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Abstract

A complete and pure sample of quasars with accurate redshifts is crucial for quasar studies and cosmology. In this
paper, we present CatNorth, an improved Gaia Data Release 3 (Gaia DR3) quasar candidate catalog with more than
1.5 million sources in the 3π sky built with data from Gaia, Pan-STARRS1, and CatWISE2020. The XGBoost
algorithm is used to reclassify the original Gaia DR3 quasar candidates as stars, galaxies, and quasars. To construct
training/validation data sets for the classification, we carefully built two different master stellar samples in addition
to the spectroscopic galaxy and quasar samples. An ensemble classification model is obtained by averaging two
XGBoost classifiers trained with different master stellar samples. Using a probability threshold of pQSO_mean> 0.95
in our ensemble classification model and an additional cut on the logarithmic probability density of zero proper
motion, we retrieved 1,545,514 reliable quasar candidates from the parent Gaia DR3 quasar candidate catalog. We
provide photometric redshifts for all candidates with an ensemble regression model. For a subset of 89,100
candidates, accurate spectroscopic redshifts are estimated with the convolutional neural network from the Gaia
BP/RP spectra. The CatNorth catalog has a high purity of ∼90%, while maintaining high completeness, which is
an ideal sample to understand the quasar population and its statistical properties. The CatNorth catalog is used as
the main source of input catalog for the Large Sky Area Multi-Object Fiber Spectroscopic Telescope phase III
quasar survey, which is expected to build a highly complete sample of bright quasars with i< 19.5.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Astrostatistics techniques (1886); Catalogs
(205); Quasars (1319); Redshift surveys (1378)

Supporting material: machine-readable table

1. Introduction

Quasars are luminous active galactic nuclei (AGNs) with
supermassive black holes at their centers that release huge
amounts of energy through accreting surrounding gaseous
materials. Found from the nearby to the distant Universe,
quasars are important in various aspects of astronomy. With
especially massive black holes of up to ∼10 billion M☉ at high
redshifts (see, e.g., Wu et al. 2015; Bañados et al. 2018; Fan
et al. 2023), quasars are key to understanding the formation and
evolution of supermassive black holes, and the association
between black holes and host galaxies (e.g., Di Matteo et al.
2005; Kormendy & Ho 2013). The absorption lines of quasars
can trace the interstellar and intergalactic medium at different
redshifts (e.g., Weymann et al. 1981; Rees 1986; Trump et al.
2006). A large sample of quasars can reveal the large-scale

structure of the Universe (e.g., Eisenstein et al. 2011; Dawson
et al. 2013; Blanton et al. 2017). Furthermore, quasars are ideal
objects for defining celestial reference frames because they are
distant point sources with small parallaxes and proper motions
(e.g., Ma et al. 2009; Mignard et al. 2016; Gaia Collaboration
et al. 2018, 2022).
Recently, bright quasars have also shown the potential to

determine the expansion history of the Universe with the
Sandage test (Sandage 1962; Liske et al. 2008; Cristiani et al.
2023). In addition, quasars that are bright in the UV and X-ray
can also serve as high-redshift standard candles to constrain the
cosmological models using the LX–LUV relation (e.g., Risaliti
& Lusso 2015, 2019).
The Sloan Digital Sky Survey Quasar Catalog Data Release

16 (SDSS DR16Q; Lyke et al. 2020) is the largest quasar
catalog to date, which contains data for 750,414 quasars that
are spectroscopically identified from SDSS-I to SDSS-IV.
Parallel to the SDSS quasar survey, the Large Sky Area Multi-
Object Fiber Spectroscopic Telescope (LAMOST) quasar
survey has observed 56,175 quasars in the first 9 yr of the
regular survey, of which 31,866 were independently discovered
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by LAMOST (Ai et al. 2016; Dong et al. 2018; Yao et al. 2019;
Jin et al. 2023).

Recently, Gaia Data Release 3 (Gaia DR3; Gaia Collaboration
et al. 2023a) announced a sample of 6.6 million candidate quasars
(the qso_candidates table,12 hereafter the GDR3 QSO
candidate catalog; Gaia Collaboration et al. 2023b), of which
162,686 have publicly available low-resolution BP/RP spectra.
The GDR3 QSO candidate catalog has high completeness
thanks to the combination of several different classification
modules, including the Discrete Source Classifier (DSC), the
Quasar Classifier (QSOC), the variability classification module,
the surface brightness profile module, and the Gaia DR3
Celestial Reference Frame source table. Nevertheless, the
GDR3 QSO candidate catalog has a low purity of quasars
(52%) and a large scatter of redshift estimates, which may limit
the application of the sample in quasar and cosmological
studies.

To obtain purer subsamples from the GDR3 QSO candidate
catalog, some recipes have been suggested by Gaia Collabora-
tion et al. (2023b) and works that use external data such as
UnWISE (Storey-Fisher et al. 2024). Storey-Fisher et al. (2024)
obtained the “Quaia” catalog with 1,295,502 sources at
G< 20.5 by applying cuts on colors and proper motions to
remove non-quasar contaminants (stars and galaxies). Although
a model of Quaia’s selection function on sky positions is given
by Storey-Fisher et al. (2024), the selection effects introduced
by the color cuts are not quantified. While simple color cuts can
get high completeness and purity of ∼96% for quasar selection
at the bright end (e.g., W1−W2> 0.2 mag at GBP< 17 mag;
Onken et al. 2023), they are inadequate to disentangle different
classes of objects that overlap with each other in two-
dimensional color spaces at fainter magnitudes such as
G= 20.5 or the Gaia magnitude limit of 21 mag. Also, color
cuts reduce the sample completeness because they inherit
selection biases from the labeled samples (e.g., SDSS quasars).

The original redshift estimates of GDR3 QSO candidates are
derived by matching the BP/RP spectra with a set of template
spectra of quasars. Although pretty precise for sources with
good BP/RP spectra, the Gaia redshift has a large outlier
fraction due to the misidentification of emission lines (De
Angeli et al. 2023). To improve the overall accuracy of redshift
estimates of the GDR3 QSO candidates, Storey-Fisher et al.
(2024) trained a k-nearest neighbors (k-NN) model on a subset
of Quaia with SDSS redshifts. The k-NN model takes
photometric data from Gaia and UnWISE, and the redshift
estimates from Gaia BP/RP spectra as input features.

The Gaia BP/RP spectra have also speeded up the
spectroscopic confirmation of bright quasars. For example,
Cristiani et al. (2023) obtained secure redshifts for 1672
confidently classified quasar candidates with z 2.5 by fitting
their spectral energy distributions (SEDs) with both multiband
photometric data and the Gaia DR3 BP/RP spectra. The
Cristiani et al. (2023) SED fitting method yields a typical
uncertainty of σNMAD= 0.02 on 938 quasars with spectro-
scopic redshifts of 2.5 z 4.0.

In this work, to select quasars to G= 21 mag, we choose the
machine-learning method, which can characterize celestial
objects in high-dimensional feature/color spaces. For instance,
Nakoneczny et al. (2021) reported that machine-learning
methods such as XGBoost can achieve purity of 97% and

completeness of 94% at r< 22 for quasar selection. In a
previous paper on finding quasars behind the Galactic plane
(Fu et al. 2021), we have also shown the successful application
of the machine-learning method in selecting quasars with
optical data from Pan-STARRS1 and mid-IR data from
AllWISE. In addition, we have introduced a cut in the
logarithmic probability density of zero proper motion
( flog PM0( )) derived from Gaia Data Release 2 data, to further
exclude stellar contaminants, while retaining more than 99% of
the quasars.
With more recent releases of the CatWISE2020 catalog

(Marocco et al. 2021) and Gaia DR3, we are now able to build
a better classification model with photometric data from Gaia,
Pan-STARRS1, and CatWISE, and obtain more accurate

flog PM0( ) values with Gaia DR3. In addition, we propose to
achieve better quasar redshift measurements in comparison to
the original GDR3 QSO candidate catalog and Quaia, with
machine-learning methods and both multiband photometry and
Gaia BP/RP spectra.
The structure of this paper is described as follows. Section 2

introduces the data sets used in this study. Section 3 discusses
feature selection and characterizes different classes of objects in the
feature space. Section 4 describes the procedure to build the
XGBoost ensemble classification model. Section 5 explores further
purification of the quasar candidates using the proper-motion data
from Gaia DR3. Section 6 describes redshift estimation using
machine learning with photometric data and Gaia BP/RP spectra.
Section 7 presents the content and statistical properties of the final
CatNorth catalog. The study is summarized in Section 8. In
Section 9, we provide ADQL queries of the selections of OBA and
FGKM stellar samples in the Gaia DR3 archive. Throughout this
paper, we adopt a flat ΛCDM cosmology with ΩΛ= 0.7, ΩM=
0.3, and H0= 70 km s−1Mpc−1.

2. Data

The input data of this work is the Gaia DR3 quasar candidate
catalog (the qso_candidates table) from Gaia Collabora-
tion et al. (2023b). We combine optical and infrared
photometric data from Gaia DR3, Pan-STARRS1, and Cat-
WISE2020, and astrometric data from Gaia DR3 to improve
both purity and redshift estimation of the GDR3 QSO
candidate catalog. We also retrieve samples of spectroscopi-
cally identified extragalactic objects from SDSS and stellar
samples from a variety of catalogs to build well-defined
training/validation samples.

