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Abstract

Here we greatly improve artificial intelligence (Al)-generated solar farside magnetograms using data sets from the
Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory (SDO). We modify our
previous deep-learning model and configuration of input data sets to generate more realistic magnetograms than
before. First, our model, which is called PixX2PixCC, uses updated objective functions, which include correlation
coefficients (CCs) between the real and generated data. Second, we construct input data sets of our model: solar
farside STEREO extreme-ultraviolet (EUV) observations together with nearest frontside SDO data pairs of EUV
observations and magnetograms. We expect that the frontside data pairs provide historic information on magnetic
field polarity distributions. We demonstrate that magnetic field distributions generated by our model are more
consistent with the real ones than previously, in consideration of several metrics. The averaged pixel-to-pixel CC
for full disk, active regions, and quiet regions between real and Al-generated magnetograms with 8 x 8 binning are
0.88, 0.91, and 0.70, respectively. Total unsigned magnetic flux and net magnetic flux of the Al-generated
magnetograms are consistent with those of real ones for the test data sets. It is interesting to note that our farside
magnetograms produce polar field strengths and magnetic field polarities consistent with those of nearby frontside
magnetograms for solar cycles 24 and 25. Now we can monitor the temporal evolution of active regions using solar
farside magnetograms by the model together with the frontside ones. Our Al-generated solar farside magnetograms
are now publicly available at the Korean Data Center for SDO (http://sdo.kasi.re.kr).
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1. Introduction

Magnetic fields play a fundamental role in producing solar
extreme events, i.e., solar flares and coronal mass ejections
(Wiegelmann et al. 2014; Judge et al. 2021). A series of
ground-based and space-borne magnetographs have provided
solar magnetic field data to study the field’s origin and
evolution over the last few decades (Pietarila et al. 2013). The
solar magnetograph is an instrument producing a map of
magnetic field strength and/or direction on the Sun, which is
called a magnetogram (Babcock 1953). The Helioseismic and
Magnetic Imager (HMI; Scherrer et al. 2012) on board SDO,
which is in geosynchronous orbit, has provided high-resolution
magnetograms of the entire solar disk. Recently, the Polari-
metric and Helioseismic Imager (Solanki et al. 2020) on board
Solar Orbiter started obtaining data of photospheric fields from
outside the Sun—Earth line (Miiller et al. 2020).

Before the Solar Orbiter mission, twin STEREO spacecraft
provided the first stereoscopic view of the Sun drifting ahead of
and behind the Earth’s orbit (Kaiser et al. 2008). The STEREO
Ahead (A) and Behind (B) were launched in 2006 and offered
a complete 360° view of the entire Sun with frontside
observations. The STEREO data, together with the SDO data,
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have been widely used to study solar atmospheric phenomena
in three dimensions (Sterling et al. 2012; Caplan et al. 2016;
Zhou et al. 2021). However, because they did not include a
magnetograph, studies of magnetic activities from the frontside
to the farside of the Sun were limited during the STEREO era.

Kim et al. (2019; hereafter KPL19) generated solar farside
magnetograms from the STEREO/ Extreme UltraViolet Imager
(EUVI; Howard et al. 2008) 304 A observations using deep
learning. KPL19 applied the Pix2Pix model (Isola et al. 2017),
which is a widely used deep-learning model in image
translation tasks. They trained and evaluated the model with
pairs of solar frontside SDO/Atmospheric Imaging Assembly
(AIA; Lemen et al. 2011) 304 A observations and SDO /JHMI
line-of-sight (LOS) 720 s magnetograms. Results of KPL19
showed that the farside magnetograms could be used to
monitor the temporal evolution of active regions (ARs).
However they set the upper and lower saturation limits of the
field strength at =100 G, because their model worked well with
proper byte scaling (Park et al. 2021). Their model generated
the distributions and shapes of the ARs well, but it was hard to
produce original-scale magnetic fluxes (Liu et al. 2021). Jeong
et al. (2020; hereafter J20) improved the Al-generated
magnetograms using an upgraded deep-learning approach with
43000 G dynamic range based on the Pix2PixHD model
(Wang et al. 2018) and multichannel SDO/AIA images of 171,
195, and 304 A for the model input. J20 showed that their
results could reproduce strong magnetic fluxes and the
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Figure 1. Flowchart and structures of the Pix2PixCC model. G, D, and I are the generator, discriminator, and inspector, respectively. The generator produces target-
like data from input data. When we train the model, input data are SDO/AIA EUV 304, 193, and 171 A images and a reference data pair. The reference data pair is
composed of the three SDO EUV images and the corresponding SDO/HMI magnetogram, which are the nearest available ones. The discriminator trains for
distinguishing between the real pair and generated pair. The real pair consists of an input data and a target data, and the generated pair consists of an input data and a
generated data. The inspector computes CCs between the target data and generated data. The generator and discriminator are updated from the losses calculated from

the inspector and discriminator.

distribution of polarities for not only ARs, but also quiet
regions (QRs). They applied the Al-generated farside ones to a
part of the boundary conditions for the extrapolation of coronal
magnetic fields. Results of the application were much more
consistent with coronal farside extreme-UV (EUV) observa-
tions than those of the conventional method.

