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Abstract

Point-spread function (PSF) estimation in spatially undersampled images is challenging because large pixels
average fine-scale spatial information. This is problematic when fine-resolution details are necessary, as in optimal
photometry where knowledge of the illumination pattern beyond the native spatial resolution of the image may be
required. Here, we introduce a method of PSF reconstruction where point sources are artificially sampled beyond
the native resolution of an image and combined together via stacking to return a finely sampled estimate of the
PSF. This estimate is then deconvolved from the pixel-gridding function to return a superresolution kernel that can
be used for optimally weighted photometry. We benchmark against the <1% photometric error requirement of the
upcoming SPHEREx mission to assess performance in a concrete example. We find that standard methods like
Richardson–Lucy deconvolution are not sufficient to achieve this stringent requirement. We investigate a more
advanced method with significant heritage in image analysis called iterative back-projection (IBP) and demonstrate
it using idealized Gaussian cases and simulated SPHEREx images. In testing this method on real images recorded
by the LORRI instrument on New Horizons, we are able to identify systematic pointing drift. Our IBP-derived PSF
kernels allow photometric accuracy significantly better than the requirement in individual SPHEREx exposures.
This PSF reconstruction method is broadly applicable to a variety of problems and combines computationally
simple techniques in a way that is robust to complicating factors such as severe undersampling, spatially complex
PSFs, noise, crowded fields, or limited source numbers.

Unified Astronomy Thesaurus concepts: Astrostatistics techniques (1886); Deconvolution (1910); Astronomy data
analysis (1858); Computational methods (1965)

1. Introduction

Whether explicitly or implicitly, astrophysicists require
knowledge of how the brightness in an image relates to true
brightness on the sky to interpret the shapes and intensities of
observed sources of emission. The instrument response
function of a telescope is the transfer function that maps
between quantities measured at the focal plane to the physical
intensity on the sky. For natively imaging array detectors, or
images constructed from time-domain scans of the sky, this
information is often called the point-spread function (PSF),
which is defined to be the response of a focused imaging
system to a point source (see Gai & Cancelliere 2007 for a
review). PSF estimation is a foundational problem in
astronomical image analysis and interpretation.

Measuring the PSF of an instrument can be challenging. For
some instruments, it is possible to measure the PSF using
collimated images of unresolved sources in the laboratory or on
the sky. It is often possible to use geometric or physical optics
to model the system and propagate an image of an unresolved
source to the detector. More recently, forward-modeling
approaches incorporating measurements of the PSF have been
used to model complex electrical effects in detectors (e.g.,
Donlon et al. 2018). In general, astrophysicists have a
preference for using images of unresolved5 objects to assess
the PSF in an image. This method has the advantage of

measuring the as-built optical system, which not only captures
the design performance of an optical system, but also any
effects from scattered light, mechanical structures, or other
nonidealities in the telescope or detector.
The intrinsic PSF of the optical system and the pixelization

of the displayed image are not immutable quantities, but rather
independent parameters fixed at either the instrument design, or
for the case of time-domain maps, during the map-making
process. This is illustrated in Figure 1, which shows the effects
of changing the relative sizes of the pixelization and PSF. In
practice, the choice of image pixelization depends on the
sources under investigation and the desired properties of the
final image. When possible, the pixel size is chosen to be
slightly smaller than the intrinsic PSF, but not to “super-
resolve” it. This is because of both the noise penalties
associated with spreading a fixed flux into an increased number
of pixels, and the diminishing fidelity of superresolved
astronomical images. A resolution of two pixels per FWHM
is often quoted as representative of Nyquist sampling, with a
smaller number of pixels per FWHM indicating undersam-
pling. If the optical PSF is significantly narrower than the width
of a pixel, then the PSF is severely undersampled and the
precise location of the source within the pixel may be difficult
to recover (Puetter et al. 2005; Robertson 2017). It can be
shown that the optimum signal-to-noise ratio (S/N) on
unresolved sources is achieved by either concentrating as
much of the optical PSF into a single detector element as
possible, or by performing optimal photometry that uses
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5 For our purposes, “unresolved” is the condition q qsource PSF , where θsource
is the width of the source and θPSF is the width of the PSF.
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knowledge of the PSF to weight pixels according to their flux
contributions (e.g., Horne 1986; Naylor 1998). The need
for accurate photometry of sources is a strong motivation
to improve our knowledge of the spatial properties of the
PSF, sometimes beyond that offered by the native image
pixelization.

Though the optical PSF may not be resolved by the image
pixelization, information about its shape must be retained in
any ensemble of images of unresolved sources that are placed
at random locations with respect to the pixel grid. In this
situation, the images of the PSF are sampled by the pixel grid
slightly differently for each member of the set, so with a
sufficient number of draws it should be possible to recombine
the information to reconstruct the underlying “unpixelized”
optical PSF. This concept has been successfully used to
reconstruct superresolved PSFs in the past using a method
commonly referred to as “stacking” (Dole et al. 2006;
Béthermin et al. 2012; Zemcov et al. 2014). In short, the
stacking method is a measurement of the covariance between a
catalog of sources and their corresponding images in a map.
Superresolution6 methods such as stacking can offer a way to
recover Nyquist sampling of the PSF (Starck et al. 2002). The
stacking method (Cady & Bates 1980) was first used in this
context to perform statistical studies on low-resolution,
confused images of the cosmic infrared background (e.g., Dole
et al. 2006; Marsden et al. 2009, and others), but has since been
extended to a wide range of wavelengths and scientific topics
(see, e.g., Viero et al. 2013).

In this paper, we study PSF reconstruction and modeling using
the stacking technique. We demonstrate that, in the limit where
the input catalog is composed of point sources, the image resulting
from a stacking process is that of the intrinsic PSF convolved with
the pixelization grid (the effective PSF), and that the pixel grid
can be reliably deconvolved to retrieve the instrument’s intrinsic
optical PSF. As a case study, we examine this PSF reconstruction
algorithm as it may apply to the Spectro-Photometer for the
History of the universe, Epoch of Reionization, and ices Explorer
(SPHEREx), an upcoming spectroscopic survey mission designed
to image every 6.2×6.2 arcsec2 pixel over the entire sky for
0.75 < λ < 4.8 μm. Accurate photometry with methodological
uncertainties <1% is required to help attain SPHEREx’s
ambitious scientific goals, but the PSF is intentionally designed
to be underresolved by the pixel grid with an optical FWHM of
2 01 at 0.75μm, which is consistent with Korngut et al. (2018)
when manufacturing tolerance and aberrations are included. This
gives a sampling rate of ∼0.3 pixels per FWHM, well below the
Nyquist rate. It is therefore necessary to construct an algorithm
that provides accurate PSF kernels for the precision optimal
photometry. Because of SPHEREx’s severe undersampling, PSF
reconstruction techniques used in other cases where accurate
spatial knowledge of the PSF is equally important, such as for
the study of weak lensing, cannot be used here (Bertin 2011;
Rowe et al. 2011; Schmitz et al. 2020). These methods typically
require applying subpixel shifts and thus some form of
interpolation, but in our method, all shifts are in the form of
integer values due to the large upsampling factor. The proposed
approach also offers the benefit of only requiring a single exposure
instead of combining multiple exposures to reconstruct the PSF
and is less computationally expensive (Seshadri et al. 2013). The

Figure 1. Examples of the relationship between pixelization and PSF. The top row shows the effect of changes in the pixel gridding of the input image, shown in panel
A, while the bottom row shows the effect of changing the width of the PSF. In panel A, the pixelization is matched to the optical PSF, so that the FWHM∼1 pixel. In
this case, the spatial resolution of the telescope dominates the spatial resolution of the image. In panel B, we show the case where qpix/FWHM∼5, and the image
spatial resolution is dominated by the pixel grid. Panel C shows the qpix/FWHM∼20 case where the image spatial resolution is heavily gridding dominated. The
method described here takes advantage of the fact that the PSF is sampled in many different ways with respect to the pixel grid to allow the reconstruction of the
subpixel PSF shape. In the bottom row, we show examples of FWHM q = 2, 5, 20PSF pix { } in panels D, E, and F, respectively. In these cases, the subpixel PSF can be
easily measured from point-like sources, and the method described here offers no improvement.