2.1. Astrometric and Photometric Data

2.1.1. Gaia DR3 Astrometric and Astrophysical Data

Gaia DR3 (Gaia Collaboration et al. 2023a) contains the same
source list, celestial positions, proper motions, parallaxes, and
broadband photometry in the G, GBP (330–680 nm), and GRP

(630–1050 nm) passbands for 1.8 billion sources brighter than
21 mag already present in the Early Third Data Release (Gaia
EDR3; Gaia Collaboration et al. 2021). Furthermore, the
Gaia DR3 catalog incorporates a much expanded radial velocity
survey and a very extensive astrophysical characterization of
Gaia sources, including about 1 million mean spectra from the
radial velocity spectrometer (RVS), and about 220 million low-
resolution blue and red prism photometer BP/RP mean spectra.
The results of the analysis of epoch photometry are provided for
about 10 million sources across 24 variability types. Gaia DR3

12 The Gaia DR3 quasar candidate catalog is available at the Gaia archive https://
gea.esac.esa.int/archive with table name gaiadr3.qso_candidates.
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includes astrophysical parameters (APs) and source class
probabilities for about 470 million and 1.5 billion sources,
respectively, including stars, galaxies, and quasars. For a large
fraction of the objects, the catalog lists APs determined from
parallaxes, broadband photometry, and the mean RVS or mean
BP/RP spectra.

With the new definition of Gaia EDR3 passbands (Riello et al.
2021), we calculate the extinction coefficients of GBP, G, and
GRP as =R R R, , 3.4751, 2.8582, 1.8755G G GBP RP

, respectively.
These coefficients are calculated using Rλ=Aλ/AV×RV, where
Aλ/AV is the relative extinction value for a passband λ given by the
optical to mid-IR extinction law from Wang & Chen (2019), and
RV= 3.1.

2.1.2. Pan-STARRS1 DR1 Photometry

Pan-STARRS1 (PS1; Chambers et al. 2016; STScI 2022)
has carried out a set of synoptic imaging sky surveys including
the 3π Steradian Survey and the Medium Deep Survey in five
bands (grizyP1). The mean 5σ point source–limiting sensitiv-
ities in the stacked 3π Steradian Survey in (grizyP1) are (23.3,
23.2, 23.1, 22.3, 21.4) and the single epoch 5σ depths in
(grizyP1) are (22.0, 21.8, 21.5, 20.9, 19.7). The mean
coordinates from the PS1 MeanObject table are used for better
astrometry. The mean point-spread function (PSF) magnitudes
are used for all bands (grizyP1). The Galactic extinction
coefficients for (grizyP1) are Rg, Rr, Ri, Rz, Ry= 3.5805, 2.6133,
1.9468, 1.5097, and 1.2245. These coefficients are also
calculated with relative extinction Aλ/AV values from Wang
& Chen (2019).

For simplification, we use (g, r, i, z, y) to represent the PSF
magnitudes of PS1 bands (grizyP1). The zP1 PSF magnitude
does not appear alone and will not be confused with the redshift
symbol z. We set some constraints on the PS1 data to ensure
the quality of the data. All sources should be (i) significantly
detected in the PS1 i band (i> 0, and i_err< 0.2171,
equivalent to the signal-to-noise ratio (S/N) of the iP1 band
greater than 5); and (ii) not too bright in i to avoid possible
saturation (i> 14). The magnitude limit of sources that meet
these constraints is i≈ 21.5.

2.1.3. CatWISE2020 Catalog

The CatWISE2020 Catalog (Marocco et al. 2020, 2021)
consists of 1,890,715,640 sources over the entire sky selected
from Wide-field Infrared Survey Explorer (WISE; Wright et al.
2010) and NEOWISE (Mainzer et al. 2011) postcryogenic
survey data at 3.4 and 4.6 μm (W1 and W2) collected from
2010 January 7 to 2018 December 13. The 90% completeness
depth for the CatWISE2020 Catalog is at W1= 17.7 mag and
W2= 17.5 mag. The Galactic extinction coefficients for W1
and W2 used in this study are RW1, RW2= 0.1209, 0.0806.
These coefficients are also calculated with relative extinction
Aλ/AV values from Wang & Chen (2019).

We crossmatch the Gaia DR3 coordinates with Cat-
WISE2020 using a radius of 1″. We also set some constraints
on the CatWISE2020 data. All sources should be (i) not too
bright to avoid possible saturation (w1mpro_pm>7 &
w2mpro_pm>7); and (ii) significantly detected in the W1
and W2 bands (w1snr_pm>5 & w2snr_pm>5).

2.2. Stellar Samples

In this paper, the selection of quasar candidates is performed
through a machine-learning classification approach, which
requires well-defined samples of different classes of objects,
namely, quasars, galaxies, and stars. SDSS (York et al. 2000)
has provided a rich database of spectroscopically identified
quasars and galaxies, which can be representative of extra-
galactic sources within the detection limit of Gaia (G≈ 21) in a
considerably large sky area.
While many spectroscopic surveys have also identified a vast

number of stars, the build-up of a good stellar sample for
machine learning is nontrivial due to the heterogeneity among
different stellar subsamples. These subsamples vary in
completeness and uncertainty levels of stellar parameters
because (i) the samples are selected with different methods,
and (ii) their spectra are often fitted with different stellar
models.
In order to increase the diversity of the stars and ensure the

accuracy of the source labels, we construct two master stellar
samples by combining many different catalogs. The first master
stellar sample “LVAC_PLUS” is mainly built from two
LAMOST value-added catalogs (VACs), with an extra sample
of MLT dwarfs, white dwarfs, and carbon stars described in
Section 2.2.3. The other master stellar sample “GDR3_PLUS”
is built primarily from Gaia DR3 data, with the same extra
stellar sample as in Section 2.2.3. The subsequent training
process will produce two classification models by swapping the
two master stellar samples.
The selection criteria for the stellar samples are described as

follows.

2.2.1. OBAFGK Stars from LAMOST VACs

LAMOST (also known as the Guoshoujing Telescope; Wang
et al. 1996; Su & Cui 2004; Cui et al. 2012) is a special
reflecting Schmidt telescope with both a large effective aperture
(3.6–4.9 m) and a wide field of view (5°). The LAMOST
spectral survey (Luo et al. 2012; Zhao et al. 2012; Luo et al.
2015) has been operating since 2012 and is composed of two
main components: the LAMOST Experiment for Galactic
Understanding and Exploration (LEGUE; Deng et al. 2012),
and the LAMOST ExtraGAlactic Survey (LEGAS). LEGUE
observes stars with r 18 mag in various sky regions,
including the Galactic halo (|b|> 30°), the Galactic anticenter
(150°� l� 210° and |b|< 30°; Yuan et al. 2015), and the
Galactic disk (|b|� 20°). LEGAS mainly identifies galaxies
and quasars that are not included in the SDSS spectroscopic
samples, in both high Galactic latitude (e.g., Shen et al. 2016;
Yao et al. 2019; Jin et al. 2023) and the Galactic plane
(|b|� 20°; Z.-Y. Huo et al. 2024, in preparation). By the end of
2022, the LAMOST spectral survey had obtained ∼20 million
spectra for more than 10 million stars, which constitute the
largest stellar spectra sample to date.
We select stars with spectral types from “O” to “K” from two

bona fide LAMOST VACs: (i) the stellar parameter catalog of
about 330,000 hot stars (OBA stars) of LAMOST DR6 from
Xiang et al. (2022), and (ii) the LAMOST DR5 Abundance
Catalog of 6 million stars (mainly FGK stars) from Xiang et al.
(2019). These two catalogs are crossmatched with the
Gaia DR3 source table and the PS1 catalog. In addition to the
PS1 photometric filtering (i> 14 and ierr< 0.2171), the OBA
catalog is filtered with parallax_over_error>10, and
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the FGK catalog is filtered with parallax_over_er-
ror>15. The parallax_over_error filtering to the
LAMOST VACs was implemented to ensure good data
quality, thereby accurately characterizing the sample. The
resulting sample contains ∼46,000 OBA stars and ∼1.1 million
FGK stars.

2.2.2. OBAFGKM Stars from Gaia DR3

Gaia DR3 has provided a golden sample of astrophysical
parameters (Gaia Collaboration et al. 2023c), which includes
3,023,388 young OBA stars and 3,273,041 FGKM stars. While
both the OBA sample and the FGKM sample are large, the
union of the two sets does not represent a random subset of
stars observed by Gaia, in which we expect a much higher
FGKM-to-OBA class ratio.

As has been suggested by Gaia Collaboration et al. (2023c),
the OBA sample can be further filtered using kinematics by
excluding sources with tangential velocity (vtan) higher than
180 km s−1. Also, the three-step selections for the FGKM stars
by Gaia Collaboration et al. (2023c) are so strict that the final
FGKM sample shows a narrow distribution on the Hertz-
sprung–Russell (H-R) diagram (see Figure 9 therein). There-
fore, we perform additional selections on the Gaia OBA golden
sample and reselect an FGKM sample with higher complete-
ness. The full ADQL queries of the selections in the Gaia
archive are shown in Section 9. As compared to the Gaia
FGKM golden sample, the newly selected FGKM sample has a
broader main sequence, higher diversity, and a better
representation of the contaminants for quasar identifications.
Because we also limit the PS1 magnitude of the FGKM sample
to be iP1> 14, many of the bright M-type stars identified with
Gaia astronomical parameters are rejected. This issue is solved
by adding extra very low-mass stars (VLMS), which is
described in Section 2.2.3.

2.2.3. VLMS, White Dwarfs, and Carbon Stars

Although Gaia DR3 and LAMOST have provided large
samples of normal O-to-K-type stars, additional samples of less
usual or underrepresented stars are needed to characterize the
contaminants in quasar selection. Those unusual or under-
represented stars include M/L/T dwarfs and subdwarfs (also
known as VLMS), white dwarfs, and carbon stars.