In the present study, we generate more accurate solar farside
magnetograms than those of KPL19 and J20. For this, we make
an upgraded model including a correlation coefficient (CC)-based
objective with additional input data: not only farside STEREO
EUV images but also frontside data pairs of SDO/AIA EUV
images and HMI magnetograms as reference information. In this
paper, we call the farside data generated by KPL19 AISFM 1.0,
the data generated by J20 AISFM 2.0, and our data AISFM 3.0,
respectively. We describe the detailed structure of our model in
Section 2, and describe our data configurations in Section 3. We
show our evaluation results of the model trained with the frontside
evaluation data sets in Section 4.1. Then we generate AISFMs by
the model from the corresponding images of STEREO A (or B)
and the frontside reference data pairs, and show the results in
Section 4.2. We release the AISFMs 3.0 and describe the data in
Section 5. We conclude our study in Section 6.

2. Deep-learning Model

We use a deep-learning model called the Pix2PixCC model
to generate solar farside magnetograms from the farside EUV
observations and reference data pairs. Figure 1 shows the main
structure of our model. The model consists of three major
components: a generator (G), a discriminator (D), and an
inspector (I). The generator is a generative network, and tries to
produce target-like data from inputs with the help of the
discriminator and the inspector. The discriminator is a

discriminative network, which attempts to distinguish between
the more realistic pair between a real pair and a generated pair.
The real pair consists of input data and target data. The
generated pair consists of input data and output from the
generator. The generator gets updated with objectives from the
discriminator, and tries to generate the best outputs to fool the
discriminator. The inspector computes CCs between the target
data and output from the generator to produce realistic values
for the generated ones.

The generator and discriminator are multilayer networks.
The multiple layers of the generative network are composed of
several convolutional and transposed-convolutional filters of
which parameters are updated during the model training
process. Briefly, the convolutional filters try to extract features
automatically from the input data, and the transposed-
convolutional filters attempt to reconstruct outputs from the
extracted features. For the detailed function of the filters in the
network, refer to Goodfellow et al. (2016) and Buduma &
Locascio (2017). The discriminative network consists of
several convolution layers. Each convolution layer generates
a feature map based on input. Our model has a feature matching
(FM) loss (Lossgny), which is an objective function to optimize
the parameters of the generator. The FM loss is to minimize the
absolute difference between the feature maps of the real and
generated pair from multiple layers of the discriminator. It is
more effective for a large dynamic range of data than the loss
function derived from the absolute difference between the
target and generated data directly (Rana et al. 2019; Marnerides
et al. 2021). The objective function Lossgy is given by

T
Lossgm(G, D) = Z i||D(")(x, y) — DO, Gx)ll, (1)

i=1 4V
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where x, y, T, i, and N; are input data, target data, the total
number of layers, the serial number of the layers, and the
number of elements in output feature maps of each layer,
respectively. G(x) means output data from the generator. D
denotes the ith-layer feature extractor of the discriminator.

Our networks use least-squares generative adversarial net-
work (LSGAN) losses (Mao et al. 2017). The LSGAN losses
update the generator (LossPsgan) and the discriminator
(LossfSGAN), and are obtained by

1
Loss{sgan(G, D) = F D G@) = 1)2

1 1
Losssgan(G, D) = S (D& — 1)? + S DG G ()2,

@)

where D(x, y) and D(x, G(x)) are probabilities in the range
of 0 (generated) to 1 (real) at the end of the discriminator from
the real pair and generated pair, respectively. The generator
tries to minimize the LossfSGAN, and the discriminator tries to
minimize LossPsgan. The competition between the generator
and the discriminator contributes to the generation of realistic
data. The performance of the adversarial objectives has been
well demonstrated in image-to-image translation tasks for solar
data (Park et al. 2019; Shin et al. 2020; Lim et al. 2021; Son
et al. 2021).

