ TP
ℓ

b a TP
,X

X
0 max

max


which is small if

∣ ∣ ( )ℓ TP . 11X max

This implies that, for a finite parameter space  , we can know
that X is fine-tuned, with a large probability 1− P(E), if  is
chosen small enough so that Equation (B) holds, but also large
enough so that Equation (11) is valid.

Since a finite parameter space is a favorite scenario for
physicists (remember the discussion after Theorem 1), it is
worth exploring whether there are actual FT instances in which
the parameter space is actually finite. However, the current
arguments in favor of this hypothesis are unconvincing
(McGrew et al. 2001; Colyvan et al. 2005). Therefore, we
need to deal with  being unbounded, and for such cases FT
cannot be known unless some restrictions, such as
Equations (A) and (B), are imposed.

4.4. The Real Line as Parameter Space

The argument of Section 4.3, based on random measures, is
unfortunately not straightforward to generalize when the
parameter space  of X equals . Rows 4 and 5 of Table 1
correspond to a scale family of distributions that typically are
symmetric around the origin. However, the scenario of row 4
does not consider the observed value x0 of the parameter in our
Universe as an estimator of a location parameter for FX, making
it plausible to suggest that Equation (A) is violated. Indeed, it is
a basic principle to obtain maxent distributions, subjecting
them to the available observations (Wainwright & Jordan 2008;
Singh & Vishnoi 2014; Celis et al. 2020; Suh 2023). Thus,
defining  without including into it a random variable whose
location parameter is given by the observed value of X in our
Universe might be too restrictive.

On the other hand, the location scale family with an upper
bound T of the S/N (row 7 of Table 1) does include
distributions with x0 as a mean parameter. It is possible then
to know that X is fine-tuned if the true distribution F0 satisfies
S/N� T (so that Equation (A) holds) and the relative half-
length ò of the LPI is small enough so that Equation (B) holds.
The assumption S/N� T cannot be derived from the maxent

principle, though, and it rather needs some other justification
(such as simplicity).

4.5. Positive Line as Parameter Space

When = +  , it is possible to use row 1 of Table 1. Notice
that this is a scale family of distributions over + that includes
all the exponential distributions. This is important because the
exponential distribution F(· ; θ) is maxent over all distributions
restricted to have mean θ. Other maxent distributions over +
are possible under different constraints; however, they are less
parsimonious because they require more restrictions. For
instance, the χ2 distribution of X has maxent distribution over
all distributions of the nonnegative reals given the restrictions
on E(X) and ( )E Xlog (see, e.g., Park & Bera 2009), thus
pertaining to row 2 of Table 1. Hence, the family of
exponential distributions q qÎ +{ (· )}F ;  is the less restrictive
family of maxent distributions over + , and we can naturally
include into it the exponential distribution with a mean value
corresponding to the observed value x0 of the constant in our
Universe. Therefore, in this scenario, it is plausible that
Equation (A) is satisfied and, whenever Equation (B) holds as
well, we can establish and know FT. To give a more explicit
formulation of Equation (B) for the family of exponential
distributions of X (see row 1 of Table 1), we notice that the
maximum tuning probability equals

= = =
>

- -( ) ( )TP C xe e2 2 max 2 12
x

x
max 1

0

1  

when ò> 0 is small.
By the reasoning above, we have thus established the

following important principle.

Principle 1. The FT of the parameter X can be known when:

1. The constant can only take nonnegative values ( = +  ).
2. The size of the LPI is small relative to the observed value

of the constant in our Universe ( d-e2 11  ).

5. Examples

We consider several examples of physical parameters X to
determine whether FT can be known for them. We will only
treat cases in which the parameter cannot take negative values
and make use of Principle 1. This section does not intend to be
exhaustive. It rather intends to show two things. First, that FT
can be known in a few instances. Second, that we can fail to
know the level of tuning for a parameter if the relative half-
length ò of its LPI is not small. More bounds for the LPIs can
be found, for instance, in Adams (2019) and references therein.
In particular, Table 2 of Adams (2019) shows that many LPIs
span over several orders of magnitude. This implies that FT
cannot be known in those cases, because ò is large and
therefore (by Table 1) Equation (B) is not satisfied.

5.1. Critical Density of the Universe

According to Davies (1982), the LPI of the critical density of
the Universe ρcrit is

r= - +r
- -[ ]ℓ 1 10 , 1 10 ,crit,0

60 60
crit

where ρcrit,0 is the observed critical density. Since the density
cannot be negative, = +  . Taking ò= 10−60, we notice that
ò= 1. According to row 1 of Table 1, Díaz-Pachón et al. (2023),
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and Equation (12), we have = ´- -TP e2 10max
1 60 as a small

number. Thus, by Principle 1, we know that there is FT.

5.2. Gravitational Force

According to Davies (1982), when observing the ratio X of
the gravitational constant G to the contribution from vacuum
energy to the cosmological constant Λvac, the LPI of the
gravitational constant is

= - +- -[ ]ℓ x 1 10 , 1 10 ,X 0
100 100

where x0 is the observed value of X. Since gravitation is attractive,
it cannot be negative, and therefore X is positive as well (so that

= +  ). Since ò= 10−100, it follows that ò= 1. Thus, according
to row 1 of Table 1, Díaz-Pachón et al. (2021), and Equation (12),
the maximal tuning probability is = ´- -TP e2 10max

1 100. By
Principle 1, we know that there is FT.