M/L/T dwarfs and subdwarfs are stellar or substellar objects
with low masses and low surface temperatures. Because such
VLMS emit most of their light in the infrared wavelengths,
they can be easily confused with high-redshift or intrinsically
red quasars (e.g., Hawley et al. 2002; Richards et al. 2002).

Typical white dwarfs have a blue continuum from optical to
near-IR wavelengths, and absorption lines from hydrogen or
helium, which are very different from typical quasar SEDs.
However, central white dwarfs of planetary nebulae may show
prominent hydrogen emission lines in addition to the blue
continuum, contaminating the quasar candidates (see Figure C1
of Fu et al. 2022, for an example). Some white dwarfs, e.g., the
carbon-rich (DQ) subtype (Pelletier et al. 1986), show wide and
deep absorption troughs resulting from the Swan bands of the
C2 molecules, as well as the blue continuum at longer
wavelengths. Such white dwarfs are substantial contaminants
for broad absorption line quasars, and the so-called 3000Å
break quasars (Meusinger et al. 2016).

Carbon stars have spectra that are dominated by carbon
molecular bands, including the CN, CH, or the Swan bands of
C2. The red SEDs of carbon stars are similar to those of high-
redshift quasars. Therefore, carbon stars should also be
included in the master stellar samples.
We compile a sample of M/L/T dwarfs and subdwarfs,

white dwarfs, and carbon stars from a variety of origins, which
are listed in Table 1. Crossmatching these additional stars to the
databases described in Section 2.1 yields a list of stars to be
added to the LAMOST and Gaia stellar samples (hereafter add-
on stellar sample). We build the first master stellar sample
LVAC_PLUS by merging the LAMOST stellar sample in
Section 2.2.1 and the add-on stellar sample, and build the other
master stellar sample GDR3_PLUS by merging the Gaia DR3
stellar sample in Section 2.2.2 and the add-on stellar sample.
Figure 1 shows the sky distributions of both LVAC_PLUS and
GDR3_PLUS. Both of the two master stellar samples cover a
moderately large parameter space of effective temperature and
luminosity, as can be seen from their H-R diagrams (Figure 2).

2.3. Extragalactic Catalogs

2.3.1. SDSS Quasar Catalog DR16Q

SDSS (York et al. 2000) has mapped the high-Galactic-
latitude northern sky and obtained imaging as well as
spectroscopy data for millions of objects, including stars,
galaxies, and quasars. The SDSS Quasar Catalog DR16Q;
Lyke et al. 2020) contains 750,414 quasars, including 225,082
new quasars appearing in an SDSS data release for the first
time, as well as known quasars from SDSS-I/II/III. We
crossmatch the DR16Q catalog with PS1 and CatWISE2020
both with a radius of 1″.
To ensure data quality, we use the same constraints as in

Sections 2.1.2 and 2.1.3 to retrieve a subset of DR16Q. Because
DR16Q contains 421,281 sources whose spectra are not visually
inspected, some misidentifications may exist in the sample. We
remove 82 false positive sources (nonquasars) mentioned by
Flesch (2021). In addition, Wu & Shen (2022) (hereafter WS22)
have reported the systemic redshifts (zsys) of DR16Q, which are
measured from a comprehensive list of emission lines and are
considered superior to the DR16Q redshifts (zDR16Q). We use the
two criteria below to select the training/validation sample of
463,497 quasars for the classification model:

1. The spectra should have valid (positive) DR16Q red-
shifts, and have no known problems in redshift measure-
ments: Z_DR16Q > 0 AND (ZWARNING==0 OR
ZWARNING==-1), where “ZWARNING==-1” is labeled
for visually confirmed quasars prior to DR16Q.

2. The spectra should have valid systemic redshifts (zsys),
and are not too noisy or featureless to have line peaks
reliably measured (see Section 4.2 of WS22): Z_SYS >
0 AND Z_SYS_ERR !=-1 AND Z_SYS_ERR !=-2.

Nevertheless, for the training/validation sample of the
redshift regression models, we apply additional constraints on
the uncertainty levels of spectral redshifts. The relative
uncertainties in zsys, and the relative differences between zsys
and zDR16Q are below 0.002:

Z_SYS_ERR/(1+Z_SYS) < 0.002 AND
ABS(Z_SYS-Z_DR16Q)/(1+Z_SYS) < 0.002.
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The resulting DR16Q subsample for redshift regressions
contains 421,959 sources, among which 32,543 sources have
Gaia DR3 BP/RP spectra.

2.3.2. SDSS Spectroscopically Identified Galaxies

A sample of galaxies is extracted from SpecPhotoAll table of
SDSS DR17 (Abdurro’uf et al. 2022) using the following
criteria:

1. The objects are spectroscopically classified as galaxies
without broad emission lines detected (σline> 200 km s−1

at the 5σ level): CLASS==‘‘GALAXY’’ AND SUB-
CLASS NOT LIKE ‘‘BROADLINE’’.

2. The spectra are primary detections with good observa-
tional conditions and high S/N, and no issues are found
in fitting the redshifts: SPECPRIMARY==1 AND PLA-
TEQUALITY==‘‘good’’ AND SN_MEDIAN_ALL > 5
AND ZWARNING==0.

We crossmatch the galaxy sample with PS1 and Cat-
WISE2020 with a radius of 1″. We also apply quality
constraints in Sections 2.1.2 and 2.1.3 to select a galaxy subset
with good photometry for later use. The resulting subset of
galaxies has 485,429 sources.

Table 1
Additional Samples of VLMS, White Dwarfs, and Carbon Stars

Samples of VLMS (MLT Dwarfs and Subdwarfs) Source Number References

Stellar parameter catalog of LAMOST DR6 M dwarf stars 243,231 Li et al. (2021b)
SDSS DR7 spectroscopic M dwarf catalog 70,841 West et al. (2011)
J-PLUS DR2 ultracool dwarf candidates 9810 Mas-Buitrago et al. (2022)
SVO archive of M dwarfs in VVV 7925 Cruz et al. (2023)
Ultracool dwarfs in Gaia DR3 7630 Sarro et al. (2023)
M subdwarfs from LAMOST DR10 3251 Zhang et al. (2019, 2021)
Photometric brown-dwarf (L/T dwarf) classification 1361 Skrzypek et al. (2016)
Late-type MLT dwarfs 853 Faherty et al. (2009)
LAMOST DR7 spectroscopic ultracool dwarfs 734 Wang et al. (2022)
L0-T8 dwarfs out to 25 pc 369 Best et al. (2021)
The SVO late-type subdwarf archive 202 Lodieu et al. (2017)
Spectroscopically confirmed L subdwarfs 66 Zhang et al. (2018)

Samples of white dwarfs Source number References

The Montreal White Dwarf Database as of 2023/05/18 72,983 Dufour et al. (2017)
SDSS DR7 white dwarf catalog 20,407 Kleinman et al. (2013)
LAMOST DR10 v1.0 white dwarf catalog 17,140 Kong et al. (2018)
White dwarfs within 100 pc with Gaia DR3 and VO 12,718 Jiménez-Esteban et al. (2023)
DB white dwarfs with SDSS and Gaia data 1915 Genest-Beaulieu & Bergeron (2019)
DB white dwarfs in SDSS DR10 and DR12 1107 Koester & Kepler (2015)

Samples of carbon stars Source number References

General Catalog of Galactic Carbon Stars (3rd edition) 6891 Alksnis et al. (2001)
Carbon Stars from LAMOST DR4 2651 Li et al. (2018)
Carbon stars from SDSS 1211 Green (2013)
Carbon Stars from LAMOST DR2 894 Ji et al. (2016)
High-latitude carbon stars from the Hamburg/ESO survey 403 Christlieb et al. (2001)
Initial catalog of faint high-latitude carbon stars from SDSS 251 Downes et al. (2004)
Carbon stars from the LAMOST pilot survey 183 Si et al. (2015)

Figure 1. HEALPix (Górski et al. 2005) sky density maps of the LVAC_PLUS stellar sample (left) and the GDR3_PLUS stellar sample (right). The maps are plotted
in Galactic coordinates, with the parameter Nside = 64 and an area of 0.839 deg2 px−1.
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2.3.3. The Million Quasars Catalog

The Million Quasars Catalog (Milliquas v8; Flesch 2023) is
a compilation of quasars and quasar candidates from the
literature up to 2023 June 30. Milliquas includes 907,144 type
1 QSOs and AGNs, 66,026 high-confidence (pQSO= 99%)
photometric quasar candidates, 2814 BL Lac objects, and
45,816 type 2 objects.

We use the Milliquas catalog to supplement the training/
validation samples at z< 0.5 or z> 2.5 for both photometric
and BP/RP spectral redshift estimation (Section 6) because the
DR16Q redshift subsample (Section 2.3.1) lacks quasars at
these low and high-redshift ends.

For the photometric redshift regression model, we select
41,410 quasars and type 1 AGNs (labeled as “Q” or “A” in the
“TYPE” column of Milliquas) at 0< z< 0.5 or z> 2.5 from
Milliquas using the same constraints of Gaia PS1 and CatWISE
data as in Section 2.1. The 41,410 Milliquas quasars are
combined with the DR16Q redshift subsample to form the
training/validation sample of 453,977 unique sources.

For the BP/RP spectral redshift model, we select 10,033
quasars and type 1 AGNs that have BP/RP spectra at z< 0.5 or
z> 2.5 from Milliquas. The union of this Milliquas subsample
with 10,033 sources and the DR16Q redshift subsample with
BP/RP spectra has 37,992 sources, which serves as the parent
sample of training/validation in Section 6.2.