In order for stable training of the generator, we use an
additional objective function called CC loss (Losscc). It is
known that the CC-based loss function has performed better
than error-based loss functions: mean squared error, mean
absolute error, etc. (Vallejos et al. 2020; Atmaja & Akagi 2021).
We use Lin’s concordance CC, which takes bios into Pearson’s
CC (Lawrence & Lin 1989). The concordance CC is commonly
used to assess the reproducibility evaluating the degree to
which pairs of data fall on the 45° line through the origin. The
range of concordance CC is from —1 (perfect disagreement) to
1 (perfect agreement). The inspector computes the CC loss with
multiscale target and generated data. The function of Losscc,
which maximizes the agreement between the target and
generated data, is defined as

T
1

L G) = —(1 - CC(y, G , 3

osscc(G) ,-:EOTJrl( (y, Gx))) 3)

where T and i are the total number of downsampling by a factor
of two and the serial number of the downsampling,
respectively. CC; means the CC value between the 2' times
downsampled target and Al-generated data. The average of the
CC values from the multiscale target and generated data helps
the model to optimize the network parameters. In addition, with
the help of Losscc, we do not impose artificial saturation limits
on our model.
Our final objectives are as follows:

min \;Loss{sgan(G, D) + A Losspm(G, D)
G

+X3Losscc(G)
min Loss sgan(G, D), 4)
D

where A, )\, and )\; are hyperparameters that control the
importance of Loss‘sgan, Losspu, and Losscc, respectively.
We use 2, 10, and 5 for A\;, \p, and A3, respectively.
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The purpose of the generative adversarial network (GAN)
objectives is to generate an answer that is acceptable. It is
designed to deal with the probability space of the output. Wang
et al. (2018) improved the GAN objectives by incorporating the
FM objective to produce stable outputs. They set the
importance of the FM loss (\;) to be higher than that of the
GAN loss (\y). In J20, we showed that realistic magnetograms
can be produced by the Pix2PixHD model, which uses both
FM and GAN losses. In the present study, we use not only the
FM loss but also the CC loss. The CC objective guides our
model to generate the fields balancing positive and negative
polarities. As a result of multiple tests with different values of
importance, we set the importance of CC loss (\3) to be five,
for which our model shows the best performance in terms of
metrics and visual aspects. The importance of GAN loss in our
final objectives is lower than that of Pix2PixHD. As the
training of our model continues, the model gets a greater
number of updates from the FM and CC loss than from the
GAN loss. To minimize the objective functions, we use an
adaptive moment estimation (Adam; Kingma & Ba 2014)
optimizer with a learning rate 0.0002. We train the model for
1,000,000 iterations, and save the model and Al-generated data
from the evaluation inputs at every 10,000th iteration. We
evaluate all of the saved models by the metrics and use the
highest scoring model to generate farside magnetograms. Our
codes of Pix2PixCC are available athttps://github.com/
JeongHyunJin/Pix2PixCC, and more details of our model are
described in the readme file. The codes are archived on Zenodo
(Jeong 2022).

3. Data Sets
3.1. Training Data Sets

Here we use SDO/AIA EUV 304, 193, and 171 A images
and SDO/HMI LOS magnetograms to train our deep-learning
model. The three EUV passbands correspond to the chromo-
sphere, corona, and upper transition region of the Sun,
respectively. We use multichannel inputs to generate target
magnetograms. Channel dimensions of the inputs are com-
posed of three EUV passband images and a reference data pair.
The reference data pair is composed of three SDO/AIA images
and an SDO/HMI magnetogram, which were observed one
solar rotation (27.3 days) prior. We expect that the differences
between the EUV images and the reference data pair give the
model information on how the intensities or distributions of the
magnetic fields have changed.

We use pairs of train data sets with 6 hr cadence (at 01:00,
07:00, 13:00, and 19:00 UT each day) from 2011 January 1 to
2021 June 30. We select 10 months of data per year, excluding
the data sets for the evaluation of our model. The months are
shifted by 4 months. Among the 2011 data sets, for example,
we use data from March to December for the model training,
and the remaining data from January to February for the model
evaluation. We use data from 2012 January to April and from
July to December to train the model, and the remaining data
from May to June to evaluate the model. These data set
configurations are given to consider various solar inclination
conditions. The inclination of the solar rotation axis with
respect to the ecliptic plane makes different distributions of
southern/northern magnetic fields for each month (Pastor
Yabar et al. 2015). We take 6437 pairs for the training data sets.
We remove data with poor quality that are flagged by a nonzero
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Figure 2. Automatically selected areas of AR (red boxes) and QR (blue boxes) in the SDO/HMI magnetogram acquired at 2013 October 13 07:00 UT. Polarities of
the magnetic fields are displayed in white for positive and black for negative. The detected areas, each having 128 x 128 pixels (~273" x 273"), are overlaid on Al-
generated data corresponding to the real one. The green grid lines represent 64 pixel (~136”5) intervals within 60° from the center of the solar disk. An animation of
this figure is available and shows the results from 2013 October 1 to November 30. In the animation, the grid lines are erased for visual comparison of the results. The

real-time duration of the animation is 77 s.

