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Abstract

Despite the utility of neural networks (NNs) for astronomical time-series classification, the proliferation of learning
architectures applied to diverse data sets has thus far hampered a direct intercomparison of different approaches.
Here we perform the first comprehensive study of variants of NN-based learning and inference for astronomical
time series, aiming to provide the community with an overview on relative performance and, hopefully, a set of
best-in-class choices for practical implementations. In both supervised and self-supervised contexts, we study the
effects of different time-series-compatible layer choices, namely the dilated temporal convolutional neural network
(dTCNs), long-short term memory NNs, gated recurrent units and temporal convolutional NNs (tCNNs). We also
study the efficacy and performance of encoder-decoder (i.e., autoencoder) networks compared to direct
classification networks, different pathways to include auxiliary (non-time-series) metadata, and different
approaches to incorporate multi-passband data (i.e., multiple time series per source). Performance—applied to a
sample of 17,604 variable stars (VSs) from the MAssive Compact Halo Objects (MACHO) survey across
10 imbalanced classes—is measured in training convergence time, classification accuracy, reconstruction error, and
generated latent variables. We find that networks with recurrent NNs generally outperform dTCNs and, in many
scenarios, yield to similar accuracy as tCNNs. In learning time and memory requirements, convolution-based
layers perform better. We conclude by discussing the advantages and limitations of deep architectures for VS
classification, with a particular eye toward next-generation surveys such as the Legacy Survey of Space and Time,
the Roman Space Telescope, and Zwicky Transient Facility.

Unified Astronomy Thesaurus concepts: Variable stars (1761); Periodic variable stars (1213); Light curves (918);
Neural networks (1933); Light curve classification (1954)

1. Introduction

Time-domain imaging surveys continue to expand access to
the photometric phase space of cadence and depth/volume.
Despite many upcoming projects (e.g., the Rubin Observatory
Legacy Survey of Space and Time (LSST),3 Ivezić et al. 2019;
Euclid,4 Laureijs et al. 2011; and the Nancy Grace Roman
Space Telescope,5 Spergel et al. 2015) being optimized for
transient (supernovae, microlensing) discovery and character-
ization, the data from these surveys create unprecedented
opportunities to broaden our understanding of stellar variability
and stellar evolution as well as expand the use of variable stars
(VSs) as probes. Detached eclipsing binaries, for example,
provide direct measurements of distance (e.g., Paczyński 1997)
and fundamental stellar parameters (Torres et al. 2010), while
pulsating VSs such as RR Lyrae, Miras, and Cepheids due to
their accurate period–luminosity relations are considered useful
tools to trace galactic structures (Kraft & Schmidt 1963;
Majaess et al. 2009; Skowron et al. 2019), calibrate the cosmic
distance ladder (Freedman et al. 2001; Huang et al. 2018; Riess
et al. 2018, 2019), and also act as standard candles to measure
distances to their host galaxies (Carretta et al. 2000; Clementini
et al. 2003; Alves 2004).

Stellar variability, primarily manifest as changes in brightness
and color, arises from various physical mechanisms. Intrinsic
variations arise as flares, rotation, pulsations, and/or violent

outbursts due to thermonuclear processes occurring in the surface
layers or deeper within. Extrinsic factors that may add to the
observed variability include eclipses, relativistic Doppler beaming,
mutual interaction in binary systems, and/or gravitational lensing.
The classification of VSs is based usually on brightness

variations, typically, at visible wavelengths. While far from
standard, the General Catalog of Variable Stars (GCVS; Samus’
et al. 2017) maintains the taxonomy and nomenclature for VSs
that distinguish between subtypes of rotators, pulsators, eruptive
variables, cataclysmic variables, and eclipsing binaries in
addition to other types such as microlensing sources. In general,
stellar variability is not expected to fall into a unique type of
dynamical behavior, as objects may display a multitude of
physical behaviors, such as rotational modulation superimposed
to pulsation in RCB-type stars, rotational modulation interjected
by abrupt episodes of deep minima or a steep increase in
brightness in BYDra-type stars, or symbiotic systems with an
M-type pulsating Mira star with an accreting white dwarf
companion as the RAqr star. A comprehensive survey of VS
classification is provided by Eyer & Mowlavi (2008).
Large data volumes, the primary strength of massive

surveys, also present an acute challenge: how do we discover
and characterize VSs at scale in streaming, heterogeneous, and
noisy time series? Human-free classification, part of a fully
automated system to process and analyze survey data, requires
the development and deployment of robust and reliable
techniques from information-data technology to process large
volumes of data and produce tractable and reproducible results.
Traditional machine-learning (ML) approaches for VS