3. Feature Selection and Characterization

As has been proposed and tested by many previous studies
(e.g., Jin et al. 2019; Khramtsov et al. 2019), color indices (or
flux ratios) constructed from multiband photometric catalogs
are effective features for classifying and predicting photometric
redshifts of quasars. In addition, morphological features such as
the difference of the PSF and aperture/Kron magnitude have
been used either in the machine-learning selection of quasars
(e.g., Fu et al. 2021), or in the removal of extended sources
(galaxies) beforehand (e.g., Richards et al. 2009; Wenzl et al.
2021).

Another useful indicator of source extent is the BP and RP
excess factor (phot_bp_rp_excess_factor) from Gaia,
which is defined as the ratio of the sum of the integrated BP and

RP fluxes to the flux in the G band: C= (IBP+ IRP)/IG.
Because the detection windows (apertures) of BP and RP bands
are wider than that of the G band, extended sources tend to
have larger flux excess factors than the point sources do (see,
e.g., Liu et al. 2020). However, a strong dependence on the
GBP−GRP color is observed in the flux excess factor C, which
increases with redder colors and flattens out at the blue end
(Riello et al. 2021). To better constrain the actual source extent
from the flux excess, we adopt the corrected BP-RP flux excess
factor C* following the recipe of Riello et al. (2021),13 which
removes the dependence of C on GBP−GRP by fitting and
subtracting three polynomials.
Using PSF magnitudes (grizyP1, hereafter grizy for simpli-

city) from PS1, profile-fit photometry, including motion from
CatWISE2020 (w1mpro_pm and w2mpro_pm, hereafter W1
and W2), and broadband photometry from Gaia DR3, we
computed a list of features for source classification: g− r, r− i,
i− z, z− y, g−W1, r−W1, i−W1, z−W1, y−W1,
W1−W2, GBP−GRP, GBP−G, G−GRP, and C*.
A few color features of quasars, galaxies, and stars are

shown as color–color diagrams in Figure 3. Quasars and
galaxies are typically clustered around regions with the highest
densities in the two-dimensional color spaces, which results in
smooth contours in the diagrams. On the contrary, stars are
largely distributed on narrow stripes in color–color diagrams,
which are referred to as stellar loci.
In general, quasars are bluer than galaxies and stars in optical

bands because quasars have power-law continua and broad
emission lines in the rest-frame UV to optical wavelengths.
Nevertheless, the quasar loci overlap heavily with those of
galaxies and stars in the color–color diagrams built from the
four PS1 colors (g− r, r− i, i− z, and z− y).
At longer wavelengths, quasars show larger infrared

excesses in comparison to stars, due to the power-law emission
from the accretion disk and the existence of cold to hot dust
around quasars. Quasars can therefore be separated from most
stars in color–color diagrams that involve near-infrared and
mid-infrared bands (y, W1, and W2). However, the infrared

Figure 2. H-R diagrams of the LVAC_PLUS stellar sample (left) and the GDR3_PLUS stellar sample (right). The effective temperatures are from column
teff_gspphot of the Gaia DR3 source table, which are estimated with the General Stellar Parametrizer from the photometry module (GSP-Phot; Bailer-
Jones 2011; Andrae et al. 2023; Creevey et al. 2023). The absolute G-band magnitude is calculated as v= - +M G 5 log 1000 5G ( ) , where ϖ is the Gaia DR3
parallax in units of mas. The H-R diagrams are color coded with source number counts in the pixels, the values of which are indicated in the color bars.

13 https://github.com/agabrown/gaiaedr3-flux-excess-correction
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selections of quasars are still contaminated by red stars
including M/L/T dwarfs or subdwarfs, AGB stars, and young
stellar objects (YSOs).

Figure 4 shows the corrected flux excess factor C* versus
GBP−GRP for quasars, galaxies, and stars. The C* factors of
stars remain nearly zero despite the change in GBP−GRP

colors, as defined in Riello et al. (2021). The C* factors of
quasars are also close to zero, although they have a larger
scatter than those of stars. The C* factors of galaxies are much
larger than those of stars and quasars, making C* a good
indicator of the extent of the source.

4. Source Classification with the XGBoost Algorithm

We use XGBoost (Chen & Guestrin 2016), a gradient-
boosting decision tree algorithm to train the machine-learning
classification model, and reclassify the input Gaia DR3 quasar
candidates as quasars, stars, and galaxies. By keeping the
extragalactic samples fixed and alternating between two master
samples of stars (LVAC_PLUS and GDR3_PLUS), we
compose two sets of training/validation data using the 14
photometric features selected in Section 3. Such configuration
is helpful for obtaining two classification models that can be
later combined. We use “CLF_LVAC” to denote the classifier
trained with LAMOST stars, and “CLF_GDR3” to denote the
classifier trained with Gaia stars.

In order to obtain the optimal models, we use Optuna (Akiba
et al. 2019), a hyperparameter optimization framework to
tune the learning hyperparameters. The multiclass log loss

L Y P,log( ) (also known as logistic regression loss, or cross-
entropy loss) is used as the objective function to be minimized
during model training and hyperparameter optimization. For a

Figure 3. Color–color diagrams of 200,000 quasars (blue contours), 200,000 galaxies (green contours), and 400,000 stars (red-shaded density plots) using photometric
data from PS1, CatWISE, and Gaia DR3. The quasar and galaxy samples are random subsets of the quasar and galaxy samples described in Sections 2.3.1 and 2.3.2.
The star sample is randomly selected from the union of LVAC_PLUS and GDR3_PLUS. The density plots of stars are color coded with density, with higher density
being darker, and lower density being lighter. All magnitudes are in the AB system.

Figure 4. Corrected flux excess factor C* vs. GBP − GRP color for stars (red-
shaded density plots), quasars (blue contours), and galaxies (green contours). An
inset of zoom-in plot for stars and quasars is displayed on the upper-right corner.
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classification task with K classes and N samples, let the true
label of sample i be encoded as a binary indicator yi,k ä {0, 1},
then yi,k= 1 when sample i has label k. A probability estimate
is defined as pi,k= Pr(yi,k= 1). Let P be the matrix of
probability estimates and Y be the matrix of encoded labels,
then the log loss of the whole set is the negative log-likelihood
of the classifier given the true labels:
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The log loss is a statistical measure of the distance between the
empirical distribution of the data and the predicted distribution.

Another few metrics are used to evaluate the model
performance: balanced accuracy, precision, recall, F1, and
Matthews correlation coefficient (MCC). For binary classifica-
tion problems, with true positive denoted as TP, true negative
as TN, false positive as FP, and false negative as FN, the five
metrics are defined as
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In the case of a multiclass problem, the classification task is
treated as a collection of binary classification problems, one for
each class. The five metrics above can be calculated for each
binary classification problem (each class). The metrics of the
multiclass problem is the average metrics of all classes. We
adopt functions balanced_accuracy_score, preci-
sion_score, recall_score, f1_score, and mat-
thews_corrcoef of the sklearn.metrics module of

scikit-learn (Pedregosa et al. 2011) to calculate the metrics for
the three-class classification problem in this work. When
calculating precision, recall, and F1, the “weighted” strategy
is used, in which the score of each class is weighted by its
fraction in the true data sample.
We first apply fivefold cross validations with Optuna (Akiba

et al. 2019) to find the optimal setting of hyperparameters that
minimizes the log loss among 500 trials. Then we randomly
split the whole input data into training set and validation set
according to a 4:1 ratio and calculate scores of the five metrics
with the validation set. This 4:1 split ratio is consistent with
that of the fivefold cross validations. The large sample size of
input data also ensures both training and validation sets have
enough samples.
Some fixed parameters in our programs are objecti-

ve=multi:softprob; booster=gbtree; tree_-
method=hist. For hyperparameters that are tuned, the
default values, optimal values found by the cross validations,
and corresponding metric scores of these parameters are listed
in Table 2. In the tuning process, the number of boosting
rounds (num_boost_round, a.k.a. n_estimators in
scikit-learn API of XGBoost) is fixed to 100 and eta (a.k.a.
learning_rate) is fixed to 0.1. In the training process, we
need to lower the learning rate eta and increase the
num_boost_round to reduce the generalization error. Both
CLF_LVAC and CLF_GDR3 are trained using eta= 0.01,
num_boost_round= 5000 with other optimal parameters
obtained with Optuna.
With CLF_LVAC and CLF_GDR3, we predict the prob-

abilities of the input sources for being quasars, stars, and
galaxies. We average the predictions of the two classifiers and
obtain the mean probabilities (pQSO_mean, pstar_mean, and
pgalaxy_mean). Sources with pQSO_mean> 0.95 are kept as reliable
quasar candidates.

5. Additional Filtering with Gaia Proper Motions

In order to remove stellar contaminants such as white
dwarfs, M/L/T dwarfs, YSOs, and AGB stars from quasar
candidates, we apply an additional cut based on Gaia's proper
motion, because the proper-motion distribution of quasars is
different from that of Milky Way stars. Although quasars
should have negligible transverse motions, their nonzero proper
motions are measured by Gaia due to various effects, such as

Table 2
Default and Optimal Hyperparameter Settings for CLF_LVAC and CLF_GDR3 eta = 0.1, num_boost_round = 100

Hyperparameter CLF_LVAC CLF_GDR3

Default Optimal Default Optimal

lambda 1 1.18 1 1.32
alpha 0 1.61 0 0.33
max_depth 6 9 6 9
gamma 0 0.71 0 0.18
grow_policy depthwise lossguide depthwise lossguide
min_child_weight 1 3 1 4
subsample 1 0.87 1 0.70
colsample_bytree 1 0.61 1 0.74
max_delta_step 0 5 0 8
Balanced accuracy 0.9972 0.9977 0.9973 0.9979
Precision (weighted) 0.9981 0.9985 0.9982 0.9985
Recall (weighted) 0.9981 0.9985 0.9982 0.9985
F1 (weighted) 0.9981 0.9985 0.9982 0.9985
MCC 0.9967 0.9973 0.9968 0.9975
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photocenter variability of quasars (see Bachchan et al. 2016,
and references therein), and double/multiple sources (Makarov
& Secrest 2022). In addition, proper motions with large
uncertainties are not reliable. Therefore we need a probabilistic
cut instead of a cut on the total proper motion. In Fu et al.
(2021), we defined the probability density of zero proper
motion ( fPM0) of a source, based on the bivariate normal
distribution of proper-motion measurements of the source as

ps s r

r s
r
s s s

=
-

´ -
-

- +

f

x xy y

1

2 1

exp
1

2 1

2
, 7

x y

x x y y

PM0 2

2

2 2

⎜ ⎟⎜ ⎟

⎧
⎨
⎩

⎡

⎣
⎢⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎫
⎬
⎭

( )
( )

where x= pmra, y= pmdec, ρ= pmra_pmdec_corr (correla-
tion coefficient between pmra and pmdec), σx and σy are the
proper-motion uncertainties. Under the same uncertainty level,
sources with smaller proper motions will have higher fPM0 by
definition.