6 We define superresolution to mean any resolution higher than an image’s
native resolution.
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SPHEREx case illustrates the utility of our method in a situation
where the intrinsic PSF is unresolved in individual images of point
sources but can be reconstructed from a large ensemble of
measurements contained within a single exposure. In Section 2, we
introduce the PSF stacking concept in detail, various methods of
deconvolution necessary for reconstructing the PSF in complex
cases, as well as the method by which the PSF reconstruction can
be used as a weight function in calculating photometry. In
Section 3, we apply these methods to example cases including
simulated SPHEREx PSFs as well as real data from the Long
Range Reconnaissance Imager (LORRI) on New Horizons (Cheng
et al. 2008). In Section 4, we put our work in the context of
generalized PSF reconstruction techniques. Table 1 provides a
glossary of mathematical variables used throughout the text.

2. Methods

2.1. Stacking

A simple way to understand the relationship between the
PSF and the pixel grid function is through the convolution
theorem. The act of signal detection with a pixelized system is
equivalent to a convolution of the true underlying optical PSF,

Ptrue, with the pixel response Pgrid:

= * = -  P P P P P , 1true grid
1

true grid[ [ ] · [ ]] ( )

where  represents the Fourier transform and P is the PSF that
can be observed in the image itself (Starck et al. 2002; Puetter
et al. 2005), sometimes called the effective PSF (Lauer 1999).
Figure 2 illustrates the relationship between these quantities.
In our formulation, the quantity Ptrue is the combination of

any effects that contribute to the overall PSF measured in an
image. These include the underlying optical PSF, how the
optical PSF is played around pixels due to pointing jitter, and
any electrical effects like interpixel capacitance or the
“brighter-fatter” effect (Hirata & Choi 2020). For a linear
detector, the quantity Ptrue incorporates all of these effects as a
convolution over the history of the exposure. It is commonly
noted that the observer only ever has access to P, so it is
expedient to perform analysis with this quantity. But in the
presence of nonlinear effects that are known to exist in modern
hybridized HgCdTe NIR detectors (Plazas et al. 2018; Hirata &
Choi 2020), it may in fact be necessary to deconvolve Pgrid or
other effects from P. There are potentially many reasons and
ways to do this; here, we investigate one that uses the fact that
the covariance between a well-understood catalog of stars and
sources in the image allows for superresolution reconstruction,
which when combined with deconvolution methods can return
the underlying optical PSF. This is particularly motivated by
the fact that, in the presence of these complicating factors, Ptrue

is the kernel required to perform optimal photometry.
The stacking method takes advantage of the fact that an “ideal”

gridded image of the astronomical sky can be represented as

å= D +M F , 2j j
i

N

i

j

( )

where Mj is the brightness of the image M in pixel j, Δj is the
noise in that pixel, Nj is the number of sources falling into pixel
j, and Fi is the flux of source i in a list α of N total sources of
emission (Marsden et al. 2009; Viero et al. 2013). To make
progress with PSF estimation, we note that, by the argument
above, instruments with non-point PSFs contribute flux into
more than one pixel. We define P x y,j i i( ) to be the beam-
convolved and mean-subtracted shape of the PSF centered at
some source position (xi, yi), and then write Equation (2) as

å= D +M F P x y, . 3j j
i

N

i j i i

j

( ) ( )

This expression accounts for the fact that all sources can
contribute to the intensity of pixel j, as the PSF spreads flux to
neighboring pixels.
Our goal is to estimate the shape of the PSF P from the

measured sky M. Because P has the same amplitude for each
source, we can invert Equation (3) and solve

å=P
M x y

F

,
, 4

i

N
i i

i

j ( )
( )

where M x y,i i( ) is the image centered on the source position (xi,
yi), and we assume that the noise obeys áDñ = 0 over the sum.
Furthermore, as with simple stacking, we require the source
positions to be uncorrelated so that contributions from sources

Table 1
Important Variables Used in the Text

Variable Description

Image quantities, native pixelization

M sky image
Δ noise in M
Ptrue underlying optical PSF of system
Pgrid pixel grid function

P the PSF of sources in M, convolution of Ptrue and Pgrid

Image quantities, super pixelization

r pixel grid scaling factor
M̃ sky image M scaled up by r
P̃ PSF of sources in M scaled up by r

Input source catalog quantities

α list of sources in image M
F known flux of sources in M
(x, y) known positions of sources in M
N number of sources in M

PSF reconstruction quantities

T thumbnail cutout of a source centered on its known position
PS stacked PSF
PRLD deconvolution of PS via RLD
PIBP deconvolution of PS via IBP, best estimate for Ptrue

IRLD number of RLD iterations
IIBP number of IBP iterations

Optimal photometry quantities

PP recentered, rescaled version of PIBP used in optimal photometry
WP weight function used for optimal photometry
FP flux of a source calculated from optimal photometry
dá ñF average deviation of flux from its known value

sdF PSF reconstruction figure of merit

3
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in the image but not being stacked on do not add coherently
(Marsden et al. 2009).

In this formalism, the superresolution recovery arises due to
the nature of pixels, which have the property of averaging
photons. We can always create larger pixels which contain
more photons, but spread over a larger area, in such a way that
the measured surface brightness is conserved. The corollary
also holds when going from larger to smaller pixels. The cost of
this regridding operation is changes in any fixed-amplitude
noise: regridding larger pixels to smaller ones increases the
noise per pixel, while smaller to larger decreases the noise in
the larger pixel.

This averaging property of pixels allows us to write the
relation

å=P
r

P
1

, 5j
i

r

i
k˜ ( )

where Pk˜ is the image of the PSF sampled on a finer grid, and
the scale factor between the areas of pixels k and j is r. Because
the pixel size does not appear in Equation (4), we can write

å=P
M x y

F

,
, 6

i

N
i i

i

j

˜
˜ ( )

( )

where M̃ is a version of the image on the finer grid and is
related to M through = åM r M1j i

r
i
k( ) ˜ . Any r such that the

r-times finer image has significantly higher resolution than
the native image resolution will increase the sampling rate
and facilitate the stacking method; increasing r increases

the small-scale structure it would be possible to capture in the
reconstructed PSF. However, increasing r can also lower the
S/N or introduce greater numerical instability due to the larger
number of subpixels per pixel. The fundamental cost of this
superresolution stacking is that the noise per pixel is increased
over the native pixel resolution. This can easily be addressed by
making the list α large to compensate. As regridding conserves
S/N in an area, the total S/N on the PSF will remain fixed for a
fixed noise and number of sources in the stack.
To implement the proposed method in an unbiased manner,

we require several conditions to be true:

1. The source positions are uncorrelated and sources are
uncrowded, preventing combined or overlapping sources
from coherently adding in the stack.