classification typically involve “featurization” to summarize
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and encode the raw observables into a set of informative
descriptors exploited by a classifier to predict labels. Some
popular features in the literature include frequency-domain
metrics derived from Lomb–Scargle periodograms (Lomb 1976;
Scargle 1998), statistical metrics (e.g., standard deviation,
quantiles, and skewness), variability indices (e.g., the Stetson
indices K and L; Stetson 1996), best-fit model parameters, as
well as additional “metadata” information from external
catalogs (e.g., colors, redshifts and parallaxes measurements).
VS classification using expert-engineered featurization and
traditional ML algorithms has been extensively studied and
used for decades (Debosscher et al. 2007; Blomme et al. 2011;
Dubath et al. 2011; Richards et al. 2011, 2012; Rimoldini et al.
2012; Masci et al. 2014; D’Isanto et al. 2016; Kim & Bailer-
Jones 2016). Specialized libraries for features extracting from
astronomical light curves have been made available by the
community in open-source software packages such as cesium
(Naul et al. 2016), FATS (Nun et al. 2015), feets (Cabral
et al. 2018), sncosmo (Barbary et al. 2016), gatspy
(VanderPlas & Ivezić 2015; Vanderplas et al. 2016), and
VARTOOLS (Hartman & Bakos 2016).

Ideally, featurization produces a uniform dimensionality
reduced representation of the observations that adequately
captures the intrinsic properties of the data needed for classifica-
tion. However, a known issue in hand-coded feature-based
classification lies in the fact that the generated low-dimensional
representation may overlook subtleties in higher-order systems
and restrict such complexity into a set of low-level descriptors
tailored for specific use-case applications. Furthermore, develop-
ing domain-specific features can be time-consuming, computa-
tionally expensive, highly dependent on expert knowledge, and
may show a strong dependency on survey characteristics.

Representation learning (RL) techniques offer an alternative
possibility to process raw observables without traditional
feature engineering. The benefit of fully automating the
classification task using RL lies in the ability to reach a higher
level of abstraction and capture complex structures embedded
in the data. Distinct approaches in RL to automate feature
extraction from astronomical time series have already been
introduced in a broad range of studies. Used techniques include
unsupervised learning algorithms (Armstrong et al. 2016),
dimensionality reduction techniques, data transformations
(Johnston et al. 2020), autoencoders (Naul et al. 2018), and
dictionary learning (Pieringer et al. 2019).

In recent years, VS classification using deep learning (DL)/
neural architectures has been explored in several works that
achieved satisfactory classification performance and thus
demonstrated the ability of DL systems to learn stellar
variability types from light-curve measurements and auxiliary
metadata. Among the widely used DL architectures, recurrent
neural networks (RNNs) proved to be highly performative for
periodic VS classification (Naul et al. 2018; Tsang &
Schultz 2019), supernovae (SNe) classification (Charnock &
Moss 2017), and online transient event detection (Möller & de
Boissière 2019; Muthukrishna et al. 2019a). Convolutional
neural networks (CNNs) have also proven comparably
preformant, with a better training convergence time and lower
memory allocation requirements in comparison to RNNs in
various applications such as exoplanet transit detection
(Shallue & Vanderburg 2018; Ansdell et al. 2018; Schanche
et al. 2019), SNe binary classification (Pasquet et al. 2019b),

and Cepheid classification (Dékány et al. 2019). A review on
the recent contributions of DL techniques in SNe classification
is given by Ishida (2019).
To classify astronomical time series, two main approaches

have emerged, either (1) design an automated system to encode
the photometric observables into a set of features (semi- or self-
supervised learning) that constitute the entry point to traditional
algorithms (e.g., support-vector machines, NNs, or tree-based
classifiers), or (2) develop a DL architecture to find an optimal
mapping between the photometric observables and the labels
through a supervised learning scheme.
The objective of this paper is twofold: we first aim to provide

an overview of the current ML/DL techniques for VS
classification, and second to discuss the applicability of a selected
set of NN architectures via a test example and the importance of
data representation for classification of stellar variables. This paper
also investigates approaches for VS classification using multiband
photometric data. The paper is organized as follows. Section 2
first introduces the state-of-the-art ML/DL techniques for VS
classification and then proceeds to present our proposed
architectures for classification. In Section 3, we present variants
of NN architectures and discuss their performances through a test
example using public data from the MAssive Compact Halo
Objects (MACHO) VS database. The network performances are
evaluated in terms of training convergence time, classification
accuracy, properties of the generated latent representations, and
light-curve reconstruction. Finally, we conclude in Section 4.