We take the logarithm of fPM0 for better comparison between
samples. Figure 5 shows distributions of flog PM0( ) of stars,
galaxies, and quasars used in this study. We choose a

-flog 4PM0( ) cut that excludes more than 99.9% of both
LVAC_PLUS and GDR3_PLUS stars, while retaining more
than 99.8% of the quasars. Nevertheless, faint stars can be
major contaminants even with such a strict cut on flog PM0( ).

6. Photometric and Spectroscopic Redshifts with Machine
Learning

Accurate redshift estimation is essential to both cosmology
and follow-up studies with the quasar candidates. For all
sources of our quasar candidate sample, photometric redshifts
are derived from photometric data from Gaia DR3, PS1, and
CatWISE using an ensemble machine-learning regression
model. For a subset of 89,100 quasar candidates with BP/RP
spectra, spectroscopic redshifts are also measured using a
convolutional neural network (CNN) regression model.

For both regression models, we adopt the root mean square
error (RMSE), the normalized median absolute deviation of
errors (σNMAD), and the catastrophic outlier fraction ( fc) as

evaluation metrics for the estimation of the redshift in the
training/validation sets. These metrics are defined as follows:
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where z is the true redshift, ẑ is the predicted redshift,
D = -z z ẑ , and n is the total number of sources. The RMSE
is widely used in regression analysis to quantify the difference
between the true and predicted values. The σNMAD measures
the statistical dispersion of the normalized errors D ¢ =z
D +z z1( ). When D ¢z follows a Gaussian distribution, this
σNMAD is equivalent to the standard deviation of D ¢z . In real-
world cases, σNMAD is less sensitive to outliers than the original
definition of standard deviation (Ilbert et al. 2006; Brammer
et al. 2008). The fc represents the percentage of objects for
which the redshift estimate deviates significantly from the true
redshift.
In addition to the evaluation metrics, a loss function (or

objective function) must be defined when training the redshift
regression models. By minimizing the value of the loss
function, the regression model learns the best fit to the training
data. When training photometric redshift regression models, we
choose the loss functions from the built-in functions provided
by the software packages. Because our BP/RP spectroscopic
redshift regression model is more flexible than the photometric
ones, we adopt a custom loss function, the mean normalized
square error (MNSE), which is defined as:
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While the definition of MNSE is similar to that of the
commonly used mean square error (MSE; that is, the square of
the RMSE), MNSE makes the squared errors comparable
across different redshifts by dividing each error -z zi î by a
factor of 1+ zi. Minimizing MNSE is also very helpful in
building an optimal model with low σNMAD and fc values.

6.1. An Ensemble Photometric Redshift Model with XGBoost,
TabNet, and FT-Transformer

The photo-z estimation problem can be well described as a
regression problem on tabular data in machine learning. While
traditionally tree ensemble models (e.g., XGBoost) are widely
applied to such problems, some deep learning models have also
been shown to be highly efficient in regression problems
of tabular data, including TabNet (Arik & Pfister 2021) and
FT-Transformer (Gorishniy et al. 2021). Here, we adopt
XGBoost, TabNet, and FT-Transformer to train three separate
machine-learning models to estimate redshifts from multiband
photometry. We optimize the models independently and
combine their results. By averaging the predictions of the
three models, we obtain the ensemble photometric redshift
model, which improves the predictive performance of a single
model (Sagi & Rokach 2018).

Figure 5. Histograms of flog PM0( ) of the master stellar samples LVAC_PLUS
(blue) and GDR3_PLUS (yellow), quasars from SDSS DR16Q (green), and
galaxies from SDSS DR17 (white). Because fPM0 is the probability density that
can be greater than 1 (the integral of the probability density function over the
entire space is equal to 1), flog PM0( ) can have positive values.
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To mitigate the influence of undersampling of quasars at
both low (z< 0.5) and high (z> 2.5) redshifts in SDSS DR16Q
(subset for redshift regression described in Section 2.3.1), we
add 41,410 additional quasars and type 1 AGNs at z< 0.5 or
z> 2.5 from the Milliquas v8 catalog (Flesch 2023) to build the
training/validation sample of 453,977 unique quasars. We
randomly split the sample with a ratio of 4:1 into the training
set and validation set. The training and validation sets and our
application set (the CatNorth sample) are all dereddened with
the two-dimensional dust map from Planck Collaboration et al.
(2016) and the extinction law from Wang & Chen (2019).

The redshift estimates of the GDR3 QSO candidates
(redshift_qsoc, hereafter zGaia) are determined using a
chi-square approach, whereby the BP and RP spectra are
compared to a composite quasar spectrum at various trial
redshifts in the range of 0 z 6 (Gaia Collaboration et al.
2023b; Delchambre et al. 2023). The composite quasar
spectrum is built upon a semiempirical library of quasars from
the SDSS DR12Q sample (Pâris et al. 2017). Although zGaia
can have higher precision than photometric redshifts, zGaia has a
high catastrophic outlier fraction due to emission line
misidentification (aliasing) in the chi-square fitting process.
Storey-Fisher et al. (2024) demonstrated that the outlier
fraction of redshifts can be significantly reduced by using both
zGaia and photometric features in the machine-learning process.

Similar to the redshift estimation approach of Storey-Fisher
et al. (2024), we combine redshift information from the GDR3
QSO candidate catalog and a set of photometric features to
train the photometric redshift models. Instead of using zGaia as a
feature directly, we build two new features + zlog 1 low( ) and

+ zlog 1 up( ), where zlow (redshift_qsoc_lower) and zup
(redshift_qsoc_upper) are the lower and upper con-
fidence intervals of zGaia taken at the 0.15866 and 0.84134
quantiles, respectively. The logarithmic transformation on
1+ z compresses the high-redshift range with fewer training
samples and large uncertainties, and produces a nearly
Gaussian distribution of the new feature (see also Section
5.2.3 of Delchambre et al. 2023, on the normality
of + zlog 1( )).

A total of 15 features are chosen for the regression model:
g− r, r− i, i− z, z− y, g−W1, r−W1, i−W1, z−W1,
y−W1, W1−W2, GBP−GRP, GBP−G, G−GRP,

+ zlog 1 low( ), and + zlog 1 up( ). Some features may contain
missing values in the training/validation and final application
(CatNorth) samples. We input the missing values with the
mean values of the training sample to ensure valid redshift
estimation for all targets.

We choose the default RMSE as the loss function of the
XGBoost model, and the smooth L1 loss as the loss function of
both the TabNet and the FT-Transformer models. Using the
same notation above, the smooth L1 loss of the ith instance of

the data is

=
- - <

- -
l

z z z z
z z
0.5 if 1

0.5 otherwise,
12i

i i i i

i i

2⎧
⎨⎩

( ˆ ) ∣ ˆ ∣
∣ ˆ ∣

( )

and the overall smooth L1 loss is then the mean value:

å=
=

L
n

l
1

. 13
i

n

i1
1

( )

The smooth L1 loss is less sensitive to the outliers in the data in
comparison to MSE (Girshick 2015).
Each model is trained with its optimal hyperparameters

found by Optuna. The scores of the three regression models
and the ensemble model on a validation set of 82,415 sources
are listed in Table 3. Among the three base models, TabNet has
the lowest RMSE (0.2685), σNMAD (0.0303), and fc (9.04%).
Averaging the three base models produces an ensemble model
with even lower RMSE (0.2618) and σNMAD (0.0294), and a
moderately low fc (9.16%). Because ensemble models are less
sensitive to overfitting than other models, we expect the
ensemble model to be more robust than the individual base
models.