2. The source list we stack on comprises unresolved sources
so that we are reconstructing an image of the PSF.

3. The source images do not suffer from detection artifacts
like saturation or nonlinearity.

4. áDñ = 0, meaning that stacking over many sources
averages down the noise.

In practice, we can meet these requirements by making suitable
choices for the list of sources to stack on and imposing some
weak assumptions about the size of the PSF relative to the
pixels. Requirements 1 and 2 are met by using a catalog of stars
on which to stack. Stars are unresolved by all but very
specialized telescopes and (at middle and high galactic latitudes
where source density is low) have uncorrelated positions
(Zemcov et al. 2014). Requirements 3 and 4 can be met by

Figure 2. Relationship of the PSF and pixel-gridding function in both real space and Fourier space. Panel A shows a hypothetical PSF, which has a similar size to the
pixel-gridding function (dotted line) shown in panel B. The spatial resolution of the image that results is computed as the convolution of the PSF and a single pixel
(solid line in panel B), as shown in panel C. Flux from a point source is spread across several pixels according to the brightness in the PSF as sampled by the pixel-
gridding function. As an alternative visualization, panel D shows the power spectrum (absolute square of the Fourier transform) of the PSF, and panel E shows the
power spectrum of the pixel gridding function. By the convolution theorem, the inverse Fourier transform of their product, shown as a power spectrum in panel F, is
also the final spatial quality of the image of a point source. These two visualizations are useful for understanding interactions between the PSF and pixel-gridding
function.
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selecting sources with fluxes faint enough to keep in the linear
regime of the detector and restricting the catalog to a relatively
narrow range of fluxes so the denominator Fi in Equation (6)
does not strongly overweight noisy sources. However, the
noise in the final PSF measurement is a function of the number
of sources in the list α, so the tradeoff between the flux range
and the number of sources depends on the details of both the
instrument and the corresponding survey.

In order to approach this problem in a computationally
efficient manner, we stack a tractable number of small
“thumbnails” around each source centered on (xi, yi), which
focuses attention on the regions of interest and removes the
necessity of generating many shifted versions of M. The size of
the thumbnail image is determined by including a region large
enough that a large fraction of the response from the PSF is
included, without including unnecessary background noise.

With these requirements in mind, the stacking PSF
estimation algorithm can be broken into five steps:

1. Resample the sky image M into an image M̃ on a pixel
gridding r times finer. The image will not appear different
because a single pixel value from M will fall into multiple
pixels in M̃ , but M̃ will have r times more pixels on a
side than M (see Figure 3).

2. For each star in the list α, cut out a thumbnail T centered
on the known position of a source (x, y). The size of
the thumbnail depends on the desired angular extent
of the final PSF estimate. Due to the nature of resampling,
the source’s subpixel center will not necessarily be
centered in a coarse-grid pixel. The thumbnail is cut such
that the subpixel center will be aligned with the center of
the stack.

3. Suppress the overall constant offset value of the thumb-
nail. For equally bright sources, subtracting the mean of
the thumbnail image is acceptable, but for sources of
varying brightness, an estimate of the sky brightness
away from the star is a good choice.

4. Add the thumbnail centered on the known source position
into the stack.

5. Repeat for all stars in the catalog. All of the source
thumbnails are combined by taking the mean of all
corresponding pixels (i.e., the ith pixel in the stack
contains the mean of all the ith pixels in each thumbnail),
and this becomes the stacked PSF, PS. This is a

superresolution image of the underlying optical PSF,
Ptrue, convolved with the pixel grid function, Pgrid.
Deconvolution is still necessary to return Ptrue (Guillard
et al. 2010).

Source crowding is a concern when stacking sources.
Sources appearing in a thumbnail that have brightness similar
to the stacking target will contribute flux to the stack and
broaden the estimate of P. In the limit that source positions are
uncorrelated, interloper sources have random positions and so
act as an extra source of noise in PS. However, with a finite
number of sources, there may be significant sample variance
from stack to stack. To mitigate this problem, we mask
interloper sources as part of the stacking procedure by
measuring the distance between the target and any interlopers.
Interlopers with center position �11 coarse-grid pixels from the
target source’s center are masked by excluding the thumbnail
pixels within a radius of 5 pixels from the interloper position
from the sum. If the two sources are closer than 8 coarse-grid
pixels apart and the target source is not at least an order of
magnitude brighter than the interloper, that source is rejected
from the stack entirely. Table 2 demonstrates the effects of our
crowding cut on representative 3.5×3.5 deg2 fields at various
galactic latitudes with fixed longitude. As an example, at
(ℓ, b) = (0°, 90°), 18% of sources are rejected, while in a
crowded field at (ℓ, b) = (0°, 15°), 68% of sources are rejected.
A benefit of the algorithm discussed here is that, even in such
crowded fields, we are able to reconstruct a useful estimate for
Ptrue (see Section 3.4).

2.2. Reconstructed PSF Deconvolution

Due to the oversampling inherent to our superresolution
stacking method, we require a deconvolution step in order to

Figure 3. Regridding of a single source to alter resolution. Panel A shows a single Gaussian point source generated in the fine grid. In panel B, the source resolution is
sampled down by a factor of 10 to represent a simulated undersampled image (see Section 2.4 for details), and in panel C, the resolution is sampled back up by the
same factor. Although the source contains the same number of coarse pixels in panels B and C, the source in panel C contains 100 subpixels in each of these. In panel
C, the center of the source appears to have shifted from the coarse grid lines due to the subpixel center now being located with more accuracy than is possible in the
coarse grid. Stacking on each source’s subpixel center makes superresolution PSF reconstruction possible by allowing the stacked subpixels to generate high-
resolution structure.

Table 2
Source Crowding as a Function of Galactic Latitude

Total Available Sources Isolated Sources Total Sources

ℓ b,( ) with 11  mAB  15 Sources from Masking in Stack

(0°, 90°) 1653 540 808 1348
(0°, 60°) 2078 438 1169 1607
(0°, 30°) 4710 48 2292 2340
(0°, 15°) 6794 5 2185 2190
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remove Pgrid and return Ptrue from PS (Lauer 1999; Starck et al.
2002; Park et al. 2003). This type of issue has also arisen in
Planck data, for which the optical beam cannot be recovered
without the deconvolution of the effect of sampling time
(Planck Collaboration et al. 2016; Tauber et al. 2019). Guillard
et al. (2010) follow a similar procedure of superresolution PSF
reconstruction followed by deconvolution for the Mid-Infrared
Instrument on the James Webb Space Telescope, although their
superresolution method combines multiple images followed
by deconvolution via a maximum a posteriori method. We
choose the Richardson–Lucy deconvolution (RLD), a common
algorithm used in this type of problem (Richardson 1972;
Lucy 1974). This algorithm is also referred to as the
expectation-maximization method and is a form of maximum
likelihood estimation (Starck et al. 2002). We have implemen-
ted RLD on PS according to the following prescription. The
known blurring factor Pgrid (shown in Figure 4) is a matrix
where each pixel contains the fraction of light detected from a
point source:

= - - - -P x y r x x r y y, , 7grid 0 0( ) [ ( )][ ( )] ( )

where r is the upscaling factor, and x0 and y0 are the center of
the stacking area. Starting from PS and Pgrid, each iteration of

the RLD proceeds as follows:

=+P P
P

P P
P , 8i i

iRLD
1

RLD
S

RLD grid
grid
ref

*
*

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

where the initial Pi
RLD is simply PS, and i increases on every

iteration for IRLD total iterations. Pgrid
ref is the reflection of Pgrid

across both axes. The final result is PRLD, the deconvolution of
PS, and a more accurate reconstruction of Ptrue. This process is
demonstrated for ideal Gaussian sources in Figure 4. However,
we find that there is a limit to the resulting improvement in
reconstruction quality available from increasing the number of
RLD iterations due to RLD’s tendency to amplify artificial
structure after too many iterations (Hanisch et al. 1997). This is
problematic for applications that require fine features of the
PSF, for example, optimally weighted photometry (see
Section 2.3).
In order to improve the quality of the reconstructed PSF

beyond that which can be achieved by RLD, we implement a
more advanced method of deconvolution with the iterative
back-projection (IBP) algorithm, in which the error or
difference between simulated and observed low-resolution
images is iteratively reduced (Irani & Peleg 1991). This method
is also based on maximum likelihood estimation but was

Figure 4. Deconvolution of the pixel grid function. In the top left, Ptrue for a Gaussian source is shown, followed by PS (top right) for a stack of 1000 Gaussian sources
at a scaling factor of r=10, Pgrid (bottom left) that is computed using Equation (7) and deconvolved from PS via RLD, and the resulting PRLD (bottom right). PRLD

exactly matches Ptrue, further demonstrated in Figure 7.

6

The Astrophysical Journal Supplement Series, 252:24 (18pp), 2021 February Symons et al.



developed for superresolution image reconstruction. The
approach is similar to back-projection used in tomography
and has previously been used in reconstruction of blurred or
degraded images. It is similar to RLD in that it offers no unique
solution and has the potential to falsely amplify noise after too
many iterations (Park et al. 2003). This method has been
applied in remote sensing and planetary science (Bell et al.
2006), and other versions of this method have been used to
analyze images of solar flares (Schwartz et al. 2014) and in the
testing of superresolution image reconstruction methods on
simulated Euclid data (Castellano et al. 2015).

After PS is obtained, the IBP iterations proceed as follows:

1. An RLD is performed as previously described, with IRLD
iterations. This produces PRLD.

2. The entire stacking procedure is repeated using PRLD as
Ptrue. PRLD is placed into the fine grid (using the same
number of sources as were used previously), and the fine
grid is downsampled and upsampled by the previously
used scale factors. These sources are stacked as before to
produce the new stacked PSF, PS

N.
3. An error term dP is calculated as

d = -P P P . 9S
N

S ( )
4. dP is used to produce an error-adjusted stack, PS

A. On the
first iteration, PS

A is created via

d= -P P P. 10S
A

S ( )

On every subsequent iteration, PS
A is

d= -+P P P. 11i i
S
A 1

S
A ( )( ) ( )

5. The cycle repeats with the RLD of the newly formed
+P i

S
A 1( ) (which is resampled and stacked to form PS

N) until
a specified completion criterion is reached. The result of
the final iteration is PIBP, which is the updated and more
accurate reconstruction.

The overall flow of this algorithm is illustrated in Figure 5.
Standard RLD fails in the presence of noise for several

reasons, including the amplification of noise over many
iterations and, depending on the choice of image zero point,
the presence of negative values. This arises because the RLD
algorithm is based on the maximum likelihood for Poisson
statistics, so its solution requires positive input data. However,
stacking requires a choice about the image zero point assumed

in each thumbnail that may produce negative values into PS.
Though it is possible to design algorithms that do not have this
feature, the most general case is that we have to account for
mildly negative values in PS.
We handle this problem by implementing a more advanced

version of the RLD algorithm (Hanisch et al. 1997) that adds an
initial estimate of the background and read-noise value to every
pixel and suppresses the contribution from pixels with a value less
than the damping factor in each iteration. This damping prevents
the amplification of noisy pixels that do not contain structure
related to the PSF. Because our PSF is concentrated in the center of
the stacked image, we use a damping matrix that performs no
damping in the center but damps heavily beyond a circular radius
of 13 fine-grid pixels from the center, preventing each iteration
from drastically changing the values of damped pixels. Beyond a
13 pixel radius, the PSF is largely noise dominated and does not
contribute much signal to the optimal photometry. As presented
below, this version of the IBP algorithm successfully deconvolves
Pgrid from PS even in the presence of noise.

2.3. Using a Reconstructed PSF for Optimal Photometry

Optimal photometry (Naylor 1998) is an example of an
application in which detailed knowledge of the PSF is required
to reach the maximum possible S/N on point-source fluxes.
The best estimate for Ptrue (here PIBP unless explicitly noted) is
shifted via interpolation to account for the difference between
the source’s known coordinates via catalog reference and those
same coordinates scaled by the regridding factor, r. It is then
downsampled by r to match the resolution of the source. This
shifted and resampled reconstructed PSF is normalized and
used to give each pixel the weight of its individual flux
contribution. This weight is defined as

=
å

W
P

P
, 12P

P

P
2( )

( )

where PP is the shifted and resampled reconstructed PSF. Each
source’s flux is then computed as

å=F T W , 13P P( · ) ( )

where T is a thumbnail cutout of each source, and WP is the
previously calculated weight function. For an image with many
point sources, we define the average deviation of all source
fluxes determined via optimal photometry from known

Figure 5. Steps of the iterative back-projection algorithm. On the first iteration PS is deconvolved using the regular RLD method, while on all subsequent iterations PS
A

is deconvolved. Deconvolution is followed by a repeat of the stacking procedure using PRLD as Ptrue, creating PS
N. The error is calculated to be the difference between

PS and PS
N, and that error is subtracted from either PS (if first iteration) or the previous PS

A, creating the new PS
A. The cycle then repeats with deconvolution via RLD

again, resulting in PIBP on the final iteration.
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where dá ñF is expressed in percent, N is the number of sources
in the image, F is a source’s known flux, and FP is that
computed by optimal photometry.

2.4. Image Simulation

In order to test and characterize these algorithms, simulated
images of the sky are necessary. We simulate images of
undersampled point sources consistent with the SPHEREx
expectation (Korngut et al. 2018) according to the following
prescription. First, we generate a grid that represents the r-times
finer grid or pixelized image. The native detector size for
SPHEREx will be 2048×2048 pixels covering a ´3.5
3.5 deg2 field of view (FoV) in each of the six main wavelength
bands. We select r to be 10 for Gaussian Ptrue, so that our
r-times finer image contains 20,480×20,480 pixels, or r to be
20 for SPHEREx Ptrue, so that the fine-grid image contains
40,960×40,960 pixels. This increases the sampling rate
for SPHEREx to ∼6 pixels per FWHM, which allows for
superresolution recovery of the PSF. The parameter r that we
use to simulate the high-resolution image does not need to have
the same value as that used to increase resolution during
stacking. We choose to set them equal for simplicity, but for
real data, the stacking r can be empirically determined. We
populate the generated image with point sources using one of
two methods:

1. One thousand point sources are randomly placed over the
FoV, and for simplicity, all sources are given uniform
flux nF as a dimensionless quantity such that the S/N is
chosen to be 20. An S/N of 20 corresponds to
mAB=17.87. See the Appendix for more details on the
units we use to define flux and how we calculate S/N.