2. Deep Learning Architectures for VS Classification

2.1. State of the Art

Classification of VSs can be performed in feature space or in
data space. The first approach consists of finding an optimal
mapping between the labels, a vector Y , and an (encoded)
feature set—a matrix Xenc derived from the direct observables
X; the second approach focuses on finding a direct mapping
between the observables X and the labels Y .
In feature space classification, traditional approaches require

hand-coded feature extraction to compute a set of informative
descriptors using domain knowledge. For VSs, the most
discriminant features of stellar variability depend strongly on
the specific class or subclass. For instance, the dominant modes
of the pulsation mechanism can be well characterized in the
frequency domain, found through Fourier decomposition or
periodogram analysis. In eclipsing binaries, the shape, duration,
and relative phase of the eclipses in their light curves inform
the type of the interaction (contact binaries, detached binaries,
or semidetached binaries) and their properties such as the mass
and radii ratios. Cataclysmic variables are described through
the morphology of their light curves at maximum light, the
decline shape, the duration of the burst event, the event
occurrence in time distinguishing between recurrent outbursts
and final explosions, the quiescent state of the star post-event,
and observed spectral features during outburst. For eruptive
variables, their light curves and spectra show distinctive
variations as sudden brightening or dimming episodes over
extended periods of time due to flares and violent processes
taking place in the corona or the chromosphere of these stars.
In traditional approaches, feature engineering relies on

domain knowledge while feature learning automates the
extraction procedure from the data using dimensionality
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reduction techniques, self-supervised networks (e.g., autoenco-
ders), dictionary learning, or unsupervised algorithms. The
extracted features constitute a discretized set of encoded
information exploited by feature-based classifiers to predict
labels. Among notable references, the work by Armstrong et al.
(2016) exploits the unsupervised learning algorithm “Self-
Organizing Maps” to encode photometric light curves into a set
of features processed, along with additional descriptors, by the
tree-based classifier, random forest (RF; Breiman 2001), to
predict labels for periodic VSs. The work of Naul et al. (2018)
presents a bidirectional RNN autoencoder to discretize the
photometric observables into a set of latent variables exploited,
along with ancillary metadata, by an RF classifier to predict
labels for periodic variables.

For classification in data space, common techniques exploit
DL to identify embedded characteristics in the data and find a
direct mapping between the input observables and the output
labels. Applications using DL techniques for astronomical time-
series classification include (1) SNe classification using RNN
architectures to process multiband photometric data and
auxiliary metadata (e.g., redshift measurements; Charnock &
Moss 2017; Möller & de Boissière 2019; Muthukrishna et al.
2019a), (2) online transient event detection using RNN
architectures to compute timely class predictions for early-
observed light curves in order to forecast potential pre-SN
outbursts and prompt follow-up procedures before the event
reaches its maximum light (Möller & de Boissière 2019;
Muthukrishna et al. 2019a), and (3) exoplanetary transit
detection using a composite convolutional network that analyzes
the full light curve and the eclipses to discern between planetary
transits and stellar eclipsing binaries (Ansdell et al. 2018; Shallue
& Vanderburg 2018; Schanche et al. 2019).

More recently, composite architectures have been introduced
for astronomical time-series classification in the form of NNs
composed of different submodules designed for specific tasks.
Notable references include the work by Pasquet et al. (2019b)

for SNe classification where the authors propose a DL
architecture (PELICAN) with three modules: an autoencoder
branch to generate the embeddings at the bottleneck level by
optimal reconstruction, a classifier for label predictions, and a
contrastive module designed to reduce the discrepancy between
the test and train sets. Binary classification of SNe Ia is
performed using multiband photometric data and ancillary
metadata (redshift measurements of the host galaxies). The
work by Tsang & Schultz (2019) proposes a similar approach
for periodic VS classification, initially derived from the Deep
Autoencoding Gaussian Mixture Model network in Zong et al.
(2018). The authors propose a network composed of two
modules: (1) an autoencoder, and (2) a classifier module
connected to the autoencoder at the bottleneck level.