6.2. BP/RP Spectroscopic Redshift Model with the CNN

The Gaia DR3 BP/RP spectra provide valuable spectral
information, offering a unique opportunity to infer the redshifts
of distant quasars. Here, we adopt a CNN-based regression
model (hereafter RegNet) to extract redshifts of quasars
encoded in the BP/RP spectra. The parent sample of 37,992
quasars that have BP/RP spectra is described in Section 2.3.3.
A 4:1 ratio is used to randomly divide the BP/RP spectral
sample into training and validation sets. For both the training/
validation sample and the final application sample, we obtain
the original continuous BP/RP spectra (coefficients) with the
astroquery.gaia module. We then use the GaiaXPy
package (Ruz-Mieres 2023) to sample the spectra to [4000Å,
10000Å) with a 20Å interval, and calibrate the spectra to
absolute fluxes.
The RegNet architecture consists of four convolutional

layers followed by two fully connected linear layers,
culminating in a 1D output for redshift estimation. Each input
spectrum contains 300 data points (neurons) and is scaled to [0,
1] with its minimum and maximum values. Each convolutional
layer has eight channels and a kernel size of 3, the output of
which goes through a ReLU activation function and a MaxPool
function with a kernel size of 2. The first fully connected layer
(FC1) connects all neurons from the last convolutional layer
(Conv4) to 128 neurons and applies a ReLU activation function
to the output. The last fully connected layer (FC2) connects the
128 neurons to a single neuron, and uses a SoftPlus activation

Table 3
Scores of All Photometric Redshift Regression Models (XGBoost, TabNet, FT-Transformer, and the Ensemble Model), and the Spectroscopic Redshift Regression

Model (RegNet) on the Validation Sets

Photo-z Models Gaia BP/RP Spec-z Model
Model XGBoost TabNet FT-Transformer Ensemble RegNet
Metric RMSE Smooth L1 Smooth L1 MNSE

Loss
RMSE 0.2734 0.2685 0.2723 0.2618 0.1427
σNMAD 0.0351 0.0303 0.0307 0.0294 0.0304
fc 10.65% 9.04% 9.21% 9.16% 2.46%
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function to ensure the final output is always positive. A
schematic diagram of the RegNet architecture is shown in
Figure 6.

The RegNet model is trained in shuffled batches, each of
which contains 1024 spectra. With the default parameters of the
Adam optimizer (torch.optim.Adam), we train the
RegNet model for 1000 epochs. The MNSE losses for all
epochs of training and validation data are shown in Figure 7.
The optimal model is from the epoch with the lowest validation
loss, that is, the 1000th epoch with MNSEval= 0.00403. On the
validation set of 7599 quasars at 0< z 4.0, the RegNet model
achieves RMSE= 0.1427, σNMAD= 0.0304, and fc= 2.46%.
The uncertainty σNMAD= 0.0304 of our model is close to that
in Cristiani et al. (2023), which is 0.02 and was measured with
934 quasars at 2.5 z 4.0.

6.3. Performance of the Photometric and Spectroscopic
Redshifts

The precision of the RegNet spectroscopic redshift model is
about twice those of the photometric redshift models as
measured with RMSE (see Table 3). The σNMAD of RegNet and
the photometric redshift models are close because the Gaia
redshift information is used in the photometric redshift models.
The outlier fraction of RegNet is about only one-quarter of
those of the photo-z models. Such good performance of RegNet
indicates the feasibility of identifying quasars and studying
their properties with the Gaia BP/RP low-resolution spectra.

With the ensemble photometric redshift regression model
and the RegNet model, we derive photometric redshifts for all
quasar candidates in our work, and spectroscopic redshifts for a

subset of 89,100 sources with Gaia DR3 BP/RP spectra. In
Figure 8, we show the performance of the redshift regression
models on the validation sets, and the comparisons between our
redshift estimates and those from the GDR3 QSO candidate
catalog and the Quaia catalog.
The ensemble photometric redshift zph is highly consistent

with the RegNet spectroscopic redshift zxp_nn (Figure 8(c)),
which proves the reliability of both redshift estimates because
zph and zxp_nn are obtained with entirely different methods. The
original Gaia DR3 redshift zGaia presents large deviations from
zSDSS, and zph and zxp_nn in this work (Figures 8(d)–(f)), which
is mainly because only the Gaia data were used to derive zGaia
(Gaia Collaboration et al. 2023b). The distribution of the
outliers on zph− zGaia plot (Figure 8(e)) is similar to that of the
zSDSS− zGaia plot (Figure 8(d)), which indicates that the line
misidentification in the GDR3 QSO candidate catalog is
systematic, and that the CatNorth zph is consistent with zSDSS.
A much lower outlier fraction is seen in zxp_nn− zGaia plot

(Figure 8(f)) in comparison to zSDSS− zGaia and zph− zGaia
because only a subsample with Gaia DR3 BP/RP spectra has
available zxp_nn. Nevertheless, the outliers around (zGaia≈ 0.5,
zxp_nn≈ 1.2), (zGaia≈ 2.5, zxp_nn≈ 1.3), and (zGaia≈ 3.5,
zxp_nn≈ 1.0) the zxp_nn− zGaia plot match the high-density
outlier regions in zSDSS− zGaia and zph− zGaia. Such outlier
patterns also indicate that zxp_nn is more robust than zGaia.
For sources with correct emission line identifications, zGaia

has high precision because of the direct use of BP/RP spectra
in the chi-square fitting process. Therefore, zGaia has a lower
σNMAD (0.0073) than CatNorth zph (0.0294) despite the high
outlier fraction fc= 26.6% of the former. The Quaia redshift
also shows a low σNMAD (0.0078) because zQuaia is replaced
with zGaia when the two estimates are close to each other (|Δz/
(1+ z)|< 0.05; see Storey-Fisher et al. 2024).
To evaluate the quality of redshift estimates of the GDR3 QSO

candidates, De Angeli et al. (2023) defined the logarithmic redshift
error14 between the redshift estimate zpred and the literature

Figure 6. Schematic diagram of the CNN-based RegNet architecture, which is
designed to extract redshifts from Gaia DR3 BP/RP spectra. This diagram
shows the process of a single spectrum with 300 points passing through the
network and yielding the redshift value. For simplicity, only a small fraction of
the input and hidden neurons are plotted.

Figure 7. The MNSE losses in 1000 epochs of our RegNet model on the training
sample (blue curve) and validation sample (red curve). As the model is trained
iteratively, the training loss steadily decreases, signifying the network’s ability to fit
the training set. Meanwhile, the validation loss from an independent validation set
demonstrates the performance of the generalization of the model.

14 We use the common logarithm with base 10 instead of the natural logarithm
with base e used by De Angeli et al. (2023). The resulting logarithmic redshift
error is 1/ln10 of that in De Angeli et al. (2023).
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redshift ztrue as

D = + - +Z z zlog 1 log 1 . 14pred true( ) ( ) ( )

If an emission line with a rest-frame wavelength of λtrue is
misidentified as another one with a rest-frame wavelength of λfalse,
the logarithmic redshift error is l lD = -Z log logtrue false.
Therefore, the most frequent mismatches between emission lines
can be identified through the distribution of ΔZ.

We compare the distributions of ΔZ of zGaia, zQuaia, and
CatNorth zph for 286,107 SDSS DR16Q sources in common in
Figure 9. While the Quaia redshift zQuaia shows a large
improvement over zGaia, zQuaia inherits some line misidentifications

from zGaia. For example, the C IV emission line is often
misidentified as Lyα, which produces a peak at ΔZ= 0.11 in
Figure 9, as well as the high-density region of 2.2 zQuaia 3.2
and 1.5 zSDSS 2.2 of Figure 8(g). In less frequent cases, the
C IV emission line is misidentified as C III] (ΔZ=−0.09), or the
C III] emission line is misidentified as Mg II (ΔZ=−0.17) or Lyα
(ΔZ= 0.2). The logarithmic redshift error of CatNorth zph has a
much smoother distribution and overall deviates less from zero
than those of zGaia and zQuaia, showing the robustness of the zph
estimates.
For quasar candidates with Gaia DR3 BP/RP spectra, the

redshift estimates can also be validated by visual inspections of

Figure 8. Top row: ensemble photometric redshift (zph) against SDSS/Milliquas spectral redshift of the validation set with 90,796 quasars (a), RegNet redshift (zxp_nn)
against SDSS/Milliquas spectral redshift of the validation set with 7599 quasars (b), and zph vs. zxp_nn (c). Middle row: comparisons of redshift values between SDSS
and Gaia (d), CatNorth zph and Gaia (e), and CatNorth zxp_nn and Gaia (f). Bottom row: comparisons of redshift values between SDSS and Quaia (g), CatNorth zph and
Quaia (h), and CatNorth zxp_nn and Quaia (i). The plots are color coded with two-dimensional densities (number counts in the pixels) of the samples, the values of
which are indicated in the color bars.
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the spectra. The Gaia DR3 BP/RP spectra that are calibrated
with GaiaXPy of four CatNorth quasars are shown in Figure 10
along with the template quasar spectrum from Vanden Berk

et al. (2001). The template quasar spectrum matches well with
the BP/RP spectra after being shifted to zxp_nn. However,
because the spectral resolution of the BP/RP spectra is very

Figure 9. Histograms of the logarithmic redshift errors, D = + - +Z z zlog 1 log 1 SDSS( ) ( ) of zGaia (blue), zQuaia (green), and CatNorth zph (red), for 286,107 sources
contained in the SDSS DR16Q catalog. A bin width of 0.0026 is used for all curves. Several prominent peaks due to emission line misidentifications are indicated with vertical
dashed lines and text.