2. Realistic star fields are generated for any desired sky
position with an all-sky catalog of 332 million sources,
derived by selecting stars in the Gaia DR2 (Gaia
Collaboration et al. 2016) catalog with close counterparts
(within a 1 angular separation) in the AllWISE catalog
(Wright et al. 2010). The use of the g and rp photometry
from Gaia in combination with the W1, W2, and W3
photometry from WISE gives a rough SED for each
source from which realistic fluxes for the SPHEREx
bands can be estimated. For the special case of single-
field tests presented in Section 3, we use the field centered
at the north galactic pole (NGP; (ℓ, b)=(0°, 90°)), where
star coordinates are uncorrelated and fields are the least
crowded. This “minimal” field contains ∼20,000 sources
ranging from < <m3 21AB .

After the image of point sources gridded according to Pgrid is
created, the map is convolved with the Ptrue (either Gaussian or
SPHEREx7) under study. This image is then sampled down by
r=10 or r=20 as appropriate to the native image resolution.

Figure 3 demonstrates how the regridding process works for a
single source.

3. Results

We now have all the pieces required to test the described
method against various cases, including nonideal PSF shapes,
noise, and crowding, and to assess its overall performance. In
Sections 3.1–3.3, we apply the IBP method to Gaussian PSFs
in various scenarios to develop intuition. In Section 3.4, we
introduce the SPHEREx Ptrue and assess the effects of noise,
field position, and other quantities of interest. Table 3 gives a
summary of the various tests and the figures and sections where
the corresponding results can be found. Finally, in Section 3.5,
we apply the IBP PSF reconstruction to data from the LORRI
instrument on New Horizons and are able to identify additional
complicating factors present in real data such as pointing
instability.

3.1. Gaussian Point Sources with Uniform Flux

We first explore the fundamental properties of the PSF
estimation method using a simple Gaussian model without
noise. This allows us to perform an idealized test of the various
stacking and deconvolution methods without complicating
factors that may introduce their own sources of error. We
construct a simulated image as specified in Section 2.4 with
Gaussian point sources and uniform flux. We begin with the
stacking procedure described in Section 2.1, which is
demonstrated for Gaussian point sources in Figure 6. To
evaluate the quality of PS as a reconstruction of Ptrue, we
compare sections through PS and Ptrue in Figure 7. As expected,
we find that PS is significantly wider than Ptrue as PS is Ptrue
convolved with Pgrid.
We next evaluate PSʼs performance when used as the kernel

for the weighted optimal photometry described in Section 2.3
and find that the measured fluxes using PS have a wide spread
and are >20% larger than their expected values from Ptrue. To
improve the accuracy of the photometry, we implement
IRLD = 10 iterations of the RLD algorithm. Figure 7 shows
the horizontal and diagonal profiles of PRLD, as well as the
difference between PRLD and Ptrue, which is negligible
compared to the amplitudes of PS and Ptrue.
In order to quantify the accuracy of PRLD as a pixel-

weighting kernel for photometry, we simulate 50 realizations of
noiseless, constant-flux sources with randomized source
coordinates. We find dá ñ = F 0.379% 0.007%, which is
evidence for a significant output flux bias in the most idealized
constant-flux case.

Table 3
Summary of Simulations

PSF Type Flux Type RLD/IBP Noise Figures Sections

Gaussian Uniform RLD No 7 3.1
Gaussian Catalog RLD No 8 3.2
Gaussian Catalog IBP No 9 3.2
Gaussian Catalog IBP Yes 10 3.3
SPHEREx Catalog RLD No 11, 12 3.4
SPHEREx Catalog IBP No 11, 12, 13 3.4
SPHEREx Catalog IBP Yes 14, 15, 16,

17, 18
3.4

7 The SPHEREx Ptrue is derived from optical simulations performed by L3-
SSG as part of the SPHEREx Phase A study using an end-to-end telescope
design.
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Figure 6. Demonstration of stacking an increasing number of sources. On the top left, five source thumbnails are combined together via their mean. Each new
thumbnail is centered on the corresponding source’s known coordinates. The number of sources increases on the top right to 50 sources, on the bottom left to 500
sources, and on the bottom right to 1000 sources. Although each individual thumbnail bears little resemblance to Ptrue, the more thumbnails that are stacked together,
the more closely the stack begins to match Ptrue.

Figure 7. Comparison of PRLD to PS and Ptrue for a stack of Gaussian point sources. The left panel shows a horizontal cut comparison of the various PSFs and the
difference between the input PSF, Ptrue, and the output PSF, PRLD. The horizontal cut (left panel) is a horizontal section with respect to the pixel grid through the center
of the PSF, while the diagonal cut (right panel) is a section from the top-left to the bottom-right corner. While PS is much broader than Ptrue, the deconvolved PRLD very
closely matches the width and shape of the optical PSF.
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3.2. Gaussian Point Sources with Catalog-based Flux

To check the effect of a more realistic distribution of input
fluxes on the RLD reconstruction, we simulate an image with
Gaussian point sources and catalog fluxes for a field at the NGP
constructed as described in Section 2.4, again without noise in
the image. Performing the same stacking and deconvolution
procedure yields the results shown in Figure 8. All fluxes fall
within 1% of their known values, but a positive bias at the level
of ∼0.4% remains. To study the variance in an ensemble of
simulated images, instead of randomizing individual source
coordinates, we calculate results for 50 randomly centered and
independent fields with > b 70 . The dá ñF from this ensemble
is 0.410%±0.003%, which verifies the positive bias seen
in the single trial at the NGP and indicates that the use of

catalog-based flux instead of uniform flux has not had a
negative impact. This bias is due to PRLD still being slightly
broader than Ptrue at the level of ∼1: 104. We conclude that in
order to remove the bias, a more accurate reconstruction of Ptrue
is necessary.
In order to obtain a more accurate reconstruction, we use the

IBP algorithm outlined in Section 2.2. Similar to IRLD, IIBP is
likewise determined by minimizing dá ñF ʼs total spread and bias
until no further improvements can be achieved, which we
empirically find converges by IIBP=10. Results from the more
advanced algorithm for the 50 independent fields with > b 70
are shown in Figure 9 and show significant improvements in
both the mean and variance of dF . This is good evidence that
PIBP is a more accurate reconstruction of Ptrue than PRLD.
Performing the same test on sources with uniform flux also

Figure 8. The left panel shows the expected vs. measured flux for noiseless simulations of Gaussian PSFs in the field located at the NGP. Gray lines mark our
photometric benchmark within which all fluxes have less than a 1% difference from their known values. Photometry is only performed on sources with >m 16AB as
this marks the (approximate) upper limit of unresolved galaxy brightness for SPHEREx. Though the variation is within the requirement, a clear positive bias of the
output flux can be seen. The right panel shows the cumulative distribution function of dá ñF for 50 trials of fields with > b 70 . The mean deviation,
0.410%±0.003%, is marked with the dotted line, with the gray shaded region indicating the standard error of the mean. The same positive bias as seen on the left is
confirmed in an ensemble of fields and appears to be due to subtle biases in the RLD reconstruction of the PSF, indicating the need for a more accurate reconstruction
of Ptrue.