(An animation of this figure is available.)

value of the QUALITY keyword for both ATA and HMI data
sets. Then we align them to have the same rotational axis, pixel
size of solar radius (R), and location of the disk center. We
downsample them from 4096 x 4096 to 1024 x 1024 for
computational capability. The radius of the Sun is fixed at
450 pixels. A mask is applied to the area outside 0.998 R, from
the disk center for minimizing the uncertainty of limb data. All
EUV data numbers are scaled by median values on the solar
disk to calibrate the gradual in-orbit degradation of the AIA
instrument (Ugarte-Urra et al. 2015; Liewer et al. 2017).

3.2. Evaluation Data Sets

We use the remaining SDO data pairs, which are 2 months of
data per year, to evaluate our model. Among them, we use the
pairs of data sets from 2011 to 2017 to compare with the results
of KPL19 and J20. We take 1342 pairs for the evaluation data
sets. The preprocessing steps of the evaluation data are the same
as those of training data.

When we compute objective measures between the target
magnetograms and Al-generated data to evaluate our model, we
compare the results not only of data for the full disk, but also data
for the ARs and QRs. We select areas of the ARs and QRs with a
size of 128 x 128 pixels from the preprocessed target magneto-
grams with 1024 x 1024 pixel resolution. We do not consider the
areas outside 60° from the disk center to exclude limb data with
uncertainty. We compute the total unsigned magnetic flux
(TUMF) for the area, moving at intervals of 64 pixels up, down,
left, and right from the center of the solar disk. When the TUMF
of the area is greater than 5 X 10%! Mzx, the area is classified as an
AR (Waldmeier 1955; van Driel-Gesztelyi & Green 2015).
Otherwise, the areas are candidates for QRs. The boundaries of all
detected areas do not overlap with one another. In order to balance
the number of AR and QR areas, we select up to three AR areas
for each magnetogram in the order of the largest TUMF, and up to
two QR areas for each magnetogram in the order of the
lowest TUMF.

Figure 2 shows an example of the selection result on 2013
October 13. There are three solar ARs near the center of the
solar disk. The green grid lines in Figure 2(a) represent the
boundaries of the areas where the TUMF is calculated. Our
method successfully detects the approximate positions of three
AR areas (red boxes in Figure 2(a)), and two QR areas (blue
boxes in Figure 2(a)). Each box is placed in the same position
on the Al-generated data as shown in Figure 2(b). Figure 2(c)
shows a difference ratio map between the SDO/HMI
magnetogram and Al-generated data. To compare the differ-
ences of their significant magnetic features, we smooth them
out using a method similar to Higgins et al. (2011), who used
+70 G as a minimum threshold and a 2D Gaussian smoothing
for the magnetograms; here we take 1o and a window size of
10 x 10 pixels.

3.3. STEREO Data Sets

We use solar farside STEREO/EUVI EUV observations and
pairs of SDO/AIA EUV images and SDO/HMI magnetograms
to generate the farside magnetograms, The EUV passbands
of STEREO are 304, 195, and 171 A, which have similar
temperature responses to the passbands of the SDO. We use
STEREO data sets with 6 hr cadence (at 00:00, 06:00, 12:00,
and 18:00 UT each day) from 2011 January 1 to 2021 June 30.
Since communications with STEREO B were lost on 2014
October 1, the data from STEREO B are available until that
day. We align, downsample, mask, and scale the STEREO
EUYV images like the SDO EUV ones. We manually exclude a
set of STEREO data with incorrect header information and
noise or missing values because of solar flares. The SDO pairs
are data from the frontside that are selected by considering the
separation angle between STEREO A (or B) and SDO. The
observation dates of the reference SDO pairs are obtained by

27.3 day
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Figure 3. Two objective measures of comparisons between the SDO/HMI magnetograms and Al-generated magnetograms for 1342 full disk, 2926 ARs, and 2684
QRs. Panels (a), (b), and (c) are scatter plots between the TUMFs of the SDO/HMI magnetograms and Al-generated magnetograms for the full disk, ARs, and QRs,
respectively. Panels (d), (), and (f) are scatter plots between the NMFs of the SDO/HMI magnetograms and Al-generated magnetograms for the same data sets,

respectively.

where Tspo, Tstereo, and Pgrprpo are the date of reference
SDO pairs, the date of STEREO data sets, and heliographic
longitude of the STEREO, respectively. Given these config-
urations, we expect that the frontside magnetograms give our
model information about the overall magnetic field distribution.
And the EUV image sets of the frontside SDO and the farside
STEREO are used to give information about the changes of
features on the Sun.