Figure 10. The Gaia DR3 BP/RP spectra that are calibrated with GaiaXPy of four CatNorth quasars (in black). For each quasar, a template quasar spectrum of
Vanden Berk et al. (2001) is shown as a blue line in addition to the BP/RP spectrum. The template spectrum is shifted to the same redshift of zxp_nn, and scaled to a
similar flux level as the BP/RP spectrum. Some major emission lines of the template spectrum are marked with red dashed lines.
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Table 4
Format of the CatNorth Quasar Candidate Catalog

Column Name Type Unit Description

1 source_id long L Gaia DR3 unique source identifier
2 ra double deg Gaia DR3 right ascension (ICRS) at Ep=2016.0
3 dec double deg Gaia DR3 declination (ICRS) at Ep=2016.0
4 l double deg Galactic longitude
5 b double deg Galactic latitude
6 parallax double mas Parallax
7 parallax_error double mas Standard error of parallax
8 pmra float mas yr−1 Proper motion in the right ascension direction
9 pmra_error float mas yr−1 Standard error of pmra
10 pmdec float mas yr−1 Proper motion in the declination direction
11 pmdec_error float mas yr−1 Standard error of pmdec
12 pmra_pmdec_corr float L Correlation between pmra and pmdec
13 phot_bp_mean_mag float mag Integrated BP mean magnitude
14 phot_g_mean_mag float mag G-band mean magnitude
15 phot_rp_mean_mag float mag Integrated RP mean magnitude
16 bp_rp float mag BP–RP color
17 phot_bp_rp_excess_factor float L BP/RP excess factor
18 ps_id long L PS1 unique object identifier
19 ra_ps double deg PS1 R.A. in decimal degrees (J2000) (weighted mean) at mean epoch
20 dec_ps double deg PS1 decl. in decimal degrees (J2000) (weighted mean) at mean epoch
21 gmag float mag Mean PSF AB magnitude from PS1 g-filter detections
22 e_gmag float mag Error in gmag
23 rmag float mag Mean PSF AB magnitude from PS1 r-filter detections
24 e_rmag float mag Error in rmag
25 imag float mag Mean PSF AB magnitude from PS1 i-filter detections
26 e_imag float mag Error in imag
27 zmag float mag Mean PSF AB magnitude from PS1 z-filter detections
28 e_zmag float mag Error in zmag
29 ymag float mag Mean PSF AB magnitude from PS1 y-filter detections
30 e_ymag float mag Error in ymag
31 catwise_id string L CatWISE2020 source id
32 ra_cat double deg CatWISE2020 R.A. (ICRS)
33 dec_cat double deg CatWISE2020 decl. (ICRS)
34 pmra_cat float arcsec yr−1 CatWISE2020 proper motion in R.A. direction
35 pmdec_cat float arcsec yr−1 CatWISE2020 proper motion in decl. direction
36 e_pmra_cat float arcsec yr−1 Uncertainty in pmra_cat
37 e_pmdec_cat float arcsec yr−1 Uncertainty in pmdec_cat
38 snrw1pm float L Flux S/N ratio in band-1 (W1)
39 snrw2pm float L Flux S/N ratio in band-2 (W2)
40 w1mpropm float mag WPRO magnitude in band-1
41 e_w1mpropm float mag Uncertainty in w1mpropm
42 w2mpropm float mag WPRO magnitude in band-2
43 e_w2mpropm float mag Uncertainty in w2mpropm
44 chi2pmra_cat float L Chi-square for pmra_cat difference
45 chi2pmdec_cat float L Chi-square for pmdec_cat difference
46 phot_bp_rp_excess_factor_c float L Corrected phot_bp_rp_excess_factor
47 fpm0 float L Probability density of zero proper motion ( fPM0)
48 log_fpm0 float L Logarithm of fpm0 ( flog PM0)
49 p_gal_mean float L Mean probability of the object being a galaxy
50 p_qso_mean float L Mean probability of the object being a quasar
51 p_star_mean float L Mean probability of the object being a star
52 z_gaia float L Redshift estimate from Gaia DR3 QSO candidate table
53 z_ph_xgb float L Photometric redshift predicted with XGBoost
54 z_ph_tab float L Photometric redshift predicted with TabNet
55 z_ph_ftt float L Photometric redshift predicted with FT-Transformer
56 z_ph float L Ensemble photometric redshift (mean value of z_ph_xgb, z_ph_tab, and z_ph_ftt)
57 z_xp_nn float L Spectral redshift predicted with RegNet using Gaia low-resolution spectroscopy
58 ps1_good Boolean L Indicator of PS1 photometry availability, set to True if <2 bands of (griz) have invalid

values, set to False otherwise

Note. This table is also available on the PaperData Repository of the Nataional Astronomical Data Center of China at doi:10.12149/101313 (v1).

(This table is available in its entirety in machine-readable form.)
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low (R∼ 50), and the uncertainties in the sampled spectra (e.g.,
calibrated spectra in this work) are not well quantified (see De
Angeli et al. 2023, for detailed discussions), the accuracy of
zxp_nn is still lower than that of the SDSS spectral redshifts.

7. Results: The CatNorth Quasar Candidate Catalog

7.1. Description of the CatNorth Quasar Candidate Catalog

We compile the CatNorth quasar candidate catalog based on
the sample selected from Sections 4 and 5, with derived
quantities from this work, and some selected columns from PS1
DR1, CatWISE2020, and Gaia DR3. The description of the
CatNorth quasar candidate catalog is given in Table 4.

The CatNorth catalog contains 1,545,514 sources at G< 21,
and 1,148,821 sources at G< 20.5. As a comparison, the Quaia
catalog contains 1,020,271 sources at G< 20.5 with PS1 and
CatWISE data, missing 128,550 sources (12.6% of
Quaia×PS1×CatWISE2020) that are in CatNorth at the same
magnitude range. CatNorth and Quaia have 1,015,455 sources
in common. The apparent magnitude (G and iP1) distributions
of CatNorth and Quaia×PS1×CatWISE2020 are shown in
Figure 11. In addition to the incompleteness due to the
magnitude cut of G< 20.5 in Quaia, fewer quasar candidates
are selected in Quaia than in CatNorth in 19<G< 20.5.
Therefore, CatNorth has a higher completeness than Quaia
especially in the faint end, while maintaining a similar purity of
quasars.

The sky density maps of the CatNorth catalog and Quaia are
shown in Figure 12. The highest sky density of CatNorth is
139.40 deg−2, and the median density is 61.96 deg−2. The
region with δ−30° is blank because it is not covered by the

PS1 3πsurvey. In comparison to the CatNorth subsample with
G< 20.5 (Figure 12(b)), Quaia×PS1×CatWISE2020
(Figure 12(d)) shows similar sky distribution except for the
Galactic plane. The low sky density of Quaia in the low
Galactic latitude is mainly caused by the strict color and
proper-motion cuts that are used to remove contamination in
high-extinction regions.

7.2. Performance of the CatNorth Catalog

To compare the intrinsic brightness of the CatNorth quasar
candidates and the SDSS DR16Q sample, we calculate the SDSS
i-band absolute magnitude Mi normalized at z= 2 of the two
samples. Because SDSS photometry is unavailable for most of the
CatNorth sources, we first convert the iP1 magnitude to the iSDSS
magnitude with the transformations from Tonry et al. (2012).
Then, we correct for Galactic extinction for the converted iSDSS
with the two-dimensional dust map from Planck Collaboration
et al. (2016) and the extinction law from Wang & Chen (2019).
The absolute magnitudes Mi(z= 2) are calculated with the K-
correction (see, e.g., Oke & Sandage 1968; Hogg et al. 2002;
Blanton & Roweis 2007) values for the SDSS i band from
Richards et al. (2006).
The absolute magnitudes Mi(z= 2) and redshift distributions

of CatNorth and the DR16Q redshift subsample (421,959
sources, see Section 2.3.1) are shown in Figure 13, where
photometric redshift values are used for CatNorth and
spectroscopic redshifts from WS22 are used for DR16Q. In
general, the CatNorth sources are brighter than the DR16Q
sources, because the Gaia photometry is shallower than that of
SDSS, and the target selections of SDSS quasars are biased
toward fainter and higher-redshift ends than this work. Because
we use the corrected flux excess factor C* to quantify the
source extent in the classification model, instead of selecting
only point sources using a single criterion (e.g., type=6 in the
SDSS database; Richards et al. 2009), our quasar candidates are
less biased in source extent than the SDSS quasars. Therefore,
we expect higher completeness in CatNorth than DR16Q in the
bright end and low redshift (e.g., z< 0.5).
The color–magnitude or color–color properties of the

CatNorth and DR16Q sources are shown in Figure 14. In
general, CatNorth sources have color–color distributions that
are well matched to those of DR16Q, except that CatNorth
extends more into the red regimes than DR16Q. The
consistency of the color distributions of the two samples
implies a low level of contamination from stars and galaxies in
CatNorth. The larger coverage of CatNorth in the red regimes
compared to DR16Q may be due to the higher completeness of
CatNorth, or a better sky coverage of Gaia in low Galactic
latitude regions with large extinctions (see, e.g., Fu et al. 2021).
To further examine the reliability of the CatNorth quasar

candidates, we used the 2 m Himalayan Chandra Telescope
(HCT)15 of the Indian Astronomical Observatory to identify a
random sample of CatNorth that is (i) not in the Quaia catalog,
and (ii) not identified previously. The observation was made on
2023 August 16. Ten candidates have been observed, which are
randomly selected from a parent sample defined as

(ra>202.5 OR ra<60) AND log_fpm0<99 AND
i_mean_psf_mag<17.5 AND dec<-10.

Figure 11. Upper panel: histograms of the apparent G magnitudes of CatNorth
(blue bars) and the Quaia subsample with PS1 and CatWISE2020 data
(Quaia×PS1×CatWISE2020; orange-filled step plot). Lower panel: same as
the upper panel, but for apparent iP1 magnitudes.

15 https://www.iiap.res.in/?q=telescope_iao
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Out of the 10 objects, eight are identified as quasars, one is
identified as a star, and one is unknown (see Figure 15 for their
spectra). The high success rate of 80% of the random
observation proves the high purity of even the CatNorth
sources that are missed by Quaia. We conclude that the
CatNorth catalog has both high purity (∼90%) and complete-
ness, which is valuable for cosmological applications and
follow-up identifications.