Figure 9. The same test as shown in Figure 8 is repeated with the addition of 10 IIBP. On the left, the comparison of the difference between measured and expected flux
to expected flux for a single field at the NGP reveals a much tighter correlation with bias at the 10−4 level. On the right, the CDF of dá ñF from 50 trials with varying
galactic longitude at > b 70 has a mean of 0.0123%±0.0002%, marked with the dotted line and the gray region. In this noiseless, idealized simulation IBP reduces
the bias from RLD alone by an order of magnitude.
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results in the previously seen bias in dá ñF being reduced by an
order of magnitude, which further demonstrates that the bias
was due to reconstruction quality and not the type of source
fluxes used.

3.3. Noise

We simulate noise from the instrument consistent with
SPHEREx Band 1 (centered at 0.93 μm; see Doré et al. 2018
for full specifications) with pixel rms of 46 nW m−2 sr−1 by
adding a white noise component to the native resolution source
image. We also model photon noise from the sources
themselves as an additional source of noise. At this noise
amplitude, a source detected at s5 has =m 19.4AB . We restrict
the sources included in PS to the range  m10 21.1AB . The
bright limit is determined by sources that would require >50%
correction due to nonlinearity in the SPHEREx detector, and
the lower limit by sources with S/N = 1. The latter choice is
not motivated by any known limitation of the algorithm, but
rather by including only those sources not dominated by noise.
In the NGP field, using PIBP constructed from noisy sources as
the kernel for optimal photometry returns photometric fluxes
well within the desired 1% benchmark, as illustrated in
Figure 10. Performing a more realistic simulation including
noise in both the photometered source fluxes and the PSF stack
sources results in photometry that exceeds the 1% requirement,
but that is dominated by the noisy fluxes rather than the
intrinsic error from the photometry kernel.

3.4. Spatially Structured PSF

In order to provide a concrete test case and assess our IBP
reconstruction of the SPHEREx PSF, we simulate an image
matching SPHEREx’s specifications using the sky catalog for
the NGP as described in Section 2.4. We convolve the point
sources with the SPHEREx Ptrue derived from optical simula-
tions of the instrument, shown in Figure 11, and optionally add
instrument and photon noise. Next, we perform the stacking
procedure, pixel grid deconvolution, and optimal photometry
as described in Section 2.

First, we perform a noiseless test. A comparison of Ptrue to
the resulting PS, PRLD, and PIBP calculated in the absence of
noise is displayed in Figure 11. As expected from the Gaussian
simulations, PS is not similar to Ptrue, but PRLD with 200 IRLD
offers a significant improvement in reconstruction quality.
Using the full IBP algorithm allows an even more accurate

reconstruction of Ptrue. A comparison of the squared Fourier
representations of Ptrue and PIBP is shown in Figure 12, along
with the corresponding differences between Ptrue, PRLD, and
PIBP. Our choice of r dictates the frequency of information we
are able to recover in the reconstruction. We find that using
r=10 for the SPHEREx Ptrue does not return enough high-
frequency information in the reconstruction, so we use r=20
to obtain accurate results. This is an empirical choice based on
reconstruction quality as measured by the output photometric
accuracy. Applying PIBP as the photometry kernel results in no
detectable bias within uncertainties, as demonstrated in
Figure 13. With this procedure, all measured fluxes are within
1% of their known values, and 50 trials of fields with
randomized galactic longitude at > b 70 produce dá ñF
consistent with zero.
Next, we test the reconstruction of the SPHEREx PSF in the

presence of noise in the stacked sources. We find that setting
pixel values beyond an exclusion radius of 31 fine-grid pixels
to zero after both the initial RLD and the IBP sequence yields
the best results in this case. This is because noisy pixels with
little or no PSF signal can amplify noise artifacts. The damping
radius controls the weight given to pixels between the damping
and exclusion radii during the RLD, while the exclusion radius
provides a hard cutoff for pixels in the PS image that have no
significant effect on the PSF. Radii for damping and exclusion
are determined through minimization of the average flux
deviation derived from using PIBP as a kernel for optimally
weighted photometry, dá ñF , and its bias from the known input
F. Because the average deviation from the expected flux is
desired to be zero, any significant trend from zero indicates a
bias being introduced during reconstruction or photometry. The
value and bias of dá ñF are minimized until the number of
iterations, IIBP, and the exclusion and damping radii both
converge. The radii and number of iterations have converged
when no further improvements occur. Figure 14 demonstrates
the deconvolution process for the SPHEREx PSF in the
presence of noise.

3.4.1. Evaluating Reconstruction Quality

In order to evaluate the quality of the reconstruction, as well
as its effectiveness when used as a weight kernel for optimal
photometry, we develop a figure of merit (FOM) based on dá ñF .

Figure 10. For a single trial using a Gaussian Ptrue and catalog-based sources, varying photometric accuracy results depending on whether we add noise to the sources,
the kernel, or both. Panel A shows the photometry using a noisy PIBP as the kernel for noisy sources. Results are similar in panel B, which shows flux values obtained
using the noiseless Ptrue applied to noisy sources. For both panels A and B, instrumental and photon noise dominate the photometric results. Using the noisy PIBP as the
kernel for photometry of noiseless sources (panel C) gives all flux values within the desired 1% requirement, demonstrating that our reconstruction methods are not
introducing photometric error beyond the SPHEREx requirement.
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where dFi is the difference between measured and expected flux
for any individual source, and N is the total number of sources.
This gives a measure of the total dispersion in dF such that
s <d 1F indicates photometric results that meet the SPHEREx
requirement.

An important issue is the optimal range of sources to use for
constructing PS. Bright sources allow measurement of PS in the
coarse gridding with high fidelity, but as there are relatively
few sources, this comes at the cost of the spatial resolution of
the reconstruction. Faint sources are numerous, but the effect of
noise is larger in the stack, and this has a cascading effect on
the fidelity of PIBP. In order to optimize the range of fluxes to
use, we calculate PIBP over narrow magnitude ranges and from
these calculate sdF to determine where it is optimal. Figure 15
demonstrates how the average sdF of 50 trials with randomized
galactic longitude for b>70°changes when selecting only
sources within a single AB magnitude bin for use in PS. We
find that sdF is minimized for  m11 15AB , which are the
statistically optimal source magnitudes for optimal PSF
reconstruction at the SPHEREx noise amplitude.

Next, we test how using a much smaller subset of the total
available sources affects the reconstruction quality. We
restrict the number of sources used in PS by an increasing
percentage via a representative sample for the optimal range of

 m11 15AB . Figure 16 shows how the average sdF varies
with this restriction for a series of 50 trials of fields with
varying galactic longitude and > b 70 at each fraction of the
total number of sources. As the fraction of sources being used
increases, sdF continues to decrease, indicating better recon-
struction quality. Even restricting to only 6% of the available
sources yields s <d 1F on the mean. We conclude that it should
be possible to produce accurate kernel reconstructions over
regions as small as 10% of the full SPHEREx FoV. Because
the SPHEREx PSF is expected to change somewhat over the
FoV as the effective bandpass at the detector changes, this
capability is invaluable to produce PS appropriate to a region
where the gradient of the PSF properties will be smaller.