2.2. Architectures

This section presents selected architectures for VS classifica-
tion. We distinguish between two types of architectures: direct
classifiers and composite networks, as shown in Figure 1. Both
architectures are composed of an encoder and classifier module.
Composite networks are supplemented with a decoder connected
at the bottleneck level. The encoder-decoder combination (i.e.,
autoencoder) aims to learn a latent representation Xenc of the
input photometric data Xphot by optimal reconstruction, while
the classifier maps the encodings to the labels Ylabel. By
connecting the autoencoder to the classifier module, the system
ideally learns a latent representation (i.e., compressed summary)
that is closely correlated to different stellar variability types in the
training data. The high-level design in Figure 1 is adaptable:
modules can be adjusted to the application and data as needed. In
the current work, the decoder module corresponds to a mirror-
image of the encoder, which is a common choice for autoencoder
architectures. We evaluate the encoder for different types of NNs
such as RNNs, CNNs, and their variants, while the classifier
module is set to a two-layer multilayer perceptron (MLP) for all

Figure 1. High-level architecture of the direct classifier (left) and composite (right) networks. In direct classifiers, the time-series data (Xphot) and metadata (Xmeta) are
combined through a series of neural layers and concatenations, leading to classification predictions (Ylabel) on which the loss function is optimized. Composite
networks use Xphot and a bottleneck/decoder to predict a reconstructed light curve (Xrec). The bottleneck layer along with Xenc are also used to predict Ylabel. Both
Xrec and Ylabel are used in the loss function of composite networks.
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networks to predict labels. A short description of the NNs used in
this work is provided in Appendix B.1.

The majority of applications for VS classification using DL
exploit auxiliary features that complement the photometric
observables such as redshift measurements, detectable frequen-
cies for periodic variables, amplitudes, and colors. The
photometric information in the light curves constitutes a
fundamental description of the evolutionary state of the star
over time but does not contain the entirety of the available
information; unless the light curve of a certain class is
demonstrably different than other classes, additional metadata
can be expected to improve classification accuracy. Typically,
classification tasks require an upstream phase of data
preparation. However, preprocessing transformations applied
to the photometric observables may inadvertently remove
discriminating features linked to the stellar variability types,
thus altering the quality of the information necessary for
classification. For instance, light curves of periodic variables
are preprocessed through phase-folding and data normalization.
The phase-folding procedure transforms the periodic data into a
compact representation in phase of one to two cycles by
stacking multiple observations, thus removing the periodicity
information over time. On the other hand, data normalization
via minmax normalization yields to rescaled magnitude
measurements, amplitudes, and errors. As a direct result,
similarly shaped light curves with different peak-to-peak
amplitudes cannot be distinguished from one another.

In the current work, we investigate the importance of the
metadata in two scenarios in which the network classifies the
data solely based on (preprocessed) light curves without
auxiliary metadata as opposed to supplementing metadata to
the system as a secondary input for label predictions.

In VS classification, multiband photometry can be processed
either by transforming the photometric passband measurements
into a single entity fed to the network or by jointly processing
individual encodings from each passband measurement for
label predictions. A simplified representation of the aforemen-
tioned approaches, identified in this work as the merged and
hybrid approaches, is provided in Figure A1. In the merged
approach, multi-passband measurements are combined into
a unique observable Xphot,merged processed by the encoder
module to compute the latent representation Xenc. The
preprocessed light curves per band can be combined through
distinct representations as the variants presented in
Appendix A, whereas the hybrid approach independently
encodes the multi-passband measurements into individual
features combined at a later time into a compact encoded
representation Xenc. In both scenarios, the classifier module
exploits the generated encodings Xenc, along with metadata
Xmeta, for label predictions. Composite networks differ from the
direct classifiers by the addition of a decoder module connected
at the bottleneck level to the encoder to generate the
embeddings by optimal reconstruction.

3. Application

This section presents a set of NN-based architectures for VS
classification. We discuss the performance of these networks via
a test example in terms of training convergence time, label
predictions, reconstruction, and generated latent representations.

3.1. Data

As an exemplar, for all architectures, we use public
photometric data and labels from the MACHO survey (Alcock
et al. 1996). The MACHO project carried out long-term
photometric monitoring of stars in the Magellanic Clouds and
the galactic bulge from 1992 to 1999 in search of rare
microlensing events, observable in theory if the dark matter is
composed of MACHOs. The large collection of data from the
survey has provided, over the years, rare insight into a variety
of stellar populations such RR Lyrae, Cepheids, long-period
variables (LPVs), and eclipsing binaries (Cook et al. 1995). In
MACHO, the LPVs are categorized into four subtypes—
namely, the four Wood sequences A, B, C, and D—referring to
the parallel sequences identified from the period–luminosity
relation of these red variables (Wood et al. 1999). Photometric
data in MACHO consists of magnitude measurements in two
photometric filters (the MACHO red and blue filters), the
associated 1σ error measurements, and the observation epochs
expressed in MJD. We exploit the multiband photometric data
of the public MACHO VS database6 to test our selected NN
architectures, and we perform further checks on the data. In
particular, we retain the confirmed set of eclipsing binaries with
corrected periods from Derekas et al. (2007). The full process
yields 17,604 periodic variables from the initial count of
21,474 periodic VSs in the MACHO database to test our
architectures: 1806 Cepheid variables, 9163 RR Lyrae, 2965
LPVs, and 3670 eclipsing binaries (see Table 1).
The majority of ML/DL open-source software exploits input

