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Abstract

Several generalizations of the well-known fluid model of Braginskii (1965) are considered. We use the Landau
collisional operator and the moment method of Grad. We focus on the 21-moment model that is analogous to the
Braginskii model, and we also consider a 22-moment model. Both models are formulated for general
multispecies plasmas with arbitrary masses and temperatures, where all of the fluid moments are described by
their evolution equations. The 21-moment model contains two “heat flux vectors” (third- and fifth-order
moments) and two “viscosity tensors” (second- and fourth-order moments). The Braginskii model is then
obtained as a particular case of a one ion–electron plasma with similar temperatures, with decoupled heat fluxes
and viscosity tensors expressed in a quasistatic approximation. We provide all of the numerical values of the
Braginskii model in a fully analytic form (together with the fourth- and fifth-order moments). For multispecies
plasmas, the model makes the calculation of the transport coefficients straightforward. Formulation in fluid
moments (instead of Hermite moments) is also suitable for implementation into existing numerical codes. It is
emphasized that it is the quasistatic approximation that makes some Braginskii coefficients divergent in a
weakly collisional regime. Importantly, we show that the heat fluxes and viscosity tensors are coupled even in
the linear approximation, and that the fully contracted (scalar) perturbations of the fourth-order moment,
which are accounted for in the 22-moment model, modify the energy exchange rates. We also provide
several appendices, which can be useful as a guide for deriving the Braginskii model with the moment method
of Grad.

Unified Astronomy Thesaurus concepts: Collision processes (2065); Plasma physics (2089); Space plasmas (1544)

1. Introduction

The fluid model of Braginskii (1958, 1965) represents a cornerstone of plasma transport theory, and it is used in many different
areas, from solar physics to laboratory plasmas. The Braginskii model and its generalizations can be derived through two major
classical routes: (1) Chapman–Enskog expansions (Chapman & Cowling 1939) and (2) the moment method of Grad
(1949a, 1949b, 1958). There also exists a more modern route, with the projection operator (Krommes 2018a, 2018b). Both
classical routes were originally developed for gases, where the full Boltzmann collisional operator has to be used. As was shown by
Landau (1936, 1937), for charged particles interacting through Coulomb collisions, the Boltzmann operator can be partially
simplified, and this collisional operator is known as the Landau operator. It is now well established that for Coulomb collisions both
the Landau and Boltzmann operators yield the same results, if in the Boltzmann operator one introduces integration cutoffs that
remove the divergences in the same way as the Coulomb logarithm does. With the Landau operator, the Boltzmann equation is then
typically called the Landau equation. By introducing Rosenbluth potentials, the Landau operator can be rewritten into a general
Fokker–Planck form, and the name Fokker–Planck equation is often used as well. Nevertheless, many authors use the Boltzmann
operator during calculations even when Coulomb collisions are considered, because the simplification is not exceedingly large.
Braginskii used the Landau operator. Of course, both routes, through both Chapman–Enskog expansions and the moment method of
Grad, have subvariations as to how the methods are implemented that have been developed over the years. For the Chapman–Enskog
method, where the distribution function is expanded in Laguerre–Sonine polynomials, see, for example, Braginskii (1958), Hinton
(1983), Helander & Sigmar (2002), and Kunz (2021).

Here we use the moment method of Grad, which consists of expanding the distribution function in tensorial Hermite
polynomials. Concerning only viscosity tensors and heat fluxes (and neglecting fully contracted scalar perturbations and higher-
order tensorial “anisotropies,” as Balescu (1988) calls them), the method of Grad consists of approximating the distribution
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where fa
0( ) is Maxwellian, “a” is the species index, the indices i and j run from 1 to 3, H are Hermite polynomials, and h are

Hermite moments. Matrices hij
n2( ) are traceless and can be viewed as viscosity tensors (stress tensors), and vectors hi

n2 1+( ) can be
viewed as heat fluxes. The series is cut at some chosen N, and this distribution function is then used in the Landau (or Boltzmann)
equation, which is integrated to obtain a corresponding fluid model. The usual quasistatic approximation does not have to be
applied, and one obtains evolution equations for all of the considered moments. For example, prescribing a strict Maxwellian with
perturbation χa= 0 (or, equivalently, N= 0) represents the 5-moment model, with evolution equations for density, fluid velocity,
and scalar pressure (temperature), where stress tensors and heat fluxes are zero. Prescribing N= 1 represents the 13-moment
model, which contains an evolution equation for one traceless viscosity tensor (five independent components) and an evolution
equation for one heat flux vector (three independent components). This model thus contains the main ingredients of the model of
Braginskii, i.e., the usual viscosity tensor and the usual heat flux vector are present. However, prescribing a quasistatic
approximation yields, for example, the coefficient of the parallel electron heat conductivity (for a one-ion electron plasma with ion
charge Zi= 1) with a value of 1.34 instead of the Braginskii value of 3.16, meaning the model is not sufficiently precise.
Prescribing N= 2 represents a 21-moment model, and this model can be viewed as containing evolution equations for two
viscosity tensors and two heat flux vectors. It can be shown that expressing the viscosity tensors and heat fluxes in a quasistatic
approximation yields a model that is equivalent to Braginskii (1965). In fact, as pointed out by Balescu (1988), for example, the
Hermite polynomials are directly related to the Laguerre–Sonine polynomials (see Equation (192)), and thus the Chapman–
Enskog method and the moment method of Grad have to yield equivalent results at the end. In general, if both heat fluxes and
viscosities are accounted for, an N-Laguerre model therefore represents a (5+ 8N)-moment model. For a summary of the various
possible models, see Section 8.4 with Tables 1 and 2.

Of course, the model of Braginskii can be generalized in many different ways. Naturally, one might focus on the case of the one-
ion electron plasma considered by Braginskii, and increase the order of N to study the convergence of transport coefficients with
higher-order Laguerre (Hermite) schemes. Several studies of this kind have been done in the past (some being numerically imprecise,
some considering only unmagnetized plasmas, and some only having an ion charge of Zi= 1). For example, before Braginskii,
Landshoff (1949, 1951) calculated several transport coefficients with models from N= 1 to N= 4. Kaneko (1960) improved the
numerical accuracy of Landshoff and also considered N= 5. Kaneko & Taguchi (1978) and Kaneko & Yamao (1980) performed
large calculations up to N= 49. Perhaps the most comprehensive study to date was done by Ji & Held (2013), who studied the
convergence of all of the transport coefficients up to N= 160. Other useful references can be found in Epperlein & Haines (1986).
These last two studies emphasize that while the transport coefficients parallel to the magnetic field (or for unmagnetized plasma)
converge rapidly for N� 2, this is not the case for some of the perpendicular transport coefficients. For clarity, in the famous work of
Spitzer & Härm (1953), and the previous work of Cohen et al. (1950), where only unmagnetized plasma was considered and
viscosity tensors were neglected, the perturbation χa, which satisfies the Landau equation, was found numerically, and the model thus
technically corresponds to N=∞ . Their work was criticized (even though a bit unfairly) in the monograph of Balescu (1988, Part 1,
p. 266), who calculated all of the usual transport coefficients with the moment method of Grad for the N= 2 and N= 3 cases (i.e., the
21-moment model and the 29-moment model). Note that the 3-Laguerre calculations of Balescu (1988) were shown to be incorrect
by Ji & Held (2013), who were able to trace the problem to his analytic collisional matrices (they have also corrected the coefficients
in the collisional matrices of Braginskii 1958, which were fortunately not used in his N= 2 calculation). That there is a problem with
the N= 3 transport coefficients of Balescu (1988) can be also seen by a comparison with Kaneko (1960), for example. Here we focus
on the 2-Laguerre approximation used by Braginskii (1965), i.e., the 21-moment model, with the goal of extracting more physical
information from that scheme.

For the 5-moment model and the 13-moment model, the method of Grad was explored in great detail by Burgers (1969) and
Schunk (1975, 1977, and references therein). The Boltzmann operator was used and several interaction potentials were considered,
such as collisions between neutral particles (hard-sphere interaction), between charges (Coulomb interaction), or an induced dipole
interaction when an ion polarizes a colliding neutral (so-called Maxwell molecule interaction). These models have two important
properties that the Braginskii model does not have: (1) because the formulation uses evolution equations for stress tensors and heat
fluxes, rather than quasistatic approximation, these models do not become divergent if a regime of low collisionality is encountered;
and (2) the formulation is a general multifluid description with arbitrary masses ma, mb and temperatures Ta, Tb. Note that the review
paper of Braginskii (1965) also contains Section 7, about multicomponent plasmas, which is often implicitly cited in the solar
literature; but this section should be viewed as heuristic from a perspective that no heat fluxes or stress tensors were calculated. In
plasma physics, the work of Braginskii (1958, 1965) is celebrated for his results for a one ion–electron plasma. Here we use the
Landau operator and consider only Coulomb collisions. Nevertheless, we will employ the 21-moment model, and we thus improve
the precision of the 13-moment model of Burgers (1969)–Schunk (1977) for this interaction potential, so that the precision matches
Braginskii. We will use the restriction that the relative drift velocity between two colliding species must be small in comparison to
their thermal speeds. The same restriction applies for the Braginskii model, for the Burgers–Schunk 13-moment model (the exception
is Maxwell molecule interaction), and for higher-order schemes. For Coulomb collisions and hard-sphere collisions, only the simplest
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5-moment model has been fully calculated analytically without this restriction (Tanenbaum 1967; Burgers 1969; Schunk 1977),
yielding the runaway effect.

Several multifluid descriptions with the level of precision of Braginskii have been considered in the past: see, for example,
Hinton (1983), Zhdanov (2002; originally published in 1982), Ji & Held (2006; who actually consider general N), and Simakov &
Molvig (2014, 2016a, 2016b); or, for the case of neoclassical theory (toroidal geometry applicable to tokamaks), see Hirshman &
Sigmar (1977, 1981). Our model seems to be very close to the model of Zhdanov (2002), Chapter 8.1, who indeed uses the
method of Grad and calculates the 21-moment model with it. We did not verify full equivalence because of his puzzling notation.
Even if equivalence is eventually shown for the case of small temperature differences between ions, we consider a more general
case where the temperatures of all the species are arbitrary. Our clear formulation with fluid moments (instead of Hermite
moments) might also be easier to implement into existing numerical codes. Arbitrary temperatures were also considered by Ji &
Held (2006), but we did not verify equivalence with their model either. We only verified equivalence with their model for the
special case of a one ion–electron plasma with small temperature differences of Braginskii, by using the collisional matrices from
Ji & Held (2013).

Additionally, for all of the considered moments, we provide the left-hand sides of our evolution equations in a fully nonlinear
form, which is important for direct numerical simulations, and which are not typically given. An important difference then arises even
at the linear level, because calculations are typically performed with decoupled viscosity tensors and heat fluxes, meaning that the
two viscosity tensors interact only with each other, and the two heat fluxes interact only with each other. We consider coupling
between heat fluxes and stress tensors, where (even at the linear level in a quasistatic approximation) a heat flux enters a stress tensor
and a stress tensor enters a heat flux. Such couplings are often considered in the collisionless regime: see, e.g., Macmahon (1965),
Mikhailovskii & Smolyakov (1985), Goswami et al. (2005), Ramos (2005), Passot et al. (2012), and Hunana et al. (2019a, 2019b),
where the effect is important for the perpendicular fast mode, for example, or for the growth rate of the firehose instability (see, e.g.,
Figure 10 in Hunana et al. 2019b). The coupling might also be important in the highly collisional regime if sufficiently high
frequencies (or short wavelengths) are considered. The coupling was neglected by Braginskii (1958, 1965), Spitzer & Härm (1953),
and Spitzer (1962); and, as an example, we consider an unmagnetized one ion–electron plasma in detail, and we provide stress
tensors and heat fluxes where this coupling is taken into account.

The coupling between viscosity tensors and heat fluxes then inevitably leads to the next step, replacing Equation (1) with

f f h H h H h H1 ; , 2a a a a
n
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where the scalar hermite moments h(2 n) can be viewed as fully contracted (scalar) perturbations of fluid moments. The lowest-order
moment h(2)= 0 and all of the higher-order ones are generally nonzero. Thus, prescribing N= 1 still yields the 13-moment model,
but prescribing N= 2 now yields the 22-moment model. This model is a natural extension of the Braginskii model, because it takes

into account the fully contracted perturbations cX m f f d va a a a a

4 4 0 3ò= -
~ ∣ ∣ ( )

( ) ( ) of the fourth-order fluid moment. Accounting for the
scalar perturbations according to (2), for N� 1 an N-Laguerre model then represents a (4+ 9N)-moment model. Another possibility
for writing Equation (2) is to separate the matrices h Hn

N
ij

n
ij

n
1

2 2å =
( ) ( ), and to write the sum for the vectors and scalars from n= 0, with

an imposed requirement that h(0)= 0, h(2)= 0, and h 0i
1 =( ) (where the first one is nontrivial). This is the choice of Balescu (1988, p.

174), for example, in his Equations (3.11) and (3.16).
Finally, the main purpose of this work is to make the moment method of Grad and the exciting work of Braginskii more

understandable, as reflected in our relatively lengthy appendix.
The entire paper is separated into eight sections and 14 appendices. The main paper summarizes the obtained results, while the

appendices provide the detailed calculations.
In Section 2, we formulate the entire 21-moment model. We start with a formulation valid for a general collisional operator C( fa),

where both the left-hand sides and the collisional right-hand sides of the evolution equations are given in a fully nonlinear form. We
then provide the collisional contributions for arbitrary masses and temperatures calculated with the Landau operator. The collisional
contributions are calculated in the usual semilinear approximation, where the relative drifts between species are small in comparison
to their thermal speeds (i.e., the runaway effect is not considered), and the product of fafb is approximated as
f f f f 1a b a b a b

0 0 c c= + +( )( ) ( ) , where the “cross” contributions χaχb are neglected. We then provide a simplified model where
the differences in the temperatures between species are small. For clarity, we also reduce our model to the 13-moment model, and we
provide a formulation that is more compact than the one given by Burgers (1969)–Schunk (1977) (because we only consider
Coulomb collisions). We then simplify the evolution equations of our 21-moment model into a semilinear approximation where
viscosity tensors and heat fluxes are decoupled, and these are used in Sections 3 and 4.

In Section 3, we compare our model to Braginskii (1965) by considering a one ion–electron plasma with similar temperatures, i.e.,
where the temperature differences between species are small with respect to their mean values. We provide all of the transport
coefficients in a fully analytic form, and we verify the entire Table II of Braginskii (1965; two of his coefficients are not precise).
Parallel electron coefficients (or, equivalently, for an unmagnetized plasma) can also be found in Simakov & Molvig (2014). We also
provide analytic results for the viscosity of the fourth-order fluid moment and the heat flux of the fifth-order fluid moment, which are
not typically given.

In Section 4, we use the idea of Hinton (1983), Zhdanov (2002), and Simakov & Molvig (2014), for example, that because of the
smallness of the electron/ion mass ratios, the electron coefficients of Braginskii can be straightforwardly generalized to multiple ion
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species, by introducing an effective ion charge and effective ion velocity. All of the electron analytic coefficients that are given in
Section 3 are thus generalized to multi-ion species with a simple transformation.

In Section 5, we discuss the coupling between viscosity tensors and heat fluxes. We provide evolution equations in the semilinear
approximation, where this coupling is retained, and we introduce a technique for splitting the moments into their first and second
orders.

In Section 6, we consider an example of an unmagnetized one ion–electron plasma and explicitly calculate the coupling of stress
tensors and heat fluxes. All of the results are given in a fully analytic form, as well as with numerical values for the ion charge Zi= 1.

In Section 7, we first formulate the fully nonlinear 22-moment model for a general collisional operator. We then provide the
multifluid collisional contributions calculated with the Landau operator in the semilinear approximation, and we show that the
perturbations X

4~( )
modify the energy exchange rates. We also provide quasistatic solutions for a one ion–electron plasma, and we

show that the perturbations X
4~( )
have their own heat conductivities.

In Section 8, we discuss various topics. (1) We discuss energy conservation. (2) We clarify that from a multifluid perspective, the
Braginskii choice of ion collisional time τi should be interpreted as τi= τii, and not as 2i iit t= . (3) To clarify the higher-order
schemes, and to double-check our evolution equations, we calculate the fluid hierarchy for a general N, with an unspecified
collisional operator. (4) We discuss irreducible and reducible Hermite polynomials and show that both yield the same results. (5) We
provide fully nonlinear Rosenbluth potentials for the 22-moment model, which might be useful in further studies of the runaway
effect with this scheme. (6) We discuss Hermite closures and their relation to fluid closures, which are required to close the fluid
hierarchy. We also correct our previous erroneous interpretation that Landau fluid closures are necessary to go beyond the fourth-
order moment. (7) We discuss the inclusion of gravity. (8) We use our multifluid formulation to double-check the precision of the
me/mi expansions. We consider unmagnetized proton–electron plasma and calculate the transport coefficients exactly, without using
the smallness of me/mi. (9) We discuss the limitations of our approach. (10) We provide conclusions, with examples of where our
model might be useful.

Appendix A introduces the general concept of tensorial fluid moments and provides an evolution equation for an nth-order fluid
moment Xa

n¯̄ ( )
in the presence of a general (unspecified) collisional operator, Equation (A12). This evolution equation also remains

valid in the presence of gravity; see the discussion in Section 8.7.
Appendix B introduces the tensorial Hermite polynomials of Grad (1949a, 1949b, 1958) and discusses in detail the construction of

the perturbations around the Maxwellian distribution function, i.e., Equations (1) and (2), which are summarized in Tables 1 and 2.
The construction of Hermite closures is addressed as well.

Appendix C derives the evolution equations for the 22-moment model (for an unspecified collisional operator) by applying
contractions at the evolution equations from Appendix A and by using the decompositions of moments and Hermite closures from
Appendix B.

Appendix D uses a different technique and, instead of applying contractions at the equations of Appendix A, a simplified fluid
hierarchy of a general nth-order is obtained directly, which only consists of evolution equations for scalars, vectors, and matrices. The
evaluation of these equations for a specific “n” recovers the 22-moment equations of Appendix C.

Appendix E introduces the BGK (relaxation-type) collisional operator of Bhatnagar et al. (1954) and Gross & Krook (1956),
which greatly clarifies the analytic forms of the Braginskii viscosity tensors and heat fluxes. The viscosities and heat
conductivities of both models are directly compared in Figures 3–5. The nonlinear solution for the viscosity tensor (with respect
to a general direction of the magnetic field b̂) is addressed in Appendix E.4, and Appendix E.6 clarifies the ambipolar diffusion
between two ion species.

Appendix F introduces a general (unspecified) Fokker–Planck collisional operator with its dynamical friction vector Aab and
diffusion tensor Dab¯̄ . General relations for the collisional integrals (of nth order) are provided, which can be used once the Aab and Dab¯̄
are specified.

Appendix G introduces the Landau collisional operator, where the Aab and Dab¯̄ are expressed in the usual form through the
Rosenbluth potentials. The 5-moment model (strict Maxwellians) is then considered, and the usual collisional momentum exchange
rates Rab and energy exchange rates Qab, with the assumption of small drifts between species, are derived in detail in Appendices G.1
and G.2. Both contributions are then recalculated with unrestricted drifts in Appendix G.3, where instead of the Rosenbluth
potentials, the “center-of-mass” transformation typically used with the Boltzmann collisional operator has to be used, because the
collisional integrals seem to be too complicated to calculate directly. This is further discussed in Appendix G.4.

Appendix H considers the 8-moment model, where the simplest heat flux is present, and the multifluid model of Burgers (1969)–
Schunk (1977) is calculated in detail. For a direct comparison with Braginskii, a one ion–electron plasma is then considered, and
quasistatic heat fluxes, together with the resulting momentum exchange rates, are obtained as well. It is shown that in the limit of a
strong magnetic field, the perpendicular and cross conductivities κ⊥ and κ× match the Braginskii model exactly (for both the ion and
electron species), and only the parallel conductivities κ∥ are different.

Appendix I compares the parallel heat fluxes and momentum exchange rates of Braginskii (1965) with the models of Burgers
(1969)–Schunk (1977), Killie et al. (2004), Landshoff (1949, 1951), and Spitzer & Härm (1953); see Tables 8–12. Useful
conversion relations for the results of Kaneko (1960) and Balescu (1988) are provided as well. The notation of Spitzer & Härm
(1953) is clarified in Appendix I.1, and it is shown that their model, as well as the model of Killie et al. (2004), break the Onsager
symmetry.

Appendix J calculates in detail the 10-moment multifluid model of Burgers (1969)–Schunk (1977), where the simplest
viscosity tensor is present. It is shown that in the limit of a strong magnetic field, the perpendicular viscosities and gyroviscosities
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η1, η2, η3, η4 match the Braginskii model exactly (for both the ion and electron species), and only the parallel viscosities η0 are
different.

Appendix K calculates in detail the momentum exchange rates and collisional contributions for the heat fluxes in our 21- and 22-
moment multifluid models. The calculations are shown for the 11-moment model, where only the heat fluxes are present (and
viscosities and scalar perturbation are absent), because in the semilinear approximation the calculations can be split. Similarly, the
collisional contributions for viscosity tensors are calculated in Appendix L, and the contributions for the scalar perturbation of the
fourth-order moment are calculated in Appendix M.

Appendix N uses our 21-moment model and calculates the heat conductivities and viscosities for two examples of an
unmagnetized plasma consisting of two ion species (collisions with electrons are neglected). The first example (Appendix N.1) is a
plasma consisting of protons and alpha particles (fully ionized Helium), typical in astrophysical applications. The second example
(Appendix N.3) is a deuterium–tritium plasma used in plasma fusion.

2. Multifluid Generalization of Braginskii (21-moment Model)

Our model is formulated with heat flux vectors

X c c q X c cm f d v m f d v2 ; , 3a a a a a a a a a a a
3 2 3 5 4 3ò ò= = =∣ ∣ ∣ ∣ ( )( ) ( )

and traceless viscosity tensors

c c
I

c c c
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3
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where the fluctuating velocity ca= v− ua and “a” is the species index. We are using free wording because Xa
5( ) is not really a heat

flux and a
4

P̄̄
( )

is not really a viscosity tensor. Also, we use the wording “viscosity tensor” and “stress tensor” interchangeably
throughout the entire text. The species indices are moved freely up and down. We also define the usual rate-of-strain tensor
W u I u2 3a a

S
a=  - ¯̄ ( ) ( ) ¯̄ · , symmetric operator A A Aij

S
ij ji= + , and gravitational acceleration G. All other definitions are

addressed in Appendix A. We note that the definition of the heat flux in Equation (1.21) of Braginskii (1965) contains two well-
known misprints, with prime symbols missing on his fluctuating velocities v¢. The heat flux is defined correctly in
Braginskii (1958).

We first present a formulation with a general (unspecified) collisional operator C( fa). We define the (tensorial) collisional
contributions

R v c

Q c c Q c c c

Q c c c c Q c c c c c

m C f d v Q
m

C f d v

m C f d v m C f d v

m C f d v m C f d v

;
2

;

; ;

; , 5

a a a a
a

a a

a a a a a a a a a a a

a a a a a a a a a a a a a a a

3 2 3

2 3 3 3

4 3 5 3

ò ò
ò ò
ò ò

= =

= =

= =

( ) ∣ ∣ ( )

¯̄ ( ) ¯̄ ( )

¯̄ ( ) ¯̄ ( ) ( )

( ) ( )

( ) ( )

where Ra are the usual momentum exchange rates and Qa are the usual energy exchange rates. Then, it can be shown that the
integration of the Boltzmann equation yields the following nonlinear 21-moment model (see the details in Appendix C), where the
basic evolution equations read

u
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and are accompanied by evolution equations for the stress tensors and heat flux vectors:
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The last equation is closed with a fluid closure (derived from a Hermite closure):
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The system above thus represents a generalized model of Braginskii (1965), where the evolution equations for all of the moments are
fully nonlinear and valid for a general collisional operator C( fa). It is a 21-moment model (1 density, 3 velocity, and 1 scalar
pressure; 3 for each heat flux vector and 5 for each viscosity tensor).

2.1. Collisional Contributions (Arbitrary Masses and Temperatures)

We use the Landau collisional operator. All of the collisional contributions are evaluated in a semilinear approximation, with an
assumption that the differences in the drift velocities ub− ua are small with respect to thermal velocities. All of the nonlinear
quantities, such as qa · (ub− ua), including |ub− ua|

2, are thus neglected in the multifluid description, which is consistent with
models of Burgers (1969) and Schunk (1977). For energy conservation and a particular case of a one ion–electron plasma, see
Section 8.1. The wording “semilinear” just means that expressions containing pressures and densities, such as (pa/ρa)qa, are retained
and not fully linearized with their mean pressure/density values. However, for example, the last terms of the collisional contributions

in Equations (10)–(12) proportional to Raqa, Ra a
2

P· ¯̄ ( )
, and Ra a

4
P· ¯̄ ( )

are neglected in the semilinear approximation.
We introduce the usual reduced mass and reduced temperature
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together with the collisional frequency (178). The momentum exchange rates are given by
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with coefficients that include both masses and temperatures, but which we simply call “mass-ratio coefficients”:
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These and the other mass-ratio coefficients given below come from the Landau collisional operator introduced in Appendices F and
G, where one uses perturbed distribution functions of the 21-moment model; see Section 8.4 and Appendix B, with the calculations
of the collisional integrals in Appendices K and L. The energy exchange rates are given by

Q
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m m
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where |ub− ua|
2 are neglected, as discussed above. The heat flux exchange rates are given by
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The fifth-order-moment exchange rates are given by
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The exchange rates for the usual stress tensor are given by
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Finally, the fourth-order stress tensor exchange rates are given by
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The entire system is now fully specified, and it represents a multifluid generalization of the model of Braginskii (1965). Coupled with
Maxwellʼs equations, it can be used in multifluid numerical simulations. Importantly, when the collisional frequencies become small,
the right-hand sides of the evolution equations just become small and no coefficients become divergent, which is in contrast to the
model of Braginskii, where the quasistatic approximation is used for the stress tensors and heat fluxes. For a detailed discussion of the
limitations of our model in a regime of low collisionality, see Section 8.9. The model of Braginskii is obtained as a particular case of
a one ion–electron plasma with similar temperatures, in a quasistatic and quasilinear approximation for the viscosity tensors and heat
fluxes, where, additionally, the coupling between the viscosity tensors and heat fluxes is neglected.

2.2. Collisional Contributions for Small Temperature Differences

In many instances, it might be satisfactory to consider a situation where the temperature differences between species are small. The
mass-ratio coefficients (16) then become
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the mass-ratio coefficients (19) simplify into

D
m m m m m m

m m

D
m m m

m m

E
m m m m m

m m

E
m m

m m
U

m

m m

3 86 5 77 10 19 4
;

279 20 27 10
;

9 20 6 35 69 560
;

45 112
;

3

2
, 27

ab
a a b a b b

a b

ab
a b b

a b

ab
a b a b b

a b

ab
a b

a b
ab

b

a b

1

3 2 2 3

3

2

2 3

3

1

2 2 3

3

2

2

3 1

=
+ + +

+

=
+

+

=
+ +

+

=
+

=
+

ˆ ( ) ( ) ( )
( )

ˆ ( ) ( )
( )

ˆ ( ) ( ) ( )
( )

ˆ ( )
( )

ˆ
( )

( )

( )

( )

( )

( ) ( )

the mass-ratio coefficients (21) become
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the mass-ratio coefficients (23) become

K
m m m m

m m m
K

m m

m m

L
m m m

m m m
L

m

m m

10 37 15

5
;

4 4

5
;

3 7 3

35
;

12

35
, 29

ab
a a b b

a b a
ab

a b

b a

ab
a b b

a b a
ab

a

a b

1

2 2

2

1 2

=
+ +

+
=

+
+

=
+

+
=

+

ˆ
( )

ˆ ( )
( )

( )
( ) ( )

( )

( ) ( )

( ) ( )

and the mass-ratio coefficients (25) simplify into
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2.3. Reduction to the 13-moment Model
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our 21-moment model simplifies into the 13-moment model, given by the collisional contributions
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with the mass-ratio coefficients

*

*

* *
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where Uab 1
ˆ ( ) is unchanged from the 21-moment model. It can be shown that for Coulomb collisions, this model is equivalent to

Equations (44)–(49) of Schunk (1977), first calculated by Burgers (1969). For small temperature differences, the mass-ratio
coefficients become

* *

* *
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Our new 21-moment model can thus be viewed as a generalization of the multifluid description of Burgers (1969) and Schunk
(1977), where the heat fluxes and stress tensors are described more accurately, and with the same level of precision as in Braginskii
(1965). Nevertheless, we only use the Landau collisional operator applicable for Coulomb collisions, whereas Burgers–Schunk use
the more general Boltzmann collisional operator and account for several different interaction potentials.

2.4. Semilinear Approximation (Decoupled Stress Tensors and Heat Fluxes)

Here we consider the 21-moment model with evolution Equations (9)–(12) in the semilinear approximation, where additionally
viscosity tensors and heat fluxes are decoupled. It will be shown later that the contributions introduced by the coupling are smaller by
a factor of 1/νaa. Within the semilinear approximation, we also assume that there are no large-scale gradients of considered fluid
moments. For example, the decoupling removes the last terms on the left-hand sides of Equations (10), (11), and (12) proportional to
(∇pa)qa, pa a

2
P( ) · ¯̄ ( )

and pa a
4

P( ) · ¯̄ ( )
. We also neglect these terms within the semilinear approximation when the coupling is

considered (see Sections 5 and 6). In the presence of large-scale gradients in pressure/temperature, these terms might become
significant, together with many other terms that are neglected in the semilinear approximation. The evolution equations for the heat
flux vectors simplify into

q b q Q
d

dt
p
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2
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a a a a
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X b X Q
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5 5
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r r
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and the evolution equations for the viscosity tensors become

b W Q
d

dt
p ; 37a

a a a
S

a a a

2 2 2
P P+ W ´ + = ¢¯̄ ( ˆ ¯̄ ) ¯̄ ¯̄ ( )( ) ( ) ( )

b W Q
d

dt

p
7 . 38a

a a a
S a

a
a a

4 4
2

4

r
P P+ W ´ + = ¢¯̄ ( ˆ ¯̄ ) ¯̄ ¯̄ ( )( ) ( ) ( )

The above system will be used to recover the transport coefficients of Braginskii (1965). In some instances, it might actually be
advantageous to suppress the nonlinearities in numerical simulations, and to perform multifluid simulations with the system (35)–
(38) instead of the system (9)–(12).
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3. One Ion–Electron Plasma

3.1. Ion Heat Flux qa of Braginskii (Self-collisions)

Here we consider a one ion–electron plasma of similar temperatures, which is the choice of Braginskii (1965). For the ion heat
flux, Braginskii neglects ion–electron collisions. Considering only self-collisions, the evolution equations for ion heat fluxes read
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dt
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⎠
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Neglecting the evolution Equation (40), and prescribing closure (31), which neglects the second term on the right-hand side of (39),
yields the ion heat flux model of Burgers–Schunk, with the well-known −4/5 constant. However, now the equations read:

q b q q X

X b X q X

d

dt
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Prescribing the quasistatic approximation (by canceling the da/dt) yields an analytic solution (see, for example, the general vector
Equation (E23) with solution (E24))

q bT T T , 42a
a

a
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a
a

ak k k= -  -  + ´ ^ ^ ´  ˆ ( )

and thermal conductivities
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where x=Ωa/νaa. Alternatively, by using numerical values,
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which recovers the ion heat flux of Braginskii (1965), his Equation (4.40). We use the Braginskii notation with vectors bb =  ˆ ˆ ·
and I b b =  = - ´ ´ ^ ^̄̄ · ˆ ˆ .

3.2. Ion Heat Flux Xa
5( ) (Self-collisions)

The solution for the vector Xa
5( ) has a similar form:

X b
p

T T T , 45a
a

a

a
a

a
a

a
a

5 5 5 5

r
k k k= -  -  + ´ ^ ^ ´ [ ˆ ] ( )( ) ( ) ( ) ( )
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with “thermal conductivities”
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3.3. Electron Heat Flux qe of Braginskii

Considering a one ion–electron plasma with similar temperatures, and keeping only the dominant term in an me/mi expansion, the
mass-ratio coefficients (26), (27), and (28) simplify into
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and the collisional exchange rates become
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where δu= ue− ui, and enter the right-hand sides of the electron momentum equation and the evolution equations for the electron
heat flux vectors
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In Braginskii (1965), the results are expressed through the collisional frequency νei, and conversion with Z 2ee ei in n= ( ) yields
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In a quasistatic approximation, the solution of (51), (52) recovers the famous electron heat flux of Braginskii (1965), together with
vector Xe

5( ) (which is of course not given by Braginskii). Substituting these results into the momentum exchange rates (48) recovers
the Re of Braginskii.

We use the same notation as Braginskii (1965) with x=Ωe/νei, except (as is the norm in more recent papers) our Ωe is formulated
as a general Ωa and is thus negative, whereas in Braginskii Ωe is defined as positive. This yields a simple change of signs in front of
the “cross” (×) terms with respect to Braginskii. In a quasistatic approximation, the electron heat flux is split into a thermal part and a
frictional part q q qe e

T
e
u= + , where
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and the heat conductivities are given by
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The momentum exchange rates are also split into a thermal part and a frictional part R R Re e
T
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u= + (thermal force and friction

force), according to
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Instead of the numerical Table II on p. 25 of Braginskii (1965), we provide all of the coefficients in a fully analytic form for a general
ion charge Zi, which are given by
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The numerical values for Zi= 1 are given in the first column of Table II of Braginskii (1965), and the parallel coefficients are
α0= 0.5129, β0= 0.7110, and γ0= 3.1616, for example, matching his values exactly. We checked the entire Table II of Braginskii,
and his table is very precise, except for two values. For the α0 coefficient, the values for Zi= 2, 3 should be changed according to
0.4408→ 0.4309, 0.3965→ 0.3954. The rest of his table is calculated very accurately, with a handful of irrelevant last digit rounding
changes (such as 3.7703→ 3.7702 in δ0 (Zi= 1) and 0.2400→ 0.2399 in Z 3i0a =( ); and for the Zi= 4 charge, 0.3752→ 0.3751 in
α0, 9.055→ 9.056 in δ0, and 0.4478→ 0.4477 in 0b¢ , etc.).