4. Results and Discussions
4.1. Evaluation of Our Deep-learning Model

We evaluate our deep-learning model using the frontside
evaluation data sets that we did not use when training the
model. To compare our results with KPL19 and J20, we use
Pearson’s CC as a measure for the evaluation. Table 1 shows
the average pixel-to-pixel CCs between the SDO/HMI
magnetograms and Al-generated ones with a full dynamic
range. Our model shows that the average pixel-to-pixel CCs
after 8 x 8 binning are 0.88, 0.91, and 0.70 for the 1342 full
disk, 2926 ARs, and 2684 QRs, respectively. These imply that
our model improves the generation of magnetograms when
compared with the results of KPL19 and J20. In addition, the
pixel-to-pixel CCs between the target and our Al-generated
data after 4 x 4 binning show better results than the CCs
between the target and those of KPL19 after 8 x 8 binning. The
latitudinal or longitudinal heliographic resolution at the center
of the solar disk is approximately 1° per pixel after 8 x 8
binning.

Figure 3 shows scatter plots between two objective measures
of SDO/HMI magnetograms and Al-generated ones for the
same data sets when calculating the average pixel-to-pixel CCs.
We compare the TUMF between the target and Al-generated
data (Figures 3(a)—(c)). The TUMF CCs are 0.99, 0.94, and
0.94, the R2 scores are 0.97, 0.87, and 0.85, and the slopes
are 1.02, 0.82, and 1.05 for the full disk, ARs, and QRs,
respectively. We compare net magnetic flux (NMF) between

Table 1
Average Pixel-to-pixel CCs between SDO/HMI Magnetograms and Al-
generated Magnetograms for Full Disk, ARs, and QRs

Pixel-to-pixel CC

8 x 8 Binning

Full Disk AR QR
(1342) (2926) (2684)
AISFM 3.0 (Ours) 0.88 0.91 0.70
AISFM 2.0 (J20) 0.81 0.79 0.62
AISFM 1.0 (KPL19) 0.77 0.66 0.21

Note. The results of J20 and KPL19 are shown for comparison.

the real and Al-generated data (Figures 3(d)—(f)). The NMF
CCs are 0.90, 0.94, and 0.96, the R2 scores are 0.79, 0.87, and
0.90, and the slopes are 0.90, 0.94, and 0.96 for the full disk,
ARs, and QRs, respectively. Most values of TUMF and NMF
fall on the diagonal line (the black dotted line in Figure 3)
through the origin. These values support that our model can
generate consistent magnetic fluxes.

Figure 3(b) shows that our model slightly underestimates the
TUMF of the strong ARs more than the real ones. We examine
why a small portion of the ARs show underestimated TUMFs.
We find that for some ARs, the Al-generated data do not
produce strong magnetic fields. In these cases, the ARs do not
have high intensities at 304, 193, and 171 A images but have
high intensities at 94 A (Fe xvi) and 131 A (Fe v, XXI1) of
SDO/AIA. These shorter-wavelength channels are character-
ized by high-temperature emissions (O’dwyer et al. 2010;
Warren et al. 2011). We think that the 94 and 131 A
observations are helpful in generating strong magnetic fluxes
for the ARs. However, in this study, we do not use the 94 and
131A i images to train our model because the STEREO/EUVI
only have filter bands of 171, 195, 284, and 304 A.

For the ARs, we evaluate our model based on the similarity
of the Al-generated magnetograms with the real ones. We use a
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Figure 4. (a)—(f) Solar frontside SDO/HMI magnetogram, the farside STEREO composite EUV images (red: 304 A; green: 193 A; and blue: 171 A), and AISFMs on
2011 March 5. The purple and brown boxes represent NOAA AR 11166 and 11165, respectively. (2)—(j) The two ARs are zoomed and converted from full disk data to
heliographic coordinated maps. The color map of zoomed ARs shows the large dynamic range of values in gauss.

Structural SIMilarity (SSIM) method, which is widely used to
measure the degree of similarity and consider measurements of
luminance, contrast, and structure between two images. The
SSIM produces a value between 0 and 1. The maximum value
of 1 indicates that they show perfectly similar structure, and
vice versa. We use the dynamic range of the pixel values to
compute the SSIM from —1500 G to 41500 G considering our
test data sets. Our model shows that the average SSIM value for
the ARs is 0.74 with a standard deviation of 0.09. After 8§ x 8
binning, the average SSIM value is 0.93 with a standard
deviation of 0.09.