data in the form of a fixed-size input tensor, and few DL
architectures are able to process observables with different
lengths, e.g., using generator functions on an iterable list of input
data. In our approach, the architecture of the direct classifier can
process fixed-size data in a batch mode as well as a list of
observables with different lengths using generator functions.
Composite networks, however, require fixed-size inputs to
comply with the implementation specifications of the decoder
module. To meet such requirements, we reduce the data into a
fixed-size format. Typically, data reduction can be achieved using
padding, rebinning, interpolation (e.g., splines or polynomials), or
model fit and prediction. More recently, model prediction using
Gaussian Processes (GPs) has been used on astronomical time
series (Ambikasaran et al. 2016; Foreman-Mackey et al. 2017;
Boone 2019; Pruzhinskaya et al. 2019). To describe the stellar

Table 1
Selected Data Set from the MACHO VS Database

Class Labels # in Class

Cepheids FU 1143
Cepheids FO 663
RR Lyrae (type ab) 7147
RR Lyrae (type c) 1716
RR Lyrae (type e) 300
LPV (Wood seq. A) 310
LPV (Wood seq. B) 799
LPV (Wood seq. C) 1100
LPV (Wood seq. D) 756
Eclipsing binaries 3670a

Note.
a Confirmed binaries in Derekas et al. (2007).

6 http://macho.nci.org.au/
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variability in the MACHO periodic light curves, a GP model with
a quasi-periodic covariance function is fitted to each object using
the open-source code by Foreman-Mackey et al. (2019). The
selected GP model is a mixture of stochastically driven damped
oscillators (SHOs), which are briefly discussed in Appendix B.3.
For each object, a GP model is fitted. Using a maximum
a posteriori (MAP) estimate, fixed-size light curves are generated
by model prediction on a reduced time frame sampled within the
range of the observed epochs. The GP predictions’ mean and
error correspond to the reduced photometric data exploited in the
rest of this work. At a later stage, the reduced photometric light
curves are normalized and phase-folded to span over two cycles.
Phase-folding of periodic light curves allows for a better
visualization of the cyclic behavior of the variables. For instance,
short-period variables such as RR Lyrae pulsate over timescales
ranging from ∼0.3 to 1 day. To fully observe the pulsation
profile over a complete cycle, the observation cadence has
to exceed the variability frequency to cover a full cycle.
In practice, given realistic survey cadences, any one individual
cycle will be sparsely observed if at all. By combining the
observations through period-folding, however, even high-
frequency variables such as RR Lyrae stars can have dense
phase coverage. Still, properties of long-period variables that
evolve over longer timescales, such as the Mira-type stars with
pulsation periods ranging from ∼80 to 1000 days, can be
distinguishable in the initial time frame without phase-folding. In
the current application, we exploit a data set of periodic VSs with
light curves from short-period pulsators, long-period pulsators,
and eclipsing binaries and apply the phase-folding procedure to
all variables. Observed shortcomings from the preprocessing are
discussed in Section 3.3. In the majority of ML applications,
normalization is applied to the data to improve the numerical
stability and reduce the training time. In this work, the
inputsXphot to the networks correspond to preprocessed light
curves, obtained after data reduction, phase-folding, and normal-
ization. The metadata Xmeta consist of the amplitudes, averaged
magnitudes, and colors extracted from the raw data in addition to
the primary periods.

3.2. Design and Implementation

We experiment with a variety of NN architectures and
discuss their absolute and relative performances. Classifica-
tion using multiband photometry is evaluated using the
approaches introduced in Section 2.2, i.e., the merged and
hybrid approaches. The merged approach exploits the second
representation introduced in Appendix A combining the
individual measurements of preprocessed light curves into a
2D tabular format. In the current application, normalization
and phase-folding are applied to each band measurement
independently, prior to generating the merged representation.
Error measurements are used solely as weights in the
autoencoder loss function. Incorporating error measurements
within the network can be part of further development of such
networks. We additionally investigate the use of auxiliary
metadata as a secondary input on the classification accuracy
for the direct classifier and composite networks via two
scenarios, in which the network classifies the data using the
information from preprocessed light curves without metadata
as opposed to supplementing auxiliary metadata as a
secondary input for label predictions. Data entries for the

different use-case scenarios are summarized in Table D1. The
autoencoder is evaluated for different NNs: RNNs with long-
short term memory (LSTM) cells, RNNs with gated recurrent
unit (GRU) cells, temporal CNNs (tCNNs), and dilated TCNs
(dTCNs).
For VS classification, the objective of NNs is to empirically

determine a mapping between the inputs, the photometric
observables =X xphot 1[ , L, xN