Analytic results (56) for parallel coefficients α0, β0, and γ0 were also obtained by Simakov & Molvig (2014); see also Section 4.
To triple-check our other results, we recalculated our approach with the analytic collisional matrices of Ji & Held (2013), see their
Equations (28a)–(28f), together with (40)–(44) and other formulas, which yielded the same analytic expressions. Unfortunately, the
analytic results of Balescu (1988) are written in a such a complicated form (see his p. 236, with the collisional matrices on p. 198 and
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the required conversion Equation (5.7.13) on p. 270) that we were only able to verify an analytic match with his parallel coefficients.
The formulation of Balescu (1988) is so different from Braginskii that Balescu himself (p. 275) only claims a match of below 1% for
the 21-moment model, without further analyzing possible discrepancies.

3.4. Electron Heat Flux Xe
5( )

Similar to the usual electron heat flux qe, a quasistatic solution for the heat flux vector Xe
5( ) has to be split into a thermal part and a

frictional part, according to
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with the thermal conductivities
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The analytic coefficients are given by
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with ! unchanged and given by (57). These results were substituted into the momentum exchange rates Re, Equation (48), to obtain
the final expression for the friction force and the thermal force. The useful relations are
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For Zi= 1, the transport coefficients (63), (64) have numerical values
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3.5. Ion Viscosity a
2

P̄̄
( )

of Braginskii (Self-collisions)

Considering self-collisions, the evolution equations for the ion viscosity tensors read
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Neglecting (68), and prescribing closure (31), which neglects the second term on the right-hand side of (67), yields the ion viscosity
model of Burgers–Schunk, with the well-known −6/5 constant. However, now the equations read
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In a quasistatic approximation, the solution of (69) yields a
2

P̄̄
( )

in the following form (see, for example, Appendix E.4):
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which is equivalent to Equations (4.41) and (4.42) of Braginskii (1965), after one prescribes in his W0¯̄ that the matrix Wa¯̄ is traceless.
Alternatively, with respect to b 0, 0, 1=ˆ ( ) (a straight magnetic field applied in the z-direction),
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which is Equation (2.21) of Braginskii (1965). The ion viscosities are
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where x=Ωa/νaa and x x2a a
1 2h h=( ) ( ); x x2 .a a

3 4h h=( ) ( ) (The solution is easily obtained for the parallel “zz” direction with Ωa= 0,
and for perpendicular directions, for example, by choosing coupled “xz” and “yz” directions, and solving four equations in four
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unknowns.) Alternatively, using numerical values,
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recovering the ion viscosities of Braginskii (1965), his Equation (4.44). The numerical values in Braginskii are evaluated precisely,
with the sole exception of one value in the denominator, where his rounded 4.03 should be replaced by 4.05.

3.6. Ion Viscosity a
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(Self-collisions)

The ion viscosity tensor a
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is given by
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3.7. Electron Viscosity e
2

P̄̄
( )

of Braginskii

For a one ion–electron plasma with similar temperatures, the mass-ratio coefficients (29), (30) simplify into
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and the collisional exchange rates for the viscosity tensors become
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and these contributions enter the right-hand sides of the evolution equations
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In a quasistatic approximation, the solution of (80), (81) yields the electron viscosity tensor e
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in the form (70), (71), with the
electron viscosities

p Z Z

Z Z

p Z

Z
x

Z Z Z

Z

p
x x

Z Z

Z

x
Z Z

Z
x

Z Z

Z

5 408 205 2

6 192 301 2 178
;

3 2 6

5

3 192 301 2 178 408 205 2

196000
;

119520 101784 2 46561

39200
;

212256 176376 2 79321

39200

3 192 301 2 178

700
, 82

e e

ei

i i

i i

e e

ei

i

i

i i i

i

e e

ei

i i

i

i i

i

i i

0 2

2
2

2

3

4
2

2

2

4
2

2
2

2

2

2

h
n

h
n

h
n

=
+

+ +

=
+

+
+ + +

= +
+ +

= +
+ +

+
+ +

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

( )
( )

( )( )

( ) ( )







where x=Ωe/νei and the relations x x2e e
1 2h h=( ) ( ), x x2e e

3 4h h=( ) ( ). For the particular case of Zi= 1, these electron viscosities
become
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or with numerical values,
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recovering the electron viscosity of Braginskii (1965), his Equation (4.45). It appears that the Braginskii parallel viscosity value of
0.733 is slightly imprecise, and should be 0.731 instead. The analytic result for parallel viscosity e

0h agrees with Simakov & Molvig
(2014), and the value 0.73094 agrees with Ji & Held (2013); see the inset of their Figure 3 (curiously, in a more precise 3-Laguerre
approximation, the coefficient changes to 0.733). Note that for x→ 0, viscosity e e

2 0h h . As discussed previously, our Ωe is negative
and in Braginskii it is positive, yielding an opposite sign in front of e

4h . Braginskii offers electron viscosities only for Zi= 1. The
analytic result (82) is useful for quickly calculating the electron viscosities for any Zi. Ji & Held (2013, 2015) also provide useful
fitting formulas.
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3.8. Electron Viscosity e
4

P̄̄
( )

The solution for the electron viscosity tensor e
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P̄̄
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has the form (75) with the viscosities
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where the denominator ! is equivalent to (82). For the particular case of Zi= 1, these electron viscosities become
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with ! equal to (83), and with numerical values,
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4. Generalized Electron Coefficients for Multispecies Plasmas

Here we use the idea of Simakov & Molvig (2014), and before that Zhdanov (2002; originally published in 1982) and Hinton
(1983), for example, who pointed out that because of the smallness of the mass ratios me/mi, the electron coefficients of Braginskii
(1965) can be straightforwardly generalized for multispecies plasmas. Simakov & Molvig (2014) considered unmagnetized plasmas
and provide analytic parallel coefficients α0, β0, and γ0, together with the parallel electron viscosity e

0h . Here we show that the same
construction applies when a magnetic field is present, and that all of the electron coefficients provided in the previous section can be
easily generalized in the same way. One starts by considering the general multispecies description with the collisional contributions
given in Section 2.2. Because of the smallness of me/mi, the mass-ratio coefficients for each ion species simplify into (47). One
introduces an effective ion charge together with an effective ion velocity:
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and it is straightforward to show that the collisional contributions for a one ion–electron plasma (48), (52) are then replaced by
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The contributions (90), (91) enter the right-hand sides of the electron evolution Equations (51). The system is completely the same as
for the one ion–electron plasma, if in (48), (52) the following replacement is applied:
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If the evolution equations can be obtained with the transformation (92), then of course their solutions can be obtained with the same
transformation as well. The same transformation applies for the viscous evolution Equations (80), (81) and their solutions. As an
example, the generalized (thermal) electron heat of Braginskii (1965) for multispecies plasmas reads
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where x=Ωe/(∑iνei). With recipe (92), one obtains generalized solutions for the frictional electron heat flux qe
u, together with

solutions for Xe
5( ) and the viscosity tensors e

2
P̄̄
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, e
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, which are not repeated here.

From the electron momentum equation, the electric field then becomes
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and the expressions for the heat fluxes qe and Xe
5( ) enter the electric field.

5. Generalization with Coupling of Stress Tensors and Heat Fluxes

Here we consider the coupling between viscosity tensors and heat fluxes. Using the semilinear approximation, and retaining the
coupling, the 21-moment model (9)–(12) simplifies into
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Terms such as (∇pa)qa are neglected, and large-scale gradients are assumed to be small (see Section 2.4). The right-hand sides were
given in Sections 2.1 and 2.2, and those for one ion–electron plasmas in Section 3. The system now represents a generalization of
Braginskii (1965), where heat fluxes and stress tensors are coupled. For the highest level of precision, one should solve dispersion
relations directly with the above system, where all of the heat fluxes and stress tensors are independent variables. At the lowest level
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of precision, one prescribes the quasistatic approximation and cancels the time derivatives d/dt. Nevertheless, for sufficiently low
frequencies there exists a “middle-route” procedure, known from the algebra of collisionless models, by decomposing each moment
into its first and second orders:
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and by neglecting the time derivative of the second-order moments. One can consider
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where the collisional contributions on the right-hand sides contain the full moments a
2

P̄̄
( )
, a

4
P̄̄

( )
, qa, and Xa

5( ). In the collisionless
regime, a similar procedure was used by Macmahon (1965), Mikhailovskii & Smolyakov (1985), Goswami et al. (2005), Ramos
(2005), and Passot et al. (2012), for example, and it is well known that retaining the time derivatives d/dt is crucial for recovering the
dispersion relation of the perpendicular fast mode with respect to kinetic theory (its wavenumber dependence in the long-wavelength
limit). It is straightforward to further increase the precision by retaining full qa and Xa

5( ) in the last terms of (102) and (103), for

example, or by retaining full a
2

P̄̄
( )

and a
4

P̄̄
( )

in the last terms of (104) and (105) (which we do not show). The procedure and its
application is described in detail in Hunana et al. (2019b; see Sections 5.8 and 5.9), and the coupling of stress tensors and heat fluxes
is also crucial for the firehose instability (see Figures 7 and 10 there; see also figures with simpler models in Hunana & Zank 2017).

6. Coupling for Unmagnetized One Ion–Electron Plasma

We further focus on the particular case of a one ion–electron plasma with similar temperatures. It is of course possible to
algebraically solve the entire system (102)–(105) with a magnetic field present, which will be presented elsewhere. Here, for clarity
and to demonstrate our point, we find it sufficient to focus on an unmagnetized plasma. Equivalently, we thus only consider solutions
for parallel moments along the magnetic field, similar to the heat flux model of Spitzer & Härm (1953). For the heat flux
Equations (102), (103), it is beneficial to introduce the matrices
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which are symmetric and traceless, analogous to the matrix Wa¯̄ .

6.1. Ion Species (Self-collisions)

For the ion species, the viscosity tensors have the following form:
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and the heat fluxes become
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The model is fully specified and closed, and can be used in the given form. Nevertheless, it is possible to further apply the semilinear
approximation, in which case the viscosity corrections simplify into

I
W

I
W

p

m
T T

p

t

p

m
T T

p

t

45575

17088
2

2

3

1164025

1140624
;

536725

17088
2

2

3

10498075

1140624
, 109

a
a

a aa
a a

a

aa

a

a
a

a a aa
a a

a

a aa

a

2,2

2.6671

2
2

1.0205

2

4,2

31.4095

2

2
2

9.2038

2

2

n n

r n r n

P

P

=+  -  +
¶
¶

=+  -  +
¶
¶

     

     

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

¯̄ ¯̄ ¯̄

¯̄ ¯̄ ¯̄
( )

( )

( )

and the heat flux corrections become
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6.2. Electron Species

For the electron species, it is useful to introduce the denominator

D Z Z192 301 2 178, 111i i1
2= + + ( )

and the solutions for the stress tensors are:
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with the matrices Yē̄ defined by (106). For the heat fluxes, it is useful to define the denominator
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together with δu= ue− ui, and the results read
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The system is now fully specified and can be used in this form. For the particular case of Zi= 1, the numerical values become
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By further applying the quasilinear approximation, the corrections to the electron viscosities become
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together with the corrections for the heat fluxes:
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For the ion charge Zi= 1, the numerical values read
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The rate-of-strain tensor We¯̄ obviously enters the electron heat fluxes, even in a quasistatic approximation.
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6.3. Momentum Exchange Rates

The collisional momentum exchange rates Re=−Ri, given by (48), can also be split into first- and second-order
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or for a particular case of Zi= 1,
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and for Zi= 1, the full momentum exchange rates become
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where δu= ue− ui. Only the first two terms of (127) were considered by Braginskii (1965) and Spitzer & Härm (1953; with this

latter having slightly different proportionality constants—see Appendix I). A further generalization, by keeping the full a
2

P̄̄
( )

and a
4

P̄̄
( )

viscosity tensors in the last terms of (104) and (105), brings another three terms to Re (not shown). Naturally, in a highly collisional
regime (νei? ω), all of the additional terms are small in comparison to the first two terms of (127). Nevertheless, at higher
frequencies (shorter-length scales), these additional contributions might become significant. Interestingly, the rate-of-strain tensor We¯̄
enters the momentum exchange rates (even at the linear level), with the contribution W u u1 3e e e

2 =  +  · ¯̄ ( ) ( · ). Note that
some terms are proportional to 1/νei and become unbounded (divergent) in a regime of low collisionality, which is a consequence of
the expansion procedure (i.e., a quasistatic approximation). The evolution Equations (97)–(100) are of course well defined in the
regime of low collisionality.

7. Multifluid 22-moment Model

Here we consider a natural generalization of the 21-moment model, by accounting for a fully contracted perturbation of the fourth-
order fluid moment X m c c c c f d vijkl

a
a i

a
j
a

k
a

l
a

a
4 3ò=( ) . The fully contracted (scalar) moment is decomposed into its Maxwellian core and
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a perturbation Xa
4~( )
(denoted with tilde), according to
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where we neglect the traceless tensor ijkl
a 4s ¢( ) , so the entire model now represents the 22-moment model. The fully nonlinear model is

given by the evolution Equations (6)–(9), which are unchanged, together with
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The last Equation (133) is closed with closure (13) for the stress tensor a
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, together with a closure for the scalar perturbation

(derived from a Hermite closure)
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In the semilinear approximations, the 22-moment model reads
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As discussed in Section 2.4, in the semilinear approximation, we are neglecting terms such as (∇pa)qa, which might become
significant in the presence of large-scale gradients, together with the other terms that are neglected. In comparison to the 21-moment

model given by (97)–(100), the evolution Equations (135) and (137) for stress tensors a
2

P̄̄
( )

and a
4

P̄̄
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remain unchanged. Importantly,

the collisional contributions Ra, Qa

2
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, Qa

3 ¢( ) , Qa

4
¢¯̄ ( )
, and Qa

5 ¢( ) , given in Section 2.1, remain unchanged as well. The only differences

are: (1) the scalar perturbations Xa
4~( )
now enter the left-hand sides of the evolution Equations (136) and (139) for heat fluxes qa and

Xa
5( ); (2) a new evolution Equation (138) for scalar Xa

4~( )
is present, with collisional contributions Qa

4
¢
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that need to be specified; and

(3) the energy exchange rates Qa entering the scalar pressure Equation (8) are modified, and given below.

7.1. Collisional Contributions (Arbitrary Temperatures)

The energy exchange rates entering Equation (8) are now given by
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Interestingly, the scalar perturbations Xa
4~( )
thus enter the energy exchange rates. For self-collisions, all of the contributions naturally

disappear. As also discussed later, in Section 8.1, for multifluid models the conservation of energy Qab+Qba= (ub− ua) ·Rab is
only satisfied approximately, because in the semilinear approximation the differences in the drifts ub− ua are assumed to be small,
meaning Qab+Qba= 0 holds. To satisfy the energy conservation exactly, the collisional integrals would have to be calculated
nonlinearly, with unrestricted drifts (i.e., with the runaway effect). Nevertheless, for a plasma consisting of only two species (such as
a one ion–electron plasma), the conservation of energy can be imposed by hand, by calculating Qab according to (140), (141), and
prescribing Qba=−Qab+ (ub− ua) ·Rab.

The collisional exchange rates entering evolution Equation (138) are given by
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with the mass-ratio coefficients
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where the self-collisional contributions are represented by the first term of (142).

7.1.1. Small Temperature Differences

For small temperature differences, the mass-ratio coefficients become
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and, for example, for self-collisions S 31 20aa 1 =ˆ ( ) and S 3 4aa 2 =ˆ ( ) . We further consider a one ion–electron plasma.

7.2. Ion Species (Self-collisions)

In a quasistatic approximation, the solution of Equation (138) becomes
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The quasistatic solution is thus completely determined by the heat fluxes qa and Xa
5( ), and for a magnetized plasma it has the

following form:
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where the thermal conductivities are given by (43), (46).
It feels natural to define the thermal conductivities (of the moment Xa
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):
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and result (146) then transforms into

b

b

X
p

T T T

T T T
p5

4
, 148

a
a

aa a

a
a

a
a

a
a

aa

a
a

a
a

a
a

a

a

4 4 4 4

5 5 5

n r
k k k

n
k k k

r

=-  -  -  + ´ 

- -  -  + ´  

~
^ ^ ´

^ ^ ´

 

  ⎜ ⎟
⎛
⎝

⎞
⎠

· [ ˆ ]

( ˆ ) · ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

with the thermal conductivities

p

m
p

m

x

x x

p

m

x x

x x

1375

24
;

5 9504 245

3313 1225 20736 30625
;

25 3810 49

3313 1225 20736 30625
. 149

a a

aa a

a a

aa a

a a

aa a

4

4
2

4 2

4
3

4 2

k
n

k
n

k
n

=

=
+

+ +

=
+

+ +

^

´



( )
( ) ( )

( )
( ) ( )

( )

( )

( )

( )

27

The Astrophysical Journal Supplement Series, 260:26 (145pp), 2022 June Hunana et al.



The second term of (148) is strictly nonlinear, and may be neglected for simplicity. The solution for Xa
4~( )
can thus be written as a

divergence of a heat flux vector defined by the expression in the square brackets of (148). We have used Braginskii notation with
vectors bb =  ˆ ˆ · and I b b =  = - ´ ´ ^ ^̄̄ · ˆ ˆ .

The resulting (148) can be further simplified in the semilinear approximation, where one may use b T 0a ´  =· ( ˆ ) , and so
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Note that the result is proportional to 1 aa
2n , and thus small in a highly collisional regime.

7.3. Electron Species (One Ion–Electron Plasma)

Here we consider a one ion–electron plasma with small temperature differences. Similar to Braginskii, an exact energy
conservation can be imposed by hand, according to
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The electron coefficients (144) become S m m26 5ei e i1 =ˆ ( )( )( ) and S m m6ei e i2
2=ˆ ( )( ) , and the collisional contributions (142) have

a simple form:
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determined solely by the electron–electron collisions. A quasistatic solution of Equation (138) then becomes
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where we have used Z 2ee ei in n= ( ). The electron heat fluxes are given by (53) and (61), and are of course determined by both
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with δu= ue− ui. It is again natural to define the electron thermal conductivities (of the moment Xe
4~( )
):
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together with the transport coefficients
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The thermal and frictional parts then become
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where the second terms of (160) and (161) are purely nonlinear and may be neglected for simplicity. The thermal conductivities are
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and the transport coefficients become

Z Z

Z Z

Z

Z Z Z

Z

Z Z Z

Z

150 2 16 2 29

217 604 2 288
;

3 2 548 2 1261

224
;

3 2 217 604 2 288 16 2 29

9800
;

15 2

4
;

3 2 3079 3181 2 1420

490
; 163

i i

i i

i

i i i

i

i i i

i

0
4

2

2 1
4

0
4

2

2

1
4

0
4

2

b b

b

b b

=
+

+ +
= -

+

=
+ + +

=- =
+ +

¢

¢

 

( ) ( )

( )( )

( ) ( )

( ) ( )

( )

( ) ( )

Z Z

Z Z

Z

Z Z Z

Z

Z
Z Z

Z

250 2 66 2 229

217 604 2 288
;

5 2 4 2 17

8
;

2 217 604 2 288 66 2 229

1960
;

25 2 ;
2 176437 102558 2 30480

784
; 164

i i

i i

i

i i i

i

i
i i

i

0
4

2

2 1
4

0
4

2

2

1
4

0
4

2

g g

g

g g

=
+

+ +
=

-

=
+ + +

= =
+ +

¢

¢

 

( ) ( )

( )( )

( ) ( )

( ) ( )

( )

( ) ( )

x x

Z Z

Z

Z Z

Z

;

217 604 2 288

700
;

586601 330152 2 106016

78400
, 165i i

i

i i

i

4
1

2
0

0

2

2

2

1

2

2

d d

d d

= + +

=
+ +

=
+ +

⎜ ⎟
⎛
⎝

⎞
⎠

( )



and with numerical values for Zi= 1,
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At the semilinear level, the solution becomes
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and for zero magnetic field,
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8. Discussion and Conclusions

Here we discuss various topics that we find to be of importance.

8.1. Energy Conservation

The collisional integrals were calculated in a semilinear approximation, where all quantities such as qa · (ub− ua) or |ub− ua|
2

were neglected and considered small. This approach is typically used for calculations with Landau or Boltzmann collisional
operators, and is used in the models of Burgers (1969) and Schunk (1977), for example. Importantly, an exact energy conservation
Qab+Qba= (ub− ua) ·Rab cannot be achieved, because the collisional integrals would have to be calculated nonlinearly. An exact
conservation of energy can be achieved only in two particular cases, the first being a one ion–electron plasma (or a two-species
plasma) where the conservation of energy can be imposed by hand, according to

u u RQ n T T
m

m
Q Q3 ; , 170ie e ei e i

e

i
ei ie e i ein= - = - - -( ) ( ) · ( )

which is the choice of Braginskii (1965); see his Equation (2.18). Such a construction cannot be done in general for multispecies
plasmas, and the conservation of energy is thus satisfied only approximately.

The second particular case involves neglecting all heat fluxes and stress tensors, and considering only a 5-moment model with
perturbation χa= 0. In this specific example of collisions between strict Maxwellians, multifluid calculations can be done for
unrestricted drifts (see Burgers 1969; Schunk 1977; and our Appendix G.3), yielding
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the thermal velocities v T m2 a atha
2 = , and the collisional frequencies (178). Because ρaνab= ρbνba holds, both momentum and

energy are conserved. The collisional exchange rates (171), (172) represent the “runaway” effect, and the function Φab is directly
related to the Chandrasekhar function; for further details, see Appendix G.3 and Figure 6.

For a particular case, when the differences in the drift velocities |ub− ua| become much smaller than the thermal velocities, so that
ò= 1, functions Φab→ 1 and Ψab→ 1 and Rab= ρaνab(ub− ua). To correctly account for the small |ub− ua|

2 contributions in Qab,
while keeping the differences in temperatures unrestricted, is achieved by Ψab= 1− ò2, yielding the following equivalent forms:
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and see also (G32). Energy is still conserved. When, additionally, the differences in temperatures are small as well (with respect to
their mean temperature), the frictional part simplifies into
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One can of course neglect the runaway effect from the beginning, and account for small |ub− ua|
2 contributions either through the

center-of-mass velocity transformation, as is done in the appendix of Braginskii (1965), for example, or by using the Rosenbluth
potentials; see Appendices G.1, G.2.

Note that, considering the 22-moment model, the fully contracted scalar perturbations X
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according to

Q
m m

T T P
n p

X P
n p

X

P
T m T m T m T m

T m T m
P

T m T m T m T m

T m T m

3 ;

3 5 4

40
;

3 5 4

40
, 177

ab
a ab

a b
b a ab

a

a a
a ab

b

b b
b

ab
a b b b b a a b

a b b a
ab

b a a a a b b a

a b b a

1
4

2
4

1 2 2 2

r n r r
=

+
- + -

=
+ -
+

=
+ -
+

~ ~⎡
⎣⎢

⎤
⎦⎥( )

( ) ˆ ˆ

ˆ ( )
( )

ˆ ( )
( )

( )

( )
( )

( )
( )

( ) ( )

and for only two species one can again impose an exact energy conservation by hand; see, e.g., (152).

8.2. Collisional Frequencies for Ion–Electron Plasma

The Landau collisional operator yields the following collisional frequencies (see, for example, Hinton 1983 or our Appendix G.1):
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2 = , and ρaνab= ρbνba holds. Equivalently, in the form of Burgers (1969) and Schunk (1977),
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where the reduced mass μab and reduced temperature Tab are defined in (14). For a particular case of self-collisions,
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which identifies with Equation (7.6) of Braginskii (1965; after one uses n mab b ab ab an m a= ¢ ). For a particular case of a one ion–
electron plasma, the collisional frequencies simplify into
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where one assumes Ti/mi= Te/me, so the ions cannot be extremely hot. Obviously, νii? νie (by a factor of m mi e for equal

temperatures and Zi= 1), but νee∼ νei, with the exact relation Z 2ei i een n= after one uses ne= Zini. The relation ρiνie= ρeνei holds
exactly in (182). Note the important difference that while νei contains a factor of 2 , νii does not. Thus, comparing the Braginskii
(1965) expressions (2.5i) and (2.5e) with the (182) definitions, Braginskii clearly uses

; , 183i ii e eit t t t= = ( )

which also agrees with his definition (7.6), equivalent to our (181).
However, very often when considering ion–electron plasma, a different definition of νab is used, without the reduced mass, in the

following form:
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which, for example, agrees with the appendix of Helander & Sigmar (2002, p. 277; after using cgs units ò0→ 1/(4π)). We have
added the ma=mb designation, even though it is not present in Helander & Sigmar (2002), because obviously it is the only way of
obtaining (184) from the general (178). Importantly, ρaνab≠ ρbνba, and if one were to use (184) to calculate νie, the result would be
erroneous. Instead, the νie must be calculated from νei, so that the momentum is conserved. Technically, (184) should not be used for
self-collisions either. Nevertheless, using (184) yields the following collisional frequencies:
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Now νii contains a factor of 2 , leading to an interpretation that Braginskii uses:

2 ; . 186i ii e eit t t t= = ( )

Also, for Zi= 1, the relation νee= νei now holds. These definitions of the collisional frequencies are used in the majority of the
modern plasma literature, where one argues that it seems unnatural to introduce asymmetry between νii and νei (see, e.g., Part 1 of
Balescu 1988, p.192, p.274). Obviously, for multispecies plasmas, collisional frequencies (178) have to be used, and we thus find it
much more natural to use the original Braginskii (1965) definitions (182), (183) for an ion–electron plasma also. Of course, for the
Landau operator, both approaches yield the same results, because the collisional integrals are properly calculated. However, a
difference arises for the phenomenological operators such as the BGK or the Dougherty (Lenard–Bernstein) operators, where one
needs to add νee+ νei, for example. Calculating this addition according to (185) would be incorrect, and one has to use (182) instead.
A comparison of the Braginskii viscosities and heat conductivities with the BGK operator can be found in Appendix E.3.

8.3. Fluid Hierarchy

Even though we do not calculate the collisional integrals for general nth order moments, we find it useful to discuss the fluid
hierarchy and formulate it for a general collisional operator C( fa). One defines heat flux vectors, stress tensors, and fully contracted
moments according to
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where, to prevent incompatibility with the previous notation, we use (mathcal Q) instead of Q for vectors and matrices. The new
notation fixes the problem that, for example, Qa

3 ¢( ) was used for the right-hand side of the evolution equation of the heat flux qa, and

not for Xa
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Fully nonlinear evolution equations are given in Appendix D; see (D13)–(D15). In the semilinear approximation, these simplify

into evolution equations for vectors valid for n� 1:
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stress tensors valid for n� 1:
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and scalar perturbations valid for n� 2:
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where (n) without a species index should not be confused with the number density. Equation (191) is also valid for n= 1, but it is

identically zero. In comparison to the previous notation, Q2a a

3 3¢ = ¢
 ( ) ( ) , Qa a

5 5¢ = ¢
 ( ) ( ) , Qa a

2 2
¢ = ¢¯̄ ¯̄( ) ( )

 , and Qa a

4 4
¢ = ¢¯̄ ¯̄( ) ( )

 .

8.4. Reducible and Irreducible Hermite Polynomials

The irreducible Hermite polynomials cH (˜) (notation without tilde) are usually defined through Laguerre–Sonine polynomials cL (˜)
(see, for example, Equation (G1.4.4) on p. 326 of Balescu 1988):

c

c

H c L
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H c L
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H c c
c

L
c

2
;

3

2 2
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where we use tilde for the normalized fluctuating velocity c cm Ta a a=˜ , with the species indices dropped. In our calculations, we
find it more natural to use the reducible Hermite polynomials cH̃ (˜) (notation with tilde) of Grad, defined according to

cH e
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e1 . 193r r r
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Applying a sufficient number of contractions then yields definitions of fully contracted scalars, vectors, and matrices:

H H H H H H; ; , 194n
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together with conveniently defined traceless matrices (notation with hat):

H H H
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3
. 195ij

n
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n
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The relation between the irreducible and reducible Hermite polynomials can then be shown to be
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with both approaches using essentially the same polynomials, the only difference being the location of the normalization factors. The
reducible Hermite polynomials are used to define the Hermite moments

h
n

f H d c h
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f H d c h
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1

;
1

;
1

, 197n

a
a

n
i

n

a
a i

n
ij

n

a
a ij

n2 2 3 2 1 2 1 3 2 2 3ò ò ò= = =+ +˜ ˜ ˜ ˜ ˆ ˆ ( )( ) ( ) ( ) ( ) ( ) ( )

and analogously for the irreducible ones. Note that the scalar h 02 =˜( ) , and we thus often use h h n f H d c1ij ij a a ij
2 2 2 3ò= =ˆ ˜ ( ) ˜( ) ( ) ( ) .

Finally, by using orthogonality relations, one obtains the perturbation χa of the distribution function f f 1a a a
0 c= +( )( ) around the
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Maxwellian fa
0( ), in the following form:
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and the two approaches are equivalent. Alternatively, because hij
n2ˆ ( )
are traceless, it is possible to use h H h Hij

n
ij

n
ij

n
ij

n2 2 2 2=ˆ ˆ ˆ ˜( ) ( ) ( ) ( ). Note
that 2nn!(2n+ 1)!!=(2n+ 1)!. The 13-moment model of Burgers–Schunk is obtained by N= 1. Prescribing N= 2 yields the 22-
moment model
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with Hermite polynomials
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and neglecting h 04 =˜( ) (meaning X 0
4

=
~( )

) yields the 21-moment model.
The transformation from Hermite to fluid moments is done according to
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Various models are summarized in Tables 1 and 2. In Table 1, the perturbation χa is given in reducible Hermite moments, and in
Table 2 the perturbation is given in fluid moments.

Table 1
Summary of the Various Models with the Perturbation χa Given in Reducible Hermite Moments

Model Name Corresponding Perturbation of f f 1a a a
0 c= +( )( ) in Hermite Moments

5-moment χa = 0
8-moment h Ha i i

1

10

3 3c = ˜ ˜( ) ( )

10-moment h Ha ij ij
1

2

2 2c = ˜ ˜( ) ( )

13-moment h H h Ha ij ij i i
1

2

2 2 1

10

3 3c = +˜ ˜ ˜ ˜( ) ( ) ( ) ( )

20-moment h H h Ha ij ij ijk ijk
1

2

2 2 1

6

3 3c = +˜ ˜ ˜ ˜( ) ( ) ( ) ( )

21-moment h H h H h H h Ha ij ij i i ij ij i i
1

2

2 2 1

10

3 3 1

28

4 4 1

280

5 5c = + + +˜ ˜ ˜ ˜ ˆ ˜ ˜ ˜( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

22-moment h H h H h H h H h Ha ij ij i i ij ij i i
1

2

2 2 1

10

3 3 1

28

4 4 1

120
4 4 1

280

5 5c = + + + +˜ ˜ ˜ ˜ ˆ ˜ ˜ ˜ ˜ ˜( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

9-moment h H h Ha i i
1

10

3 3 1

120
4 4c = +˜ ˜ ˜ ˜( ) ( ) ( ) ( )

11-moment h H h Ha i i i i
1

10

3 3 1

280

5 5c = +˜ ˜ ˜ ˜( ) ( ) ( ) ( )

12- moment h H h H h Ha i i i i
1

10

3 3 1

120
4 4 1

280

5 5c = + +˜ ˜ ˜ ˜ ˜ ˜( ) ( ) ( ) ( ) ( ) ( )

15-moment h H h Ha ij ij ij ij
1

2

2 2 1

28

4 4c = +˜ ˜ ˆ ˜( ) ( ) ( ) ( )

16-moment h H h H h Ha ij ij ij ij
1

2

2 2 1

28

4 4 1

120
4 4c = + +˜ ˜ ˆ ˜ ˜ ˜( ) ( ) ( ) ( ) ( ) ( )

Note. Species indices “a” are dropped. The upper half of the table contains “major” models, and the lower half contains other
possibilities. Note that the 16-moment model should not be confused with the anisotropic (bi-Maxwellian-based) 16-moment
model described in Section 8.9.
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8.5. Rosenbluth Potentials (22-moment Model)

Here we summarize the Rosenbluth potentials, defined according to
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where the first potential should not be confused with the irreducible Hermite polynomials. For the 22-moment model, the fully
nonlinear results read
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m

T
. 206b

b
b= -˜ ( ) ( )

Table 2
Summary of the Various Models with the Perturbation χa Given in Fluid Moments

Model Name Corresponding Perturbation of f f 1a a a
0 c= +( )( ) in Fluid Moments

5-moment χa = 0
8-moment q c c1a

m

p T a a
m

T a5
2a

a a

a

a
c = - -( )( · )

10-moment c c:a
m

p T a a a2

2a

a a
c P= ( ¯̄ )( )

13-moment c c q c c: 1a
m

p T a a a
m

p T a a
m

T a2

2

5
2a

a a

a

a a

a

a
c P= - -( )( ¯̄ ) ( · )( )

20-moment c c c q c c q c: :a
m

p T a a a
m

p T
a a a a
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p T a a2
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a a
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a a

a
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Note. The results for the 21- and 22-moment models are written with normalized c cm Ta a a a=˜ .
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These Rosenbluth potentials are used to calculate the dynamical friction vector Aab and the diffusion tensor Dab¯̄ , which then form the
Landau collisional operator, according to
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The dynamical friction vectors and diffusion tensors can be found in the appendix; see Equations (K15)–(K16), (L13)–(L14), and
(M4)–(M5). For clarity, we split the calculations into heat fluxes (Appendix K), viscosities (Appendix L), and scalar perturbations
(Appendix M). These results are fully nonlinear and could potentially be useful for constructing more sophisticated models that could
capture collisional effects beyond the semilinear approximation, or perhaps for exploring the runaway effect numerically. All of the
equations can be transformed from Hermite moments to fluid moments by (202).