5.3. Higgs Vacuum Expectation Value

The Higgs vacuum expectation value v is given by
v0= 2× 10−17mP, where mP is the Planck mass. According
to Barnes (2012), its LPI (in units of mP) is given by

= ´ ´ =- -[ ] [ ] ( )ℓ a b0.78 10 , 3.3 10 , . 13v
17 17

If v falls below the lower bound a, the proton becomes heavier
than the neutron, causing hydrogen to be unstable and enabling
electron capture reaction (Damour & Donoghue 2008). If v
exceeds the upper bound b of ℓv, there is no nuclear binding.
The Higgs vacuum expectation value is positive, as it describes
the average value of the Higgs field in the vacuum (i.e.,

= +  ). Writing Equation (13) as in Equation (3), we obtain

=
+

- +

= ´ - +-

[ ]

[ ]

ℓ
a b

2
1 , 1

2.04 10 1 0.617, 1 0.617 .

v

17

 

Since ò= 0.617 is not small, we cannot use Equation (12) to
calculate the maximum tuning probability as =TPmax

´ =-e2 0.617 0.4541 . Instead, we make use of the fact that
for an exponential distribution F(· ; θ), with mean θ, the tuning
probability of ℓv equals

q q q= - - -( ) ( ) ( )F ℓ a b; exp exp .v

This tuning probability is maximized for q = -( ) ( )b a b alog ,
with a maximal value

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= - =
- - - -

( )
( ) ( )

TP
b

a

b

a
0.488. 14

a b a b b a

max

Thus, despite the smallness of ℓv, FT cannot be known for v
because TPmax is large and hence Equation (B) is not satisfied.

5.4. Amplitude of Primordial Fluctuations

According to Rees (2000), the LPI of the amplitude Q of the
primordial fluctuations is

=
= - +
=

- -[ ]
[ ]

[ ]

ℓ

Q
a b

10 , 10

1 0.818, 1 0.818
, ,

Q
6 5

0

with Q0= 5.5× 10−6 being the midpoint of ℓQ. Since the
amplitude cannot be negative, = +  . Since ò= 0.818 is not

small, we follow the procedure of the previous example and
calculate the maximal tuning probability as

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= - =
- - - -( ) ( )

TP
b

a

b

a
0.697,

a b a b b a

max

in agreement with Díaz-Pachón et al. (2021). Since this number
is not small, the FT of Q cannot be known.

5.5. Baryon–Photon Ratio

According to Adams (2019), the baryon–photon ratio η has a
value η∼ 6× 10−10, and it can sustain life in between the interval

= ´ ´ =h
- -[ ] [ ] ( )ℓ a b6 10 , 6 10 , . 1513 7

Again, since ò is not small, we follow the procedure of the
previous two examples to calculate the maximal tuning
probability:

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= - =
- - - -

( )
( ) ( )

TP
b

a

b

a
0.9999852. 16

a b a b b a

max

Thus, since TPmax is not small, the level of tuning of η cannot be
known.

Remark 7. It follows from Examples 5.3 to 5.5 that the maximal
tuning probability of the LPI = [ ]ℓ a b,X of Î = +X   , with
a class of exponential priors for FX, is a function

= = -- - - -( ) ( )( ) ( )TP h r r r 17r r r
max

1 1 1

of the ratio = = + -( ) ( )r b a 1 1  between the right and
left end points of ℓX . It can be seen that ¥ ( ) ( )h: 1, 0, 1 is a
strictly increasing function of r, with = ( ) ≕ ( )h r hlim 1 0r 1 ,
¢ = -( )h e1 1, and =¥ ( )h rlim 1r . From this, it follows that
Equation (12) is a special case of Equation (17), which holds in
the limit of small half relative sizes > 0 of ℓX . Moreover,
from Theorem 3, a sufficient condition to know about the FT of
X on = +  is

d- ( ) ( )b

a
h . 181

When d > 0 is small, Equation (18) is essentially equivalent to
the condition on > 0 in the second part of Principle 1.

6. Conclusion

Using the recent mathematization of knowledge acquisition
in Hössjer et al. (2022), we formalize Principle 1, which
establishes that the FT of a given physical parameter X can be
known if at least the following two conditions are satisfied:

1. The constant X can only take nonnegative values.
2. The size of its LPI is small relative to the observed value

x0 of the constant in our Universe.

This latter proviso is extremely important since, as we saw in
the examples, it is possible to have very small intervals whose
size relative to x0 is large. As a result, Equation (B) is not
satisfied and the level of tuning cannot be known. In other
words, to know that a given constant is fine-tuned, it is the
relative half-size of the interval that must be small, not the
interval itself. That is, |ℓX|= x0 is required in order to satisfy
Equation (B). Our conclusion is sobering in the sense that many
things that, in spite of the ado, are touted as fine-tuned cannot be
known to be so.
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On the other hand, when Principle 1 is satisfied, we can be
sure that FT can be known. However, we also highlight that not
satisfying Equation (B) does not imply that the tuning is coarse;
it only implies that FT cannot be known, even if Equation (A)
is satisfied, since it is still possible that the real probability
F0(ℓX) of the tuning is small. Thus, when the maximal tuning
probability TPmax is not small, the conclusion of coarse tuning is
epistemological, not ontological.
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