4.2. Generation of Solar Farside Magnetograms

We generate farside magnetograms from the STEREO EUV
images and frontside reference data pairs from the model. The
dates of AISFMs for STEREO A (AISFMs A) are from 2011
January 1 to 2021 June 30, and those of the AISFMs for
STEREO B (AISFMs B) are from 2011 January 10 to 2014
September 27. In 2011 January, the position of STEREO A
was about 85° longitude, and that of STEREO B was about
—90° longitude in Stonyhurst heliographic coordinates. They
drift away at a rate of about 22° per year from Earth.

Figure 4 shows multiviewpoint data from SDO, and
STEREO A and B on 2011 March 5. The position of STEREO
A is about 88° heliographic longitude near the west limb, and
the position of STEREO B is about 265° heliographic
longitude near the east limb of the solar frontside
(Figure 4(b)). We select an NOAA AR 11165 to the west,
and an NOAA AR 11166 to the east of the solar disk from the
frontside SDO/HMI magnetogram (Figure 4(e)). AR 11165
is observed by STEREO A (Figure 4(c)) and AISFM A
(Figure 4(f)). The TUMF of AR 11165 from the SDO/HMI
magnetogram in Figure 4(i) is about 1.85 x 10> Mx, and that
from AISFM A in Figure 4(j) is about 1.74 x 10> Mx. AR
11166 is observed by STEREO B (Figure 4(a)) and AISFM B
(Figure 4(d)). The TUMF of AR11166 from the SDO/HMI
magnetogram in Figure 4(h) is 2.50 x 10*? Mx, and that from
AISFM B in Figure 4(g) is 2.71 x 10** Mx. The TUMFs of the
ARs from our AISFMs are consistent with those of the real one,
and the distributions of the magnetic fields look like the
real one.

Figure 5 shows the temporal evolution of AR 11166, which
is shown in Figures 4(g)—(h). We track the AR for three solar
rotations at a Carrington rotation rate. We calculate the TUMF
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Figure 5. (a) A temporal variation of the TUMF in NOAA AR 11166 from 2011 February 1 to May 7. The green, red, and blue dots are TUMFs from SDO/HMI,
AISFM A, and AISFM B, respectively. (b)—(k) A series of magnetograms tracking the AR over three solar rotations. The magnetograms are converted from full disk
data to heliographic coordinated maps. The color map of the magnetic fields is the same as shown in Figures 4(g)—(j).

for each area including the AR when the HMI or AISFMs are
available, and the results are shown in Figure 5(a). We consider
the ARs within 60° from the disk center of the HMI or
AISFMs. One impressive thing is that the TUMFs from the
SDO/HMI and those from our AISFMs between solar frontside
and farside are smoothly overlapped, demonstrating that it is
possible to monitor the change in magnetic flux quantitatively
using our method. Figures 5(b)—(k) show magnetograms of the
tracked AR. Combining SDO/HMI magnetograms and
AISFMs makes it possible to continuously monitor the
evolution of the magnetic field distribution over the solar
surface.

Figure 6 shows the tracking of ARs over the solar surface
from 2012 December 7 to 2013 January 20. The ARs from
SDO/HMI and AISFM A and B are converted from full disk
data to heliographic coordinated maps. When the data are not
available, we replace them with the nearest available ones. The
position of STEREO A is about 130° heliographic longitude,
and that of STEREO B is about 230° heliographic longitude.
AISFM A and B show their consistent growth and decay.

Figure 7 shows comparisons between an SDO/HMI
magnetogram and two AISFMs of solar cycle 25. When the

solar cycle changes, all of the solar magnetic field patterns are
reversed (Hale & Nicholson 1925). On 2021 May 20, the
position of STEREO A is about 309° heliographic longitude
(Figure 7(b)). The magnetic field polarities of our AISFM A
(Figure 7(d)) are consistent with the ones of an SDO/HMI
magnetogram (Figure 7(e)), which is obtained at the frontside
after 4 days. As shown in Figure 7(c), AISFM 2.0 cannot
produce reasonable polarities that can be identified from HMI
magnetograms. It is noted that the AISFM 2.0 is generated
from the STEREO A EUYV observations (Figure 7(a)) without
reference information from the solar frontside. The polarity
distributions of AISFM 2.0 are similar to those of solar cycle
24. We mark NOAA AR 12824 with yellow dotted circles in
Figures 7(c)—-(e). The AR from the HMI magnetogram shows
leading positive and following negative polarities. Our AISFM
3.0 represents the polarity distributions of the AR well.
Figure 8 shows comparisons between mean polar field
strengths from the SDO/HMI magnetograms and those from
AISFMs A and B. The results from AISFM A and B are
presented at 5 day intervals. The polar fields computed from
our AISFMs 3.0 follow the trend of the polar field reversal
process shown by the computed results from the SDO/HMI.
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(An animation of this figure is available.)