8.6. Hermite Closures

The general hierarchy of evolution Equations (189)–(191) needs to be closed with appropriate closures at the last retained fluid
moment. The correct form of a fluid closure is obtained in the Hermite space, by cutting the perturbation χa given by (198) at an
appropriate N. For example, the 22-moment model is obtained with Hermite closures h 0a

6 =˜ ( )
and h 0ij

a 6 =˜ ( )
, which translate into

fluid closures (134) and (13).
It is useful to summarize the closures for higher-order moments, with the details given in Appendix B. It can be shown that for

vectors and scalars, the fluid closures derived from the Hermite closures read
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p n

m n m

n

m
1

1

1

2 3

2 5
, 209a

n

m

n
m n a

a

n m

a
m2

0

2 1
2 2

å r
P P= -

-
- -

+
+=

-
+

- -
+

⎜ ⎟
⎛
⎝

⎞
⎠

¯̄ ( ) ( )!
!( )!

( )!!
( )!!

¯̄ ( )( ) ( )

where the result is zero if the upper summation index is less than the lower summation index, yielding closures X 0a
3 =( ) , X 0a

4
=

~( )
,

and 0a
2

P =¯̄ ( )
. The closures are summarized in Tables 3 and 4.

Here we need to address one incorrect interpretation that we used in some of our previous papers. In the last paragraph of Hunana
et al. (2018), and also in Hunana et al. (2019a, 2019b), it is claimed that Landau fluid closures are necessary to go beyond the fourth-
order moment in the fluid hierarchy. This interpretation was obtained in the Chew, Goldberger, and Low (Chew et al. 1956; CGL)

Table 3
Summary of (MHD) Hermite Closures, Together with Corresponding Fluid Closures

Hermite Closures Fluid Closures

h 0i
3 =˜ ( ) X 0i

3 =( )

h 04 =˜( )
X 0

4
=

~( )

h 0i
5 =˜ ( ) X X14i

p
i

5 3=
r

( ) ( )

h 06 =˜( )
X X21 p6 4

=
~ ~

r

( ) ( )

h 0i
7 =˜ ( )

X X X27 189i
p

i
p

i
7 5 32

2= -
r r

( ) ( ) ( )

h 08 =˜( )
X X X36 378p p8 6 42

2= -
~ ~ ~

r r

( ) ( ) ( )

h 0i
9 =˜ ( )

X X X X44 594 2772i
p

i
p

i
p

i
9 7 5 32

2

3

3= - +
r r r

( ) ( ) ( ) ( )

Note. Species indices “a” are dropped. The usual heat flux q X 2i i
3= ( ) . Note that beyond the fourth-

order moment, both classes start to differ. It can be shown that erroneously prescribing closures at the last

retained moment, such as X 0i
5 =( ) or X 0

6
=

~( )
, leads to unphysical instabilities (unless one prescribes

Xi
3( ) or X 0

4
=

~( )
as well), which is later demonstrated in Appendix B.8, Table 5. A general form for the

closures corresponding to h 0i
n2 1 =+˜ ( )

and h 0n2 =˜( ) is given by (208). An analogous table can be
constructed for CGL parallel closures; see Appendix B.9, Table 6.
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framework for parallel moments by considering the closures at the last retained moment, X 0a
n2

=
~( )

and X 0a
n2 1 =+


( ) . It was shown

(see the detailed proof in Section 12.2 in Hunana et al. 2019b) that beyond the fourth-order moment, all fluid models become
unstable if these closures are used. The proof is constructed correctly. What is incorrect is the interpretation that the proof implies—
that Landau fluid closures are required to overcome this issue. The much simpler Hermite closures overcome this difficulty as well.

In other words, beyond the fourth-order moment it is not possible to cut the fluid hierarchy by simply neglecting the next order

moment with closures such as X 0a
5 =( ) or X 0a

6
=

~( )
, and such closures should be viewed as erroneous. For the CGL model, the

closures have different coefficients than for the MHD model, because the moments are defined differently (a brief summary is given
in Appendix B.9, Table 6). The CGL closures will be addressed in detail in a separate publication.

Importantly, the problem also disappears when one decouples the fluid hierarchy. For example, higher-order Laguerre (Hermite)
schemes that are typically used to obtain more precise transport coefficients for qa and a
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neglect all of the scalar perturbations
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, together with neglecting the coupling between heat fluxes and stress tensors. In our formulation, this yields
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The closures (208), (209) are not required, because the equations are decoupled. We did not calculate the collisional contributions for
higher-order moments, but in the semilinear approximation Equations (210)–(211) remain decoupled and represent two independent
hierarchies. An essential feature of the Landau (or the Boltzmann) collisional operator is that the operator couples all of the heat
fluxes together, and it also couples all of the stress tensors together. Thus, going higher and higher in the fluid hierarchy does not

create new contributions in a quasistatic approximation, but yields increasingly precise transport coefficients for qa and a
2

P̄̄
( )
. Also,

because the momentum exchange rates Ra contain contributions from all of the heat fluxes X Xa a
n3 2 1¼ +( ) ( ), they become increasingly

precise as well. System (210)–(211) nicely clarifies how higher-order schemes can be viewed. Reinstating the coupling between heat
fluxes and viscosity tensors introduces additional contributions, but does not change the transport coefficients of the decoupled
system. A brief comparison of the various models is presented in Appendix I.

8.7. Inclusion of Gravity

We have not explicitly considered the force of gravity in our calculations in the appendix; nevertheless, its inclusion is trivial. With
the gravitational acceleration G included, the Boltzmann equation reads
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t
f

eZ

m c
f C f

1
. 212a

a
a

a
v a a

¶
¶

+  + + + ´  =⎡
⎣⎢

⎤
⎦⎥

· ( ) · ( ) ( )

We use big G instead of small g to clearly distinguish it from the heat flux q. Gravity does not enter the collisional operator, and
collisional integrals with the right-hand side are not affected. Gravity enters the left-hand side, and when the Boltzmann equation is
integrated gravity of course enters the fluid hierarchy of moments. With the two exceptions of the density equation and the pressure
tensor equation, gravity enters the evolution equations for all other moments, analogously as the electric field does. An explicit

Table 4

Similar to Table 3, but for Hermite Closures h 0ij
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Hermite Closures Fluid Closures
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Note. A general form for the closures corresponding to h 0ij
n2

=ˆ ( )
is given by (209).
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collisionless equation for a general nth-order moment with the electric field present is Equation (12.13) of Hunana et al. (2019b), for
example. Because no Maxwell equations are used in deriving the fluid hierarchy, the presence of gravity can be accounted for by
simply replacing

E G E
eZ

m

eZ

m
. 213a

a

a

a
 + ( )

Furthermore, such a hierarchy is not very useful, because the evolution equation for an nth-order moment is coupled with “n”
momentum equations. Subtracting these momentum equations yields the final Equation (12.16) in Hunana et al. (2019b), where the
electric field is not present, meaning that gravity is not present either. In other words, the collisionless Equation (12.16) of Hunana
et al., as well as our new collisional Equation (A12), remain valid in the presence of gravitational force. The inclusion of gravity in
the entire model is thus achieved trivially, by adding−G into the left-hand side of the momentum Equation (7) (which we have
done), and no additional calculations are required. In the main text, the only other equation that contains gravity is the electric field
Equation (96).

8.8. Precision of me/mi Expansions (Unmagnetized Proton–Electron Plasma)

The multifluid formulation is also an excellent tool for double-checking the precision of me/mi expansions. It is again possible to
consider a one ion–electron plasma, but this time to calculate the transport coefficients precisely, without any expansions in the
smallness of me/mi. As an example, we consider an unmagnetized proton–electron plasma (Zp= 1, mp/me= 1836.15267) with
similar temperatures Te= Tp= Tep. Charge neutrality implies ne= np, and so pe= pp. We maintain ∇Te≠∇Tp, however, because
the gradients can be different. We first calculate the heat fluxes. For clarity, we are solving four coupled evolution equations, which
are explicitly given in Appendix N; see Equations (N1)–(N4).

A precise calculation should not use simplified collisional times (182) where expansions in me/mi have been made, but exact
collisional times (178) with numerical values νee= 0.707299νep and νpp= 0.0165063νep (we take lnL to be constant). The
quasistatic approximation then yields the heat fluxes
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where δu= (ue− up). For the electron heat flux qe, note the difference of the thermal conductivity 3.1594 from the Braginskii value
3.1616. The difference is caused by calculating the mass-ratio coefficients (27), (28) exactly, without me/mp expansions, as well as
by using slightly different ratios of frequencies (a less-precise calculation, neglecting proton–proton collisions by νpp= 0 and using
simplified 2ee epn n= yields 3.1600).

For the proton heat flux qp, the relatively large difference between the thermal conductivity 3.302 and the Braginskii self-
collisional value 125/32= 3.906 is caused by the proton–electron collisions. This is similarly the case for the Xp

5( ), where the self-
collisional value is 2975/24= 123.96. Calculating the coupled system exactly has a nice advantage, since one can calculate the
momentum exchange rates in two different ways:
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and both options yield the same result:

R R un T n T0.711046 0.2065 10 0.513306 . 216e p e e e p e ep
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The viscosities of the proton–electron plasma are (for clarity, we are solving four equations in four unknowns, explicitly given by
(N5)–(N8))
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and for proton species, the relatively large differences from self-collisional values 1025/1068= 0.960 and 8435/1068= 7.898 are
again caused by proton–electron collisions. In Appendix N, we consider other examples of coupling between the two species, and we
calculate the heat fluxes and viscosities for protons and alpha particles (fully ionized Helium), and for the deuterium–tritium plasma
used in plasma fusion.

8.9. Limitations of Our Approach

It is important to clarify the limitations of our model. In the highly collisional regime, our limitations are the same as for the model
of Braginskii (1965). For example, we describe only Coulomb collisions and we do not take into account ionization, recombination,
or radiative transfer. Additionally, our approach shows that the coupling of stress tensors and heat fluxes should ideally be
investigated with the 22-moment model. Even though this model is fully formulated in Section 7, including its collisional
contributions calculated with the Landau operator, we have not used this model to further explore the resulting coupling.

8.9.1. Weakly Collisional Regime: Expansions around Bi-Maxwellians

The situation becomes more complicated in the weakly collisional regime where there might not be enough collisions to keep the
distribution function sufficiently close to the equilibrium Maxwellian fa

0( ). The distribution function might evolve to such an extent
that the core assumptions in the entire derivation break down, i.e., Equation (1) loses its validity. A better approach then is to consider
expansions similar to Equation (1), but around a bi-Maxwellian fa

0( ) (see e.g., Oraevskii et al. 1968; Chodura & Pohl 1971; Demars &
Schunk 1979; Barakat & Schunk 1982, and references therein), which can handle much larger departures from the highly collisional
Maxwellian distribution. In order to point out the differences and difficulties associated with this approach, it is of interest to briefly
describe how the expansions around an anisotropic bi-Maxwellian would look. The simplest anisotropic model is known as the CGL,
after the pioneering work of Chew, Goldberger, and Low (Chew et al. 1956). The differences with our current approach start with the
decomposition of the pressure tensor pij

a defined in (A2), and the decomposition reads

p Ipisotropic: ; 218a a a
2

P= +¯̄ ¯̄ ¯̄ ( )( )

p bb I bb

I bb
I

p p

p p p

anisotropic:

3
, 219

a a a a

a a a a

2 CGL

2 CGL

P

P

= + - +

= + - - +

^

^



 ⎜ ⎟
⎛
⎝

⎞
⎠

¯̄ ˆ ˆ ( ¯̄ ˆ ˆ) ¯̄

¯̄ ( ) ˆ ˆ ¯̄ ¯̄ ( )

( )

( )

with scalar pressures

p bb p I cp m c f d v p
m

f d v: ; : 2
2

. 220a a a a a a a
a

a a
2 3 2 3ò ò= = = =^ ^ ^ ¯̄ ˆ ˆ ¯̄ ¯̄ ∣ ∣ ( )/

Directly from the above definitions, the stress tensors satisfy
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The decomposition of the heat flux tensor qijk

a defined by Equation (A2) is slightly more complicated. In an arbitrary collisional
regime, one needs to define two heat flux vectors:
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These heat flux vectors are further split by projecting them along the b̂, which defines the gyrotropic (scalar) heat fluxes q∥a and q⊥a,
and the perpendicular projection defines the nongyrotropic heat flux vectors S a^

 and S a^
^ , according to
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where both as¢¯̄ and as̄̄ are traceless. Neglecting these traceless contributions, the isotropic approach accounts for three (out of 10)
scalar components of qa¯̄ , and represents a 13-moment model (one density, three velocity, one scalar pressure, five stress tensor, and
three heat flux qa components). The anisotropic approach accounts for six scalar components of qa¯̄ and represents a 16-moment
model, described by 16 scalar evolution Equations. (One density, three velocity, two scalar pressures, four stress tensor components,
and three for each heat flux vector Sa

 and Sa
^.) Unfortunately, such a complicated decomposition of the heat flux is necessary in an

arbitrary collisional regime, and we only used decomposition (224). For clarity, the direct relation with the usual heat flux vector qa
reads
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Note that both q∥a and q⊥a denote components along the b̂. The highly collisional limit is achieved by q∥a= 3q⊥a and S S 2a a=^ ^
^ ,

in which case q b Sq5 2 5 4a a a= +^ ^
^( ) ˆ ( ) or, equivalently, q b Sq5 6 5 2a a a= + ^

( ) ˆ ( ) . We use the same notation as, for
example, the collisionless papers by Passot & Sulem (2007), Sulem & Passot (2015), and Hunana et al. (2019a, 2019b).

These anisotropic decompositions must be retained in an arbitrary collisional regime. However, calculations with the Landau
(Boltzmann) collisional operators then become very complicated. Notably, Chodura & Pohl (1971), Demars & Schunk (1979), and
Barakat & Schunk (1982) used the anisotropic 16-moment model, as described above, and calculated the collisional contributions for
several interaction potentials. Judging from the papers above, maintaining the precision of our current model (where the fourth- and
fifth-order moments are considered), and extending it to an anisotropic (bi-Maxwellian) regime, seems to be so complicated that it
might not be worth the effort. Curiously, in a simplified spherically symmetric radial geometry, Cuperman et al. (1980, 1981) and
Cuperman & Dryer (1985) considered what seems like a mixture of anisotropic and isotropic moments, with anisotropic
temperatures, an isotropic heat flux vector, and the parallel (anisotropic) perturbation of the fourth-order moment (which we
call r a ).

8.9.2. Landau Fluid Closures for the Collisionless Case

In contrast to the free-streaming formula of Hollweg (1974, 1976), in plasma physics the collisionless heat flux is typically
associated with the phenomenon of Landau damping. For example, the collisionless linear kinetic theory expanded around a bi-
Maxwellian with mean zero drifts in gyrotropic limit yields in Fourier space a perturbation of the distribution function
f f 1a a a

0 c= +( )( ) in the following form:
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with the electrostatic potential iE k1F =  
( ) . Integrating (227) then yields a parallel collisionless heat flux,
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with variable ζa= ω/(|k∥|vth∥a), parallel thermal speed v T m2 a ath a =  , plasma response function R(ζa)= 1+ ζaZ(ζa), and plasma

dispersion function Z i iexp 1 erfa a a
2z p z z= - +( ) ( )[ ( )]. Such a kinetic answer can be expressed in fluid variables by searching for

40

The Astrophysical Journal Supplement Series, 260:26 (145pp), 2022 June Hunana et al.



Landau fluid closures, by, for example, replacing the R(ζa) with its three-pole Padé approximants:
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The use of Padé approximants allows one to express (228) through lower-order moments and eliminate the explicit dependence on ζa,
yielding collisionless heat fluxes in Fourier space:

R q i n v T:
2

sign k ; 230a a a a3,2
1 0

th a
1z

p
= -   ( ) ( ) ( )( ) ( ) ( )

R q p u i n v T:
3 8

4 4
sign k , 231a a a a a a3,1

1 0 1 0
th a

1z
p

p
p
p

=
-
-

-
-     ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

where T a
1

( ) is the perturbed temperature and u a
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( ) is the perturbed fluid velocity (a mean value of u 0a

0 =
( ) is assumed). The heat flux

closure (230) was obtained by Hammett & Perkins (1990) and Snyder et al. (1997), and closure (231) is Equation (2) in Hunana et al.
(2018; or Equation (3.211) in Hunana et al. 2019a). In real space, these collisionless heat fluxes become
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where the nonlocality presents itself as an integral over the entire magnetic field line, where the temperatures everywhere along that
field line matter in order to determine the heat flux at a specific spatial point. Note that the thermal part of (233) is almost two times
larger than (232). The Cauchy principal value can be replaced by lim 0 ò+

¥
 

. This approach thus indeed allows one to have
expressions for collisionless heat fluxes in a quasistatic approximation. However, as is well known, these expressions are not very
precise with respect to kinetic theory. For example, the precision can easily be compared by plotting the normalized heat fluxes
q R R2 3a a a a a a

3z z z z z= + -̂ ( ) ( ), which are shown in Figure 1. A weakly damped regime with a real-valued ζa is considered. The
left-hand panel shows the imaginary part of q â , and the right-hand panel shows the real part of q â . The exact kinetic heat flux is
shown by the solid black line, the heat flux R3,2 is shown by the dashed magenta line, and the heat flux R3,1 is shown by the dashed
cyan line. For comparison, higher-order fluid models with approximants R5,3 (the dotted blue line) and R7,5 (the dashed red line) are
shown as well (see Equations (A11) and (A38) in Hunana et al. 2019a). The R5,3 model represents a dynamic closure at the fourth-
order moment, and the R7,5 model represents a dynamic closure at the sixth-order moment, given by Equations (5) and (8) of Hunana
et al. (2018). The heat fluxes in these higher-order models are thus described by their usual evolution equations; nevertheless, their
precision can be compared with the same technique. Which quasistatic heat flux is a better choice depends on the value of ζa, because
the R3,1 has a higher power series precision (for small ζa) and the R3,2 has a higher asymptotic series precision (for large ζa). Regimes
ζa= 1 can be viewed as isothermal, and regimes ζa? 1 can be viewed as adiabatic. In the left-hand panel of Figure 1, the R3,1 is
more precise up to roughly ζa= 2.3, and in the right-hand panel up to ζa= 1.6. For larger ζa values than shown, the R3,1 heat flux
converges much more slowly to the correct zero values than the R3,2, especially for the real part.

Figure 1. Comparison of normalized collisionless heat fluxes q R2 3a a a a a
3z z z z= + -̂ ( ) ( ) in a weakly damped regime with real-valued ζa. Left: the imaginary part

of q â . Right: the real part of q â . The colors are described in the text. Our Braginskii-type models do not contain these collisionless heat fluxes.
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The major obstacle to precision for the quasistatic heat fluxes of the Landau fluid models actually comes from the perpendicular
heat flux q⊥a (which is along the b̂), because only a closure of Snyder et al. (1997) with a crude Padé approximant
R i1 1a a1 z p z= -( ) ( ) is available. As a consequence, for large ζa values, the quasistatic heat flux q⊥a fails to disappear and
instead converges to a constant value. To recover the adiabatic behavior for q⊥a, one has to abandon the idea of quasistatic q⊥a and
consider its evolution equation, with a closure at the fourth-order moment. There is a vast amount of literature about Landau fluids
with various approaches; see, e.g., Hammett & Perkins (1990), Hammett et al. (1992), Snyder et al. (1997), Snyder & Hammett
(2001), Goswami et al. (2005), Passot & Sulem (2007), Passot et al. (2012), Sulem & Passot (2015), Joseph & Dimits (2016),
Hunana et al. (2018), Ji & Joseph (2018), Chen et al. (2019), Wang et al. (2019), and references therein, where some authors also
include collisional effects. For a simple introductory guide to collisionless Landau fluids, see Hunana et al. (2019a). As a side note,
Landau fluid closures are not constructed with any specific mode in mind (as incorrectly criticized by Scudder 2021, for example).
The closures are constructed universally for all of the modes, so that numerical simulations can be performed; see e.g., Perrone et al.
(2018). Interestingly, as discussed by Meyrand et al. (2019), from a nonlinear perspective, the effect of Landau damping might be
canceled out by the effect of plasma echo. From a linear perspective, the presence of drifts also modifies the Landau damping,
because the variable ζa that enters the plasma response function R(ζa) then contains the drift velocity u∥a. For sufficiently large drifts,
the sound mode can be generated by the current-driven ion-acoustic instability; see, e.g., Gurnett & Bhattacharjee (2005, p. 368), or
Fitzpatrick (2015, p. 258); and for a three-component plasma, which allows the net current to be zero by the ion–ion (or the electron–
ion and electron–electron) acoustic instability, see Gary (1993, pp. 44–55).

8.9.3. Ion Sound Wave Damping in Homogeneous Media: Comparison of Various Models

To further clarify our limitations, it is useful to explore the linear properties of the waves propagating along the ambient magnetic
field (assumed to be straight and aligned with the z-coordinate) in a homogeneous medium, in regimes that range from highly
collisional to weakly collisional ones. In particular, let us consider the damping of a monochromatic ion sound wave of parallel
wavenumber k∥ in a proton–electron plasma where the electrons are assumed to be cold. The latter assumption is not physically
appropriate, because kinetic theory is not well-defined for cold electrons (see, e.g., the discussion in Hunana et al. 2019a, p. 73), but it
allows one to simplify the presentation with the goal of describing the general behavior, not providing precise values of the damping
rates. Four different models are compared in Figure 2, all using the heuristic BGK collisional operator, which leads to much simpler
calculations for models with a distribution function expanded around a bi-Maxwellian. The x-axis shows k∥λmfp, where λmfp= vth∥/ν
is the ion mean-free path and ν is the collisional frequency, so that k∥λmfp= 1 represents a highly collisional regime and k∥λmfp? 1
represents a weakly collisional regime. The y-axis shows a damping rate as an imaginary part of ζ= ω/(|k∥|vth∥). The usual isotropic
13-moment model (the green line) and the anisotropic 16-moment model (the blue line), with all of the moments described by their
time-dependent (dynamical) evolution equations, were discussed after Equation (225). For the parallel sound mode at the linear level
considered here, the 13-moment model is reduced to evolution equations for ρ, uz, p, Πzz, and qz (we consider the case where Πzz and
qz are coupled) and the 16-moment model reduces to evolution equations for ρ, uz, p∥, p⊥, q∥, and q⊥ (we consider the mean equal
pressures p p0 0= ^

( ) ( )). Figure 2 shows that these two models behave in a similar way: both reach a maximum damping rate around
k∥λmfp∼ 0.5− 1, and converge toward a zero damping rate in the collisionless regime (with only a small shift in k∥λmfp between
them). In contrast, the red line, corresponding to the 13-moment model with the Πzz and qz taken in the quasistatic approximation,
shows that the damping rate does not reach a maximum and instead continues to increase in a weakly collisional regime, while
around k∥λmfp∼ 6.3 the sound mode stops existing (it becomes nonpropagating, with zero real frequency). This is consequence of the
quasistatic approximation for the stress tensor Πzz∼ 1/ν, which in the collisionless regime becomes unbounded (the parallel heat flux
qz∼ 1/ν becomes unbounded as well, but this simply reflects an isothermal behavior with no damping present). While a vanishing

Figure 2. Normalized damping rate ζi = ωi/(|k∥|vth∥) for a parallel propagating ion sound wave as a function of k∥λmfp, where λmfp is a mean-free path. Red line:
Braginskii-type (isotropic) 13-moment model with quasistatic stress tensor and heat flux. Green line: Braginskii-type 13-moment model with evolution equations for
the stress tensor and heat flux. Blue line: bi-Maxwellian 16-moment model with evolution equations for parallel and perpendicular pressures and (gyrotropic) heat
fluxes. Magenta line: Landau fluid model with the quasistatic heat fluxes of Snyder et al. (1997).
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damping is preferred against a quantity that blows up in a weakly collisional regime, all three models are technically incorrect,
because the Landau damping provides a significant contribution to the damping rate as the plasma becomes weakly collisional. To
illustrate the importance of the Landau damping, the magenta line displays the damping rate obtained with a Landau fluid model that
contains the evolution equations for ρ, uz, p∥, and p⊥, but where the quasistatic q∥ and q⊥ are given by the collisionally modified 3+1
closures of Snyder et al. (1997), i.e., their Equations (48)–(49), which for the isotropic mean temperatures T Ta a

0 0= ^
( ) ( ) considered

here are equivalent to (our thermal speed contains a factor of 2, which is not the case in that paper)
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where, in general, a b abn n= å¯ . Technically, closures (234) are only applicable to a weakly collisional regime, because q∥a≠ 3q⊥a in
the highly collisional limit. In spite of this, and the additional difficulty associated with the cold electron limit considered here, an
interesting point is that the behavior of the damping rate is very close to the predictions of the three other models in the highly
collisional regime, while the damping rate converges to a constant value in the collisionless case. This is in fact analogous to the case
of the damping of a pure sound wave in rarefied media, which was considered by Stubbe (1994) and Stubbe & Sukhorukov (1999).
In the former paper, the result of an experiment by Meyer & Sessler (1957; measuring the damping length of a sound wave of a given
frequency ω, emitted at one end of a domain filled with a rarefied neutral gas) is compared with various theoretical models. The
results are very similar to those presented here, and show in particular that the damping is dominated by a nonlocal effect analogous
to Landau damping when 2ν/ω decreases below unity (see Figures 6 and 7 of Stubbe 1994). This simple result for the damping of an
ion sound wave shows that, in a homogeneous medium, a Braginskii-type model provides reasonable predictions, as long as the
typical wavelength is larger than the mean-free path, or, equivalently, when its frequency stays below the collision frequency. More
sophisticated models are needed in the weakly collisional case, which should retain new contributions originating from a Landau
fluid closure.

8.9.4. Large Gradients and Large Drifts

It is now of interest to consider inhomogeneous situations, where other applicability conditions apply for the Braginskii-type
models. In high-energy-density laser-produced plasmas, there are often situations that are relevant for inertial confinement fusion
experiments, where the typical electron mean-free path becomes of the order of the typical scale of the electron temperature gradients,
or even larger. In this case, the usual Braginskii formulas, used for the Nernst effect (see, e.g., Lancia et al. 2014), for example,
become invalid and have to be replaced by nonlocal expressions. In this context, an explicit nonlocal formula was proposed by
Luciani et al. (1983) for the electron thermal heat flux due to steep temperature gradients, offering an improvement (in the one-
dimensional case) to the Spitzer & Härm (1953) heat flux, where one required proportionality constant is obtained by a fitting from
Fokker–Planck simulations. A further extension to three dimensions was proposed by Schurtz et al. (2000), but it is to be noted that
this approach is not appropriate in the very weakly collisional case, as, for example, in the Solar corona, when the density has
significantly decreased.

Additional complications arise in a regime of weak collisionality. In space physics, the collisionless heat flux is typically
associated with the free-streaming formula of Hollweg (1974, 1976):

q up
3

2
, 235e e

Hollweg
swa= ( )

where one multiplies the thermal energy of one electron (3/2)Te (we take kb= 1 throughout the entire paper) with the number density
ne and the solar wind speed usw. The free “bugger factor” α, as Hollweg (1974) calls it, is dependent on a given form of an electron
distribution function, where the tail had departed and run away. Note that the parallel frictional heat fluxes (i.e., due to small
differences in the drifts δu) of Spitzer & Härm (1953) and Braginskii (1965) are also independent of collisional frequencies, even
though they are derived from collisions, and up to the numerical values have the same form as (235). As a side note, in the numerical
model of Spitzer & Härm (1953), the frictional heat flux is technically incorrect, because it does not satisfy the Onsager symmetry—
see our Tables 11 and 9—which was already criticized by Balescu (1988, p. 268). Of course, in our usual fluid formalism, a tail of a
distribution function cannot suddenly depart. Even though our model contains evolution equations for the perturbation of the fourth-
order moment (i.e., a “reduced kurtosis” that describes whether a distribution is tail-heavy or tail-light) and also for the fifth-order
moment (sometimes called a hyperskewness), our distribution functions still have to remain sufficiently close to Maxwellian. For the
isotropic 5-moment model (i.e., strict Maxwellians), the runaway effect is just represented through the collisional contributions Rab

and Qab, which decrease to zero for large drifts (see Equations (171)–(173) derived in Appendix G.3; see also Dreicer 1959;
Tanenbaum 1967; Burgers 1969; Schunk 1977; Balescu 1988). We note that for sufficiently large drifts between species, various
instabilities can develop with a subsequent development of turbulence, which should restrict the runaway effect long before
relativistic effects. Importantly, it is unclear how the heat flux collisional contributions Qab

3 ¢( ) (and higher) would look for unrestricted
drifts, because the collisional integrals seem exceedingly complicated. Even if calculated, only the drifts between species would be
allowed to be unrestricted, and the distribution of each species would have to be restricted to remain close to Maxwellian. For the
simplest CGL plasmas (i.e., considering colliding strict bi-Maxwellians with no stress tensors or heat fluxes), the corresponding
collisional integrals were numerically evaluated for selected cases by Barakat & Schunk (1981). For a further particular case of
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unrestricted drifts only along the magnetic field and Coulomb collisions, Hellinger & Trávníček (2009) obtained exact analytic forms
for the collisional integrals (for p∥ and p⊥), which are expressed through double hypergeometric functions, however. Judging from
the two papers above, the proper extension of our model to an anisotropic regime with unrestricted drifts seems to be overly
complicated. Another approach for the heat flux modeling was presented by Canullo et al. (1996).

8.9.5. Comments on the Positivity of the Perturbed Distribution Function

An additional complication arises in a low-collisionality regime in the presence of sufficiently strong large-scale gradients. The
perturbations of the distribution function considered in Equation (1) might become so large that the corresponding model might
become invalid. The distribution function around which to expand is indeed not well defined in this case. Strictly speaking, in a
weakly collisional (or a collisionless) regime, one should abandon the construction of fluid models derived from the Boltzmann
equation, and perform kinetic simulations by directly evolving the Boltzmann equation. Perhaps the best example is a radially
expanding flow, such as the solar corona with emerging solar wind, where the spherical expansion creates strong large-scale
gradients and simultaneously drives the system toward a collisionless regime. It seems that in this extreme case it might indeed be
possible (but not with certainty) that the underlying distribution function could even become negative, fa< 0, which is of course
unphysical. We anticipate that our 21- and 22-moment models might fail in this particular situation, even if the evolution equations
are retained, but, as discussed below, we were unfortunately not able to reach a clear conclusion and further research is needed to
clearly establish the areas of validity.

The fa< 0 has been criticized, for example, by Scudder (2021) and Cranmer & Schiff (2021), and references therein, on an
example of an 8-moment model in a quasistatic approximation. It is in fact questionable if the fa< 0 can be shown in a quasistatic
approximation. It is necessary to distinguish between two different cases, depending whether large-scale gradients are present or
absent during the transition into the low-collisionality regime. In the homogeneous case, the situation is clear, because one needs to
describe the presence of waves with frequencies ω, and neglecting the time derivative d/dt in the evolution equations automatically
imposes the requirement ω= ν, i.e., the collisional frequencies ν must remain sufficiently large. In this case, it is erroneous to simply
take the quasistatic heat flux qa∼ 1/ν, evaluate it for some arbitrarily small ν, and claim that fa< 0. Instead, it is necessary to retain
the evolution equations with dqa/dt; see, e.g., (41), (51) or the coupled system (135)–(139), which preclude one from reaching the
direct interpretation that fa< 0 (unless one calculates the eigenvector and shows otherwise). The negativity of the distribution
function may not take place and, as a consequence, the procedure seems inadequate for disproving the moment method of Grad in a
homogeneous low-collisionality regime. The situation is much less clear when large-scale gradients are present, as in the example of
solar wind expansion. In that case, it is possible to argue that keeping the evolution equations and solving an initial value problem
might only help temporarily, because the system eventually has to converge to some stationary solution, which might show that
fa< 0. Such a possibility seems to be implied by the simple one-dimensional radially expanding quasistatic models (see, e.g.,
Cranmer & Schiff 2021, and references therein). However, the quasistatic approximation can be questioned in this case as well, but
from a different perspective. Introducing a heat flux or a stress tensor is analogous to introducing a new degree of freedom into a
system, and if this new degree of freedom is not restricted in any way, it might of course yield an unphysical system. In plasma
physics, degrees of freedom are usually restricted by associated instabilities that develop, which cannot be revealed in a quasistatic
approximation (even if an instability is nonpropagating). Useful examples are the anisotropic CGL and 16-moment models described
above. Using a quasistatic approximation, one might erroneously conclude that the temperature anisotropy can grow without bounds
in these models, whereas considering evolution equations reveals the firehose and mirror instabilities, which can restrict the
anisotropy. A similar situation might be applicable here, where sufficiently large drifts (and possibly large heat fluxes and stress
tensors) might cause various instabilities and also the development of turbulence, but further clarifications are needed as to whether
our fluid models contain some of these instabilities, especially considering that our collisional contributions are valid only when the
differences in the drifts between species are much smaller than their thermal velocities. In this regard, it is not clear if it is appropriate
to neglect the Alfvénic fluctuations in the radially expanding models. Finally, it is also not clear if it is physically meaningful to show
fa< 0 by skipping the stress tensor in the expansions of Grad (which is a second-order moment before the third-order heat flux
moment), because its contributions to a total fa might be significant. For a sufficient proof that the fa can become negative, it might be
necessary to consider at least the 13-moment model, where both the stress tensors and heat fluxes are retained.