T
t] and auxiliary metadata Xmeta

= d1[ , L, dN
T

t] , and the output labels =Y ylabel 1[ , L, yN
T

t
] ,

where Nt designates the total number of objects. In the current
application, the data vectors xi i N:1 t

( ) refer to the reduced
photometric measurements—magnitudes, observation epochs,
and error measurements—spanning over Np data points for the
ith object, and the metadata di i N:1 t

( ) is composed of Nf

features such as the periods, amplitudes, averaged magnitudes,
and colors. The elements yi i N:1 t

( ) refer to scalar values
encoding the labels. For categorical classification, the labels are
encoded into codewords transcribing the membership of the
object to a variability class j j N:1 C

{ } where NC is the total
number of classes. A standard approach in categorical
classification consists of transcribing class memberships into
binary codewords {0, 1}. In online transient event detection
applications, a similar methodology is used to map the
observables onto the output space. Class predictions are
computed on the pixel level, which corresponds to a prediction
vector yi i N:1 t

( ) allowing one to monitor the evolution over
time of the label predictions and forecast potential pre-SN
outbursts and trigger follow-up observations within a rapid
decision time before the event reaches its maximum light. In
contrast, the static-type prediction approach adopted for VS
classification consists of associating the static label predictions
to fully observed light curves. The approach used in this study
aims to map the observables {Xphot, Xmeta} onto scalar values
Ylabels. Nonetheless, our architectures can be adapted to
perform online predictions on the pixel level by adjusting the
input-output format.
Detailed representations of the proposed architectures are

shown in Figures D1–D3. After preprocessing (i.e., data
reduction, phase-folding, and data normalization of periodic
light curves), the networks proceed as follows. In the RNN
architectures, the first part of the structure following the input
layer is a stack of RNN layers that generates sequence data of
fixed length. The direct classifiers and composite networks
differ in the last layer of the encoder module in which
composite nets are supplemented with a fully connected layer
—a dense layer with a linear activation function—to transform
the sequence data from the last RNN layer into an encoded
representation Xenc of a fixed size Nenc. If auxiliary metadata
Xmeta is supplemented as a secondary input, the classifier
exploits the augmented features to predict the labels Ylabel. The
classifier module corresponds to an MLP of two dense layers
with a rectified linear unit (ReLU) and softmax activation
functions. In composite networks, the decoder transforms the
encoded variables into reconstructed representations similar to
those in Naul et al. (2018). The decoder proceeds by
duplicating the embeddings for a number of times that is
equivalent to the length of the input data, joining the epoch and
passband information, and feeding the augmented embeddings
into a stack of RNNs. The last component of the decoder
module consists of a fully connected layer that generates the
final sequence data of the reconstructed light curves. To
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prevent overfitting, regularization is added to the model
through the dropout method (Srivastava et al. 2014), which
randomly removes units during training.

Following the input layer, the tCNN architecture is
composed of a series of convolutional layers with a number
of filters and fixed kernel sizes for convolutions. The activation
function for each convolutional layer is set to the hyperbolic
tangent function, and dropout is used for regularization. In the
encoder module, the output of the last convolutional layer is
flattened to generate a vector output. The latter corresponds to
the final encodings for direct classifiers, while composite
networks exploit an additional fully connected layer to generate
fixed-size embeddings. Similar to the RNN architectures, the
encodings are fed to the classifier module, along with metadata
when applicable. In the decoder, the data is processed through a
reshaping substructure, stacks of transposed convolutional
layers, and a final fully connected layer to generate the outputs.
The reshaping substructure emulates the RNN decoder in order
to reframe the encodings into a fixed-length format that
matches the input data points.

The dTCN architecture closely follows the TCN architecture
(Lea et al. 2017) initially derived from the Wavenet
architecture (Oord et al. 2016). Our design adds dropout
functions after the causal convolutions to prevent overfitting.
Following the input layer, the first component of the dTCN
consists of a causal convolutional layer connected to
interconnected stacks of residual blocks with dilated convolu-
tions and gated activation units. Following the Wavenet
design, an ReLU activation function and two convolutional
layers are used after the stacks. The encoder outputs are
transformed into a vector format and a fully connected layer is
supplemented in composite networks. The generated encodings
are then fed into the classifier module and augmented with
metadata when applicable. The decoder module is composed of
a reshaping substructure, a TCN unit mirrored to the encoder
module, and a final fully connected layer.