3.4.2. Overall Photometric Accuracy

To assess the overall reliability of the IBP algorithm, in
Figure 17 we compare all six SPHEREx wavelength bands
(centered at 0.930, 1.375, 2.030, 3.050, 4.065, and 4.730 μm)
using the  m11 15AB range for PS. Ptrue and the noisy PIBP
are shown for each band, along with a cumulative distribution
function (CDF) of the resulting dá ñF for the noisy PIBP applied
to noiseless sources for 50 trials with randomized galactic
longitude at > b 70 . We use catalog-based fluxes from the
Gaia catalog for all bands, resulting in a high level of accuracy
with mean percent error consistent with zero for each band.
This demonstrates the algorithm’s robustness in successful PSF
reconstruction of complex PSFs with different types of
structure from images with varying levels of noise.

Figure 11. Images of the SPHEREx Ptrue (top left), PS (top right), PRLD after 200 RLD iterations (bottom left), and PIBP after 300 RLD iterations combined with the
adaptive IBP iterations (bottom right) on 0. 31 pixel−1 gridding. Because the IBP offers a more accurate reconstruction of Ptrue, it also provides more accurate
photometry when used as pixel weighting.
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In previous tests, we have performed optimal photometry on
intrinsically noiseless sources to assess the accuracy of the IBP
reconstruction algorithm. It is also informative to investigate at
which source fluxes the instrumental and shot noise present in
real sources would dominate over the error arising from
misestimation of Ptrue. In the top row of Figure 18, we show
tests using combinations of noise in the stack and noise in the
photometered sources (or lack thereof) for the NGP, compared

to using a noiseless Ptrue as the photometry kernel. We continue
to restrict PS to  m11 15AB . As expected, only when the
noisy PIBP is used for photometry on sources with perfectly
known flux is the resulting photometry within 1% variation at
all F. Photometry on noisy sources is dominated by the noise in
the source flux measurement. Noise in the PSF reconstruction
itself appears to have a small effect compared with the intrinsic
scatter of F from random noise. Additionally, the PSF

Figure 12. A comparison between the squared Fourier transform of the SPHEREx Ptrue (top left), PIBP (top right), difference between Ptrue and PRLD (bottom left), and
difference between Ptrue and PIBP (bottom right). We would expect a diffraction-limited system to go to zero response near p l ~D4 14 arcsec−1; the measured value
of 11.7 arcsec−1 is consistent with the beam being slightly larger than diffraction limited. The IBP method exhibits residuals at the 10−3 level, which is significantly
less than the traditional RLD method that shows residuals at the > -10 2 level.

Figure 13. (Left) The difference between measured and expected flux as a function of expected value, with gray lines showing the 1% requirement for a single trial
using the noiseless SPHEREx Ptrue and IBP algorithm. All fluxes lie within the 1% boundaries, and we detect no overall flux bias. (Right) dá ñF for 50 trials of fields at
> b 70 and randomized galactic longitude, which has a mean of −0.001%±0.022%. There is no statistical bias in the output fluxes from this method in this test.
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reconstruction is not correlated with details of the noise
realization; the PIBP derived from one noise realization, when
used for photometry on sources from different noise realiza-
tions, returns an unbiased dá ñF .

To understand the relative effect of noise in the stack versus
numerical inaccuracies in the algorithm, we perform 50 trials

with fields of varying galactic longitude at b>70°for the
same set of noise cases. We again find that the variation in
the output flux is dominated by the intrinsic noise rather than the
error in the IBP, demonstrated in the bottom row of Figure 18.
Results are very similar for noisy sources with a noiseless Ptrue

and noiseless sources with a noisy PIBP, as both have mean dá ñF
consistent with zero and similar distribution widths. Again, the
PSF kernel reconstruction is not introducing photometric error
beyond that determined by the noise on the sources.

Figure 14. The deconvolution process in the presence of noise for the 0.93 μm SPHEREx wavelength band. In the upper-left panel, we show Ptrue for comparison with
the noisy PS on the top right, the initial PRLD with the use of damping and background noise constant on the bottom left, and the final PIBP after the IBP process on the
bottom right. Due to the large number of high-S/N sources in the stack, instrument noise has minimal effect on reconstruction quality.

Figure 15. Comparison of sdF when restricting the sources used in PS to 1 mag
wide bins (lower axis) centered between integer mAB values. The blue points
and line indicate the average sdF (left axis) from 50 trials of each bin at varying
galactic longitude and b>70°. The black dashed line shows the desired limit
of sdF=1, and the green dashed line indicates the average sdF from 50 trials of
a  m11 15AB bin, with the green region showing the 1σ error. This region
provides the lowest sdF compared to individual magnitude bins. The gray line
shows the number of sources used in PS in any given bin (right axis), and the
upper axis shows the corresponding S/N for each magnitude bin. sdF always
decreases with an increasing number of sources or higher S/N and is
minimized in the zone that balances both.

Figure 16. Comparison of sdF correlating to the fraction of the total number of
available sources being used in PS. The blue region corresponds to the 1σ error
from 50 trials of randomized galactic longitude at b>70°. Increasing the
number of sources used in PS results in lower sdF and thus better reconstruction
quality, while using as few as 6% of sources still allows for sdF <1, marked by
the black dashed line.
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3.4.3. Source Crowding

To understand the effects of source crowding (discussed in
Section 2.1), we vary galactic coordinates in a single trial for
each of b=15°, 30°, 60°, and ℓ=0°, 90°, and 180° with PS

restricted to  m11 15AB . All trials use the SPHEREx Ptrue

for the 0.93 μm wavelength band with catalog-based fluxes and

noisy PIBP with noiseless sources during photometry. Table 4
gives a comparison of dá ñF and sdF for each set of coordinates.
All fields have s <d 1F with no bias in dá ñF and no obvious
increase in sdF . This indicates that accurate PSF reconstruction
and photometry can be achieved with this method, even for
highly crowded fields.

Figure 17. Comparison of the six SPHEREx wavelength bands, with each band’s Ptrue in the first column, final reconstructed PIBP in the second column, and CDF of
dá ñF from 50 trials of randomized galactic longitude at b>70°in the third column. Mean dá ñF for all trials is marked with a dotted line, with a gray region showing
the standard error of the mean. The mean dá ñF is consistent with zero for each band.
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3.5. LORRI PSF Estimation

To this point, we have been working solely with simulated
PSFs where we know the input and the noise is idealized. To

test this algorithm against real data, we operate on an image
taken by the LORRI instrument on New Horizons (Cheng et al.
2008; Zemcov et al. 2017). This image was acquired by the

Figure 18. The top row shows single trials at the NGP using the SPHEREx 0.93 μm Ptrue with catalog-based flux values and instrument noise. Panels A and B show
photometry resulting from noisy sources with a noisy PIBP and noisy sources with a noiseless Ptrue, respectively. In both cases, flux values display similar scatter,
indicating that reconstruction quality does not negatively affect photometric results. Panel C shows the results from noiseless sources and a noisy PIBP, all of which are
within 1% boundaries. To quantify the bias in these cases, the bottom row shows CDFs of dá ñF corresponding to panels A–C for 50 trials with randomized field
galactic longitude and b>70°, where the dotted line indicates the mean dá ñF of all trials, and the gray region shows the standard error of the mean. Panel D shows a
mean dá ñF of 0.005%±0.080%, panel E has a mean dá ñF of −0.003%±0.075%, and panel F has a mean dá ñF of 0.008%±0.016%.