8.10. Conclusions

We have discussed various generalizations of the 21-moment model of Braginskii (1958, 1965). (1) We have presented a
multifluid formulation for arbitrary masses ma and mb and arbitrary temperatures Ta and Tb. (2) All of the fluid moments are described
by their evolution equations, whose left-hand sides are given in a fully nonlinear form. (3) Formulation with evolution equations has
the important consequence that the model does not become divergent (unbounded) if a regime of low collisionality is encountered.
(4) For a one ion–electron plasma, we have provided all of the Braginskii transport coefficients in a fully analytic form for a general
ion charge Zi (and arbitrary strength of magnetic field). (5) We have also provided fully analytic higher-order transport coefficients
(for

4P̄̄( )
and X(5)), which are not typically given. (6) All of the electron coefficients were further generalized to multi-ion plasmas. (7)

We have considered coupling between viscosity tensors and heat fluxes, where a heat flux enters a viscosity tensor and a viscosity
tensor enters a heat flux. As a consequence, we have introduced new higher-order physical effects, even for the simplest case of the
unmagnetized one ion–electron plasma of Spitzer & Härm (1953). For example, the electron rate of strain tensor We¯̄ enters the
electron heat fluxes even linearly, and thus it subsequently enters the momentum exchange rates linearly; see Equation (127). (8) We
have formulated the 22-moment model, which is a natural extension of the 21-moment model, where one takes into account fully
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contracted scalar perturbations Xa
4~( )
entering the decomposition of the fourth-order moment Xijkl

a 4( ); see Equation (129). The collisional
contributions for this model with arbitrary masses and temperatures are given in Section 7.1, and supplement those given in

Section 2.1 for the 21-moment model. Interestingly, the scalar perturbations Xa
4~( )
modify the energy exchange rates; see Equations

(140) or (177). In the quasistatic approximation, the scalar perturbations Xa
4~( )
can be written as the divergence of heat flux vectors

with their own heat conductivities; see, for example, the solutions for a one ion–electron plasma with the ion heat conductivities
(149) and the electron heat conductivities (162). These corrections remain small in the highly collisional regime, but might become
significant at small wavelengths and/or at large frequencies.

Our model can be useful for direct numerical simulations, as well as for the quick calculation of the transport coefficients in a
quasistatic approximation. We provide three examples for coupling between two species. Thermal conductivities and viscosities for
unmagnetized proton–electron plasma (without me/mp expansions) were presented in Section 8.8, and two examples for protons–
alpha particles and deuterium–tritium were moved to Appendix N. Our model can also be useful from an observational perspective.
For example, the parallel thermal heat flux qe of Braginskii (1965) and Spitzer & Härm (1953; they only differ by 3.16 versus 3.20
factors, rounded as 3.2) is sometimes analyzed in observational studies; see, e.g., Salem et al. (2003), Bale et al. (2013), Halekas et al.
(2021), and Verscharen et al. (2019, p. 61). It is also measured in (exospheric) kinetic numerical simulations (Landi et al. 2014). Our
model suggests that it would be beneficial to analyze both parallel heat fluxes, which for Zi= 1 read
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and which can be analyzed with the same techniques. For long parallel mean-free paths (in the low collisionality regime), both
heat fluxes naturally have to become nonlocal and independent of the mean-free path. Our limitations are described in
Section 8.9, and the “flattening/saturation” of the heat fluxes due to the runaway effect and Landau damping is not captured in
our model. Our model is aimed at the highly collisional regime, and in the low-collisionality regime our heat fluxes are just
described by their evolution equations, where the collisional right-hand sides are small. Nevertheless, it would be interesting to
see if in observational studies or kinetic simulations the Xe

5( ) could be described by a free-streaming formula similar to the one of
Hollweg (1974, 1976), in a form X up3 2e e e

5 2
sw 5r a= ( )( )( ) , where the “bugger factor” α5 has to be determined from a given

form of a distribution function, or if such a concept does not apply for Xe
5( ). As a side note, concerning collisionless heat fluxes

for plasmas where spherical expansion and large drifts are not present and Landau damping dominates, our model actually
implies that a correct interpretation should not be that the Landau damping diminishes/saturates the heat flux in a low-
collisionality regime. The correct interpretation is that the Landau damping creates the collisionless heat flux. Collisionless
Landau fluid closures for quasistatic parallel scalar X 5


( ) can be found in Hunana et al. (2019a, p. 84). In addition to (236), it might

be also useful to analyze the scalar perturbation, which for Zi= 1 reads

X
p

m
T83.8 . 237e

e

ei e e
e

4
2

2
2

n r
= + ~ ( )( )

Our multifluid model might also be useful for the modeling of the enrichment of minor ion abundances in stellar atmospheres,
because of the very precise thermal force (thermal diffusion). Let us summarize the thermal force description in three major models:
the model of Burgers (1969)–Schunk (1977), the model of Killie et al. (2004), and our model. Of course, all three models are
formulated as general multifluid models, but for the simplicity of the discussion let us simplify and compare only the thermal forces
given by
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Note that the viscosity tensors are not required to describe the thermal force, and focusing only on the heat fluxes, instead of the 13-
moment model of Burgers–Schunk, one can consider only the 8-moment model. Similarly, instead of our 21- and 22-moment
models, one can consider only the 11-moment model. In general, the parallel thermal heat flux is given by qe=− γ0pe/(meνei)∇Te
and the resulting parallel thermal force by R n Te

T
e e0b= -  , with coefficients γ0 and β0. From the work of Spitzer & Härm (1953),

for Zi= 1, the correct coefficient of thermal conductivity is γ0= 3.203 and the correct coefficient of thermal force is β0= 0.703. The
model of Burgers–Schunk (238) has thermal conductivity γ0= 1.34, and with that value it describes the thermal force actually quite
accurately, yielding β0= 0.804 (for other Zi values, see the comparison in Table 9 in Appendix I). However, a problem arises if one
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uses the correct value of thermal conductivity γ0= 3.2 in expression (238), which overestimates the thermal force. Killie et al. (2004)
developed a different 8-moment model, where the expansion is done differently than in Equation (1), with the goal of improving the
heat flux and the thermal force of Burgers–Schunk. The model is described in Appendix I.2. For Zi= 1, its heat flux value is
γ0= 3.92, which greatly improves the model of Burgers–Schunk, and for that value it also improves the thermal force, yielding
β0= 0.672. Additionally, one can now use the correct γ0= 3.2 value in expression (239) and the thermal force will be roughly
correct (and 7/2 times smaller than Burgers–Schunk). However, as we point out in Appendix I (see Table 11), the model of Killie
et al. (2004) breaks the Onsager symmetry between the frictional heat flux and the thermal force. The numerical model of Spitzer &
Härm (1953) also does not satisfy the Onsager symmetry, and its frictional heat flux is technically incorrect, even though in this case
the discrepancies are small. Our model satisfies the Onsager symmetry, and it has thermal conductivity γ0= 3.1616 and thermal force
β0= 0.711 (the same as Braginskii). In summary, our multifluid model has a very precise thermal force (240), with a precision equal
to Braginskii (1965), and we thus offer an improvement to the multifluid models of Burgers (1969)–Schunk (1977) and Killie et al.
(2004).
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Appendix A
General Evolution Equations

We consider the Boltzmann equation (in cgs units)
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where “a” is a species index and C( fa)=∑bCab( fa, fb) is the Landau collisional operator, so Equation (A1) is called the Landau
equation. One defines the usual number density na= ∫fad

3v, density ρa=mana, fluid velocity ua= (1/na)∫vfad
3v, and fluctuating

velocity ca= v− ua, and further defines the pressure tensor pā̄, heat flux tensor qa¯̄ , fourth-order moment rā̄, and fifth-order and sixth-

order moments Xa
5¯̄ ( )
, Xa

6¯̄ ( )
, respectively, according to
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The writing of the tensor product⊗ is suppressed everywhere and caca= ca⊗ ca. For complicated fluid models, the species index “a”
often blurs the clarity of the tensor algebra, and thus in the vector notation (A2) we emphasize tensors of second rank and above with
the double overbar symbol. Sometimes we move the index “a” freely up and down (which here does not represent any mathematical
operation), and in the index notation the index “a” is often dropped completely, so, for example, p m c c f d vij

a
a i

a
j
a

a
3ò= and

pij=m∫cicjfd
3v are equivalent. The Einstein summation convention does not apply for the species index “a”, and summations over

other particle species are written down explicitly. The divergence is defined through the first index p pa j i ij
a = ¶( · ¯̄ ) .

Here we do not consider ionization and recombination processes, and the Landau collisional operator conserves the number of
particles ∫C( fa)d

3v= 0 for each species. One defines a unit vector in the direction of the magnetic field b B B=ˆ ∣ ∣, cyclotron
frequency Ωa= eZa|B|/(mac), and convective derivative da/dt= ∂/∂t+ ua ·∇. It is also useful to define a symmetric operator S¢ ¢,
which acts on a matrix as A A Aij

S
ij ji= + and on a tensor of the third rank as A A A Aijk

S
ijk jki kij= + + , i.e., it cycles around all

indices. We often use operator trace Tr and unit matrix Ī̄ , where A I ATr :=¯̄ ¯̄ ¯̄ , and operator “:” represents double contraction. We
also use I I bb= -^̄̄ ¯̄ ˆ ˆ.

To derive the model of Braginskii (1965) with the moment method of Grad, it is necessary to consider the evolution equation for

the fifth-order moment Xa
5¯̄ ( )
and perform a closure at Xa

6¯̄ ( )
. Integrating (A1) over velocity space yields the the following hierarchy of

46

The Astrophysical Journal Supplement Series, 260:26 (145pp), 2022 June Hunana et al.

http://arxiv.org/abs/2201.11561
http://arxiv.org/abs/2201.11561


evolution equations:
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where the collisional contributions on the right-hand sides are given by (5). It is also possible to define a general nth-order moment

Xa
n¯̄ ( )
and collisional contributions Qa

n¯̄ ( )
:

X m c c c fd v Q m c c c C f d v; , A10r r r
n

r r r r r r
n

r r r
3 3

n n n n1 2 1 2 1 2 1 2ò ò= ¼ = ¼¼ ¼ ( ) ( )( ) ( )

together with a symmetric operator “S” that cycles around all of its indices:

X X X X X , A11n
r r r r
S

r r r r
n

r r r r
n

r r r r
n

r r r r r
n

n n n n n n1 2 3 1 2 3 2 3 1 3 1 2 1 2 3 1
= + + + +¼ ¼ ¼ ¼ ¼ -

 [ ] ( )( ) ( ) ( ) ( ) ( )

(so that it contains “n” terms) and derive the following evolution equation for Xa
n¯̄ ( )
:

X X u X X u b X p X

Q R X

t

1

1
, A12

a
n

a
n

a a
n

a
n

a a a
n

a
a a

n
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a
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a
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n S

1 1
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r
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= -
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⎡
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⎤
⎦⎥

¯̄ · ( ¯̄ ¯̄ ) ¯̄ · ˆ ¯̄ ( · ¯̄ ) ¯̄

¯̄ [ ¯̄ ] ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

valid for n� 2. The left-hand side of (A12) is equal to the collisionless Equation (12.16) of Hunana et al. (2019b). Evolution
Equations (A6)–(A9) can then easily be obtained by the evaluation of (A12). Note that definition (A10) yields X p2 =¯̄ ¯̄( )

, X q3 =¯̄ ¯̄( )
,

and X r4 =¯̄ ¯̄( )
, but X 01 =¯̄ ( )

.
As has already been pointed out by Grad (1949a, 1949b), who developed the moment approach considering rarefied gases, because

fluid moments are symmetric in all of their indices, a general nth-order moment X n¯̄ ( )
contains n n1 2 2n

n

2 = + ++( ) ( )( )/ distinct

(scalar) components. So the density has 1, the velocity has 3, the pressure tensor has 6, the heat flux tensor has 10, X 4¯̄ ( )
has 15, and

X 5¯̄ ( )
has 21 scalar components. The system (A4)–(A9) thus represents a 56-moment model.

Appendix B
Tensorial Hermite Decomposition

In the famous work of Grad (1949a, 1949b, 1958), the so-called tensorial Hermite decomposition is used, which is a generalization
of the one-dimensional version. The one-dimensional Hermite polynomials of order “m” are defined as

H x e
d

dx
e1 , B1m m x m

m

x
2 2

2 2

= - -( ) ( ) ( )( )

and evaluated step by step as H(0)= 1, H(1)= x, H(2)= x2− 1, H(3)= x3− 3x, H(4)= x4− 6x2+ 3, and H(5)= x5− 10x3+ 15x. So
polynomials of even order contain only even powers of x and polynomials of odd order contain only odd powers of x. These
polynomials are orthogonal to each other by

H x H x e dx n
1

2
. B2n m x

nm2
2

òp
d=

-¥

¥
-( ) ( ) ! ( )( ) ( )

Note that the “weight” xexp 22-( ) was used by Grad instead of the quantum-mechanical xexp 2-( ). Of course, it is important to use
the correct weights with both classes of Hermite polynomials. Curiously, if the weight is accidentally mismatched (i.e., by using

xexp 2-( ) in our (B2) or xexp 22-( ) in the quantum version), in addition to naturally wrong numerical constants, the even–even and
odd–odd couples of polynomials are not orthogonal any more! The generalization to tensors for the isotropic Maxwellian distribution
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reads

cH e
c c c

e1 . B3r r r
m m c

r r r

c
, 2 2

m
m

1 2

2

1 2

2

= -
¶
¶

¶
¶

¶
¶¼

-˜ (˜) ( )
˜ ˜ ˜

( )( ) ˜ ˜

We use the same notation as Balescu (1988), where reducible Hermite polynomials are denoted with tilde, and irreducible
polynomials have no tilde. We have added tilde on normalized c̃ to make transitioning to usual fluid moments straightforward. Then
explicit evaluation step by step gives

c

c

c

c

c

H

H c

H c c

H c c c c c c

H c c c c c c c c c c c c c c c c

1;

;

;

;

, B4

i i

ij i j ij

ijk i j k ij k jk i ik j

ijkl i j k l ij k l jk l i kl i j li j k ik j l jl i k

ij kl ik jl il jk

0

1

2

3

4

d

d d d

d d d d d d
d d d d d d

=

=

= -

= - + +

= - + + + + +

+ + +

˜ (˜)
˜ (˜) ˜
˜ (˜) ˜ ˜

˜ (˜) ˜ ˜ ˜ ( ˜ ˜ ˜ )

˜ (˜) ˜ ˜ ˜ ˜ ( ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ )
( )

( )

( )

( )

( )

( )

and quickly starts to grow:

cH c c c c c c c c c c c c c c c c c c c c

c c c c c c c c c c c c c c c

c c c c c

c c c c c

c c c c c . B5

ijklm i j k l m ij k l m jk l i m kl i j m li j k m ik j l m

jl i k m im j k l jm i k l km i j l lm i j k

ij kl m ik jl m il jk m ij km l ij lm k

jk lm i jk im l kl im j kl jm i li jm k

li km j ik jm l ik lm j jl im k jl km i

5 d d d d d
d d d d d
d d d d d d d d d d
d d d d d d d d d d
d d d d d d d d d d

= - + + + +

+ + + + +
+ + + + +
+ + + + +
+ + + + +

˜ (˜) ˜ ˜ ˜ ˜ ˜ ( ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜
˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ )

˜ ˜ ˜ ˜ ˜
˜ ˜ ˜ ˜ ˜
˜ ˜ ˜ ˜ ˜ ( )

( )

The choice of Grad with xexp 22-( ) has a great benefit, because no numerical constants are present in the entire hierarchy of
Hermite polynomials, which is not the case for the weight xexp 2-( ). Here, numerical factors appear only after one applies
contractions (traces) at the above expressions. Similar to the one-dimensional case, polynomials of even order contain only terms
with even numbers of velocities c̃, and polynomials of odd order contain only terms with odd numbers of c̃.

For a Maxwellian distribution, the normalized velocity is

c v u c
m

T

m

T
, B6a

a
a

a

a
= - =˜ ( ) ( )

where, for simplicity, we suppress the writing of species index “a” for velocity c in the expressions that follow, and for many other
variables as well (the Hermite decomposition is done independently for each species, and the species variable “a” just makes the
expressions more blurry). It is possible to work in both normalized and physical units. The entire distribution function can be written
as

f f n
m

T

e
1 1 ;

2
, B7a a a a

a

a
a

0
3 2

0 0
3 2

c2
2

c f c f
p

= + = + =
-

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )
( )

( )( ) ( ) ( )
˜

where χa represents the wanted perturbation. One can go quickly between the physical and normalized units by

c cf d c n d c1 . B8a a a
3 0 3ò ò f c= +( ) ( (˜)) ˜ ( )( )

The tensorial polynomials are again orthogonal to each other, where, by using “weight” f(0):

H H d c

H H d c

H H d c

H H d c

1;

;

;

, B9

i j ij

ij kl ik jl il jk
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f
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and the expressions quickly become long:

H H d c

. B10
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The general orthogonality can be written by introducing the multi-indices r= r1Krn and s= s1...sm:

H H d c , B11r s rs
n m

mn
n0 3ò df d=˜ ˜ ˜ ( )( ) ( ) ( ) ( )

where the new symbol rs
nd( ) is equal to one, if the indices r1Krn are a permutation of s1Ksn, but otherwise is zero. In other words, for

n=m, the right-hand side contains n! terms, where each of these terms has the form r s r s r sn n1 1 2 2d d d¼ , and to calculate the other terms
it is necessary to keep the r-indices fixed, and do all the possible permutations with s-indices (or vice versa). A particular case of
(B11) reads

m H d c0: 0, B12s
m0 3ò f¹ =˜ ˜ ( )( ) ( )

i.e., the integral over a single Hermite polynomial with weight f(0) is zero.
The goal of the Hermite expansion is to find the perturbation of the distribution function χa in (B7). For the most general

decomposition, one can chose to express the perturbation χa as a sum of Hermite polynomials:

A H

A H A H A H A H , B13

a
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r r r
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where the coefficients Ar r r
m

m1 2¼
( ) need to be found. Note that full contractions over all indices are present and the result is a scalar.

Multiplying (B13) by weight f(0) and polynomial Hs s s
n

n1 2¼
˜ ( ) , and integrating over d c3˜ by using orthogonality (B11), then yields

H d c A n A , B14s r rs sa
n n n n0 3ò c f d= =˜ ˜ ! ( )( ) ( ) ( ) ( ) ( )

where the last equality holds because coefficient As
n( ) is a fluid variable and symmetric in all of its indices. The coefficients As

n( ) are
thus found according to

c c cA
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f H d c
1 1

1
1
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where we have used the orthogonality relation (B12) and changed the integration variable to d3c with (B8). The quantities in the

brackets of (B15) are called Hermite moments hs
n˜ ( )
. The entire Hermite expansion then can be summarized into two easy steps.

(1) Calculate the Hermite moments:

ch
n

f H d c
1

, B16r r r
a m

a
a r r r

a m 3
m m1 2 1 2ò=¼ ¼
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(2) the final perturbation is:

c
m

h H
1

. B17a
m

r r r
a m

r r r
a m

1
m m1 2 1 2åc =

=

¥

¼ ¼!
˜ ˜ (˜) ( )( ) ( )

It is useful to omit writing the species indices “a” on both h̃ and H̃ , as well as on the fluid moments, so we will keep the species index
only for na, ma, Ta, and pa. The final perturbations will be written in a full form.
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By using definitions of general fluid moments, one straightforwardly calculates the Hermite moments:
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B.1. Usual Perturbations of Grad

B.1.1. 20-moment Model

Using the definition of the perturbation (B17) and cutting the hierarchy at

h H h H h H
1

2

1

6
, B21a i i ij ij ijk ijk

1 1 2 2 3 3c = + +˜ ˜ ˜ ˜ ˜ ˜ ( )( ) ( ) ( ) ( ) ( ) ( )

yields the 20-moment perturbation of Grad:
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m
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6
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2
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where one defines vector q q1 2 Tra a= ( ) ¯̄ .

B.1.2. 13-moment Model

To quickly obtain the simplified 13-moment model of Grad, one can use q qI2 5 S s= + ¢¯̄ ( )( ¯̄) with s¢ neglected (the validity of
this equation is shown below), and calculating c q cc q c c: 6 5 2=· ¯̄ ( )( · ) yields the 13-moment model:

c c q c
m

p T

m

p T

m

T
c13 moment:

2
: 1

5
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2 2c P= - -⎜ ⎟
⎛
⎝

⎞
⎠

‐ ( ¯̄ ) ( · ) ( )( )

Rederiving the heat flux contribution of the 13-moment model from scratch can be done by using a contracted Hermite polynomial:

H H c c 5 . B24i jk ijk i
3 3 2dº = -˜ ˜ ˜ ( ˜ ) ( )( ) ( )

However, one needs to be careful about the normalization constant, because applying the contractions r r1 2d and s s1 2d on (B9) yields

H H d c 10 , B25i j ij
0 3 3 3ò f d=˜ ˜ ˜ ( )( ) ( ) ( )

which can be also verified by direct calculation. (Note that it is important to apply the contractions on (B9) as stated above, and not
accidentally as r s r s1 1 2 2d d , which would yield an erroneous coefficient 20, as the contraction must satisfy definition (B24)). Then, one
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calculates the Hermite moment:
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(which is equal to hikk
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) and the heat flux perturbation becomes
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recovering (B23).

B.1.3. Double-checking the Fluid Moments

Using the 8-moment perturbation (B27) (or the perturbation of the 13-moment model (B23)), it is possible to calculate the heat
flux moment, for example, by switching to normalized units and using the integral (B89), which is valid for any vector q,
yielding
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In contrast, using the 20-moment perturbation (B22) and integral (B91) yields the identity q q=¯̄ ¯̄, as it should. Thus, the full heat flux
tensor can be decomposed as

q Iq
2

5
, B29S s= + ¢¯̄ [ ¯̄ ] ( )

wheres¢ represents the highest-order irreducible part of the heat flux tensor, and by applying a trace at (B29) it can be verified thats¢
is traceless. The calculation of the fourth-order moment r̄̄ yields (with either the 10-, 13-, or 20-moment model)
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where one can use the integrals (B84), (B100). Applying a trace at (B30) yields
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If one does not want to use our provided integrals from Appendix B.6 (or wants to verify them), all of the needed integrals can be
calculated by using the powerful orthogonality theorem. As an example,

c c c H d c H H d c c c c H d c , B32i j k lmn ijk lmn ij k jk i ik j lmn
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where the first term is calculated with the orthogonality (B9), and the second term is zero (because all of the resulting terms can be
rewritten as H Hi lmn

1 3˜ ˜( ) ( )
, which yields zero after integration; see also integral (B83)).

In some calculations, one actually does not need to work with the complicated right-hand side of (B9), because once the integral is
calculated, the result is going to be applied on hs s s

3
1 2 3

˜ ( )
, which is a fluid variable and symmetric in all of its indices. Let us demonstrate it

by using the 20-moment heat flux perturbation
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and calculating the heat flux moment again, this time with the Hermite variables:
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In the derivation, we did not use the complicated right-hand side of (B9), we only used h n hr rs s
n n nd =˜ ! ˜( ) ( ) ( )

, and the factor of 3!
canceled out as well.

Similarly, using the same perturbation (B33), one can derive the fifth-order fluid moment X 5¯̄ ( )
, by using the Hermite polynomial

Hijklm
5˜ ( ) , Equation (B5), according to
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Or this can be rewritten with the heat fluxes according to (B18) and using the usual indices:

X
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and by using the heat flux decomposition (B29) with s¢ neglected:
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Applying the contractions at (B36) yields
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B.2. Higher-order Perturbations (Full X 4¯̄ ( )
and X 5¯̄ ( )

Moments)

By using the technique described above, it is possible to use the following higher-order perturbation:
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and directly calculate the fluid moments (we use X 4¯̄ ( )
instead of r̄̄ from now on):

X
p

h h h h

h h h

, B40

r r r r
a

a
r r r r r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

4
2

4 2 2 2

2 2 2

1 2 3 4 1 2 3 4 1 2 3 4 2 3 1 4 3 4 1 2

1 4 2 3 1 3 2 4 2 4 1 3

1 2 3 4 1 3 2 4 2 3 1 4

r
d d d

d d d
d d d d d d

= + + +

+ + +
+ + +

[ ¯̄ ] [ ˜ ˜ ˜ ˜

˜ ˜ ˜

] ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

and

X p
T

m
h h h h

h h h h

h h h . B41

r r r r r a
a

a
r r r r r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r

5
3 2

5 3 3 3

3 3 3 3

3 3 3

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 2 3 4 1 5 3 4 1 2 5

4 1 2 3 5 1 3 2 4 5 2 4 1 3 5 1 5 2 3 4

2 5 1 3 4 3 5 1 2 4 4 5 1 2 3

d d d

d d d d

d d d

= + + +

+ + + +

+ + +

⎜ ⎟
⎛
⎝

⎞
⎠

[ ¯̄ ] [ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

˜ ˜ ˜ ] ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

Both results contain new contributions, represented by the hr r r r
4

1 2 3 4
˜ ( )

and hr r r r r
5

1 2 3 4 5
˜ ( )

.
It is useful to introduce notation where, by applying a contraction at a tensor, the contracted indices will be suppressed, so, for

example, h hi ikk
3 3º˜ ˜( ) ( )

, or X Xij ijkk
4 4º( ) ( ) and X Xiikk

4 4º( ) ( ) . We define all of the contractions without any additional factors, with the sole
exception of the heat flux vector q, where the additional factor of 1/2 is present, to match its usual definition. To emphasize this
difference, in the index notation we thus keep an arrow on the components of the heat flux vector qi, to clearly distinguish it from the
contracted tensor qijk.

Applying the contractions at (B40), (B41) then yields
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and applying the contractions at the Hermite moments (B18)–(B20) yields
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B.2.1. Viscosity ij
4P( ) of the Fourth-order Moment Xij

4( )

The usual viscosity tensor is defined as a traceless matrix:

m c c c f d c
1

3
. B44ij a i j ij a

2 2 3ò dP = -⎛
⎝

⎞
⎠

( )( )

Similarly, it is beneficial to introduce a traceless viscosity tensor of the fourth-order fluid moment:

m c c c c f d c
1

3
. B45ij a i j ij a

4 2 2 3ò dP = -⎛
⎝

⎞
⎠

( )( )

In other words, the moment Xij
4( ) is decomposed as

X X
3

, B46ij
ij

ij
4 4 4d

= + P ( )( ) ( ) ( )

where the fully contracted X(4)=ma∫c
4fad

3c. Scalar X(4) is further decomposed to its “core” Maxwellian part, and the additional

perturbation X
4~( )
(with wide tilde), according to

X
p
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4
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4

r
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and the corresponding Hermite moments thus become
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It is important to emphasize that depending on the choice of perturbation χa, in general X
4~( )
is nonzero. However, this perturbation is

not required to derive the model of Braginskii (1965), and Balescu (1988), for example, prescribes irreducible h(4)= 0. In the next
section, we will consider simplified perturbations and derive the above results in a more direct manner; nevertheless, the more general
case (B39) is a very useful guide in demonstrating that it is possible to consider perturbations with nonzero h(4).

Finally, because the reducible matrix hij
4˜ ( )
is not traceless in general (unless one prescribes the Hermite closure h 04 =˜( ) , which

makes it traceless by definition), it is useful to introduce traceless

h h h
p p3

7
, B49ij ij

ij a

a
ij

a
ij

4 4 4
2

4 2d r
= - = P - Pˆ ˜ ˜ ( )( ) ( ) ( ) ( ) ( )

where we use hat instead of tilde.

B.2.2. Simplified Perturbations (21-moment Model)

Instead of working with very complicated perturbations (B39), it was shown by Balescu (1988) that to obtain the model of
Braginskii (1965), it is sufficient to work with simplified

h H h H h H h H . B50a ij ij i i ij ij i i
2 2 3 3 4 4 5 5c = + + + ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

The perturbation (B50) is written with irreducible Hermite polynomials (notation without tilde), as discussed in the next section. This
perturbation represents the 21-moment model, and recovers both the stress tensor and the heat flux of Braginskii. However, the
connection between irreducible and reducible Hermite polynomials can be very blurry at first, and we continue with reducible
Hermite polynomials.

Applying the contractions at the hierarchy of the reducible polynomials (B5) yields
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By using these polynomials, the Hermite moments then calculate
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of course recovering previous results. The reducible Hermite polynomials satisfy the following orthogonality relations:
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and because the Hermite moments hkl
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, hkl
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are symmetric and traceless,
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Thus, a perturbation that can be directly derived from the hierarchy of the reducible Hermite polynomials (with no reference to
irreducible Hermite polynomials or Laguerre–Sonine polynomials) reads
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where each term is calculated as

q c

X c q c

c c

c c c c

h H
p

m

T
c

h H
p

m

T p
c c

h H
p

h H
p p

c

1

10

1

5
5 ;

1

280

1

280
28 14 35 ;

1

2

1

2
: ;

1

28

1

28
:

7
: 7 , B55

i i
a

a

a
a a a

i i
a

a

a

a

a

a
a a a a a

ij ij
a

a a a

ij ij
a

a
a a a

a
a a a a

3 3 2

5 5 5 4 2

2 2 2

4 4

2

4 2 2

r

r

P

P P

= -

= - - +

=

= - -

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥

˜ ˜ ( · ˜ )( ˜ )

˜ ˜ ( · ˜ ) ( · ˜ ) ( ˜ ˜ )

˜ ˜ ( ¯̄ ˜ ˜ )

ˆ ˜ ( ¯̄ ˜ ˜ ) ( ¯̄ ˜ ˜ ) ( ˜ ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

with normalized velocity c cm Ta a a a=˜ . Bellow, we show that the perturbation (B54), (B55) is equivalent to the perturbation of
Balescu (B50), obtained with irreducible polynomials. The final perturbation of the 21-moment model that recovers Braginskii
(1965) thus reads
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Finally, because hij
4ˆ ( )
is traceless, its double contraction with Hij

4˜ ( ) makes the part of this polynomial proportional to δij redundant in
the final perturbation. It is possible to define another traceless polynomial (with hat instead of tilde):

H H H c c c c
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and replace the following term in the perturbation (B54):
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where the part of (B57) proportional to δij is still suppressed in the final perturbation. However, the traceless definition (B57) now

makes it possible to directly define the traceless Hermite moment hij
4ˆ ( )
as an integral over Hij

4ˆ ( )
:
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This is the main motivation behind irreducible Hermite polynomials, as is further clarified below.

55

The Astrophysical Journal Supplement Series, 260:26 (145pp), 2022 June Hunana et al.



B.3. Irreducible Hermite Polynomials

In the work of Balescu (1988), the irreducible Hermite polynomials are defined through Laguerre–Sonine polynomials, according
to (see Equation (G1.4.4) on p. 326 of Balescu)
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To recover the Braginskii (1965) model, one only needs (see Table 4.1 on p. 327 of Balescu)
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yielding Hermite moments
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Furthermore, the orthogonal relations are
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yielding perturbation (B50), which then recovers perturbation (B54), (B55) obtained with reducible polynomials. Both approaches
are therefore equivalent, which is further addressed in Appendix B.7.

B.3.1. Higher-order Tensorial “Anisotropies”

It is useful to clarify what contributions are obtained by using the irreducible Hermite polynomials:
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which Balescu (1988) calls “anisotropies” (even though they are valid as a perturbation for isotropic Maxwellians). Importantly,
applying a trace on (B64) yields zero. The corresponding Hermite moments calculate

q Iqh
p

m

T p

m

T
h

p

1 2

5

1
; , B65ijk

a

a

a

S

ijk a

a

a
ijk ijkl

a

a
ijkl

3 4
2

4s
r
s= - = ¢ = ¢⎡

⎣
⎤
⎦

¯̄ ( ¯̄ ) ( )( ) ( ) ( )

and directly yield the highest-order irreducible parts.