8. Summary and Conclusions

In this paper, we present CatNorth, an improved Gaia DR3
quasar candidate catalog based on data from Gaia DR3, PS1,
and CatWISE2020. We propose an ensemble machine-learning
classification approach to select quasar candidates, which are
built on well-defined samples of quasars, galaxies, and two
master stellar samples. The master stellar sample LVAC_PLUS
is mainly based on the LAMOST VACs, while the other master
stellar sample GDR3_PLUS is mainly based on the Gaia DR3
stellar samples. The two master stellar samples also include a
mutual sample of very low-mass stars, white dwarfs, and
carbon stars from the literature. By keeping the extragalactic
samples fixed and alternating between two master samples of
stars, we compose two sets of training/validation data using the
14 photometric features selected in Section 3. With the two
training sets, two XGBoost classification models are trained
using optimal hyperparameters given by the Optuna software.
An ensemble classification model is obtained by averaging the
predicted probabilities of the two base classification models.

Using a probability threshold of pQSO_mean> 0.95 on our
ensemble XGBoost classification model and an additional
proper-motion cut of -flog 4PM0( ) , we retrieved 1,545,514
reliable quasar candidates (CatNorth catalog) from the parent
sample of Gaia DR3 QSO candidates. We used XGBoost,
TabNet, and FT-Transformer to train an ensemble regression
model to estimate photometric redshifts (zph) from multiband
photometry and the lower and upper confidence intervals of
Gaia redshifts. For candidates with Gaia BP/RP spectra, we
also estimated their spectral redshifts (zxp_nn) with the CNN-
based RegNet model. As discussed in Section 6.3, zph and
zxp_nn are highly consistent with each other, showing a
significant improvement over the original redshifts of Gaia.
The CatNorth catalog has limiting magnitudes of G 21 and

iP1 21.5, and it shows color–color distributions that are well
matched to those of SDSS DR16Q. Nevertheless, the CatNorth
sources are overall brighter than the DR16Q quasars because of the
shallower depth of Gaia. The CatNorth catalog is also more
complete in the low-redshift and red regimes in comparison to
DR16Q. Compared to the Quaia catalog, the CatNorth catalog has
similar purity (∼90%) and higher completeness. This is proved by
our latest spectroscopic identifications of eight new quasars from a
random sample of 10 candidates that are not in Quaia.
The CatNorth catalog is used as the main source of input

catalog for the LAMOST phase III quasar survey, along with
the candidate catalog of quasars behind the Galactic plane (Fu
et al. 2021), the BASS DR3 quasar candidates (Li et al. 2021a),
and the quasar candidates selected with PS1 variability

Figure 12. HEALPix (Górski et al. 2005) sky density maps of the CatNorth quasar candidate catalog (a), the CatNorth subsample with G < 20.5 (b), the full Quaia
catalog (c), and the Quaia subsample with PS1 and CatWISE2020 data (d). The maps are plotted in Galactic coordinates, with the parameter Nside = 64 and an area of
0.839 deg2 per pixel.
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(Hernitschek et al. 2016). By adding quasar candidates from
different catalogs, LAMOST is expected to build a highly
complete sample of bright quasars with i< 19.5.

The next phase of this project involves the creation of an
improved Gaia DR3 quasar candidate catalog covering the
entire southern hemisphere. Accurate photometric and

Figure 13. The absolute magnitudes Mi(z = 2) and redshift distributions of the CatNorth catalog and the DR16Q subsample with good redshifts with 421,959 sources.
In the main panel (lower left), the CatNorth sources are shown as the two-dimensional histogram (density plot), over which the white contour lines based on two-
dimensional kernel density estimation (KDE) are plotted. The DR16Q sources are shown as orange KDE contours. In the top and right panels, the blue-shaded areas
denote the KDE probability density functions of the CatNorth catalog, and the orange-shaded areas denote the probability densities of the DR16Q sample.

Figure 14. Color–color diagrams of sources from the CatNorth quasar candidate catalog (blue contours), 200,000 SDSS DR16Q quasars (gray contours), and 400,000
stars (red-shaded density plots) using photometric data from PS1, CatWISE2020, and Gaia DR3. The SDSS DR16Q subset and the star sample are the same as those in
Figure 3. All magnitudes are in the AB system.
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spectroscopic redshifts will also be provided for the southern
quasar candidate sample. This project and surveys including
LAMOST and the All-sky Bright, Complete Quasar Survey
(Onken et al. 2023) are of paramount importance in advancing
cosmological studies, particularly concerning bright quasars.

9. ADQL Queries for Selecting Gaia DR3: Stellar Samples

9.1. The Gaia DR3 OBA Sample

SELECT gs.source_id, gs.ra, gs.dec, l, b,
parallax, parallax_error, parallax_over_error,
pm, pmra, pmra_error, pmdec, pmdec_error,
pmra_pmdec_corr, phot_g_mean_mag,
phot_bp_mean_mag, phot_rp_mean_mag,
phot_bp_rp_excess_factor,
astrometric_excess_noise,
astrometric_excess_noise_sig,
astrometric_params_solved,
ruwe, ipd_gof_harmonic_amplitude,
s.vtan_flag, gs.distance_gspphot,
ap.teff_esphs, ap.teff_esphs_uncertainty,
ap.spectraltype_esphs, ap.flags_esphs,
ps.obj_id AS ps_id, ps.ra AS ra_ps,
ps.dec AS dec_ps, ps.epoch_mean AS ps_epoch_mean,
ps.g_mean_psf_mag, ps.g_mean_psf_mag_error,
ps.r_mean_psf_mag, ps.r_mean_psf_mag_error,
ps.i_mean_psf_mag, ps.i_mean_psf_mag_error,
ps.z_mean_psf_mag, ps.z_mean_psf_mag_error,
ps.y_mean_psf_mag, ps.y_mean_psf_mag_error,
ps.n_detections as ps_n_detections,
xmatch.number_of_mates, xmatch.angular_distance,
xmatch.clean_panstarrs1_oid,
xmatch.number_of_neighbours
FROM gaiadr3.gaia_source AS gs
INNER JOIN gaiadr3.gold_sample_oba_stars
AS s USING (source_id)
INNER JOIN gaiadr3.astrophysical_parameters
AS ap USING (source_id)

(Continued)

JOIN gaiadr3.panstarrs1_best_neighbour
AS xmatch USING (source_id)
JOIN gaiadr2.panstarrs1_original_valid AS ps
ON xmatch.original_ext_source_id = ps.obj_id
WHERE ruwe < 1.4
AND astrometric_params_solved = 31
AND parallax_over_error > 10
AND ipd_frac_multi_peak < 6
AND phot_bp_n_blended_transits < 10
AND ap.teff_esphs > 7000
AND gs.classprob_dsc_combmod_star > 0.9
AND ps.g_mean_psf_mag > 14
AND ps.r_mean_psf_mag > 14
AND ps.i_mean_psf_mag > 14
AND ps.z_mean_psf_mag > 14
AND ps.y_mean_psf_mag > 14
AND ps.i_mean_psf_mag_error < 0.2171
AND s.vtan_flag = 0

9.2. The Gaia DR3 FGKM Sample

SELECT gs.source_id, gs.ra, gs.dec, l, b,
parallax, parallax_error, parallax_over_error,
pm, pmra, pmra_error, pmdec, pmdec_error,
pmra_pmdec_corr, phot_g_mean_mag,
phot_bp_mean_mag, phot_rp_mean_mag,
phot_bp_rp_excess_factor,
astrometric_excess_noise,
astrometric_excess_noise_sig,
astrometric_params_solved,
ruwe, ipd_gof_harmonic_amplitude,
gs.teff_gspphot, teff_gspphot_marcs,
teff_gspphot_phoenix,
ps.obj_id AS ps_id, ps.ra AS ra_ps,
ps.dec AS dec_ps, ps.epoch_mean AS ps_epoch_mean,
ps.g_mean_psf_mag, ps.g_mean_psf_mag_error,

Figure 15. The HCT spectra of 10 randomly selected CatNorth quasar candidates that are not in Quaia.
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(Continued)

ps.r_mean_psf_mag, ps.r_mean_psf_mag_error,
ps.i_mean_psf_mag, ps.i_mean_psf_mag_error,
ps.z_mean_psf_mag, ps.z_mean_psf_mag_error,
ps.y_mean_psf_mag, ps.y_mean_psf_mag_error,
ps.n_detections as ps_n_detections,
xmatch.number_of_mates, xmatch.angular_distance,
xmatch.clean_panstarrs1_oid,
xmatch.number_of_neighbours
FROM gaiadr3.gaia_source AS gs
INNER JOIN gaiadr3.astrophysical_parameters
INNER JOIN gaiadr3.astrophysical_parameters_supp AS aps USING

(source_id)
AS ap USING (source_id)
JOIN gaiadr3.panstarrs1_best_neighbour
AS xmatch USING (source_id)
JOIN gaiadr2.panstarrs1_original_valid AS ps
ON xmatch.original_ext_source_id = ps.obj_id
WHERE ruwe < 1.4
AND astrometric_params_solved = 31
AND parallax_over_error > 15
AND ipd_frac_multi_peak < 6
AND phot_bp_n_blended_transits < 10
AND gs.teff_gspphot > 2500
AND gs.teff_gspphot < 7500
AND gs.distance_gspphot < 1000/(parallax-4 ∗ parallax_error)
AND gs.distance_gspphot >
1000/(parallax+4 ∗ parallax_error)
AND (gs.libname_gspphot=’MARCS’
OR gs.libname_gspphot=’PHOENIX’)
AND ap.logposterior_gspphot > -4000
AND gs.classprob_dsc_combmod_star > 0.9
AND gs.mh_gspphot > -0.8
AND ABS(teff_gspphot_marcs -
teff_gspphot_phoenix + 65) < 150
AND radius_gspphot < 100
AND mg_gspphot < 12
AND phot_bp_n_obs > 19
AND phot_rp_n_obs > 19
AND phot_g_n_obs > 150
AND ps.i_mean_psf_mag > 14
AND ps.i_mean_psf_mag_error < 0.2171
AND random_index BETWEEN 0 AND 450000000
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