We use mean radial fields of the HMI polar field data series,
hmi.meanpf_720s, which are provided from the JSOC. The
LOS magnetic fields are converted to radial fields, under the
assumption that the actual field vector is radial. The mean polar
field strength is calculated from the values within 445°
longitude and above 60° latitude (see Sun et al. 2015 for
details). We calculate mean polar fields of the AISFMs
according to their study, and our results are consistent with
their results.

One may ask the question, “How could one technique find
the magnetic polarity distribution from EUV images?” KPL19
showed that deep learning can generate solar farside magneto-
grams, with Hale-patterned ARs being well replicated from the
EUV 304 A images. The pixel values, i.e., intensities, of the
EUV images can give our model the distribution of magnetic
fields. Ugarte-Urra et al. (2015) showed that integrated 304 A
light curves can be used as a proxy for the TUMF of the AR.
Based on these results, several studieso tried to generate solar
magnetograms from the EUV 304 A images using deep
learning (Alshehhi 2020; Dani et al. 2022). J20 generated
more realistic magnetograms using the EUV 304, 193, and
171 A images. The EUV 193 and 171 A passbands, which
correspond to the corona and upper transition region,
respectively, are widely used for detection of coronal holes
(Garton et al. 2018; Linker et al. 2021). The distribution of
coronal holes is related to that of open flux regions, i.e.,
unipolar regions (Lowder et al. 2014). The multichannel EUV
images can give the model information about the distribution of
not only the ARs, but also the unipolar regions related to the

coronal holes. Here we use reference solar frontside magneto-
grams and EUV images to generate the farside magnetograms.
Hale et al. (1919) noted that most leading spots have opposite
polarities in opposite hemispheres. Hale’s law correctly
predicts polarities of the ARs about 90% of the time
(Li 2018). The reference data sets give our model overall
magnetic field polarity distributions including the polarities of
leading spots. Based on these arguments, our model success-
fully generates the farside magnetograms of solar cycles 24 and
25. However, it may not be exact when the magnetic fields of
the ARs do not follow Hale’s law. It is especially difficult to
predict the polarity distributions of rapidly emerging ARs,
which were not observed at the reference data sets. Our model
generates magnetograms based on a large amount of iterative
training to produce accurate magnetic field distributions from
the input data sets. If additional training data sets with different
distributions of magnetic field polarities, various shapes of
ARs, and appearances and disappearances of ARs are provided,
we expect our model to be able to predict more realistic
magnetograms.

5. Data Release

Here we first release the AISFMs at the KDC for SDO.> The
names of AISFMs 3.0 A and B recorded in the Al-generated
data base are aisfm_v3_stereo_a and aisfm_v3_stereo_b,
respectively. There are 7913 AISFMs A from 2011 January 1
to 2021 June 30, and 2890 AISFMs B from 2011 January 10 to

> hitp://sdo.kasi.re.kr


http://jsoc.stanford.edu/ajax/lookdata.html?ds=hmi.meanpf_720s
http://sdo.kasi.re.kr
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2014 September 27 with 6 hr cadence. When the model inputs
from the STEREO and the SDO have poor quality data, we do
not produce AISFMs. The number of AISFMs A for 2015 is
smaller than that for other years, because the contact with
STEREO A was interrupted as it passed behind the Sun.

The AISFMs 3.0 are saved in the flexible image transport
system (FITS) format (Pence et al. 2010). The data have
1024 x 1024 pixels, and the solar radius is fixed at 450 pixels.
The data outside the solar radius are filled with not-a-number
values like those of the SDO/HMI magnetograms. The data
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Table A1
Ephemeris Keywords for the AISFMs

Keyword Description Format or Unit
INPUTDAT Observer of the model input data STEREO_A (or _B)
DATE-OBS Mean date and time of STEREO observations universal Time

CTYPE1, CTYPE2
HGLN_OBS, HGLT_OBS
CRLN_OBS, CRLT_OBS
RSUN_OBS, RSUN

RSUN_REF Reference radius of the Sun
R_SUN Pixel size of the solar radius
DSUN_OBS
DSUN_REF

Helioprojective (Cartesian) system

Stonyhurst heliographic longitude and latitude of STEREO
Carrington heliographic longitude and latitude of STEREO
Observed radius of the Sun in arcseconds

Distance between the center of the Sun and STEREO
Average distance from the Sun to Earth (1 au)

arcseconds
degrees
degrees
arcseconds
meters
pixels
meters
meters

inside the solar radius represent magnetic fields along the LOS
to STEREO A or B. The coordinate information of STEREO is
stored in the FITS header keywords (see more details in the
Appendix). We also provide example codes to understand the
AISFMs at https: / /github.com /JeongHyunJin/ AISFM3.0, and
the codes are archived on Zenodo (Jeong 2022).