B.4. Decomposition of Xijkl
4( )

We continue with the reducible Hermite polynomials. To decompose the full fourth-order fluid moment Xijkl
4( ), it is necessary to

consider the following perturbation (i.e., the 16-moment model):

h H h H h H
1

2

1

28

1

120
, B66a ij ij ij ij

2 2 4 4 4 4c = + +˜ ˜ ˆ ˜ ˜ ˜ ( )( ) ( ) ( ) ( ) ( ) ( )

and, by using this perturbation, to calculate Xijkl
4( ). In comparison to the previous perturbation of the 21-moment model, the last term

with Hermite polynomial H 4˜ ( ) is new. It is derived with orthogonality relation H H d c 1200 4 4 3òf =˜( ) ( ) ( ) . We will need the following
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integrals. Applying the contraction r r3 4d at the orthogonality relation (B10) yields

H c c c c d c H H d c

2 2 2

2 2 2

2 2 2

2 2 2 , B67

r r s s s s r r s s s s

r s r s s s r s r s s s r s r s s s

r s r s s s r s r s s s r s r s s s

r s r s s s r s r s s s r s r s s s

r s r s s s r s r s s s r s r s s s

4 0 3 4 4 0 3
1 2 1 2 3 4 1 2 1 2 3 4

1 1 2 2 3 4 1 1 2 3 2 4 1 1 2 4 2 3

1 2 2 1 3 4 1 2 2 3 1 4 1 2 2 4 1 3

1 3 2 1 2 4 1 3 2 2 1 4 1 3 2 4 1 2

1 4 2 1 2 3 1 4 2 2 1 3 1 4 2 3 1 2

ò òf f

d d d d d d d d d
d d d d d d d d d
d d d d d d d d d
d d d d d d d d d

=

= + + +
+ + +
+ + +
+ + +

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

( )

( ) ( ) ( ) ( ) ( )

and, further, applying traceless hr r
4

1 2
ˆ ( )

at (B67) leads to

h H c c c c d c

h h h h h h4 . B68

r r r r s s s s

s s s s s s s s s s s s s s s s s s s s s s s s

4 4 0 3

4 4 4 4 4 4

1 2 1 2 1 2 3 4

1 2 3 4 1 3 2 4 1 4 2 3 2 3 1 4 2 4 1 3 3 4 1 2

ò f

d d d d d d= + + + + +

ˆ ˜ ˜ ˜ ˜ ˜ ˜

[ ˆ ˆ ˆ ˆ ˆ ˆ ] ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

Applying the contraction r r1 2d at (B67) and multiplying by h 4˜( ) yields

h H c c c c d c h8 . B69s s s s s s s s s s s s s s s s
4 4 0 3 4

1 2 3 4 1 2 3 4 1 3 2 4 1 4 2 3ò f d d d d d d= + +˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ [ ] ( )( ) ( ) ( ) ( )

Similarly,

h H c c c c d c

h h h h h h2 . B70

r r r r s s s s

s s s s s s s s s s s s s s s s s s s s s s s s

2 2 0 3

2 2 2 2 2 2

1 2 1 2 1 2 3 4

1 2 3 4 1 3 2 4 1 4 2 3 2 3 1 4 2 4 1 3 3 4 1 2

ò f

d d d d d d= + + + + +

˜ ˜ ˜ ˜ ˜ ˜ ˜

[ ˜ ˜ ˜ ˜ ˜ ˜ ] ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

The results (B68), (B69), (B70) allow us to calculate the Xijkl
4( ) moment, which becomes

X m f h H h H h H c c c c d c

p
h

p
h h h h h h

h h h h h h

1
1

2

1

28

1

120

1

15
15

1

7
7 7 7

7 7 7 . B71

ijkl a a r r r r r r r r i j k l

a

a
ij kl ik jl jk il

a

a
ij ij kl ik ik jl il il jk

jk jk il jl jl ik kl kl ij

4 0 2 2 4 4 4 4 3

2
4

2
4 2 4 2 4 2

4 2 4 2 4 2

1 2 1 2 1 2 1 2ò

r
d d d d d d

r
d d d

d d d

= + + +

=+ + + +

+ + + + + +

+ + + + + +

⎡
⎣

⎤
⎦

˜ ˜ ˆ ˜ ˜ ˜

( ˜ )( )

[( ˆ ˜ ) ( ˆ ˜ ) ( ˆ ˜ )

( ˆ ˜ ) ( ˆ ˜ ) ( ˆ ˜ ) ] ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

Form (B71) nicely shows how various parts of perturbation (B66) contribute to the decomposition, including the new h 4˜( ).

Prescribing the Hermite closures h 0ij
4

=ˆ ( )
, h 04 =˜( ) recovers decomposition (B30) used in the Burgers–Schunk model. Finally,

rewritten with the fluid moments

p
h h X

p
h X

p
X7 ; ; 15 , B72ij

a

a
ij ij

a

a

a

a

4
2

4 2 4
2

4 4
2

4

r r r
P = + = = +~ ~( ˆ ˜ ) ˜ ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

and representing all of the other terms that were not obtained from (B66) by traceless ijkl
4s ¢( ) (which represents the highest-order

irreducible part of Xijkl
4( )), the decomposition becomes

X X
1

15
1

7
, B73

ijkl ij kl ik jl il jk

ij kl ik jl il jk jk il jl ik kl ij ijkl

4 4

4 4 4 4 4 4 4

d d d d d d

d d d d d d s

= + +

+ P + P + P + P + P + P + ¢

( )

[ ] ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

or equivalently,

X X

X X X X X X

1

35
1

7
. B74

ijkl ij kl ik jl il jk

ij kl ik jl il jk jk il jl ik kl ij ijkl

4 4

4 4 4 4 4 4 4

d d d d d d

d d d d d d s

=- + +

+ + + + + + + ¢

( )

[ ] ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

Decomposition (B73) is equivalent to Equation (30.22) of Grad (1958). Essentially, any tensorial moment can be decomposed by
subtracting all of the possible contractions of that moment. Note that simply prescribing the closure 0ij

4P =( ) in (B73) would be

erroneous, unless one also prescribes 0ij
2P =( ) as well. The correct simplification of (B73) is obtained by prescribing the Hermite

closure h 0ij
4

=ˆ ( )
, meaning by prescribing the fluid closure p7ij a a ij

4 2rP = P( )( ) ( ). Additionally, one can also prescribe the Hermite
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closure h 04 =˜( ) , which is equivalent to the fluid closure X 0
4

=
~( )

.

B.5. Decomposition of Xijklm
5( )

We only use the simplified perturbation

h H h H
1

10

1

280
. B75a i i i i

3 3 5 5c = +˜ ˜ ˜ ˜ ( )( ) ( ) ( ) ( )

By using this perturbation, it is possible to calculate the fifth-order fluid moment:

X
p

h h

h h

h h

h h

h h

1

35
14

14

14

14

14 . B76

s s s s s
a

a
s s s s s s s s s s s s s s

s s s s s s s s s s s s s s

s s s s s s s s s s s s s s

s s s s s s s s s s s s s s

s s s s s s s s s s s s s s

5
5 2

3 2

5 3

5 3

5 3

5 3

5 3

1 2 3 4 5 1 1 2 3 4 5 2 4 3 5 2 5 3 4

2 2 1 3 4 5 1 4 3 5 1 5 3 4

3 3 1 2 4 5 1 4 2 5 1 5 2 4

4 4 1 2 3 5 1 3 2 5 1 5 2 3

5 5 1 2 3 4 1 3 2 4 1 4 2 3

r
d d d d d d

d d d d d d

d d d d d d

d d d d d d

d d d d d d

= + + +

+ + + +

+ + + +

+ + + +

+ + + +

[( ˜ ˜ )( )

( ˜ ˜ )( )

( ˜ ˜ )( )

( ˜ ˜ )( )

( ˜ ˜ )( )] ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

Because we consider the simplified perturbation (B75), we do not consider full decomposition with 5s ¢( ) . Prescribing the Hermite

closure h 0i
5 =˜ ( )

yields the previously obtained decomposition (B37). Finally, by switching from Hermite to fluid moments,

h
p

q h
p p

X q h h
p

X2 ; 28 ; 14 , B77i
a

a
i i

a

a

a

a
i i i i

a

a
i

3
1 2

3 2

5
1 2

3 2
5 5 3

3 2

5 2
5r r r r

= = - + =
 

⎜ ⎟
⎛
⎝

⎞
⎠

˜ ˜ ˜ ˜ ( )( ) ( ) ( ) ( ) ( ) ( )

the decomposition becomes

X X

X

X

X

X

1

35

. B78

s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s

s s s s s s s s s s s s s

s s s s s s s s s s s s s

s s s s s s s s s s s s s

5 5

5

5

5

5

1 2 3 4 5 1 2 3 4 5 2 4 3 5 2 5 3 4

2 1 3 4 5 1 4 3 5 1 5 3 4

3 1 2 4 5 1 4 2 5 1 5 2 4

4 1 2 3 5 1 3 2 5 1 5 2 3

5 1 2 3 4 1 3 2 4 1 4 2 3

d d d d d d

d d d d d d

d d d d d d

d d d d d d

d d d d d d

= + +

+ + +

+ + +

+ + +

+ + +

[ ( )

( )

( )

( )

( )] ( )

( ) ( )

( )

( )

( )

( )

As a double-check, applying contraction s s4 5d at the last expression yields

X X X X
1

5
, B79s s s s s s s s s s s s

5 5 5 5
1 2 3 1 2 3 2 1 3 3 1 2d d d= + +[ ] ( )( ) ( ) ( ) ( )

and applying another contraction yields an identity. Note that it is not possible to perform the closure X(5)= 0, as such a closure

would be erroneous (unless q= 0 is prescribed as well). Instead, one needs to perform the closure at the Hermite moment h 0i
5 =˜ ( )

,
or, in other words, the correct closure is X(5)= 28(pa/ρa)q.

B.6. Table of Useful Integrals

The Hermite polynomials allow one to build the hierarchy of the following integrals. One introduces the weight

e

2
, B80

c
0

2

3 2

2

f
p

=
-

( )
( )( )

˜

and for any odd “m,” the following integral holds:

m c c c c d codd: 0. B81r r r r
0 3

m1 2 3ò f= ¼ =˜ ˜ ˜ ˜ ˜ ( )( )

The validity of (B81) can be shown by using “common-sense” symmetries and Gaussian integration, or by rewriting the integral with
pairs of Hermite polynomials, one of even order and one of odd order, H Hr r1 2 1 2m m+ -˜ ˜( ) ( ) (where the result of the integration is zero),
and a hierarchy of lower-order integrals that will also be odd–even pairs, yielding zero.
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A particular case of the orthogonality theorem is that for any m≠ 0, an integral over any single Hermite polynomial with weight
f(0) is zero:

m H d c0: 0. B82r r r r
m 0 3

m1 2 3ò f¹ =¼
˜ ˜ ( )( ) ( )

The two rules (B81), (B82) allow one to calculate the integrals for any even “m” number of velocities c̃, such as cccccc˜ ˜ ˜ ˜ ˜ ˜, which would
otherwise be very difficult to do just by using “common-sense” symmetries and Gaussian integration. Actually, for “m” being even,
quicker than using (B82) is rewriting the integrals into H Hm m2 2˜ ˜( ) ( ) and using the orthogonality relations (B9). A very useful integral
also reads

m n c c H d c: 0, B83r r s s
n 0 3

m n1 1ò f< ¼ =¼˜ ˜ ˜ ( )( ) ( )

the validity of which is easily shown by rewriting c cr rm1 ¼˜ ˜ with Hr r
m

m1¼
( ) (where the result of the integration is zero) and a hierarchy of

lower-order Hermite polynomials where the result of the integration is also zero.
It is possible to build the following table when “m” is even:

d c

c c d c

c c c c d c

1;

;

; B84

i j ij

i j k l ij kl ik jl jk il

0 3

0 3

0 3

ò
ò

ò

f

f d

f d d d d d d

=

=

= + +

˜

˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ( )

( )

( )

( )

c c c c c c d c

. B85

r r r s s s r s r s r s r s r s

r s r s r s r s r s r s r s r s r s r s

r r s s r s s s r s s s r s

r r s s r s s s r s s s r s

r r s s r s s s r s s s r s

0 3
1 2 3 1 2 3 1 1 2 2 3 3 2 3 3 2

1 2 2 1 3 3 2 3 3 1 1 3 2 1 3 2 2 2 3 1

1 2 1 2 3 3 2 3 3 1 3 1 3 2

1 3 1 2 2 3 2 3 2 1 3 1 2 2

2 3 1 2 1 3 2 3 1 1 3 1 1 2

ò f d d d d d

d d d d d d d d d d
d d d d d d d
d d d d d d d
d d d d d d d

= +

+ + + +
+ + +
+ + +
+ + +

˜ ˜ ˜ ˜ ˜ ˜ ˜ ( )

( ) ( )
( )
( )
( ) ( )

( )

These integrals can be used to obtain other useful integrals, for example, those that are valid for any (three-dimensional) vector q:

c q Iqc c c d c q q q ; B86i j k ij k jk i ki j ijk
S0 3ò f d d d= + + =

  ˜ ˜ ˜ (˜ · ) ˜ [ ¯̄ ] ( )( )

c qc c c c c d c q q

q q q

q q q

q q q

q q q . B87

r r r s s r s r s r r r s

r s r s r r r s r r s r s r s r s

r r s s r s r s s r s

r r s s r s r s s r s

r r s s r s r s s r s

0 3
1 2 3 1 2 1 1 2 2 3 2 3 2

1 2 2 1 3 2 3 1 1 2 1 3 2 2 2 3 1

1 2 1 2 3 2 3 1 1 3 2

1 3 1 2 2 2 2 1 1 2 2

2 3 1 2 1 2 1 1 1 1 2

ò f d d d

d d d d d d d
d d d d
d d d d
d d d d

= +

+ + + +

+ + +

+ + +

+ + +

 

  
  
  
  

˜ ˜ ˜ ˜ ˜ (˜ · ) ˜ ( )

( ) ( )
( )
( )
( ) ( )

( )

and by further contractions,

c q Iqc c c c d c q q q7 7 ; B88i j k ij k jk i ki j ijk
S2 0 3ò f d d d= + + =

  ˜ ˜ ˜ ˜ (˜ · ) ˜ ( ) [ ¯̄ ] ( )( )

c q Iqc c c
c

d c1
5

2

5
. B89i j k ijk

S
2

0 3ò f- = -⎜ ⎟
⎛
⎝

⎞
⎠

˜ ˜ ˜ ˜ (˜ · ) ˜ [ ¯̄ ] ( )( )

As a quick double-check of the above results, by performing the further contractions

c q c qc c d c q c c d c q5 ; 35 , B90i i i i
2 0 3 4 0 3ò òf f= =

 ˜ ˜ (˜ · ) ˜ ˜ ˜ (˜ · ) ˜ ( )( ) ( )

which is easy to verify directly.
Similarly, for a triple contraction with any fully symmetric third-rank tensor q̄̄:

cc q cc c c d c q q q q: 6 ; B91i j k ijk i jk j ik k ij
0 3ò f d d d= + + +

  ˜ ˜ ˜ (˜ ˜ ¯̄ · ˜) ˜ ( ) ( )( )

cc q cc c d c q: 42 , B92i i
2 0 3ò f =

˜ ˜ (˜ ˜ ¯̄ · ˜) ˜ ( )( )
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where one defines vector q q1 2 Tr= ( ) ¯̄. Finally, for any (3× 3) matrix Ā̄:

cc A Ac c d c A A: Tr ; B93i j ij ji ij
0 3ò f d= + +˜ ˜ (˜ ˜ ¯̄ ) ˜ ( ¯̄ ) ( )( )

cc A

A

A

A

c c c c d c A A

A A A A

A A

A A

A A

:

Tr

Tr

Tr , B94

r r r s r s r r r r

r s r r r r r s r r r r

r r r s s r r s

r r r s s r r s

r r r s s r r s

0 3
1 2 3 1 1 1 2 3 3 2

2 1 1 3 3 1 3 1 1 2 2 1

1 2 3 1 1 3 3 1

1 3 2 1 1 2 2 1

2 3 1 1 1 1 1 1

ò f d

d d

d d

d d

d d

= +

+ + + +

+ + +

+ + +

+ + +

˜ ˜ ˜ ˜ (˜ ˜ ¯̄ ) ˜ ( )

( ) ( )

( ( ¯̄ ) )

( ( ¯̄ ) )

( ( ¯̄ ) ) ( )

( )

and by further contractions,

cc A Ac d c: 5 Tr ; B952 0 3ò f =˜ (˜ ˜ ¯̄ ) ˜ ¯̄ ( )( )

cc A Ac c c d c A A: 7 Tr ; B96i j ij ji ij
2 0 3ò f d= + +˜ ˜ ˜ (˜ ˜ ¯̄ ) ˜ ( ( ¯̄ ) ) ( )( )

cc A Ac d c: 35 Tr , B974 0 3ò f =˜ (˜ ˜ ¯̄ ) ˜ ¯̄ ( )( )

and so for symmetric traceless matrix P̄̄ :

ccc c d c: 2 ; B98i j ij
0 3ò fP = P˜ ˜ (˜ ˜ ¯̄ ) ˜ ( )( )

ccc c c d c: 14 ; B99i j ij
2 0 3ò fP = P˜ ˜ ˜ (˜ ˜ ¯̄ ) ˜ ( )( )

ccc c c c d c:

2 . B100

i j k l

ij kl ik jl il jk jk il jl ik kl ij

0 3ò f

d d d d d d

P

= P + P + P + P + P + P

˜ ˜ ˜ ˜ (˜ ˜ ¯̄ ) ˜

( ) ( )

( )

A curious reader might find the following integrals useful:

c c c c c d c

c c c c c d c

c c c d c

c d c

7 ;

7 0;

5 0;

3 0. B101

i j k l ij kl ik jl il jk

i j k l

i j

2 0 3

2 0 3

2 0 3

2 0 3

ò
ò
ò
ò

f d d d d d d

f

f

f

= + +

- =

- =

- =

˜ ˜ ˜ ˜ ˜ ˜ [ ]

˜ ˜ ˜ ˜ ( ˜ ) ˜

˜ ˜ ( ˜ ) ˜

( ˜ ) ˜ ( )

( )

( )

( )

( )

B.7. General nth-order Perturbation

The hierarchy of the simplified reducible Hermite polynomials (with tilde) can be calculated directly from (B3) as

H c

H c c

H c c

H c c c c

H c c c

H c c c c c c

H c c c c

H c c c c c c c c

H c c c c c

;

;

5 ;

7 5 ;

14 35 ;

18 63 14 35 ;

27 189 315 ;

33 297 693 27 189 315 ;

44 594 2772 3465 , B102

i i

ij i j ij

i i

ij i j ij

i i

ij i j ij

i i

ij i j ij

i i

1

2

3 2

4 2 2

5 4 2

6 4 2 4 2

7 6 4 2

8 6 4 2 6 4 2

9 8 6 4 2

d

d

d

d

=

= -

= -

= - - -

= - +

= - + - - +

= - + -

= - + - - - + -

= - + - +

˜ ˜
˜ ˜ ˜

˜ ˜ ( ˜ )
˜ ˜ ˜ ( ˜ ) ( ˜ )

˜ ˜ ( ˜ ˜ )
˜ ˜ ˜ ( ˜ ˜ ) ( ˜ ˜ )

˜ ˜ ( ˜ ˜ ˜ )
˜ ˜ ˜ ( ˜ ˜ ˜ ) ( ˜ ˜ ˜ )

˜ ˜ ( ˜ ˜ ˜ ˜ ) ( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

60

The Astrophysical Journal Supplement Series, 260:26 (145pp), 2022 June Hunana et al.



and the fully contracted ones for the even orders are

H c

H c c

H c c c

H c c c c

3;

10 15;

21 105 105;

36 378 1260 945. B103

2 2

4 4 2

6 6 4 2

8 8 6 4 2

= -

= - +

= - + -

= - + - +

˜ ˜
˜ ˜ ˜
˜ ˜ ˜ ˜
˜ ˜ ˜ ˜ ˜ ( )

( )

( )

( )

( )

The even order polynomials Hij
n2˜ ( ) can be rewritten into

H c c c H

H c c c c H

H c c c c c H

H c c c c c c H

3 3
;

3
7

3
;

3
18 63

3
;

3
33 297 693

3
. B104

ij i j
ij ij

ij i j
ij ij

ij i j
ij ij

ij i j
ij ij

2 2 2

4 2 2 4

6 2 4 2 6

8 2 6 4 2 8

d d

d d

d d

d d

= - +

= - - +

= - - + +

= - - + - +

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ( ˜ ) ˜

˜ ˜ ˜ ˜ ( ˜ ˜ ) ˜

˜ ˜ ˜ ˜ ( ˜ ˜ ˜ ) ˜ ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

The orthogonality relations can be calculated as

H H d c H H d c

H H d c H H d c

H H d c H H d c

H H d c H H d c

H H d c

; 6;

10 ; 120;

280 ; 5040;

15120 ; 362880;

1330560 ,

B105

i j ij

i j ij

i j ij

i j ij

i j ij

0 1 1 3 0 2 2 3
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where we used traceless Hermite moments (with hat):
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n
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n
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with h 02 =˜( ) (so that h hij ij
2 2=ˆ ˜( ) ( )). The perturbation of the distribution function then becomes
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The corresponding perturbation with the irreducible polynomials reads
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i.e., no normalization constants are explicitly present. Now one can clearly see the motivation behind the definition of irreducible
polynomials of Balescu (1988), where the direct relation between irreducible (no tilde) and reducible (tilde) Hermite polynomials can
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be shown to be
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Up to the normalization constants (which can be viewed as coming from the orthogonality relations), the scalar and vector
polynomials are equivalent to each other. The only difference is for the matrices Hij

n2( ), where the irreducible polynomials are defined
as traceless. Multiplying (B110) by fa/na and integrating over d3c yields analogous relations for the Hermite moments:
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Importantly, because hij
n2ˆ ( )
is traceless, multiplying (B110) and (B111) yields
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The two approaches, with reducible and irreducible polynomials, thus yield the same result, with the only difference being the
location of the normalization constants. Furthermore, it feels natural to define traceless polynomials (with hat instead of tilde):
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which holds because hij
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is traceless. The main advantage of introducing the polynomials Hij
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is that, instead of calculating hij
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from its definition (B107), one can directly define
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Then the two approaches are indeed equivalent, because the same polynomials are used, with the location of the normalization
constants being an ad hoc choice.

From the Appendix of Balescu (1988), one can guess and then verify the following generalizations for the reducible polynomials:
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Applying a trace at (B118) yields (B116). Similarly, the orthogonal relations are
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and applying δijδkl on (B122) recovers (B120). Note that the orders of the Hermite moments “m” and “n” are one-dimensional and
δnn= 1. In contrast, for the indices, δii= 3 applies. Also note that n!= n!!(n− 1)!! and 2nn!= (2n)!!, implying
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Finally, the general perturbation then can be written as
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where for the first term h 02 =˜( ) (and so h hij ij
2 2=ˆ ˜( ) ( )). Alternatively, h H h Hij
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n2 2 2 2=ˆ ˆ ˆ ˜( ) ( ) ( ) ( ). The perturbation (B125) is equivalent
to a perturbation with irreducible polynomials:
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where again h(2)= 0.

B.8. Hierarchy of MHD Hermite Closures

Let us use the third-order moment X q2i i
3 =( ) instead of the heat flux, so that no additional factors are present (also note that

X(2)= 3p). The even order moments are decomposed according to
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where the scalar part X(2 n) is further decomposed into its Maxwellian “core” and perturbation X
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Then, by using the Hermite polynomials (B102)–(B104), one calculates the hierarchy of the Hermite moments:
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Prescribing the last retained Hermite moment to be zero then yields the corresponding fluid closures that are summarized in
Section 8.6, Tables 3 and 4.

B.8.1. Propagation along the B-field (Ion-acoustic Mode)

For a propagation parallel to the mean magnetic field that is applied in the z-direction, linearized equations without collisions
read
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where all of the variables are scalars. We are neglecting collisions and viscosities, to make direct comparison with the CGL model in
the next section. The even order moments are decomposed into a Maxwellian “core” and tilde perturbations with (B129), so that their
mean values are X p150
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and the last three equations of (B132) then become
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Prescribing a closure at the last retained moment yields the dispersion relations in the variable ζ= ω/(|k∥|vth) that are summarized in
Table 5.

The example clearly demonstrates that Landau fluid closures are actually not required to go beyond the fourth-order moment,
which contradicts a claim in the last paragraph of Hunana et al. (2018) and also claims in various parts of Hunana et al. (2019a,
2019b; see, e.g., Section 12.2 in Part 1). Obviously, the closures X 0z

5 =( ) or X 0
6

=
~( )

are not allowed by the fluid hierarchy (unless

qz= 0 or X 0
4

=
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as well). Instead, for moments of order n� 5, one needs to construct “classical” closures at the Hermite moments.
Nevertheless, all of the Landau fluid closures reported in the above papers are constructed correctly.

Out of curiosity, prescribing closures with a free parameter “a” as X a p q28z z
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The Xz
5( ) closure with dispersion relation (B135) yields an instability for a< 1/2, and the X

6~( )
closure with (B136) yields an

instability for a< 2/3. There are therefore a lot of closures that do not create these unphysical instabilities.
Finally, the situation is saved by completely decoupling the odd and even moments, prescribing X X 0
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that Equations (B134) are replaced by
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The dispersion relation of this model is equivalent to the closure h 04 =˜( ) .

Table 5
Summary of the Hermite Closures and Corresponding Dispersion Relations for the Parallel Propagating Ion-acoustic Mode (Electrons Are Cold), Where

ζ = ω/(|k∥|vth)

Closure Dispersion Relation Solution ±ζ =

h 0z
3 =˜ ( )

ζ2 − 5/6 = 0 0.913

h 04 =˜( )
ζ4 − (5/3)ζ2 + (5/12) = 0 0.553; 1.166

h 0z
5 =˜ ( )

ζ4 − (7/3)ζ2 + (35/36) = 0 0.737; 1.338

h 06 =˜( )
ζ6 − (7/2)ζ4 + (35/12)ζ2 − (35/72) = 0 0.471; 0.966; 1.531

X 0z
5 =( ) ζ4 − (35/36) = 0 0.99; 0.99 i

X 0
6

=
~( )

ζ6 − (35/12)ζ2 + (35/36) = 0 0.59; 1.23; 1.36 i

Note. With the Hermite closures (the upper half of the table), no spurious instabilities are present. Unphysical instabilities appear if one prescribes erroneous fluid

closures at the last retained moment X 0z
5 =( ) or X 0

6
=

~( )
(the lower half of the table). However, if one prescribes at the same time, X 0

6
=

~( )
and X 0

4
=

~( )
, the

system is again well defined, with a dispersion relation equivalent to the closure h 04 =˜( ) .

65

The Astrophysical Journal Supplement Series, 260:26 (145pp), 2022 June Hunana et al.



B.9. Hierarchy of CGL (Parallel) Hermite Closures

The hierarchy of one-dimensional Hermite polynomials calculates (with weight cexp 22-( ˜ ))
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further yielding the following hierarchy of Hermite moments:
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where the even moments were separated into

X
p

X X
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This yields the hierarchy of Hermite closures summarized in Table 6. Note the difference between (B140) and the isotropic (MHD)
decomposition (B128) (in the three-dimensional CGL geometry, one typically uses the notation X(4)= r∥∥).

Hermite polynomials (B138) can be written in a general form:
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Then it can be shown that prescribing the Hermite closure h(2 n+1)= 0 or h(2 n)= 0 is equivalent to prescribing the fluid closure

X
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By using Equations (12.49)–(12.54) from Hunana et al. (2019b), we calculate the corresponding dispersion relations, which are
summarized in Table 7.
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Curiously, from Hunana et al. (2019a), the not “well-behaved” Padé approximants of the plasma dispersion function R(ζ) that
contain no Landau damping read

R

R

R

1 2 3

1 4 4 3
;

1 8 5 4 15

1 6 4 8 15
;

1 94 35 20 21 8 105

1 8 8 32 15 16 105
. B143
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z
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=
-

- +

=
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=
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Comparing (B143) with Table 7, one comes to the nonobvious observation that the denominators of the above approximants are
equal to the dispersion relations obtained with the Hermite closures h(4)= 0, h(6)= 0, and h(8)= 0. This observation is analogous to
the Landau fluid closures when electrons are cold; see Equation (3.358) of Hunana et al. (2019a). Thus, it is expected that for proton–
electron plasma with finite temperatures (and with electron inertia retained), these three dispersion relations will be equivalent to

T

T
R R 0, B144

e

p

n n p n n e

0

0 , ,z z+ =¢ ¢




( ) ( ) ( )
( )

( )

which we did not verify.

Appendix C
Evolution Equations for the 22-moment Model

Here we use evolution Equations (A4)–(A9), and by applying the contractions at these equations we obtain the 22-moment model
in detail. The pressure tensor is decomposed as p pij

a
a ij ij

a 2d= + P ( ), where the scalar pressure p p 3a ii
a= . Instead of considering the

full moments Xijk
3( ), Xijkl

4( ), Xijklm
5( ) , and Xijklmn

6( ) , one only considers the contracted vectors and matrices

X X X X X X X X; ; ; . C1i
a

ijj
a

ij
a

ijkk
a

i
a

ijjkk
a

ij
a

ijkkll
a3 3 4 4 5 5 6 6= = = = ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Table 6
Summary of Hermite Closures for Parallel CGL Moments, Together with Corresponding Fluid Closures

Hermite Closures Fluid Closures

h(3) = 0 X(3) = 0
h(4) = 0 X 0

4
=

~( )

h(5) = 0 X X10 p5 3=
r

( ) ( )

h(6) = 0 X X15 p6 4
=

~ ~
r

( ) ( )

h(7) = 0 X X X21 105p p7 5 3
2

2= -
r r

( ) ( ) ( )

h(8) = 0 X X X28 210p p8 6 42

2= -
~ ~ ~

r r

( ) ( ) ( )

h(9) = 0 X X X X36 378 1260p p p9 7 5 3
2

2

3

3= - +
r r r

( ) ( ) ( ) ( )

Note. The usual parallel heat flux q∥ = X(3). Note that beyond the fourth-order moment, both classes start
to differ. A general form corresponding to h(2 n+1) = 0 and h(2 n) = 0 is given by (B142).

Table 7
Summary of Hermite Closures and Corresponding Dispersion Relations for the Parallel Propagating Ion-

acoustic Mode (Electrons Are Cold), Where ζ = ω/(|k∥|vth)

Closure Dispersion Relation Solution ±ζ =

h(3) = 0 ζ2 − 3/2 = 0 1.225
h(4) = 0 ζ4 − 3ζ2 + 3/4 = 0 0.525; 1.651
h(5) = 0 ζ4 − 5ζ2 + 15/4 = 0 0.959; 2.020
h(6) = 0 ζ6 − (15/2)ζ4 + (45/4)ζ2 − 15/8 = 0 0.436; 1.336; 2.351
h(7) = 0 ζ6 − (21/2)ζ4 + (105/4)ζ2 − 105/8 = 0 0.816; 1.674; 2.652
h(8) = 0 ζ8 − 14ζ6 + (105/2)ζ4 − (105/2)ζ2 + 105/16 = 0 0.381; 1.157; 1.982; 2.931
h(9) = 0 ζ8 − 18ζ6 + (189/2)ζ4 − (315/2)ζ2 + 945/16 = 0 0.724; 1.469; 2.267; 3.191

Note. No spurious instabilities are present. Spurious instabilities occur if one prescribes the closures

X 0
n2

=
~( )

or X(2 n+1) = 0 at the last retained moment.
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The even order moments are decomposed by separating the traceless viscosity tensors ij
n2P( ):

X X X X
3

;
3

, C2ij
a ij a

ij
a

ij
a ij a

ij
a4 4 4 6 6 6d d

= + P = + P ( )( ) ( ) ( ) ( ) ( ) ( )

where the fully contracted (scalars) X Xa
iijj
a4 4=( ) ( ), X Xa

iijjkk
a6 6=( ) ( ). The scalars are further decomposed into their “Maxwellian core”

and a perturbation around this core (which is denoted by wide tilde):

r XX
p p

TrTr 15 X ; X TrTrTr 105 X . C3a a
a

a
a a a

a

a
a

4
2

4 6 6
3

2

6

r r
= = + = = +~ ~¯̄ ¯̄ ( )( ) ( ) ( ) ( ) ( )

As in Braginskii (1965), we use notation with the Boltzmann constant kB= 1, and the temperature is defined as Ta= pa/na. Note that
ma/Ta= ρa/pa.

C.1. Decomposition of Moments

The heat flux tensor qijk and moments Xijkl
4( ), Xijklm

5( ) are decomposed according to (see Appendix B)

Iqq
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5
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where the highest-order irreducible parts of moments (C4)–(C6), denoted as ijk
3s ¢( ) , ijkl

4s ¢( ) , and ijklm
5s ¢( ) , are neglected (which provides the

reduction from the 56-moment model to the 22-moment model).

C.2. Evolution Equation for the Scalar Pressure pa

By using the decomposition p Ipa a a
2

P= +¯̄ ¯̄ ¯̄ ( )
, the evolution equation for the scalar pressure pa is obtained by applying 1 3 Tr( ) on

the pressure tensor Equation (A6), yielding

u u q u Q
p

t
p p Q

5

3

2

3

2

3
:

1

3
Tr

2

3
. C7a

a a a a a a a a a
2 2

P
¶
¶

+  +  +  +  = =· · · ¯̄ ( ) ¯̄ ( )( ) ( )

Alternatively, using temperature Ta= pa/na yields the following equation:

u q u Qn
d T

dt
p Q

3

2
:

1

2
Tr , C8a

a a
a a a a a a a

2 2
P+  +  +  = =· · ¯̄ ( ) ¯̄ ( )( ) ( )

which identifies with Equation (2.3) of Braginskii (1965). The collisional energy exchange rates

cQ
m

C f d v
2

. C9a
a

a a
2 3ò= ∣ ∣ ( ) ( )
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C.3. Evolution Equation for the Viscosity Tensor a
2

P̄̄
( )

The evolution equation for the usual viscosity tensor is obtained by subtracting Ī̄ times (C7) from (A6), yielding

u b u I u q I q
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3
:
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3 3
Tr . C10

a a
a a a a

S
a a

S
a a a a

a a
S

a a a

2
2 2 2 2

2 2

P
P P P P+  + W ´ +  -  +  - 

+  -  = -⎡
⎣

⎤
⎦

¯̄ ¯̄ · ( ˆ ¯̄ ) ( ¯̄ · ) ¯̄ ( ¯̄ ) · ¯̄ ¯̄ ·

( ) ¯̄ · ¯̄ ¯̄ ¯̄ ( )

( )
( ) ( ) ( ) ( )

( ) ( )

It is possible to define the well-known rate-of-strain tensor:

W u I u
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3
. C11a a

S
a=  - ¯̄ ( ) ¯̄ · ( )

Equation (C10) is exact. Using the heat flux decomposition (C4) yields q q I q2 5a a
S

a =  + · ¯̄ ( )(( ) ¯̄ · ), and so Equation (C10)
becomes
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which, for example, identifies with Equations (39)–(40) of Schunk (1977). It is possible to define

W q I q
2

5

2

3
, C13a

q
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S
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⎣
⎤
⎦

¯̄ ( ) ¯̄ · ( )

where we use a heat flux superscript “q” to differentiate it from (C11). As a double check, applying a trace on (C12) shows that both
sides are zero.