Figure 19. On the left is an example LORRI image with 4 1 pixel−1. On the right is a comparison of the PS and PIBP measured from this image, shown in linear scale
in the top row and logarithmic scale in the bottom row. The PSF measured in this image is significantly larger than the laboratory-determined PSF (Cheng et al. 2008),
which is likely due to the pointing stability of the spacecraft (Noble et al. 2009).

Table 4
Photometric Results as a Function of Sky Position

= ℓ 180 = ℓ 90 = ℓ 0

dá ñF sdF dá ñF sdF dá ñF sdF

b=60° 0.031% 0.193% 0.010% 0.163% −0.017% 0.218%
b=30° −0.046% 0.201% 0.004% 0.168% −0.026% 0.207%
b=15° −0.078% 0.205% −0.066% 0.172% −0.090% 0.210%
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CCD chip on the LORRI instrument and, in LORRI’s 4×4
binning mode, has size 256×256 pixels at 4. 1 pixel−1, as
shown in Figure 19. In the PSF reconstruction, we use r=20
and =I 10IBP . The reconstructed PSF is shown in Figure 19.
We find that the FWHM of the minor axis of PIBP is 3. 73,
while the FWHM of the major axis is 5. 51, both of which are
significantly larger than the 1. 5 PSF measured in the lab
(Cheng et al. 2008).

What can account for this difference? Noble et al. (2009)
demonstrate that the PSF width is a strong function of the
integration time of the instrument, and the New Horizons
spacecraft is known to exhibit pointing drift at the arcsec s−1

level. Performing the deconvolution on a set of several hundred
10 s LORRI exposures, we find the PSF is often extended with
eccentricity > 0.8 and a minimum pointing drift of 1 . This is
consistent with the expected drift in the spacecraft’s pointing in
relative control mode of 2 per exposure (Conard et al. 2017).
In principle, if we understood the pointing history of the
spacecraft, we could deconvolve this component out to isolate
the underlying optical PSF using the same methods described
above; this will be left to future work.

4. Discussion

4.1. Comparison to Similar Methods

The method of PSF reconstruction described here is robust to
complicating factors such as severe undersampling, complex
PSFs, noise, crowded fields, or a limited number of available
point sources. Starck et al. (2002) and Puetter et al. (2005)
provide thorough reviews of deconvolution methods com-
monly used in astronomy, which are numerous. New methods
are still being actively developed for applications in astronomy
(see, e.g., Sureau et al. 2020). In comparison to some
algorithms, a major advantage of this method is that it works
on a per-exposure basis. Many other superresolution methods
that have been used in astronomy (e.g., Orieux et al. 2012; Li
et al. 2018; Guo et al. 2019) rely on multiple exposures of the
same field for information reconstruction. As an example, data
from the Hubble Space Telescope prompted the development
and application of a number of techniques driven by under-
sampling in the Wide Field and Planetary Camera 2 (WFPC2;
Anderson & King 2000) and Wide Field Camera 3 (WFC3;
Anderson 2016). These methods rely on dither-based solutions
in which multiple images of the same field with some small
shift in the position of the detector are recombined to generate a
higher-resolution image of the same field (Lauer 1999; Fruchter
& Hook 2002). Our method does not rely on similar
constraints.

The SPHEREx application investigated here requires super-
resolution knowledge of the PSF to optimally weight pixels for
photometry and, as a result, requires the effect of the
pixelization to be modeled on a per-source basis. Some
reconstruction methods return the PSF convolved with the
pixel-gridding function (the effective PSF or the PSF observed
in the image) instead of the underlying optical PSF, such as the
method introduced by Anderson & King (2000). While the
effective PSF has important uses, it cannot be used directly for
optimal photometry, pointing drift assessment, or other
applications where the details of the underlying optical PSF
are important. Other methods of superresolution image
reconstruction can also deconvolve the pixel-gridding function
and be applied to single exposures (Aujol et al. 2006), but have

applications significantly different from those discussed here
(e.g., Castellano et al. 2015).
Computational speed is also an advantage of this method.

More complicated methods such as blind deconvolution (Fish
et al. 1995) or Bayesian methods (Shi et al. 2017) have also
been used for analyses in astronomy, but these tend to be much
more computationally expensive. Comparatively, our method
of stacking and deconvolution requires ∼1 minute to analyze a
single exposure on a personal computer, which is scalable to
large surveys.

4.2. Future Improvements

To summarize the primary result of this work, through
simulations of the stacking method in all six SPHEREx
wavelength bands including realistic noise, source catalogs
from Gaia+AllWISE star catalogs, and realistic beam shapes,
we find IBP-derived kernels allow photometry with accuracy to
∼0.2% in a single SPHEREx exposure. We find that kernels
derived from stars with  m11 15AB generate the best
estimate of the underlying optical PSF across all six SPHEREx
bands. At SPHEREx’s noise level, the population of sources in
this range balance the need for large S/N in the stack against
the need for a large number of sources to maintain spatial
fidelity. We find that stacking on subimages of the full
SPHEREx FoV does not significantly degrade the performance
of the algorithm up to fields with 10% of the full FoV, at least
at high and mid-galactic latitudes.
Though we have determined a method that meets the 1%

accuracy requirement, further improvements and details could
be investigated. The IBP reconstruction method is primarily
tuned to returning a kernel for optimal photometry of point
sources, rather than reconstruction over a wide range of spatial
scales. “Stitching” together information from the brightest
sources to probe the faint wings of the PSF with measurements
of the central region of the PSF derived using IBP may offer an
improved measurement of the PSF over a wide range of spatial
scales (Zemcov et al. 2014). Further, more advanced algorithms
that can separate effects like the optical PSF, pointing jitter and
drift, and distortion over the array may be possible using larger
volumes of data. Though such advancements might offer even
more accurate reconstructions, the method presented here
already illustrates how advanced statistical methods can offer a
path to unlocking the full information content of astronomical
images.
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Appendix
Point-source Flux and Units

For point sources that are assigned some magnitude and
corresponding specific flux lF (measured in units of power per
unit area per unit wavelength such as nW m−2 μm−1), we
calculate specific intensity (generally measured in units of power
per unit area per unit solid angle per unit wavelength) lI as

m=
W

l
l - - -I

F
nW m sr m , A1

beam

2 1 1[ ] ( )

where Wbeam is the beam area on the sky for SPHEREx. We
then multiply lI by a specific wavelength to get the intensity or
diffuse surface brightness l lI , where

l
l

=
W

l
l - -I

F
nW m sr . A2

beam

2 1[ ] ( )

The quantity l lI is equivalent to the quantity n nI , where nI is
measured in units of power per unit area per unit solid angle per
unit frequency such as nW m−2 sr−1 Hz−1. With the proper
conversion, lI and nI can be used interchangeably. When we
perform photometry of a point source, we are taking the integral

ò W =n nI d F Jy A3
beam

[ ] ( )

to get some flux nF . For our point sources with catalog-based
flux values, we choose to convert the photometric flux into
intensity in units natural to SPHEREx, nW m−2 sr−1, using
Equation (A2). Given some source with intensity l lI and a
pixel rms σ, the S/N can be defined as

l
s

= lIS N , A4( )

where l lI and σ have been integrated over a beam with area on
the sky Wbeam. For our simulated point sources with uniform
flux, we assign l lI such that the S/N is a desired value based
on the selected pixel rms, and quote the S/N as scaled flux of
dimensionless units, easily converted into flux units via
Equations (A4) and (A2).
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