6. Summary and Conclusion

In this study we have generated improved solar farside
magnetograms by the STEREO and SDO data sets using a
deep-learning model. For this work, we have improved our
model including the CC-based objectives and used model
inputs on the farside STEREO EUV observations together with
the frontside SDO data pairs. We selected 6437 pairs of input
and target data sets from 2011 January 1 to 2021 June 30 for
the model training. Targets for the training are SDO/HMI
magnetograms. Inputs for the training consist of the EUV
images, and the pairs of EUV images and magnetograms
obtained 27.3 days prior. We have evaluated the model using
test data sets not used for training.

The main results of this study are as follows. First, we
improved the Al-generated magnetograms. The average pixel-
to-pixel CCs between the SDO/HMI magnetograms and our
Al-generated ones after 8 x 8 binning are 0.88, 0.91, and 0.70
for the full disk, ARs, and QRs, respectively, which are
noticeably better than the previous results. We obtained good
agreement between the TUMFs calculated from the SDO/HMI
magnetograms and those calculated from the Al-generated
ones, as well as the NMFs calculated from the HMI data and
those calculated from the Al-generated ones. Second, we
generate more realistic solar farside magnetograms using the
STEREO EUV images and the frontside data pairs by the
model. We compare the magnetic fields of ARs from the
AISFMs and HMI when the positions of STEREO A and B are
near the west and east limb of the solar frontside, respectively.
Together with the AISFMs and HMI, we can continuously
monitor the temporal evolution of the TUMF of an AR over
three solar rotations. Third, our model can generate AISFMs of
solar cycles 24 and 25, in which data have consistent magnetic
field polarities with those of nearby frontside ones. We show
that the temporal variation of the mean polar fields calculated
from the AISFMs well represents the Sun’s magnetic field
reversal process.

Our method has several advantages over the conventional
methods. First, our AISFMs can improve studies using solar
magnetic flux distributions. We can track the ARs and study
their flux evolution at the solar surface using the AISFMs
together with the frontside magnetograms, as shown in Figure 5

10

(also see KPL19). Second, we can improve global coronal
magnetic field extrapolation from the synchronic maps with our
AISFMs. In J20, we showed that global extrapolations from the
synchronic maps with AISFMs were more consistent with EUV
observations than those from conventional data in view of the
ARs and coronal holes. Third, we expect that our AISFMs
provide better input data for heliospheric solar wind propaga-
tion models such as WSA-ENLIL (Arge & Pizzo 2000) and
EUHFORIA (Pomoell & Poedts 2018). We also acknowledge
that our method has a couple of limitations. First, physical
quantities based on the pixel-to-pixel distribution of magnetic
fields (e.g., neutral line) may not be exact. Second, small-scale
magnetic field configurations, such as magnetic cancellation
features, may not be well produced.

This study used a large amount of STEREO and SDO data.
We appreciate numerous team members who have contributed
to the success of the STEREO and SDO missions. We
acknowledge the community efforts devoted to the develop-
ment of the open-source packages that were used for this work.
This work was supported by the Korea Astronomy and Space
Science Institute (KASI) under the R&D program (project Nos.
2022-1-850-05 and 2022-1-850-08) supervised by the Ministry
of Science and ICT, and the Basic Science Research Program
through the NRF funded by the Ministry of Education (NRF-
2020R1C1C1003892, NRF-2021R111A1A01049615).

Software: PyTorch (Paszke et al. 2019), NumPy (Harris et al.
2020), Matplotlib (Hunter 2007), SciPy (Virtanen et al. 2020),
Astropy (Robitaille et al. 2013; Price-Whelan et al. 2018),
SunPy (The SunPy Community et al. 2020).

Appendix
FITS Header Keywords

AISFMs are stored in FITS files, each with a keyword header
containing the information on the data. The keywords follow
World Coordinate System conventions for describing the
physical coordinate values of the data pixels (Greisen &
Calabretta 2002), and several ephemeris keywords are provided
in Table Al. Since our data are generated by a deep-learning
model, not an observational one, we store the keyword name
not in OBSERVTRY (observatory) but in INPUTDAT (input
data). The AISFMs are generated based on the features from
three EUV images of STEREO A (or B). Thus, we record the
mean date and time of the three EUV observations in the
DATE-OBS keyword. More detailed information on the model
inputs is stored in the HISTORY keyword.


https://github.com/JeongHyunJin/AISFM3.0
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