C.4. Evolution Equation for the Heat Flux Vector qa

The evolution equation for qa is obtained by applying 1 2 Tr( ) on (A7), yielding

q
q u q u q u b q r p p p
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where R I RTr 5a
S

a=( ¯̄) . This equation is exact. Using the heat flux decomposition (C4) yields

q u q u u q q u: 2 5 , C15a a a a a a a a =  +  + ¯̄ ( )[ · ( ) · · ] ( )

and applying a trace at decomposition (C5) yields
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which is of course equivalent to decomposition (C2), (C3). Note that the closure r ITr 5a
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a
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¯̄ ¯̄ can be viewed as an isotropic analogy
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following general identity holds for any gyrotropic distribution function: r bb I bb I bbr r rTr 2a a a a
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and evolution Equation (C14) becomes
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As a double check, reducing the 22-moment model into the 13-moment model with the closures X 0a
4

=
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and
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then evolution Equation (C19) recovers Equations (39)–(40) of Schunk (1977).

C.5. Evolution Equation for the Viscosity Tensor a
4

P̄̄
( )

The nonlinear evolution equation for the fourth-order moment r Xijkl
a

ijkl
a 4= ( ) is given by (A8). First, we need to obtain the evolution

equation for the matrix rTr Xa
ij ij

a 4=( ¯̄ ) ( ), which is further decomposed into (C2) and (C3). Applying a trace at (A8) yields
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As a quick double check, Equation (C21) appears equivalent to Equation (3.4.35) of Balescu (1988, p. 154; after accounting for the
different normalization constants of 1/2 and adding a missing “s” index to his fourth-order moment Srsnm). Applying another trace at
(C21) yields

X u r u p q

Q R q

d

dt
X X 4 Tr :

8

TrTr
8

. C22

a
a a a a a a

a
a a

a
a

a a

4 5 4

4

r

r

+  +  +  - 

= -

· ( · ) ( ¯̄ ) ( · ¯̄ ) ·

¯̄ · ( )

( ) ( ) ( )

( )

To obtain the evolution equation for the matrix ij
a 4P ( ), we need to subtract I 3( ¯̄ ) times (C22) from (C21). For example, we need to

calculate
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together with
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The heat flux contributions calculate
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The fully nonlinear evolution equation for the matrix a
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At the semilinear level (while keeping the d/dt), evolution Equation (C27) simplifies into
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Finally, neglecting the coupling between heat fluxes and viscosities (which is the choice of Braginskii), the simplest evolution
equation reads

b W Q
d

dt

p
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where W u I u2 3a a
S

a=  - ¯̄ ( ) ( ) ¯̄ ( · ) is the usual rate-of-strain tensor.
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C.6. Evolution Equation for the Perturbation Xa
4~( )

The fully nonlinear evolution Equation (C22) for Xa
4( ) reads
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one obtains the fully nonlinear evolution equation for Xa
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and, at the semilinear level,
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The collisional contributions can be found in Section 7.1; see Equation (142).

C.7. Evolution Equation for the Heat Flux Vector Xa
5( )

Applying a trace twice at (A9) yields
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together with the decompositions (C2) and (C3), the fully nonlinear evolution equation becomes
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Because we do not go higher in the hierarchy, the model is closed with the closures (see Equations (B130) and (B131) or Section 8.6
with Tables 3 and 4)
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At a semilinear level, Equation (C36) becomes
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Appendix D
Simplified General Fluid Hierarchy

Previously, we introduced a full fluid hierarchy in Section A, which contains n-dimensional moments Xijk n
n
¼

( ) . By applying
contractions at these moments in Appendix C, we derived evolution equations for the 22-moment model. Instead of doing that, it is of
course possible to obtain evolution equations for contracted moments directly from the Boltzmann equation. This simplified
hierarchy is formulated with heat fluxes (vectors) and stress tensors (matrices)
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together with fully contracted scalars, which are decomposed into a Maxwellian core and perturbation (notation with tilde)
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which are decomposed into fully contracted scalars and stress tensors. Note that X 0a
1 =( ) and X 0a

2
=

~( )
.

Unfortunately, the traditional definition of the heat flux vector q q1 2 Tra a= ( ) ¯̄ , which contains a factor of 1/2, goes against the
general ideology that no additional factors are introduced by contractions. Also, we have previously reserved vector Qa

3 ¢( ) for the
right-hand side of the heat flux qa evolution equation, and not for Xa

3( ). Obviously, our previous notation is not ideal for
generalization to nth-order moments. To circumvent all of the problems with the previous definitions, we define new collisional
contributions for the heat fluxes and stress tensors with (mathcal of Q), as the vectors and matrices
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together with the fully contracted
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The energy exchange rates Qa contain the traditional factor of 1/2, and Q Q2a a
2 =( ) . The momentum exchange rates

Ra=ma∫vC( fa)d
3v. In the vector notation, matrix QTrTr Tr

a n a n2 2= ¼¯̄ ¯̄( ) ( ) .
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Then, the direct integration of the Boltzmann equation and the subtraction of the momentum equations yields the evolution
equations for the scalars
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where (n) without a species index should not be confused with the number density, the evolution equations for the vectors
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which are valid for n� 1. For example, evaluating (D6) for n= 1 yields the evolution equation for the scalar pressure pa. Applying a
trace at (D8) recovers (D6).

The matrices Xij
a n2( ) are then decomposed according to (D3), where the stress tensors ij

a n2P ( ) are traceless, and higher-order tensors
are decomposed according to (where the tensors σ are neglected, which is the core of the hierarchy simplification)
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Applying a trace at (D9) yields the identity, and applying a trace at (D10) yields the decomposition (D3). The evolution equations for
the fully contracted moments (scalars) then become
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and for the stress tensors (matrices)
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By applying a trace at Equation (D13), it can be verified that it is traceless.
The fully contracted scalar variables are then decomposed into a Maxwellian core and perturbation (with tilde) according to (D2),

yielding the evolution equation for scalars
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The evolution equation for the stress tensors (D13) contains only one trivial term with Xa
n2( ), where
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and we do not rewrite the full equation. Equations (D13)–(D15) are valid for n� 1, where for n= 1 (D14) reduces to zero, so this
equation is meaningful only for n� 2. In the semilinear approximation, the hierarchy simplifies into (189)–(191).

Appendix E
BGK Collisional Operator

Before the calculations with the Landau collisional operator, it is beneficial to first become familiar with the heuristic relaxation-
type operator known as BGK, after Bhatnagar–Gross–Krook (Bhatnagar et al. 1954; Gross & Krook 1956), written in the following
form:
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Note that only the velocity ub has the index “b” and that the temperature, mass, and density have the index “a.” Accounting for
different temperatures is possible by considering the generalized BGK operators of Haack et al. (2017). The simple BGK operator
yields momentum and energy exchange rates

R u u u uQ;
1

2
, E3ab a ab b a ab a ab b a

2r n r n= - = -( ) ∣ ∣ ( )

where both the momentum and energy are conserved (note that for heuristic operators it is advisable to directly calculate both Rab and
Rba together with Qab and Qba to verify that they are well-defined). This BGK operator also satisfies the Boltzmann H-theorem,
which for multispecies plasmas has the general form

C f f d v C f f d vln ln 0, E4ab a a ba b b
3 3ò ò+( ) ( ) ( )

where the equality is true only if fa and fb are Maxwellians. For the BGK operator, each part of the H-theorem (E4) is satisfied
independently. It can be shown that f f f d vln 0a ab ab

0 0 3ò - =( )( ) ( ) , and subtracting this integral from the first term of (E4) yields

C f f d v f f f d v f f f d v

f f
f

f
d v

ln ln ln

ln 0, E5

ab a a ab ab a a ab ab a ab

ab ab a
a

ab

3 0 3 0 0 3

0

0
0

3

ò ò ò

ò

n n

n

= - - -

= -

  

⎛

⎝
⎜

⎞

⎠
⎟

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )
( ) 

where in the last step one uses that for any real numbers a> 0 and b> 0, the following identity holds: a b b aln 0-( ) ( )  (the
identity is easily verified, because for a> b the first term is positive and the logarithm is negative, and for a< b the first term is
negative and the logarithm is positive; the identity is equal to zero only if a= b).

The BGK collisional contributions calculate

Q c c u um C f d v ; E6ab a a a ab a ab a ab a
2 3 2

ò n n r d dP= = - +¯̄ ( ) ¯̄ ( )( ) ( )

Q c c c q uI u u um C f d v p , E7ab a a a a ab a ab a ab a
S

ab a
3 3ò n n d n r d d d= = - + +¯̄ ( ) ¯̄ [ ¯̄] ( )( )

where δu= ub− ua.

E.1. Viscosity Tensor a
2

P̄̄
( )

The collisional contributions that enter the right-hand side of evolution Equation (C12) are

Q Q
I

Q W
3

Tr , E8a a a a a a
2 2 2 2 frict

n P¢ º - = - -¯̄ ¯̄ ¯̄ ¯̄ ¯ ¯̄ ¯̄ ( )( ) ( ) ( ) ( )

where we define

; E9a
b

abån n=¯ ( )

W u u
I

u
3

, E10a a
b

ab
frict 2år n d d d= - -⎜ ⎟

⎛
⎝

⎞
⎠

¯̄ ¯̄
∣ ∣ ( )

and where the superscript “frict” means the frictional contributions due to δu. The frictional contributions are only nonlinear, but we
keep them to show that it is possible to take them into account. Using the quasistatic approximation, evolution Equation (C12) can be
simplified into

b W W Wp
1

, E11a
S a

a
a

a
a a a

q
a

2 2 frictnP P´ +
W

= -
W

+ +( ˆ ¯̄ ) ¯ ¯̄ ( ¯̄ ¯̄ ¯̄ ) ( )( ) ( )

where the matrices Wa¯̄ and Wa
q¯̄ are given by (C11), (C13). Equation (E11) can be directly solved. Nevertheless, the stress tensor of

Braginskii does not contain heat flux contributions or frictional contributions. To understand the solution of Braginskii more clearly,
let us first solve the above equation only with the matrix Wa¯̄ .

The simplest quasistatic a
2

P̄̄
( )

is thus obtained by solving

b W
p

. E12a
S a

a
a

a

a
a

2 2nP P´ +
W

= -
W

( ˆ ¯̄ ) ¯ ¯̄ ¯̄ ( )( ) ( )
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For any traceless and symmetric matrix Wa¯̄ , the solution of (E12) reads (see the details in Appendix E.4)

W W W W W

W W bb bb
I

W I W I W bb I

W I W bb

W b W I

W b W bb

;

3

2
:

3
;

1

2
: ;

;
1

2
;

, E13
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a
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¯̄ ( ¯̄ · ¯̄ · ˆ ˆ)

¯̄ ( ˆ ¯̄ · ¯̄ )

¯̄ ( ˆ ¯̄ · ˆ ˆ) ( )

( )

with BGK viscosity coefficients

p p p p p
;

4
; ;

2

4
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The coefficient η0 is called the parallel viscosity, η1, η2 are perpendicular viscosities, and η3, η4 are gyroviscosities. Importantly, the
BGK solution (E13) is identical to the form of the Braginskii (1965) viscosity tensor, his Equations (4.41)–(4.42), only his viscosities
are different. A comparison is presented in the next section. All four matrices W W,0 4¼¯̄ ¯̄ are traceless and W W W Wa0 1 2+ + =¯̄ ¯̄ ¯̄ ¯̄ .

When the magnetic field is zero, so that Ωa= 0 and a a a
0 1 2h h h= = , the stress tensor (E13) simplifies into Wa

a
a

2

0hP = -¯̄ ¯̄( )
and

contributes to the momentum equations in a familiar form:

B W u u W0:
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3
, E15a

a
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· ¯̄ · ( ¯̄ ) ( · ) ( ) · ¯̄ ( )( )

analogously to the viscosity of the Navier–Stokes equations (the last term can be neglected if a
0h is spatially independent).

If the mean magnetic field is sufficiently strong that its curvature can be neglected, (E13) can be evaluated with respect to
b 0, 0, 10 =ˆ ( ), yielding
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which is Equation (2.21) of Braginskii (1965). As a double check, adding W W W 0xx
a

yy
a

zz
a a

xx
a

yy
a

zz
a2 2 2

0hP + P + P = - + + =( )( ) ( ) ( ) ,
so the stress tensor is indeed traceless (even though all of the diagonal components are nonzero). For strong magnetic field a anW  ¯ ,
the viscosities (E14) simplify into

p p p
;

1

4
; 4 ;

2
; 2 . E17a a

a

a a a

a

a a a a

a

a a
0 1 2 2 1 3 4 3h

n
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n
h h h h h= =

W
= =

W
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¯
¯ ( )

Considering only self-collisions, the BGK viscosity coefficients (E14) were first recovered by Kaufman (1960), even though he
does not write them explicitly, and one needs to get them by rearranging his Equations (12)–(15) into form (E16). The same results
for η0− η3 can also be found in Helander & Sigmar (2002, p. 86), for example; see also Zank (2014, p. 164), although the η4
coefficient is erroneously related to η3= 2η4, which is a valid relation only in the limit when x a an= W ¯ is small (i.e., a weak
magnetic field). The correct relations are x x2a a

3 4h h=( ) ( ) and x x2a a
1 2h h=( ) ( ), which are valid for both the BGK and Braginskii

solutions.
Now one can consider more general (E11), with the heat flux contributions Wa

q¯̄ and the frictional contributions Wa
frict¯̄ . The solution

of (E11) is analogous to (E13), because all of the matrices on the right-hand side are traceless and symmetric. However, it is useful to
rewrite the solution in a different form by defining the new matrix

W u q
p

2

5
, E18a a

S

a
a

S=  + 
~¯̄ ( ) ( ) ( )

77

The Astrophysical Journal Supplement Series, 260:26 (145pp), 2022 June Hunana et al.



and the stress tensor then reads
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with viscosities (E14). Prescribing qa= 0 and δu= 0 of course recovers (E13).

E.2. Heat Flux Vector qa

We consider the 13-moment model, where evolution Equation (C19) becomes

q
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and the BGK collisional contributions calculate
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In a quasistatic approximation, (E20) can be simplified into
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A general vector equation (where a is an unspecified vector, unrelated to the species index)

b q q
a

, E23a
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a
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n
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W
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W
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has the following exact solution (splitting the equation into parallel and perpendicular parts qa= q∥a+ q⊥a and a= a∥+ a⊥ with
b q 0a´ =
ˆ ; applying b´ˆ on the perpendicular part; using b b q q aa

´ ´ = -^ ^
ˆ ( ˆ ) ; and solving the two coupled perpendicular

equations by eliminating b q a´ ^
ˆ ):
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Note that b a b a´ = ´ ^
ˆ ˆ . Result (E24) represents the solution of Equation (E22). For zero magnetic field, q aa an= - ¯ . The BGK

frictional contributions due to δu are only nonlinear; in contrast, the electron heat flux of Braginskii contains frictional δu

78

The Astrophysical Journal Supplement Series, 260:26 (145pp), 2022 June Hunana et al.



contributions that are linear. At the semilinear level, (E22) simplifies into
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with a solution again given by (E24). The BGK operator can therefore account for linear (!) contributions of the stress tensor a
2

P̄̄
( )

that

enters the heat flux qa, similar to the previous result for (E19), where the heat qa flux entered the stress tensor a
2

P̄̄
( )
. Such a coupling is

typically neglected with the Landau collisional operator.
The simplest BGK heat flux is a solution of the equation

b q q
p

m
T

5

2
, E26a

a

a
a

a

a a
a

n
´ +

W
= -

W
ˆ ¯ ( )

and the solution reads:
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We use the Braginskii notation with vector bb =  ˆ ˆ · . If the magnetic field is zero, so that Ωa= 0 and a ak k= ^ , the solution
simplifies into q Ta

a
ak= -  .

E.3. BGK versus Braginskii Comparison

Here we compare the BGK viscosities and heat conductivities with those of Braginskii (1965) for a one ion–electron plasma with
ion charge Zi= 1. The BGK viscosities (E14) contain a b abn n= å¯ , and in general should be added according to
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However, for the ion species, Braginskii neglects ion–electron collisions, and thus i iin n=¯ and 1.707e ein n=¯ ; see Section 8.2. Using
Braginskii’s notation with one-index νi= νii and νe= νei then implies

; where 1; 1.707, E30a a a i en a n a a= = =¯ ( )

and introducing the quantity x=Ωa/νa, the BGK viscosities (E14) then become
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Note that x x2a a
1 2h h=( ) ( ) and x x2a a

3 4h h=( ) ( ). Similarly, the BGK heat conductivities (E28) become
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The viscosities and heat conductivities for Braginskii are given in the main text. The ion viscosities are compared in Figure 3, the
electron viscosities in Figure 4, and the heat conductivities in Figure 5. A small value of x represents a weak magnetic field and a
large value of x represents a strong magnetic field.

E.4. Nonlinear Stress Tensor Decomposition

Here we want to consider the BGK equation for the stress tensor (E12),

b W
p

, E33S nP P´ +
W

= -
W

( ˆ ¯̄ ) ¯̄ ¯̄ ( )

and clarify the solution (E13). Species indices are dropped, and both P̄̄ and W̄̄ are symmetric and traceless. First, we need to learn
how to decompose any general matrix. It is useful for a moment to consider the undefined matrices W̄̄ and P̄̄, which are not
necessarily symmetric or traceless.
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Figure 3. Ion viscosities of the BGK model (red) and of the Braginskii model (black), normalized as pi i
ii ih h n=ˆ vs. the ratio x = Ωi/νii. Left: perpendicular

viscosities ,i i
1 2h h . Right: gyroviscosities ,i i

3 4h h . For large values of x, the BGK asymptotic profiles for x1 2i
3h =ˆ ( ) and x1i

4h =ˆ become independent of collisional
frequencies and match the asymptotic profiles of Braginskii exactly. The BGK asymptotic profiles for x1 4i

1
2h =ˆ ( ) and x1i

2
2h =ˆ have the correct functional

dependence, but differ from the Braginskii asymptotes by a proportionality constant. The BGK operator reproduces the ion viscosity of Braginskii with surprisingly
good accuracy.

Figure 4. Electron viscosities, normalized as pe e
ei eh h n=ˆ vs. the ratio |x| = |Ωe|/νei. The results are less precise than for the ions in Figure 3, especially for small

values of x; nevertheless, the same conclusions are obtained.

Figure 5. Heat conductivities ak^ and ak´. Left: ion species, normalized as κ imiνii/pi. Right: electron species, normalized as κ emeνei/pe. For large values of x, the BGK
asymptotic profiles ak´ (dashed lines) match the Braginskii results exactly, whereas for ak^ (solid lines) the results differ by a proportionality constant.

80

The Astrophysical Journal Supplement Series, 260:26 (145pp), 2022 June Hunana et al.



E.4.1. Decomposition of a Matrix

We will work both in the reference frame of the magnetic field lines (b 0, 0, 10 =ˆ ( )), which nicely guide and clarify the
calculations, and also in a laboratory reference frame with general b̂. In the reference frame of the magnetic field lines, one uses the
matrices

bb I I bb I
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0 0 1
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where the last matrix is defined as b W I W´ = ´ˆ ¯̄ ( ¯̄ ) · ¯̄ . Then, one takes a general matrix W̄̄ , and starts multiplying it with the
matrices bbˆ ˆ and Î̄̄ from the left and right, yielding a general decomposition:
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and adding these matrices together obviously yields the full matrix W̄̄ . However, the decomposition (E35) also works in the
laboratory reference frame with general b̂, as can be verified by adding the general matrices together. It is possible to consider an
alternative decomposition, according to

W W W W

W W bb bb W I I

W I W I W I I

W I W bb

;

:
1

2
: ;

1

2
: ;

, E37S
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^
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¯̄ ¯̄ · ¯̄ · ¯̄ ( ¯̄ ¯̄ ) ¯̄
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where in the reference frame of the magnetic field lines,

W W

W W

W W

W

W W W

W W W
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2
0 0

0
1

2
0
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2
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The decomposition (E37) again works for general b̂, and in comparison to the previous decomposition W W W W0 1 0 1¢ + ¢ = +¯̄ ¯̄ ¯̄ ¯̄ . The
advantage is that if W̄̄ is traceless, then all three matrices are traceless. It is useful to rearrange (E37), by separating the trace of W̄̄
with W I I W I I W bb I: : := -^ ^ ^ ^( ¯̄ ¯̄ ) ¯̄ ( ¯̄ ¯̄) ¯̄ ( ¯̄ ˆ ˆ) ¯̄ , yielding the decomposition

W W W W

W W bb bb
I

W I I

W I W I W bb I W I I

W I W bb

;

3

2
:
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1

2
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1

2
:

1

2
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. E39S
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¯̄ ( ¯̄ · ¯̄ · ˆ ˆ) ( )
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The same decomposition is used for the stress tensor P̄̄:

bb bb
I

I I

I I bb I I I

I bb

;

3

2
:

3

1

2
: ;

1

2
:

1

2
: ;

. E40S
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^
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^
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¯̄ ¯̄ · ¯̄ · ¯̄ ( ¯̄ ˆ ˆ) ¯̄ ( ¯̄ ¯̄) ¯̄

¯̄ ( ¯̄ · ¯̄ · ˆ ˆ) ( )

Let us solve for 0P̄̄ . Applying bb: ˆ ˆ and I: ¯̄ at Equation (E33) and using the identities

b bb b I: 0; : 0, E41S SP P´ = ´ =( ˆ ¯̄ ) ˆ ˆ ( ˆ ¯̄ ) ¯̄ ( )

yields

bb W bb I W I
p p

: : ; : : , E42
n n

P P= - = -¯̄ ˆ ˆ ¯̄ ˆ ˆ ¯̄ ¯̄ ¯̄ ¯̄ ( )

and plugging these results into (E40) yields the final solution for the parallel stress tensor:

W bb bb
I

W I I W
p p3

2
:

3

1

2
: . E430 0

n n
P = - - + = -^⎜ ⎟

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥
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( ¯̄ ¯̄) ¯̄ ¯̄ ( )

The solution is valid for any general matrix W̄̄ (not necessarily symmetric or traceless). If this result is compared with the expression
(4.42) of Braginskii (1965), given below by (E46), one notices

W W bb bb
I

W I
I

bb WE46
3

2
:

3

1

2
:

3
, E440
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¯̄ ˆ ˆ ¯̄ ( )

and his result is valid only if W̄̄ is traceless (which it is). The reason why Braginskii left his result in form (E46), and did not simplify
it with W I: 0=¯̄ ¯̄ , is likely an alternative form (E47).

E.4.2. Symmetric and Traceless Matrices

We further consider only the symmetric and traceless matrices W̄̄ and P̄̄, so all of the previous expressions are simplified with
W I: 0=¯̄ ¯̄ , I: 0P =¯̄ ¯̄ , and the BGK parallel stress tensor Wp0 0nP = -¯̄ ( ) ¯̄ . For clarity, it is useful to write several possible forms
for

W W bb bb
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2
:

3
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3 3
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Braginskii uses (E46), Fitzpatrick (2015), for example, uses (E48), and we use (E45). In the reference frame of the magnetic field
lines,

W W
p

W
3

2

1 3, 0, 0
0, 1 3, 0
0, 0, 2 3

;
1 2, 0, 0
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To solve Equation (E33), it is beneficial to introduce two other matrices W3¯̄ , W4¯̄ , by decomposing

b W W W

W b W I

W b W bb

2 ;

2 ;

, E51

S

S

S

3 4

3

4

´ = +

= ´

= ´
^

( ˆ ¯̄ ) ¯̄ ¯̄
¯̄ ( ˆ ¯̄ · ¯̄ )
¯̄ ( ˆ ¯̄ · ˆ ˆ) ( )

where in the reference frame of the magnetic field lines,

W W
W W W

W W W

W

W
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2
2 0

2 0
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;

0 0

0 0
0

. E52
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⎟
⎟

¯̄ ¯̄ ( )

The decomposition (E51) is again valid for general b̂, which is easily verified using I bb I+ =^̄̄
ˆ ˆ ¯̄, and the stress tensor is

decomposed in the same way:

b

b I

b bb

2 ;

2 ;

. E53

S

S

S

3 4

3

4

P P P
P P
P P

´ = +

= ´

= ´
^

( ˆ ¯̄ ) ¯̄ ¯̄
¯̄ ( ˆ ¯̄ · ¯̄ )
¯̄ ( ˆ ¯̄ · ˆ ˆ) ( )

Finally, applying b´ˆ at the matrices W W0 4¼¯̄ ¯̄ yields the following identities:

b W b W W b W W

b W W b W W

0; ; ;

; , E54

S S

S

0 1 3 2 4

3 1 4 2

´ = ´ = ´ =

´ =- ´ = -

( ˆ ¯̄ ) ˆ ¯̄ ¯̄ ( ˆ ¯̄ ) ¯̄
ˆ ¯̄ ¯̄ ( ˆ ¯̄ ) ¯̄ ( )

which are easy to verify in a general reference frame with b̂. The same identities hold for the stress tensor

b b b

b b

0; ; ;

; . E55

S S

S

0 1 3 2 4

3 1 4 2

P P P P P
P P P P

´ = ´ = ´ =
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( ˆ ¯̄ ) ˆ ¯̄ ¯̄ ( ˆ ¯̄ ) ¯̄
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E.4.3. Final Solution

Now we are ready to solve Equation (E33), which is rewritten as

W W W
p

2 . E563 4 0 1 2 0 1 2
nP P P P P+ +
W

+ + = -
W

+ +¯̄ ¯̄ ( ¯̄ ¯̄ ¯̄ ) ( ¯̄ ¯̄ ¯̄ ) ( )

One solution, Wp0 0nP = -¯̄ ( ) ¯̄ , has already been obtained, and can be eliminated from (E56). For the rest of the equation, the most
straightforward approach is to be guided by the reference frame of the magnetic field lines, which shows that the system (E56) can be
directly split into two independent equations:

W
p

2 ; E573 1 1
nP P+
W

= -
W

¯̄ ¯̄ ¯̄ ( )

W
p

. E584 2 2
nP P+
W

= -
W

¯̄ ¯̄ ¯̄ ( )

In the general reference frame, the split can be achieved by applying Î̄̄ · from left and right at (E56), for example, which, using
identities I I 04P =^ ^¯̄ · ¯̄ · ¯̄ , I I 02P =^ ^¯̄ · ¯̄ · ¯̄ , and I W I 02 =^ ^¯̄ · ¯̄ · ¯̄ , yields (E57) and subsequently (E58). The split significantly
simplifies the “inversion procedure.”

Furthermore, applying b´ˆ at (E57), applying b´ˆ together with the symmetric operator at (E58), and using the identities (E54)–
(E55) then gives

W
p

2 ; E591 3 3
nP P- +
W

= -
W

¯̄ ¯̄ ¯̄ ( )

W
p

. E602 4 4
nP P- +
W

= -
W

¯̄ ¯̄ ¯̄ ( )

Equations (E57), (E59) are coupled and can be treated as two equations in two unknowns, and similarly Equations (E58), (E60),
finally yielding the solutions

W W
p p

4

2

4
; E611 2 2 1 2 2 3

n
n n

P = -
W +

+
W

W +
¯̄ ¯̄ ¯̄ ( )

W W
p p
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n
n n
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W +

+
W

W +
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The entire solution for the stress tensor 0 1 2P P P P= + +¯̄ ¯̄ ¯̄ ¯̄ thus reads

W W W W W
p p p p p

4

2

4
. E630 2 2 1 2 2 2 2 2 3 2 2 4

n
n
n

n
n n n

P = - -
W +

-
W +

+
W

W +
+

W
W +

¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ( )

E.5. BGK Operator and Electric Field

The BGK operator is also an excellent tool for clarifying various processes in fully ionized or partially ionized plasmas. Here we
want to clarify the ohmic (magnetic) diffusion together with the ambipolar diffusion, both caused by the momentum exchange rates

R u u . E64a
b a

a ab b aår n= -
¹

( ) ( )

From the BGK perspective, one does not need to worry about complicated Landau and Boltzmann operators, and simply “adopts” the
correct collisional frequencies; see, for example, Appendix C of Schunk (1977). The momentum exchange rates (E64) are actually
the correct answer if the relative drift velocities are small and one considers the 5-moment model (i.e., if the heat flux is neglected).

We restrict our focus to spatial scales much longer than the Debye length. The displacement current is neglected, the Gauss law
∇ ·E= 4πe∑aZana is replaced by the charge neutrality, and no condition is placed on ∇ ·E. The Maxwell equations then read

j u BZ n eZ n
c

0;
4

; E65
a

a a
a

a a aå å p
= = =  ´ ( )

B
E B

t
c ; 0. E66

¶
¶

= -  ´  =· ( )

By focusing on the spatial and temporal scales of the ion and neutral species, we do not need to resolve the electron motion. In the
electron momentum equation, the electron inertia represented by deue/dt is neglected (which does not mean that me= 0; relations
ρaνab= ρbνba still hold), and the electric field is expressed as

E u B p
R

c en en

1 1
. E67e

e
e

e

e
= - ´ -  +· ¯̄ ( )

The momentum equations for the ions then become

u
p p u u B R R
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Also, by using (E65), the electron density ne and electron velocity ue are expressed as

u u
j

j Bn Z n
n

Z n
en

c
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1
;

4
, E69e

i
i i e
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i i i

e
å å p
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where the summations are over ion species. The electron density equation ∂ne/∂t+∇ · (neue)= 0 becomes redundant, because
multiplying all of the density equations for the charges (including electrons) by Za and summing them together yields a requirement
∇ · (∑aZanaua)= 0, which is automatically satisfied by ∇ · j= 0 in (E69). Expressions (E69) and (E67) can then be substituted to all
of the other equations (which is easy to do numerically), and the occurrences of E, ue, and ne in the entire model are thus eliminated.

For a particular case of Re given by (E64), the electric field (E67) then becomes

E u B
j B

p j
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cn
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1
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The summations over “a” include both ions and neutrals. The terms on the right-hand-side can be called the convective term, the Hall
term, the electron pressure term, the ohmic term, and a mixed collisional term due to ion and neutral velocities, respectively. When
(E70) is used in the induction equation, the ohmic term (∼ j) becomes directly diffusive through the identity
∇× (ηB∇× B)=− ηB∇

2B+∇(ηB)× (∇×B), where one defines a coefficient of magnetic diffusion ηB=
(∑a≠eνea)mec

2/(4πe2ne). In contrast, no other term in (E70) is directly diffusive in this sense. Nevertheless, the so-called ambipolar
diffusion due to the differences in the velocities ua between different species is still present implicitly, which can be shown by
solving the dispersion relations. The explicit presence of ambipolar diffusion caused by∼− (j× B)×B= j⊥|B|

2 is revealed by the
construction of a single-fluid model, formulated with respect to the center-of-mass velocity of all of the species. In general, ambipolar
diffusion between two species with indices (a, b) exists if

Z

m

Z

m
, E71a

a

b

b
¹ ( )

which is demonstrated in Appendix E.6.
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In partially ionized solar plasmas, one often focuses on a two-fluid model, formulated with center-of-mass velocities for the ion
species 〈ui〉= (∑iρiui)/∑iρi and for the neutral species 〈un〉= (∑nρnun)/∑nρn. The velocities for each species are thus decomposed
into ui= 〈ui〉+wi, un= 〈un〉+ wn, where wi, wn represent drifts; and because 〈ui〉, 〈un〉 can be pulled out in front of the summations,
the electric field (E70) transforms into

E u B w B
j B

p j

u u
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m
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The electric field (E72) still represents a multifluid electric field, where one considers separate evolution equations for all of the drifts
wa. To obtain a two-fluid electric field, these drifts have to be somehow eliminated, which is of course not straightforward to justify.
In partially ionized solar plasmas, the usual justification is that (1) one takes into account only the first ionization degree, with all of
the ions having Zi= 1; (2) one prescribes that on average ∑iniwi= 0 (which, for example, eliminates ambipolar diffusion between
different ions), together with ∑nnnwn= 0; (3) all of the species have roughly the same temperature, which, using the collisional
frequencies n f T mei i en = ( ) , yields ∑iνeiwi= 0; and (4) all of the neutrals have roughly the same cross sections (radii rn), which,
using n f T r men n n e

2n = ( ) , yields ∑nνenwn= 0. The two-fluid electric field thus reads
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The center-of-mass velocity for the ions 〈ui〉 can be freely replaced by the center-of-mass velocity for all the charges 〈uc〉 (which
include electrons). Then, the electric field (E73) is almost identical to Equation (115) of Khomenko et al. (2014), except that the
∑nνen in the last term of (E73) is replaced by (∑nνen)− (∑i∑nνin) in that paper. The difference arises from the alternative approach
in that paper, where the electron inertia is not neglected from the beginning, but instead the electric field is derived by first summing
momentum equations for all of the species together, and prescribing quasistatic current j. Then, the subsequent expansion in the mass
ratios retains the contributions from Ri. Nevertheless, the missing contributions are small νin= νen, explaining the small difference
between these two approaches.

For a particular case of only one ion species and one neutral species, so that ne= Zini and ue= ui− j/(ene), the electric field (E70)
simplifies into
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with the coefficient of magnetic diffusion ηB= (νei+ νen)mec
2/(4πe2ne).

E.6. Ambipolar Diffusion of Two Ion Species

Here we consider a two-fluid model, consisting of two different ion species with species indices (i, j), so that the charge neutrality
reads ne= Zini+ Zjnj. A particular case consisting of one ion and one neutral species can be obtained by prescribing Zj= 0 and index
j= n (or Zi= 0 and i= n). The momentum equations are

u
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with the collisional right-hand sides being
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and the electric field (which determines the induction equation) reading

E u u B
j B

p j

u u

cn
Z n Z n

cen en

m

e n
m

en
Z n Z n

1 1

. E79

e
i i i j j j

e e
e

e

e
ei ej

e

e
i j j j ei i i ej

2
n n

n n

=- + ´ +
´

-  + +

+ - -

( ) · ¯̄ ( )

( )( ) ( )

The ambipolar diffusion term− j× B× B= j⊥|B|
2 is not directly present in the electric field, and the only term that directly causes

magnetic diffusion in the induction equation is the ohmic term (∼ j). Nevertheless, the ambipolar diffusion is still present implicitly,
which can be shown by solving the dispersion relations or by constructing a single-fluid model.