The NNs are tested with a different set of hyperparameters
(see Table D2). The number of parameters per model are
provided in Table D3. All models are trained using the Adam
optimization algorithm (Kingma & Ba 2017) with a learning
rate of 5×10−4, a fixed batch size per gradient update in
optimization, a dropout fraction, and an early stopping
procedure to prevent the networks from overfitting. For all
networks, a validation-based early stopping procedure inter-
rupts the training when an optimal solution is found (i.e.,
convergence) before reaching the maximum number of training
epochs. The standard approach monitors the evolution of a
scoring metric, typically the validation loss, over a period lag
and terminates the training if the error estimated at the current
time exceeds the last verified value, implying a large variance
in the overfitting regime. An improved search for the
hyperparameter space can be performed as an upstream stage
of the final classification procedure. However, we choose in
this study to empirically evaluate different sets of hyperpara-
meter configurations, discuss the network performances, and
identify the best-performing models. In training, the auto-
encoder (i.e., encoder-decoder) aims to minimize the recon-
struction loss and the weighted mean-absolute error (MAE)
function, and the classifier branch is set to minimize the
categorical cross-entropy loss.

Composite networks are trained to minimize the total loss
Ltot

=
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L L
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tot ec ec ed ed ( )
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where, for the ith object, wi corresponds to the sample weights
of the autoencoder branch computed using the inverse of the
error measurements σi. The losses, averaged across the sample
of Nt objects, are computed by, on one hand, averaging the
differences between the input photometric light curves Xphot

and the decoder reconstructions Xrec across Np data points,
and, on the other hand, computing the cross-entropy between
the true labels Ytrue and the classifier predictions Ypred over NC

classes. Using the expression for total loss in Equation (1),
tested NNs are trained to minimize, at each epoch, the weighted
sum of the individual losses with weights {wec, wed} chosen to
be equal to unity, to depict a similar contribution from the
individual branches into the total loss. The weighting scheme
and cost functions can be revised for different applications and
data types. The best-performing models are identified from the
minimum loss obtained on a test set, i.e., the subset of data
neither used in training nor validation. Our tests used up to two
to four cores on a CPU model Intel Xeon E5-2643v3 on
the UC Berkeley Savio Linux cluster. The NN architectures are
implemented in the keras (https://keras.io) and Tensor-
flow (Abadi et al. 2016a, 2016b) programming frameworks,
and the RNN autoencoder branch is partly adapted from the
architecture in Naul et al. (2017). To facilitate reuse and
reproducibility, our benchmarking codebase is provided in an
open-source repository.7

3.3. Performance Study

This section presents the results obtained from the public
MACHO VS data set. Computations are performed through a
classical training-validation-test scheme with 80% of data for
training-validation and 20% of unseen objects in the test
prediction phase. Performance metrics are computed for all
models, with a particular emphasis on the performances
reached on the test set. Metrics include the system total loss,
the classification accuracy as well as averaged precision, recall,
and F1-score (see Appendix C). The total loss corresponds to
the classification loss (categorical cross-entropy) evaluated on
the encoder-classifier branch, supplemented in composite
networks with the weighted MAE evaluated on the encoder-
decoder branch. The classification accuracy is obtained through
a direct comparison between the true labels Ytrue and the

7 https://github.com/sarajamal57/deepnets_vs
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network predictions Ypred. We also discuss the classification
performances within three main types of stellar variability:
short-period pulsators including the RR Lyrae and Cepheids,
LPVs, and eclipsing binaries. The autoencoder performances
are assessed through the quality of the reconstructed light
curves Xrec, and the embeddings Xenc are projected onto a 3D
representation using a data reduction algorithm. The degree of
separation (or lack thereof) in the reduced latent space is
discussed.

3.3.1. Training Convergence Time

The training convergence time is reported for all networks in
Figure E1. The network type, size, and hyperparameters
influence the total time required to reach convergence, with
an average training time for RNNs (LSTM and GRU cells)
scaling higher in comparison with the convolutional networks
(tCNNs and dTCNs) due to higher memory requirements for
RNNs that entail a longer time in training. As expected,
increasing the network size (i.e., number of parameters)
correlates with a longer time in training. For instance, direct
classifiers without metadata (cF) corresponding to the hyper-
parameter set configuration (6), (the largest models for LSTM,
GRU, and dTCN) converge in training after approximately 4–5
hr for RNNs, 22 minutes for dTCNs, and ∼6 minutes for
tCNNs using one photometric band on CPU. Networks
processing multiband data converge at a slower rate due to
their larger data entries. After training, the prediction step is
extremely fast: 0.5–3 ms per object for tCNNs, 1–10 ms per
object for dTCNs, and up to 3–20 ms per object for the RNNs
on a CPU.