Using the same notation as Zaqarashvili et al. (2011), and introducing the center-of-mass velocity V= (ρiui+ ρjuj)/ρ, where the
total density ρ= ρi+ ρj and the difference in velocities w= ui− uj, so that ui= V+ (ρj/ρ)w, uj= V− (ρi/ρ)w, yields the
momentum equations
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with the electric field
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The system (E80)–(E82) is of course equivalent to (E76)–(E79). However, in a particular case when the collisions are very frequent,
the right-hand side of (E81) becomes very large, and neglecting all of the “inertial” terms in the first line of (E81) with w allows one
to obtain an explicit expression for the velocity difference
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where we define the denominator
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For frequent collisions, only the first term in (E83)∼ j is finite, and all of the other terms are small. Nevertheless, the sought-after
term is the last term in (E83)∼ j× B, because when (E83) is used in (E82) it creates the ambipolar term∼− j× B× B. The single-

86

The Astrophysical Journal Supplement Series, 260:26 (145pp), 2022 June Hunana et al.



fluid electric field reads
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Importantly, the sign in front of the ambipolar term is negative, and because− j× B× B=+ j⊥|B|
2, the term indeed creates

diffusion in the induction equation. It is possible to define a coefficient of ambipolar diffusion:

B
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and VA is the Alfvén speed. As a double check, prescribing zero charge for one of the species, the electric field (E85) identifies with
Equation (A.10) of Zaqarashvili et al. (2011; for example, our denominator simplifies to D= αin+ αen= αn). Also,

B 4n i in e enA
2 2 2h r pr r n r n= +∣ ∣ ( ( )) identifies with the usual coefficient of ambipolar diffusion; see, for example, Equation (20) in

Khomenko & Collados (2012; after switching to cgs units with μ0→ 4π). The ambipolar diffusion exists if
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It is important to emphasize that the reduction to a single-fluid model was obtained by assuming that collisions are sufficiently
frequent, and that the ambipolar diffusion (as well as other terms) now contains a denominator D, which can be simplified into
D= ρiνij. So, when the collisional frequencies νij become small, this leads to an artificial “explosion” of the ambipolar diffusion. This
is nicely demonstrated in the figures of Zaqarashvili et al. (2011) plotted with respect to a wavenumber k k n~¯ , where it is shown
that for a single-fluid description, the ambipolar diffusion in a collisionless regime (when k̄ becomes large) yields cutoff frequencies
for waves. The mechanism is completely analogous to the “explosion” of the Braginskii stress tensor or the heat flux vector in a
collisionless regime. In contrast, as they show in their two-fluid figures, no “explosion” of the ambipolar diffusion is present. The
effect is further discussed in Zaqarashvili et al. (2012).

E.6.1. Damping of Alfvén Waves

For example, considering Alfvén waves at long wavelengths, and focusing only on the ambipolar diffusion (with the Hall-term,
ohmic terms, and pressure terms neglected), the induction equation reads

B
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with the coefficient of ambipolar diffusion (E86). This yields the following dispersion relation for Alfvén waves:
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Obviously, the Alfvén waves are damped, and for wavenumbers k∥� 2/(VAA) the real part of the frequency even becomes zero, so
the wave stops existing (i.e., a cutoff wavenumber). For the particular case of one species being neutral, the quantity A n n

2r ra= ( ),
which can be approximated as A n in n i in

2 2r ra z z n= =( ) ( ). Then, expressions (E89), (E90) identify with Equations (44)–(47) of
Zaqarashvili et al. (2011); however, one needs to use their definition νin= αin/ρ instead of the more logical (and correct) νin= αin/ρi.
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Appendix F
General Fokker–Planck Collisional Operator

For Coulomb collisions, the Boltzmann collisional operator can be approximated by a general Fokker–Planck type of collisional
operator,

A DC f f f f,
1

2
, F1ab a b v ab a v ab a= -  - ⎡

⎣
⎤
⎦

( ) · · ( ¯̄ ) ( )

where the higher-order derivatives in velocity space are neglected, and where A is called a dynamical friction vector and D̄̄ is called a
diffusion tensor. In space physics and astrophysics, various approximations for A and D̄̄ are used, and if a collisional operator has the
form (F1), then Equation (A1) is summarily called the Fokker–Planck equation. Summation over all of the species (including
self-collisions) then defines the full operator C( fa)=∑bCab( fa,fb), which can be also written as C fa =( )

A Df f1 2v a a v a a- - · [ ( ) · ( ¯̄ )], where one defines Aa=∑bAab and D Da b ab= å¯̄ ¯̄ . The Fokker–Planck operators work extremely
well for any collisional process where collisions with a small scattering angle dominate, and where a lot of subsequent collisions
gradually yield (in the sense of a random walk) a significant deviation from a particle’s original velocity direction. This is exactly the
case for the scattering by the electrostatic Coulomb force, where the Rutherford scattering cross section is proportional to
1 sin 24 c( ) and heavily dominated by events with a small scattering angle χ.

For any tensor X̄̄ , a general Fokker–Planck operator can be integrated according to
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and the tensorial collisional contributions defined in (5) can be calculated according to

R Am f d v; F5ab a a ab
3ò= ( )

A c DQ m f d v
m

f d v
2

Tr ; F6ab a a ab a
a

a ab
3 3ò ò= +· ¯̄ ( )

Q A c Dm f d v
m

f d v
2

; F7ab a a ab a
S a

a ab
S2 3 3ò ò= +¯̄ [ ] [ ¯̄ ] ( )( )

Q A c c D cm f d v
m

f d v
2

. F8ab a a ab a a
S a

a ab
S

a
S3 3 3ò ò= +¯̄ [ ] [ ¯̄ ] ( )( )

If the diffusion tensor is symmetric, then D D2ab
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The first integral in (F9) proportional to Aab contains four terms, and the second integral in (F9) proportional to Dab¯̄ contains 12
terms. Similarly, the first integral in (F10) contains five terms, and the second integral in (F10) contains 20 terms. The second

integrals in (F9)–(F10) can be written simply by picking two indices for Dab¯̄ and giving the rest of the indices to caca and cacaca. The
generalization to the nth-order collisional contributions defined in (A10) is done naturally by introducing a set of indices
R= {r1Krn}, together with an ordered set (s1, s2), and writing
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so that the first integral contains (n) terms, and the second integral contains
n

n n2
2

1= -⎛
⎝

⎞
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( ) terms. Alternatively, one can replace

the ordered set (s1, s2) with a nonordered set {s1, s2}, and include the symmetric operator on Dab¯̄ .
It is useful to write the collisional contributions for the contracted vectors, matrices, and scalars by assuming symmetric Dab¯̄ . We

use the definitions from Section 8.3 (see Equation (188)) that were also used in Appendix D; see Equations (D4) and (D5). This
yields the collisional contributions for vectors:
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all valid for n� 1. Applying a trace at (F13) recovers (F14).

Appendix G
Landau Collisional Operator (5-moment Model)

For Coulomb collisions, a very accurate collisional operator was obtained by Landau (1936, 1937) in the following form (see, for
example, Equation (1.2) in Braginskii 1958):
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With this collisional operator, Equation (A1) is known as the Landau equation. The Landau collisional operator is sometimes called
the Landau collisional integral, because (G1) contains an integral over d v3 ¢ (i.e., it is an integro-differential operator). The operator
can be rewritten into the general Fokker–Planck form (F1) by introducing Rosenbluth potentials
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yielding (see, for example, Equations (7)–(8) of Hinton 1983)
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and it is easy to verify that (F1), (G4) recovers the Landau operator (G1) (after one uses the Gauss–Ostrogradsky divergence theorem
in velocity d v3 ¢, which makes the associated integral vanish). By using Laplacian v v v

2 =  · , the following identity implies

v v
v v v vH f

1
4 ; 4 . G6v v b b

2 2pd p
- ¢

= - - ¢ =>  = -
∣ ∣

( ) ( ) ( ) ( )

89

The Astrophysical Journal Supplement Series, 260:26 (145pp), 2022 June Hunana et al.



The Rosenbluth potential Hb(v) is thus completely analogous to the electrostatic potential Φ(x) (with a Poisson equation
∇2Φ(x)=− 4πρc(x), where ρc(x) is the charge’s spatial distribution), here just used in velocity space. Also, because of the identity

v v v v2v
2 - ¢ = - ¢∣ ∣ ∣ ∣, the Rosenbluth potentials are related by
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However, the structure of the Rosenbluth potentials implies that the Landau operator is quite complicated. Indeed, the simplest
example, when prescribing Maxwellian f n v yexpb b

3 2
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3 2p= -( ) ( ) with the (vector) variable y= (v− ub)/vthb and scalar y= |y|,
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òp= -( ) ( ) is present. These Rosenbluth potentials make the collisional contributions (F5),
(F6) difficult to calculate.

For clarity on how the Hb is obtained, it is useful to introduce the (vector) variable x v v vthb= ¢ -( ) and the scalar x= |x|, and
change the integration into d v v d x3

thb
3 3¢ = , so that

v
v v

H
n

v

e
d v

n

v

e

x
d x. G10

x y

b
b b

3 2
thb
3

3
3 2

thb

3

v ub
v

2

thb
2 2

ò òp p
=

¢ -
¢ =

-¥

¥ -

-¥

¥ - +
¢-

( )
∣ ∣

( )
∣ ∣

∣ ∣

In the last integral, the variable y is a constant (because v and ub are constants). One introduces spherical coordinates in the x-space
with orthogonal unit vectors e e e, ,1 2 3ˆ ˆ ˆ , where the direction of vector y forms axis e y y3 =ˆ , so that the vector
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recovering (G8). The result can be verified by calculating (G6). Similarly, the potential Gb can be obtained by calculating
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recovering (G9), and which can be verified to satisfy (G7).
Note that because erf 0 0=( ) , the error function can actually be defined as an indefinite integral:
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G.1. Momentum Exchange Rates Rab

To obtain the momentum exchange rates Rab, one needs to calculate
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The entire result (G17) can then be written as (see, for example, Equations (46)–(47) of Hinton 1983)
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and the thermal speeds v T m2 a atha
2 = . Note that manaνab=mbnbνba holds. The collisional frequency (G22) is identical to Equation

(C2) of Schunk (1977); see Equation (179).
It is useful to clarify the physical meaning of the collisional frequencies. Considering momentum equations for two species where

all of the spatial gradients are neglected, so that ∂ua/∂t− (eZa/ma)E=Rab/ρa and ∂ub/∂t− (eZb/mb)E= Rba/ρb, then subtracting
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them and defining the difference δu= ub− ua, yields an evolution equation
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With no use of Maxwellʼs equations, and instead assuming an applied (external) constant electric field and also constant collisional
frequencies, an initial velocity difference δu(0) evolves according to
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Approximately after time τ= 1/ν (which represents many small-angle collisions), the dependence on the initial condition disappears
and the difference between the velocities reaches a constant value:

u u
Ee Z

m

Z

m
const. G25b a

ab ba

b

b

a

an n
- =

+
- =⎜ ⎟

⎛
⎝

⎞
⎠

( )

Provided that Za/ma≠ Zb/mb, the collisional time τ= 1/(νab+ νba) can then be interpreted as an average time that is required for
particles “a” and “b” to experience (many small-angle) collisions, so that the difference between their average fluid velocities reaches
a constant value proportional to the value of the applied (external) electric field E. For the particular case of Za/ma= Zb/mb, the
velocities become equal regardless of the value of applied E.

For a particular case of a one ion–electron plasma, ue− ui=− eE/(νeime), which can also be directly obtained from the quasistatic
electron or ion momentum equations. Prescribing the charge neutrality, ne= Zini, so that the current j=− ene(ue− ui) then yields the
relation j= σE with the usual electrical conductivity σ= 1/η= e2ne/(νeime), where σ does not depend on the value of current j
(because j is assumed to be small).

G.2. Energy Exchange Rates Qab

Similar calculations are used to obtain the energy exchange rates Qab, according to (F8). It is beneficial to notice that
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Importantly, to correctly account for the |u|2 contributions, the fa has to be expanded further:

y u u y uf
n

v
e

n

v
e 1 2 2 , G29y u

a
a a y

3 2
tha
3 3 2

tha
3

2 2 22 2 2

p p
a a= - + +a a- + - ( ( · ∣ ∣ ) ( · ) ) ( )∣ ∣

where α= vthb/vtha. This distribution function yields
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and the final result reads
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or equivalently,
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Hinton (1983) calculates only the first term, the thermal exchange rate (his Equation (52); see also Landau 1936 for an ion–electron
plasma). Calculating Qab+Qba= ρaνab|ub− ua|

2= (ub− ua) ·Rab yields the energy conservation, and the result (G31) is well-
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defined. (Recalculating Rab with the further expanded f0 (G29) yields the unchanged result Rab= ρaνab(ub− ua)). As a double check,
expanding the more general expression for unrestricted drifts (G64) (by expansion Ψab= 1− ò2) yields
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Results (G33) and (G31) are equivalent, and valid for an unrestricted difference in temperature. Prescribing that the difference in
temperatures is small simplifies the frictional part into
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This frictional part is derived elegantly in the Appendix of Braginskii (1965).

G.3. Rab and Qab for Unrestricted Drifts ub− ua (Runaway Effect)

Here we want to calculate Rab for the general Maxwellian distributions fa, fb, with no restriction on the value of the difference
ub− ua. We follow Burgers (1969) and Tanenbaum (1967). Instead of using the Rosenbluth potential Hb and calculating (G14), it is
easier to consider
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Additionally, instead of v and v¢, it feels more natural to use va= v and v vb = ¢. It is useful to introduce the vectors x= vb− va and
u= ub− ua. The integral is then calculated by introducing the “center-of-mass” velocity,
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Importantly, d3vad
3vb= d3Cd3x (by calculating Jacobian). For later calculations of more complicated integrals than (G35), the useful

transformations are
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The integral (G35) thus transforms into
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where we have already integrated over d3C. One introduces a reference frame in the x-space with unit vectors e e e, ,1 2 3ˆ ˆ ˆ , where the
direction of vector u defines the axis e u u3 =ˆ , so that
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To calculate that integral, it is useful to introduce (constant) ò= u/β, and change the integration into the variables
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In the last integral, it is necessary to first integrate over dz and then over ds, by using
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The final result then reads
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recovering Equation (26.4) of Burgers (1969) and Equation (25b) of Schunk (1977). For small values ò→ 0, the contribution Φ→ 1
(more precisely, Φab= 1− (3/5)ò2) recovers the previous result (G21) with small drifts. However, for large values ò? 1, the
contribution Φab decreases to zero as 3 4ab

3pF = ( ) , and thus for large differences the in drifts |ub− ua|, the momentum
exchange rates Rab disappear for Coulomb collisions. This phenomenon is known as the “runaway effect” (Dreicer 1959). It is also
possible to write
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where Gab
~ ( ) is called the Chandrasekhar function (we use tilde to differentiate it from the Rosenbluth potential Gb), and (G47) then

becomes
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In plasma books (e.g., Helander & Sigmar 2002), the Chandrasekhar function is typically introduced in velocity space as G v vthb
~( ),

i.e., without drifts and before the integration over d3v. The runaway effect is then explained on a population of electron species,
which gets accelerated by an applied external electric field. Because for large velocities v frictional forces (collisions) decrease as
G v v2thb

2 2~
~ ( ), the tail of the distribution function might depart and run away. In this sense, the runaway effect could be viewed as a
purely kinetic effect. Nevertheless, an obviously analogous runaway effect exists in the fluid description (i.e., after the integration
over d3v), it is just represented through the difference in the drifts ub− ua (which form a current j). For example, considering a one
ion–electron plasma with an electric current j=− ene(ue− ui), then taking the electron momentum equation and neglecting, for
simplicity, all of the terms except for the external E and Rei (including ∂ue/∂t, which neglects acceleration) yields the relation
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which agrees with Equation (33.6) of Burgers (1969). The electrical resistivity η now contains Φei, given by (G48) with
ò= j/(enevthe). For small values of current j, the η is independent of j. The runaway effect means that with increasing current j, the
electrical resistivity η decreases, and for large current j, it becomes en v j3 4 e e ei the

3 3h p r n= ( ) . In reality, the problem is much more
complex when the acceleration is considered, because, subtracting the two momentum equations, the general difference in the
velocities δu= ub− ua now evolves according to a nonlinear differential equation,
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which does not seem to be solvable analytically. Nevertheless (after studying the solutions for some time), it is possible to conclude
that there exist two distinct classes of solutions, which are typically separated by the value of the applied constant electric field E with
respect to a critical value Ecrit, where the maximal frictional forces balance the electric forces. For E< Ecrit, the solutions converge in
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time toward a situation where Φab= 1, and one recovers evolution Equation (G23) with static solution (G25). In contrast, for
E> Ecrit, the solutions evolve in time toward a situation with Φab= 0, which can be shown, for example, by considering solutions
where Φab(ò) is approximated with its asymptotic expansion. For very large values of E, one can straightforwardly prescribe Φab= 0,
yielding a (collisionless) solution:
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Thus, provided that Za/ma≠ Zb/mb is true, a stationary solution does not exist, and the difference in the velocities grows in time
without bounds, before the beam/stream plasma instabilities with the associated development of turbulence (and, in extreme cases,
eventually relativistic effects) restrict its further growth. For the particular case Za/ma= Zb/mb, the runaway effect does not exist,
and the difference in the velocities will converge to zero according to (G52). The frictional forces òΦab(ò) are plotted as a red curve in
the right-hand panel of Figure 6. They reach its maximum value 0.57ab maxF =[ ( )]  at ò= 0.97 (often rounded as ò= 1). The
critical electric field Ecrit is determined by making the maximum frictional forces equal to the electric forces, so that (G52) becomes
∂δu/∂t= 0, yielding
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Alternatively, one might use the Chandrasekhar function, where G3 2ab abmax maxpF =
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where ED
ˆ can be viewed as a generalized Dreicer electric field for two species with arbitrary masses, charges, and temperatures. By

further substituting for the collisional frequencies (we take lnl to be constant),
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which for an ion–electron plasma yields the usual Dreicer electric field

E
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4 ln
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e
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In the paper of Dreicer (1959), his reference field is defined as Ec= ED/2, so in his notation the runaway effect exists for E> 0.43Ec

instead of E> 0.214ED. In most of the recent literature, definition (G58) is used. It is sometimes incorrectly stated that the runaway
effect exists for E exceeding ED, whereas the correct value, as calculated by Dreicer, is almost five times smaller. Note the

Figure 6. Left: functions Φab (red line) and Ψab (blue line), with respect to ò defined in Equation (G64). Right: functions òΦab ∼ Rab (red line) and ò2Φab ∼ Qab (blue
line), where the temperature is fixed. Corresponding approximations for small drifts with Φab = 1 are also plotted (dotted lines). Function òΦab reaches maximum 0.57
at ò = 0.97, and function ò2Φab reaches maximum 0.70 at ò = 1.51. It is possible to conclude that the small drift approximation is reasonably accurate up to ò = 0.5,
and that very small values ò = 1 are actually not required. Even though we did not calculate the runaway effect for higher-order moments, out of curiosity we include
a function ò3Φab (black dashed line) that does not decrease to zero for large drifts, but instead converges to a constant value of 1.33.
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dependence of (G58) on Te, meaning that for any given value of electric field, the runaway effect will appear if the temperatures are
sufficiently high. For Za/ma= Zb/mb, the ED

ˆ becomes infinitely large, and the runaway effect between these species is not present.
For an ion–electron plasma, the Dreicer electric field is also discussed, for example by Tanenbaum (1967, p. 258) and Balescu (1988,
p. 775). We found it useful to consider the situation for two arbitrary (charged) species.

Similar to Rab, the Qab is obtained by calculating two integrals in (G26), and the first integral yields
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The second integral in (G26) yields
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The entire Equation (G26) then becomes
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and the difference in the temperatures Tb− Ta is not directly visible. Nevertheless, the solution can be rewritten into
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recovering Equation (26.8) of Burgers (1969) and Equation (25c) of Schunk (1977). Similar to Rab, for large differences in drifts, the
Qab disappears.

It is of interest to explore the validity of the results with small drifts, obtained in Appendices G.1 and G.2. The functions Φab and
Ψab are plotted in the left-hand panel of Figure 6. Both functions are decreasing, and thus in fluid models with the small drift
approximation, the effects of the collisions are overestimated. We fix the temperature (so that const.abn = ), and in the right-hand
panel of Figure 6 we plot the function òΦab, which corresponds to Rab (red line), and function ò2Φab, which corresponds to Qab (blue
line). For large drifts ò? 1, functions 3 4ab

2pF ~ ( )  and 3 4ab
2 pF ~ ( )  .

G.4. Difficulties with Rosenbluth Potentials

It is interesting to analyze why it seems impossible to calculate the runaway effect for Rab through the Rosenbluth potentials, and
why one needs to use the “center-of-mass” transformation instead. An attempt to calculate the runaway effect yields
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where α= vthb/vtha and u= (ub− ua)/vtha, and we have also identified the Chandrasekhar function. First, integrating over df, where
the direction of u forms the axis e u u3 =ˆ , yields
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Then one can perform the integration over dθ; however, the subsequent integration over dy does not seem possible. Or, one can first
attempt the integration over dy, using the substitutions s u cos q= , z= αy+ s, so that |αy+ u|2= z2− s2+ u2 yields

u
u

e se e
z s z s

e dzdsG66 2
1

2
erf , G67u

s u

u
s z

z s

3

2 2 2
2

2ò òp
a a p

=
-

-
-

a-
¥

-

+ - - -⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( )
( )

but the one-dimensional integrals over dz again appear impossible to calculate. The problem is the “drift” “s,” and also the constants
α. For example, the following indefinite integral is easily calculated by parts:
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but the result is not useful. Obviously, a different approach has to be used to integrate over the Chandrasekhar function if fa
0( ) is a

Maxwellian with unrestricted drifts.
Importantly, from Appendix G.3, where the “center-of-mass” transformation is used, we know that the correct answer has to be
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Finally, written in perhaps the prettiest form, when not referring to any physical quantities (i.e., a form suitable for integral tables),
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It is remarkable that the integral has such a striking symmetry, even though the integral seems impossible to calculate directly, i.e.,
the integral “transfers” a Chandrasekar function in y-variable to a Chandrasekar function in ò-variable. The result seems well-defined,
even for α< 0, so the restriction is α≠ 0 and real (the integral is divergent for α= 0). The limit u→ 0 yields zero. The “proof” of
(G71) can be viewed as analogous when evaluating the one-dimensional Gaussian integral e dxx2

ò-¥

¥ - through e dxdyx y2 2

ò ò - +( ) in

polar coordinates, where, instead of integrating over d3v, a trick is used to integrate over d vd v3 3 ¢.

Appendix H
8-moment Model (Heat Flux and Thermal Force)

To obtain the collisional contributions with the heat flux, one uses the following 8-moment distribution function of Grad:
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The calculations done by Burgers (1969), Schunk (1977), and Killie et al. (2004) were performed using the “center-of-mass”
transformation, described in Appendix G.3. Here, to do something slightly different, we verify the calculations by using the
Rosenbluth potentials. The route through the Rosenbluth potentials has a great disadvantage, as error functions are encountered even
if we are interested only in expressions with small drift velocities (with respect to thermal velocities). This is because the Rosenbluth
potentials have to be derived with the exact (H1), and not expanded for small drifts from the beginning. Nevertheless, the route has an
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advantage, as it is possible to do a double check in the middle of the calculations, because there are identities that the Rosenbluth
potentials must satisfy.

H.1. Rosenbluth Potentials

Using the same variables x v v vthb= ¢ -( ) and y= (v− ub)/vthb as before, so that cb= (x+ y)vthb, we need to obtain the
Rosenbluth potentials
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It is possible to calculate the following integrals (directly obtainable with Maple in spherical geometry, after the vector integrals
containing x are first integrated by hand over df):

x
e d x

y

y

1 erf
; H4x y 3 3 22

ò p=- + ( ) ( )∣ ∣

x y
x

e d x
y

y
e

1
1

2

5

2

5

erf 2

5
; H5x y y2 3 3 22 2

ò p p- + = +- + -⎛
⎝

⎞
⎠

∣ ∣ ( ) ( )∣ ∣

x
x y y

x
e d x

y

y
1

2

5

2

5

erf
, H6x y 2 3 3 22

ò p- + = -- + ⎛
⎝

⎞
⎠

∣ ∣ ( ) ( )∣ ∣

and similarly:

xe d x y
y

y e
1

2
erf ; H7x y y3 3 22 2

ò p p= + +- + -
⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )∣ ∣

x yxe d x y y e1
2

5

2

5
erf

2

5
; H8x y y2 3 3 22 2

ò p p- + = +- + -⎛
⎝

⎞
⎠

∣ ∣ ( ) ( )∣ ∣

x x y yx e d x y
y

y
y

e1
2

5

2

5

1

4
erf 1

1

2
. H9x y y2 3 3 2

3 2

2 2

ò p p- + = - + + -- + -
⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

∣ ∣ ( ) ( )∣ ∣

This yields the final Rosenbluth potentials for the 8-moment model, in the following form:
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and a matrix
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As a double check, applying (∂/∂v) · on (H12) recovers− 4πfb, and applying 1 2 Tr( ) on (H13) recovers Hb. The dynamical friction
vector then reads
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and after slight rearrangement, the diffusion tensor becomes
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H.2. Momentum Exchange Rates Rab

Then, similar to fb according to (H1), one prescribes for species “a”:
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and introduces the variable u= (ub− ua)/vtha, so that ca= yvthb+ uvtha. However, the resulting integrals would yield the runaway
effect, and were never evaluated. It is necessary to get rid of the runaway effect, and approximate the fa with small drifts u= 1, and
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where α= vthb/vtha. The distribution function (H17) needs to be further reduced to the “semilinear approximation,” where the
difference in the temperatures is not restricted, but one keeps only the precision o(u) and also neglects all of the cross terms such as
qa · u, keeping only
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and we split the calculation into two integrals of (H12). The first integral∼ y calculates
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and the second part of (H12) calculates
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For a quick conversion to the collisional frequencies, it is useful to write
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Putting the results together yields the final result:
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recovering Equation (41b) of Schunk (1977; derived before by Burgers 1969). Alternatively, T v v2ab ab tha
2

thb
2m = +( ). As a double

check, Rab=− Rba, and for self-collisions, Raa= 0, as it should be. The contribution coming from the heat flux is known as the
thermal force.

H.3. Heat Flux Exchange Rates

To calculate the heat flux contributions, one needs to calculate
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We have used Acc A c c A cTr 2S 2= +[ ] ( · ) ∣ ∣ , and because the diffusion tensor is symmetric, D D2S =¯̄ ¯̄ and

D c D c D cTr 2 Tr 4S S = +[ ¯̄ ] ( ¯̄ ) ¯̄ · . By assuming no restriction on the temperature difference, we have verified (with the great help
of Maple) that “semilinear” heat flux contributions (45)–(49) of Schunk (1977; derived before by Burgers 1969) are indeed correct
for Coulomb collisions (with zst= 3/5, z 13 10st ¢ = , z 2st ¢¢ = , and also z 4st ¢¢¢ = ). For Coulomb collisions, the final result (after the
subtraction of R

p
a

5

2
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ar
) is written in a compact form in Section 2.3; see Equation (32).

In the “linear approximation,” where the temperature differences are small, the result simplifies into
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where the introduced constants are defined in (H30), (H31). Alternatively, by summing over all of the “b” species and separating the
self-collisions,
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recovering Equations (41e)–(43) of Schunk (1977); see also Equations (34)–(36) of Killie et al. (2004). The entire heat flux
contributions are thus
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and enter the right-hand side of the evolution equation for the heat flux vector, for example, in its simplest form:

q
b q Q

d

dt

p

m
T

5

2
. H33a a

a a
a

a
a a

3+ W ´ +  = ¢ˆ ( )( )

Importantly, in comparison to the BGK operator, the right-hand side also contains all of the heat fluxes qb. Formally, it is still
possible to obtain a result for qa in a quasistatic approximation, as a solution of the equation
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which has the following exact solution:
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Nevertheless, the heat fluxes of various species are coupled.

H.4. One Ion–Electron Plasma

Considering a one ion–electron plasma (so ne= Zini) with small differences in temperature, and neglecting the ratios me/mi, the
ion and electron heat fluxes decouple. For the electron species Dei(1)=− 1/5, Dei(4)= 6/5, and μei=me, by using abbreviation
δu= ue− ui,
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The entire heat flux contributions are
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yielding a solution for the electron heat flux (split into a thermal part and a frictional part):
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The thermal conductivities have the same form as the BGK conductivities. The only difference is that while e ee ein n n= +¯ for the
BGK operator, now we have to use (H41). By using Z 2ee ei in n= ( ) from Equation (182),
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The momentum exchange rates are also split into a frictional part and a thermal part:
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In comparison, the Braginskii (1965) result for Zi= 1 reads
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where x=Ωe/νei. The heat flux and associated thermal force of Burgers and Schunk therefore finally explains the entire
mathematical structure of the Braginskii equations, i.e., all of the terms are finally present, only the numerical values are different.

Examining the obtained numerical values in the limit of a strong magnetic field with Zi= 1 (where, for simplicity, we neglect all of
the ratios νei/Ωe), yields
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which is very close to the Braginskii values
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Note that both results (H50), (H51) contain the same symmetrical constants 0.8 and 0.71 in the frictional heat flux qe
u and the thermal

force Re
T . This is known as the Onsager symmetry, and it is also valid for a general magnetic field strength and a general charge, as

can be seen by comparing (H44) and (H48).
Continuing with the strong magnetic field and examining the perpendicular heat conductivities yields (Zi= 1 for ek^)
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and both match Braginskii exactly. Nevertheless, the parallel heat conductivity (which is independent of magnetic field strength;
Zi= 1)
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which is quite low in comparison to the Braginskii value of 3.16.

H.5. Ion Species

For ion species Die(1)= 3, Die(4)=− 3me/(2mi), and identical proton and electron temperatures, the momentum exchange rates
(H25) yield
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and Re has already been calculated. Furthermore, the collisional heat flux contributions (H32)–(H37) simplify into
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where the electron heat flux qe notably cancels out exactly for equal temperatures. Ion frequencies should thus be added according to
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The model of Burgers–Schunk yields the ion heat flux
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where frequencies are added according to (H58). Importantly, the ion–electron contributions are not completely negligible, and
without them 4 5 0.8i ii iin n n= =¯ ( ) .

However, in the work of Braginskii (1965), the ion–electron collisions are neglected for the ion heat fluxes and viscosities, and
only ion self-collisions are accounted for. This can be seen from his ion coefficients that do not depend on Zi. Neglecting the ion–
electron collisions, the model of Burgers–Schunk yields
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For the parallel conductivity, 25 8 3.125ik ~ = , in comparison to Braginskii’s 3.906. In the strong magnetic field limit,
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and both match Braginskii exactly (!). If ion–electron collisions are taken into account, these Burger–Schunk coefficients change into
(for Zi= 1) 2.78ik ~ , 2.24ik ~^ , and 5 2ik ~´ , and the perpendicular ik^ would suddenly not match Braginskii. It would not

make sense for the electron ek^ to match Braginskii exactly (for a strong B-field) and the ion ik^ not to, which is a definitive indication
that ion–electron collisions are neglected in Braginskii.

Including the ion–electron collisions, the ik^ in the strong B-limit reads
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Neglecting ion–electron collisions with respect to ion–ion (self) collisions is analogous to neglecting 0.1 with respect to 0.8—the
contribution is not tiny.
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Appendix I
Comparison of Various Models with Braginskii (Electrons)

Focusing on the parallel direction, the momentum exchange rates Re∥ and electron heat flux qe∥ can be written in a general form:
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The Braginskii (1965) values of *;0 0 0a b b= and γ0 are given in his Table 2 (p. 25). The model of Burgers (1969)–Schunk (1977) is
given by

*
Z

1
9

10
;

3

2
;

5

2
;

1

2

4

5

13

10
, I2ei

e

ei

e

ei

e
e

i
ei0 0 0 0a

n
n

b b
n
n

g
n
n

n n= - = = = = +⎜ ⎟
⎛
⎝

⎞
⎠¯ ¯ ¯

¯ ( )

or equivalently,

*Z

Z

Z

Z

Z

Z

2

2 13 4
;

15

4 2 13
;

25

4 2 13
. I3i

i

i

i

i

i
0 0 0 0a b b g=

+
+

= =
+

=
+( )

( )

The model of Killie et al. (2004), discussed in Appendix I.2, yields
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The other included models are described below.
In Table 8, we compare the parallel friction force; in Table 9, the parallel thermal force; in Table 10, the parallel thermal heat flux

(thermal conductivity ek); and in Table 11, the parallel frictional heat flux. Furthermore, in Table 12, we compare ek^ in the strong
magnetic field limit.

We include the numerical model of Spitzer & Härm (1953; see also Spitzer 1962), with their notation being discussed in Appendix
I.1, which reads:
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with the numerical values of γE, γT, δE, δT, and ò given by Table III in Spitzer & Härm (1953). For the Lorentzian plasma (Zi=∞ ),
the coefficients are γE= γT= δE= δT= 1 and ò= 2/5. We also include the model of Landshoff (1949, 1951), who calculated several
transport coefficients (with the inclusion of a magnetic field) before Spitzer and Braginskii, and studied convergence with increasing
Laguerre polynomials from N= 1 to N= 4 (in his work, i= N+ 1). The model is interesting because for N= 1, it matches the values
of Burgers–Schunk, and for N= 2, it matches Braginskii. His model can be figured out to be

*
Z

Z
1

;
5

2
;

25

4
, I6

i
i0 00

1
0 0

01

00
0

11 01
2

00
a b b g= = = = --

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( )   
 




 
 

Table 8
Parallel Friction Force R ue

u
e ei0a r n d= - , Coefficient α0 is Plotted, or Parallel Electrical Resistivity η∥ = 1/σ∥ = α0meνei/(e

2ne)

∥ Friction Force Re
u Zi = 1 Zi = 2 Zi = 3 Zi = 4 Zi = 16 Zi =∞

Burgers–Schunk (N = 1) 0.518 0.431 0.395 0.376 0.326 0.308
Killie et al. 0.597 0.460 0.391 0.349 0.231 0.182

Braginskii (N = 2) 0.513 0.431 0.395 0.375 0.319 0.2949
Landshoff (N = 4) 0.508 0.430 0.395 0.29455
Spitzer–Härm (N = ∞ ) 0.506 0.431 0.375 0.319 0.2945

Note. The model of Burgers–Schunk is more precise than that of Killie et al. The model of Landshoff for N = 1 matches Burgers–Schunk, and for N = 2 it matches
Braginskii. For Zi = 1, the value of Landshoff (N = 4) is slightly corrected (0.509 → 0.508, emphasized with bold font) from the more precise work of Kaneko
(1960), and the values of Landshoff for other Zi might be slightly incorrect. The values of Braginskii for Zi = 2, 3 in his Table II are slightly incorrect, and we have
used the values from analytic expression (56), which now also match Landshoff (N = 2). The Braginskii value for Zi = 16 is also from (56). From Kaneko & Taguchi
(1978), Kaneko & Yamao (1980), and Ji & Held (2013), the “final” value for Zi = 1 is α0 = 0.50612, and the result of Spitzer–Härm is correct. Note that by keeping
ne and Te constant in the definition of νei, the friction force ∼ α0νei actually increases with increasing Zi (and the electrical conductivity decreases).
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with the coefficients from Table I of Landshoff (1951). We plot his highest-order model for N= 4. The models of Landshoff were
calculated with higher numerical precision in the work of Kaneko (1960), where the following conversion has to be used:
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Table 9
Parallel Thermal Force R n Te

T
e e0b= -  , Coefficient β0 is Plotted

∥ Thermal Force Re
T Zi = 1 Zi = 2 Zi = 3 Zi = 4 Zi = 16 Zi =∞

Burgers–Schunk 0.804 0.948 1.008 1.041 1.123 1.154
Killie et al. 0.672 0.901 1.015 1.085 1.281 1.364

Braginskii 0.711 0.905 1.016 1.090 1.362 1.521
Landshoff (N = 4) 0.709 0.904 1.016 1.5005
Spitzer–Härm 0.703 0.908 1.092 1.346 3/2

Note. The model of Killie et al. is more precise than that of Burgers–Schunk. The model of Landshoff for N = 1 matches Burgers–Schunk, and for N = 2 it matches
Braginskii. For Zi = 1, the Landshoff (N = 4) value is slightly corrected (0.710→ 0.709) from Kaneko. The final value for Zi = 1 from Kaneko et al. and Ji & Held
reads β0 = 0.70287, and the Spitzer–Härm result is correct.

Table 10
Parallel Electron Heat Conductivity p me

e e ei0k g n= ( ) (Thermal Heat Flux q Te
T e

ek= -   ), Coefficient γ0 is Plotted

∥ Heat Conductivity ek Zi = 1 Zi = 2 Zi = 3 Zi = 4 Zi = 16 Zi =∞

Burgers–Schunk 1.34 1.58 1.68 1.73 1.87 1.92
Killie et al. 3.92 5.25 5.92 6.33 7.47 7.95

Braginskii 3.1616 4.890 6.064 6.920 10.334 12.471
Landshoff (N = 4) 3.178 4.902 6.069 13.572
Spitzer–Härm 3.203 4.960 6.983 10.629 13.581

Note. The model of Killie et al. is a significant improvement over that of Burgers–Schunk. The model of Landshoff for N = 1 matches Burgers–Schunk, and for N = 2
it approximately matches Braginskii. For Zi = 1, the Landshoff (N = 4) value is slightly corrected (3.175→ 3.178) from Kaneko. The final value for Zi = 1 from
Kaneko et al. and Ji & Held reads γ0 = 3.2031, and the Spitzer–Härm result is correct. Note that by keeping ne and Te constant in the definition of νei, the heat
conductivity γ0/νei actually decreases with increasing Zi.

Table 11
Parallel Electron Frictional Heat Flux *q upe

u
e0b d= 

∥ Frictional Heat Flux qe
u Zi = 1 Zi = 2 Zi = 3 Zi = 4 Zi = 16 Zi =∞

Killie et al. 2.35 3.15 3.55 3.80 4.48 4.77
Spitzer–Härm 0.699 0.888 1.089 1.346 3/2

Note. For the models of Burgers–Schunk, Braginskii, and Landshoff, the Onsager symmetry *0 0b b= holds exactly with the values given in Table 9. For the model of
Spitzer–Harm, the Onsager symmetry is satisfied only approximately, with the largest discrepancy for Zi = 2, of around 2%. For the model of Killie et al., the Onsager
symmetry is broken, and the frictional heat flux values are quite large.

Table 12
Perpendicular Electron Heat Conductivity p me

e ei e e1
2k g n= ¢ W^ ( ), in the Limit of a Strong Magnetic Field, Coefficient 1g ¢ is Plotted

⊥ Heat Conductivity ek^ Zi = 1 Zi = 2 Zi = 3 Zi = 4 Zi =∞

Burgers–Schunk 4.664 3.957 3.721 3.604 3.25
Killie et al. 1.59 1.19 1.06 0.99 0.79
Braginskii 4.664 3.957 3.721 3.604 3.25

Note. The Braginskii values are from his Table II. Interestingly, the Burgers–Schunk model matches the Braginskii values exactly. In fact, both models yield the same
analytic expression Z2 13 4i1g ¢ = +( ) , see (60), so the numerical comparison between Burgers–Schunk and Braginskii is a bit meaningless (and the reason why
the Zi = 16 value was omitted from our table). The table shows that the model of Killie et al. is imprecise.

105

The Astrophysical Journal Supplement Series, 260:26 (145pp), 2022 June Hunana et al.



with the values in his Tables I, II, and III. In his work,M= N+ 1, and values for the models from N= 1 to N= 5 are given, although
only for Zi= 1. The model is easily comparable with that of Landshoff (1951) because the same coefficients are given. In our
comparison tables, we slightly correct these Zi= 1 values of Landshoff (N= 4) with the more precise ones of Kaneko. In the later
works of Kaneko & Taguchi (1978) and Kaneko & Yamao (1980), calculations with up to M= 50 were made, and the notation is
changed into b bI 0

1
I 0( ) ( ), b bI 1

1
I 1-( ) ( ). From their work and the recent work of Ji & Held (2013), who used up to 160 Laguerre

polynomials, the correct values for charge Zi= 1 read α0= 0.50612, β0= 0.70287, and γ0= 3.2031.
For the work of Balescu (1988), who was the first to recover Braginskii with the moment approach of Grad, the following

conversion has to be used:

*1
;

5

2
;

5

2
, I8e

0 0 0 0

2

a
s

b b
a
s

g k
a

s
= = = - = -
  

 












⎛

⎝
⎜

⎞

⎠
⎟ ( )

with the numerical values for Zi= 1 given in his Table 4.1 (p. 239). For his 13-moment model (N= 1), the results are equal to
Burgers–Schunk, and for his 21-moment model (N= 2), the results are equal to Braginskii. However, for his 29-moment model
(N= 3), the coefficients of Balescu were shown to be imprecise by Ji & Held (2013), see their Table I, who were able to pinpoint
exactly the analytic errors in the collisional matrices of Balescu. That the Balescu N= 3 values are indeed incorrect can be quickly
double-checked by comparison with the M= 4 model of Kaneko (1960), from where the Balescu parameters should be

e 1.964I 0s = = ( ) , b5 2 0.887I 0a = = - ( ) , and b5 2 1.666e I 1k = =- ( ) ( ) , agreeing with the modern calculations of Ji &
Held (2013).

I.1. Notation of Spitzer–Härm (1953)

The exact values of the parallel transport coefficients (with the exception of parallel viscosity) were first numerically obtained by
Spitzer & Härm (1953). Essentially, the perturbation fe (or fe

1( )) around a Maxwellian f f 1e e e
0 f= -( )( ) that satisfies the Fokker–

Planck equation was found numerically, and the obtained result was used to calculate the transport coefficients. No magnetic field is
present in their work, and the results can be interpreted as applying to unmagnetized plasmas, or to magnetized plasmas in the
direction parallel to magnetic field lines. Similar to Braginskii (Chapters 2 and 4), the paper treats a one ion–electron plasma (with
ne= Zini).

The notation of Spitzer & Härm (1953) can be very confusing. The results are given in a form

j E T ; I9es a= +  ( )

q E K T , I10e e
Spitzer b= - -  ( )

with the coefficients σ, α, β, and K given by their Equations (33)–(36). These coefficients contain a quantity C2. This quantity is only
defined by a sentence following Equation (16) in their previous paper by Cohen et al. (1950), which reads “C2 is the mean square
electron velocity,” meaning C T m3 e e= with the important factor of 3 present (we use the same notation as Braginskii, with the
Boltzmann constant equal to one). Rewriting their coefficients in (I9), (I10) to our notation yields

e n

m

en

m
ep

m
K

p

m

32

3
;

16
;

128

3
;

320

3
, I11

e

e ei
E

e

e ei
T

e

e ei
E

e

e ei
T

2
s

p n
g a

p n
g

b
p n

d
p n

d

= =

= = ( )

where the numerical values of γE, γT, δE, and δT are given in Table III of Spitzer & Härm (1953). The coefficients (I11) are essentially
normalized with respect to a Lorentzian plasma Zi=∞ (meaning when electron–electron collisions are negligible), in which case
γE= γT= δE= δT= 1.

Unfortunately, Spitzer & Härm (1953) do not define their qe
Spitzer, and only describe it as a “the rate of flow of heat.” The heat flux

is also not defined in the book of Spitzer (1962), but he notes (Equation (5.45)) that, from the thermodynamics of irreversible
processes, the model closely satisfies

T
T

e

5

2
. I12e

eb a s= + ( )

Equation (I12) should be the Onsager symmetry. In the historical literature, there are three other major possibilities regarding how to
define the heat flux. The first two choices are:

***q v v q u u u u
m

f d v p
2
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2 2
; I13a

a
a a a a a a

a
a a

2 3 2 2ò
r
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2 2
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The nonlinear terms can be neglected. Spitzer is not using the second choice, and the first choice is almost correct, except that for the
electron heat flux, only (5/2)peue would be created, and not the whole current ue− ui. The third choice is the definition of Chapman
& Cowling (1939), where the heat flux is defined with respect to the average velocity of all of the species 〈u〉≡ (∑aρaua)/∑aρa,
according to

*q v u v u q w w w w
m

f d v p
2

5

2 2
, I15a

a
a a a a

a
a a a a

2 3 2 2

ò
r

P= - á ñ - á ñ = + + +( )∣ ∣ ∣ ∣ · ¯̄ ( )( )

where wa= ua− 〈u〉. For an ion–electron plasma 〈u〉= ui and we= ue− ui. Thus, to satisfy (I12), the correct interpretation seems to
be

*q q q u q jp
T

e

5

2

5

2
, I16e e e e e

eSpitzer d= = + = - ( )

where j=− eneδu and δu= ue− ui.
Result (I9) should be viewed as part of the evolution equation for ∂ue/∂t (here written in a steady state with all other terms

neglected), and substituting the electric field into (I10) then yields
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The numerical coefficient ò is given in Table III of Spitzer & Härm (1953) as well. Or, equivalently, by using (I11),
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In this form, the results can be directly compared to Braginskii, with the relations
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The Onsager symmetry then reads

3

2
4

5

2
, I19T E Eg d g= - ( )

which the model satisfies approximately, and for the Lorentz case exactly. The largest difference appears for Zi= 2, where the left-
hand side of (I19) is 0.621 and the right-hand side is 0.607, so Spitzerʼs claim that Equation (I12) is satisfied to about one part in a
thousand seems a bit exaggerated, or we are interpreting his results incorrectly. The model of Spitzer & Härm (1953) and Spitzer
(1962) is criticized in the monograph of Balescu (1988, Part 1, p. 266). Nevertheless, the coefficients α0, β0, and γ0 in the model of
Spitzer & Härm (1953) are the correct answer, and in comparison with Kaneko & Taguchi (1978), Kaneko & Yamao (1980), or Ji &
Held (2013), these coefficients are valid for three decimal digits. For numerical simulations that employ the heat flux of Spitzer &
Härm (1953), it seems logical to simply ignore the imprecise *0b values, and enforce the Onsager symmetry *0 0b b= in their model
by hand.

I.2. Model of Killie et al. (2004)

Instead of the 8-moment distribution function of Grad (H1) used in the model of Burgers–Schunk, Killie et al. (2004) argued that it
is better to use
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yielding the collisional contributions (which we did not verify) for small temperature differences
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Similar to Burgers–Schunk, they also provide equations for unrestricted temperature differences. Considering an ion–electron plasma
yields D 4 35ei

1 = -( ) , D 6 5ei
4 =( ) , and
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with total collisional contributions
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This yields the heat flux solution equivalent to Equations (H43)–(H45), with the only difference being that the frequencies are now
added according to
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The momentum exchange rates then read
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and a direct comparison with Braginskii is done according to
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Examining the numerical values for Zi= 1, for example, the parallel heat conductivity reads p m3.92e
e ei ek n= ( ). This is a big

improvement in the model of Killie et al. (2004): the conductivity is almost three times larger than the 1.34 value of Burgers–Schunk,
and is much closer to the correct value of 3.20. The other results are (strong B-field, Zi= 1)
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and the thermal force value of 0.67 is now closer to the correct value of 0.70 as well. However, the frictional heat flux qe
u is quite

large (over three times larger than it should be, 2.35 versus 0.70). Importantly, the Onsager symmetry between qe
u and Re

T is broken,
which can also be seen from the general results (I32), (H48). Nevertheless, the model indeed improves the parallel thermal heat flux
and the parallel thermal force of Burgers–Schunk.
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Appendix J
10-moment Model (Viscosity)

To calculate the collisional contributions for the stress tensor with the Landau operator, one uses the following 10-moment
distribution function of Grad:
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. By using symmetries and a Gaussian integration, it is possible to show that
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The last integral is a special case of (J48). Thus, the distribution function (J1) correctly reproduces the density, fluid velocity, and full
pressure tensor c c Im f d c pb b b b b b b

3 2
ò P= +¯̄ ¯̄ ( )

, so the distribution function is well defined.

J.1. Rosenbluth Potentials

Using the variables x v v vthb= ¢ -( ) and y= (v− ub)/vthb with cb= (x+ y)vthb, we need to calculate the Rosenbluth
potentials
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Using the integrals (J40) and (J44), the final results for the Rosenbluth potentials are
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As a double check, applying ∂/∂ v· at the last expression recovers− 4πfb(v), where, for example,
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The entire dynamical friction vector for the 10-moment model then becomes
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For the diffusion tensor, to perform the subsequent analytic calculations in a clear way, it is useful to write the second Rosenbluth
potential Gb by introducing A1, A2:
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As a double check, applying 1 2 Tr( ) at the last expression recovers Hb.
After a slight rearrangement suitable for the calculations, the entire diffusion tensor then becomes
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with the “coefficients”
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Or, explicitly, in its entire form:
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J.2. Viscosity Calculation

For species “a,” the distribution function in a semilinear approximation reads
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It can be seen that, at the semilinear level, there is no new contribution to the momentum equation. For the pressure tensor equation,
we need to calculate the following collisional contributions:
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and the further one-dimensional integration brings the following result:
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Similarly, the first term in (J17) calculates
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Adding (J19)+(J20) yields the final collisional contributions for the right-hand side of the pressure tensor equation, which can be
written in the convenient following form:
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Introducing ∑b over all of the species, result (J21) identifies with Equation (44) of Schunk (1977; derived before by Burgers). It is
valid in the semilinear approximation, for unrestricted temperature differences. For Coulomb collisions, the viscosity calculated
through the Rosenbluth potentials (for the Landau collisional operator) thus yields the same result as the Boltzmann collisional
operator. By explicitly separating the self-collisions,
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where the “famous” 6/5 constant is present. As a double check, calculating the energy exchange rates yields
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The collisional contributions for the stress tensor are thus
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and enter the right-hand side of its evolution equation, for example, written in its simplest form:
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Importantly, in the collisionless regime, the right-hand side of (J25) simply goes to zero. It is possible to write a general solution in a
quasistatic approximation, but the stress tensors of various species are coupled.

J.3. Small Temperature Differences

For a particular case of small temperature differences between species,
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, recovering Equation (41d) of Schunk (1977). Finally, for the stress tensor,
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J.4. One Ion–Electron Plasma

For a plasma consisting of one ion species and electrons, in the first step
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In a quasistatic approximation, one derives the following viscosity coefficients:
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which have the same form as the BGK viscosities. The difference is that while i ii ien n n= +¯ and e ee ein n n= +¯ for the BGK
operator, here the frequencies have to be added according to (J30), (J31).

Importantly, because Braginskii (1965) neglected the ion–electron collisions for ion viscosities, direct comparison with Braginskii
has to done with 6 5i iin n=¯ ( ) . Using this approximation, the parallel viscosities of the Burger–Schunk model are
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where 5/6= 0.83, contrasting with the Braginskii ion value of 0.96. Considering a specific case Zi= 1, the electron viscosity
p0.49e
e ei0h n= , contrasting with Braginskii’s value of 0.73.

J.5. Strong Magnetic Field Limit

Examining the strong magnetic field limit, the viscosities for ions become
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(with relations 4a a
2 1h h= , 2a a

4 3h h= valid for both electrons and ions). All four viscosities match Braginskii exactly! Similarly, for
electrons in the strong magnetic field limit, the Burgers–Schunk model yields
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viscosities for different Zi values, all four viscosity coefficients (except for parallel η0) would match his results exactly.
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2 1h h= holds. That the result (J36) is indeed correct, and can be checked against the 2-Laguerre Equation (89b) of Ji &

Held (2013) when written in a strong B-limit. (Use Z m m1 i e iz = ( ) , ri i iit= W ˆ , and pi i
i ii2 2h h t= ˆ ˆ , with conversion 2ii iit t=ˆ ,

because we use Braginskii’s definition of τii; see Section 8.2). Interestingly, the result does not change in their 3-Laguerre model (or
higher-order models). The same is true for the perpendicular heat conductivities ak^.
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To calculate the viscosity, the Rosenbluth potentials are integrated by the following scheme:
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where, in our case, functions f (y) are well behaved, so these integrals hold. Additionally, for any symmetric (3× 3) matrix Ā̄,
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and for the stress tensor, Tr 0b
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P =¯̄ ( )
(the integral can be calculated by splitting A yy:¯̄ explicitly into components, and then by using

symmetries, for example).

J0.6.1. Spherical Integration

To obtain the integrals (J39), for example, one introduces an orthogonal reference frame in the x-space with unit vectors e e e, ,1 2 3ˆ ˆ ˆ ,
where the direction of y forms axis e y y3 =ˆ , so that
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Appendix K
Braginskii Heat Flux (11-moment Model)

We use the usual reducible Hermite polynomials with a perturbation of the distribution function f f 1b b b
0 c= +( )( ) (see the details

in Appendix B):
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For the clarity of the calculations, here we only consider the heat flux part of χb (i.e., the 11-moment model), but the full 21-moment
model can be implicitly assumed for the final collisional contributions at the semilinear level. The orthogonality relations are (species
indices are dropped)
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yielding (K1). By using this perturbation χb, one can directly calculate the heat flux vector and the fifth-order moment vector
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or one can directly calculate the Hermite moments

h
p

m

T
q

h
p

m

T

m

T
X q

2
;

1
28 . K5

i
b

b

b

b
i

b

i
b

b

b

b

b

b
i
b

i
b

3

5 5

=

= -




⎜ ⎟
⎛
⎝

⎞
⎠

˜

˜ ( )

( )

( ) ( )

Note that we have chosen to define all of the vectors and tensors (including X H H, ,i
b

i i
5 3 5˜ ˜( ) ( ) ( )

, etc.) without any additional
normalization factors, so they are directly obtained from higher-order tensors by just applying contractions. The sole exception is the
heat flux vector, which contains a factor of 1/2, to match its usual definition. As also noted after Equation (B41), the reminder of this
exception in the index notation is the arrow on the heat flux vector components qi. We will again use the Rosenbluth potentials, and
not the center-of-mass transformation. However, this time we will keep working with the Hermite fluid moments, which has a nice
advantage in that the expressions can be kept in a partially dimensionless form.

K.1. Rosenbluth Potentials
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K.2. Dynamical Friction Vector and Diffusion Tensor

The dynamical friction vector thus reads
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and the diffusion tensor
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K.3. Distribution Function for Species “a”

The general distribution function for species “a” reads
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To avoid the complicated runaway effect, the weight has to be expanded with small drifts, for example, by defining
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so that the expansion for small drifts
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In comparison to our previously used normalization, y y 2=˜ and u u 2=˜ and c c v2a a tha=˜ . The perturbation χa contains
Hermite polynomials, and these also have to be expanded in the semilinear approximation. Importantly, after contraction with the
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Hermite (fluid) moments,
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The integrals are evaluated with d v T m d yb b
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Also, it is useful to express cab directly through the collisional frequencies νab, according to
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K.4. Momentum Exchange Rates Rab

The momentum exchange rates calculate
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or expressed through the usual fluid variables,
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K.5. Heat Flux Exchange Rates

We need to calculate the collisional contributions for the heat flux
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Before attempting the integration of (K32), it is useful to apply the semilinear approximation, which yields step by step
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For the diffusion tensor,
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and in the semilinear approximation:
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Collecting all of the results together, the first part of (K32) becomes
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and the second part of (K32) becomes
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Now (K32) can be directly integrated, again by applying a semilinear approximation during the integration. By using (K26) and
(K27), the entire collisional integral (K32) can be written in a symbolic form:
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where {K41} and {K42} represent only parts of the corresponding equations that are inside the curly brackets. The final result of the
integration reads

Q
q

u u

h h

h h

t
p U

D
p T

m
D

p T

m

E p
T

m
E p

T

m

1

2
Tr

2 2

, K44

ab
ab

ab a b a ab

ab ab
a a

a

a
ab ab

a

b

b b

b

b

ab ab a
a

a

a
ab ab

a

b
b

b

b

b

3
1

1
3

2
3

1
5

2
5

d
d

n

n n
r
r

n n
r
r

= = - -

- +

+ +

¯̄ ( )

˜ ˜

˜ ˜ ( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

121

The Astrophysical Journal Supplement Series, 260:26 (145pp), 2022 June Hunana et al.



with the mass-ratio coefficients
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As a double check, we have verified that neglecting the fifth-order Hermite moments h 5˜( ) in (K44) yields a model that matches
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The model is easily changed from Hermite moments to fluid moments by
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By introducing summation over all of the “b” species and separating the self-collisions, the final results are given by (18), (19).
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K.6. Fifth-order Moment Exchange Rates

We need to calculate the collisional contributions for the right-hand side of the evolution equation for vector Xi
a 5( ), which is

obtained by calculating
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Collecting the results together, the first part of (K50) becomes
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Now (K50) can be integrated, and the entire collisional integral can be written in a symbolic form:
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For small temperature differences, the mass-ratio coefficients simplify into
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Rewritten with fluid moments, the exchange rates for the fifth-order moment become
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The final results are given by (20), (21).

Appendix L
Braginskii Viscosity (15-moment Model)

We use polynomials derived from the reducible Hermite polynomials (see the details in Appendix B), with the perturbation of the
distribution function vf f 1b b b
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For the clarity of the calculations, we only consider the viscous part of χb (i.e., the 15-moment model) here, but the full 22-moment
model can be implicitly assumed for the final collisional contributions at the semilinear level. The Hermite polynomials are (dropping
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The irreducible polynomials yield the same perturbation χb. By using the perturbation (L1), one can calculate the fluid moments
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b 4P ( ), or one can directly calculate the Hermite moments
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As a double check, applying 1 2 Tr( ) on (L9) yields
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recovering the first Rosenbluth potential (L4). Similarly, applying (∂/∂v) · on (L6) recovers− 4πfb(v). Both Rosenbluth potentials
seem to be calculated correctly.

L.2. Dynamical Friction Vector and Diffusion Tensor
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L.3. Distribution Function for Species “a”

To avoid the complicated runaway effect, the distribution function vf f 1a a a
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The first term of (L19) is rewritten as
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Adding the last two equations together finally yields
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As a partial double check of the entire formulation, by neglecting the fourth-order Hermite moments h
4¯̄̂ ( )
in (L26), it can be verified

that the model is then equivalent to Burgers–Schunk; see Equation (44) in Schunk (1977), or our previous Equation (J21). For a
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particular case of small temperature differences, the mass-ratio coefficients simplify into
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and for self-collisions, Kaa(1)= 16/5, Kaa(2)= 4/5, Laa(1)= 3/7, and Laa(2)= 6/35.
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It is useful to define (introducing hat)
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and the final mass-ratio coefficients are given by (23).

L.6. Fourth-order Moment Exchange Rates

We need to calculate the collisional contributions
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There will be no ũ contributions at the end, and it is simpler to suppress these from the beginning (u 0=˜ ), and just use
c yT ma a aa= ˜. Then one evaluates step by step:
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Similarly, for the diffusion tensor, calculating step by step,
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Now, by using (L36), (L42), we are ready to calculate the collisional integrals (L32). The first integral in (L32) calculates
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For a particular case of small temperature differences between species, the mass-ratio coefficients simplify into
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and for self-collisions, Maa(1)= 41/5, Maa(2)= 8/5, Naa(1)= 11/28, and Naa(2)= 6/35.
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L.7. Exchange Rates Qa
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Finally, introducing summation over all of the “b” species, and rewritten with fluid moments,
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It is useful to define (introducing tilde)
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and the final mass-ratio coefficients are given by (25).
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Collisional Contributions for Scalar X
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M.1. Pressure Tensor Exchange Rates
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M.2. Fourth-order Moment Exchange Rates

It is straightforward to calculate
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Adding the last two results together then yields the collisional contributions
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For the particular case of small temperature differences,
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and for self-collisions, Saa(1)= 1/60 and Saa(2)= 1/4. Applying a trace at (M20) and changing to fluid moments yields
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and the final model then reads
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with mass-ratio coefficients given by (143).

Appendix N
Coupling of Two Species

Here we would like to emphasize the usefulness of the multifluid formulation, which makes the calculation of transport coefficients
straightforward. We consider two species with indices “a” and “b.” The evolution equations for the heat fluxes “a” become
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together with the evolution equations for the heat fluxes “b”:
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where, for similar temperatures, the mass-ratio coefficients are given by (27), (28), and for arbitrary temperatures by (19), (21). The
system is fully specified and after prescribing a quasistatic approximation it can be solved. Unfortunately, the general analytic
solution is too long to write, even for the unmagnetized case. It is beneficial to consider a specific example. Nevertheless, the above
system is a very powerful tool, which allows one to obtain the transport coefficients between two different species, it being a two ion
plasma, or precise solutions for a specific one ion–electron plasma, without neglecting me/mi (see Section 8.8).

Similarly, the viscosity between two species is described by the evolution equations for the viscosity tensors of
species “a”:
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together with the evolution equations for the viscosity tensors of species “b”:
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Here the heat fluxes (N1)–(N4) and viscosities (N5)–(N8) are decoupled, but one can consider more precise solutions with coupling
between heat fluxes and viscosities, similar to Section 6.

N.1. Protons and Alpha Particles (Unmagnetized)

As an example, we consider collisions between protons and alpha particles (fully ionized Helium with proton mass 4). The protons
will be the “a” species and the alpha particles will be “b” species. For the ion coefficients, the collisions with electrons are neglected
in an analogous fashion to Braginskii (1965). By prescribing mass mb= 4ma, the mass-ratio coefficients with equal temperatures
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Ta= Tb become
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By specifying the charges Za= 1, Zb= 2, the four different collisional frequencies are related by
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and we choose νaa as the reference frequency. Furthermore, applying the charge neutrality na+ 2nb= ne, we choose as a reference
the normalized density Na≡ na/ne and express nb/ne= (1− Na)/2. We also prescribe ∇Ta=∇Tb.
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or with numerical values
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Note that na/νaa is independent of na, and that is why the definitions (N11) were chosen. For the “b” species (the alpha particles), the
results are written in a form so that it is easy to use 32nb/(νbbmb)= na/(νaama). As a double check, prescribing
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as it should be. In general, the thermal conductivities of single-ion plasmas compare as m m Z Za b b a b a
4k k = ( ) . In our case, the

thermal conductivity of pure alpha particles is 32 times smaller than that of pure protons. The thermal conductivities ,a bk kˆ ˆ are
plotted in the left panel of Figure 7.
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The frictional heat fluxes read
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where the denominator !1 is identical to (N14), and with numerical values
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In both limits Na= 0, 1, the frictional heat fluxes disappear. The frictional heat fluxes are plotted in the middle and right panels of
Figure 7.

N.2. Viscosities

One first calculates the required viscosity mass-ratio coefficients, which for the protons (“a”) and alpha particles (“b”) become
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and which enter evolution Equations (N5)–(N8). For an unmagnetized plasma, a quasistatic solution of these equations then yields
the viscosity tensors

W W

W W

p
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Figure 7. Left: proton thermal conductivity ak̂ (red), given by (N15), and alpha particle thermal conductivity bk̂ (black), given by (N16). Middle: proton frictional heat
flux given by β0a (N22). Right: alpha particle frictional heat flux given by β0b (N23). Note the surprising change of sign of β0b for Na > 0.57. We have verified that the
same effect is present in the simplified 13-moment model of Burgers (1969)–Schunk (1977).
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with numerical values

N N N N

N N N N

N N N N

N N N N

0.05464 0.3704 0.7717 0.5173 ;

1 0.001874 0.008142 0.01248 ;

8 1 0.01150 0.07862 0.1729 0.11997 ;

1 0.03923 0.3759 1.2959 1.8953 . N26
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Note that pa/νaa= 8pb/νbb, and the chosen form (N25) emphasizes that the “cross-viscosities” abĥ are directly related. In general, the

viscosities of a pure single ion species compare as m m Z Za b a b b a
4h h = ( ) , so in our case the viscosity of the pure alpha particles

is eight times smaller than that of the pure protons. We provide only numerical values for the solutions (N26), nevertheless it can be
shown that for Na= 1, the proton viscosity 1025 1068aah =ˆ , and the same result is obtained for the alpha particle viscosity bbĥ if
Na= 0. The “cross-viscosity” abĥ becomes zero for both Na= 1 and Na= 0. The results are plotted in Figure 8.

N.3. Deuterium and Tritium Plasma (Unmagnetized)

Here we calculate another example of deuterium–tritium plasma, also considered by Simakov & Molvig (2016b). Plasma
consisting of deuterium–tritium is probably the most efficient way of achieving plasma fusion. It is, for example, being used in the
JET machine (see e.g., Joffrin et al. 2019), and it will be used in ITER.9 Of course, we do not consider the peculiar complications
associated with the neoclassical toroidal geometry, as our calculation is classical. The deuterium core consists of one proton and one
neutron. The tritium core consists of one proton and two neutrons. Deuterium will be the “a” species, and tritium will be the “b”
species. The collisions with electrons are neglected. By prescribing mb= (3/2)ma, the mass-ratio coefficients with equal temperatures
Tb= Ta become
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Further specifying Za= Zb= 1, the collisional frequencies are related by

n
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5
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, N28ab

b

a
aa bb
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a
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and the charge neutrality na+ nb= ne implies nb/ne= 1− Na, where Na= na/ne. These mass-ratio coefficients and collisional
frequencies are used in the system (N1)–(N4). We present quasistatic solutions only for the unmagnetized case, and we assume
∇Ta=∇Tb. The thermal heat fluxes q Ta

T
a ak= -  ; q Tb

T
b ak= -  are given by

T n
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T n
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; , N29a
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Figure 8. Normalized viscosities of the proton and alpha particle plasma, according to (N26). Collisions with electrons are neglected, in an analogous fashion to
Braginskii. Left: proton viscosity aaĥ (red) and alpha particle viscosity bbĥ (black). Right: “cross-viscosity” abĥ .

9 www.iter.org/sci/FusionFuels
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and with numerical values

N N N N

N N N N

N N N N

4.2135 0.009780 0.06292 1.4992 ;
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where one can also use n m n m3 2 b b bb a aa an n=( ) ( ). The frictional heat fluxes are given by
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N.4. Viscosities

The required viscosity mass-ratio coefficients for deuterium (“a”) and tritium (“b”) become
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and enter evolution Equations (N5)–(N8). For an unmagnetized plasma, the solutions read
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Figure 9. Left: deuterium thermal conductivity ak̂ (red) and tritium thermal conductivity bk̂ (black), given by (N30). Middle: deuterium frictional heat flux, given by
β0a (N32). Right: tritium frictional heat flux given by β0b (N33). Note that the frictional heat fluxes qb

u are defined with opposite signs in (N31) and (N19).
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The solutions are written in a form so that one can directly use p p2 3 b bb a aan n= , and are plotted in Figure 10. To obtain more
precise solutions, one should include the collisions with electrons (i.e., consider coupling between three species). Nevertheless, the
self-collisional values 1025/1068= 0.96 will only change to roughly 0.89 (see, for example, Equation (217)), and the plotted
viscosity profiles will not change much.

Figure 10. Viscosities of deuterium and tritium plasma, according to (N36). Left: deuterium viscosity aaĥ (red) and tritium viscosity bbĥ (black). Right: “cross-
viscosity” abĥ .
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