To track the evolution of the total loss and the accuracy
during the training and validation stage, Figures E4–E5 report
the performances of the LSTM composite networks dF and
dF,meta using wMAE loss on the autoencoder branch and the
categorical cross-entropy on the classifier branch. Over the
training epochs, the loss function decreases and converges
asymptotically to a constant value whereas the accuracy
increases and stabilizes when the system reaches convergence.
The system converges to reach at best ∼73% for the best-
performing LSTM dF without metadata. By supplementing the
metadata as secondary input, the accuracy increases up to
∼91%. During the validation step, the loss values decrease and
moderately exceed the training losses, which reinforces the
ability of the networks to generalize the learned mapping from
the training to the unseen validation data, as a lack of
generalization would correspond to a larger gap between the
training and validation losses. Generally, overfitting is
detectable from a high variance in the model and a divergence
in the validation loss function across training epochs despite the
continuing decrease of the training loss. To prevent such
limitation, our models are trained using regularization through
dropout functions in addition to a validation-based early
stopping procedure. Early stopping monitors the validation
loss values and interrupts the training before reaching the total
number of training epochs if an optimal solution is found (i.e.,
convergence) or if the system oversees a high increase in the
validation losses, indicating a large variance.

We experimented with NN classification using raw (i.e.,
without normalization) phase-folded light curves. Models
converge at a slower rate in an unstable pattern across the
training epochs. In what follows, we focus our analysis on the
results obtained using preprocessed (i.e., phase-folded and

normalized) light curves and associated metadata for MACHO
periodic variables stars.

3.3.2. Label Predictions

Total loss and classification accuracy for all trained models
are reported in Figures E2–E3. We identify the best-
performing models for each architecture type (LSTM, GRU,
tCNN, and dTCN) from the minimum loss in the test set,
neither used in training nor validation. As previously
mentioned, the total loss corresponds to the loss evaluated
on the encoder-classifier branch (categorical cross-entropy)
supplemented in composite networks to the loss from the
encoder-decoder branch (weighted MAE). For RNNs, the
losses computed on the validation set are close to the values
obtained on the train set across all data sets. However, a larger
difference is seen in a few configurations of the tCNN direct
classifier processing the multiband data in addition to the
configurations of the dTCN direct classifiers. The gap
between the validation and the training losses is significant
for the dTCNs, which emphasizes the lack of generalization of
these types of networks due to a higher complexity (large
number of parameters) of the network that is inconsistent with
the type of data in hand (1D phase-folded light curves).
Complex data would certainly benefit from higher-level
network design, as in dTCNs. Conversely, composite net-
works indicate better stability, due to the addition of the
autoencoder contribution to the total loss. We also notice an
increase in the classification accuracy for the dTCN composite
networks compared to their direct classifier counterparts. In
the current application, best classification performances are
achieved by RNNs and tCNNs. Table E1 reports the
identifiers of the hyperparameter set configurations associated
with the best-performing networks. The identifiers correspond
to the configuration set identifiers described in Table D2 with
varying numbers of layers or stacks {1, 2, 3} and sizes {16,
32}. Using this naming scheme, the identifiers of the best-
performing models appear to not fall into a unique
hyperparameter set configuration, as the architectures using
LSTM layers performed well using one to three layers of
different sizes. From Figure E3, the classification results
indicate about only a ∼1%–6% dispersion within the
individual results per layer type in each of the architectures,
which implies that the hyperparameters of the tested networks
have a low-to-medium influence on the overall performances.
Nonetheless, we notice that most LSTM architectures with
one layer (nL=1) underperform when processing multi-
passband data. Deeper networks (nL>1) appear necessary
for processing larger data sets. In the current application, the
qualification of the best-performing models is solely based on
an empirical search in the network hyperparameter space.
Nonetheless, future work could employ an improved search
through the hyperparameter space to investigate the effect of
hyperparameter selection on the network performances and
optimization landscape during training.
Table 2 summarizes the classification accuracy of the best-

performing models reached in the test set. For the best-
performing models, the overall accuracy ranges between 67%
and 79% for models processing the light-curve information
without metadata. In particular, without metadata, the dTCNs
achieve a classification accuracy of 67%–72% whereas the
accuracies of RNNs and tCNNs jointly scale higher with 70%–

79% correct predictions. By incorporating the metadata—colors,
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amplitudes, averaged magnitudes, and periods—in the models
cF,meta and dF,meta, the accuracy improves by 10%–20% to reach
at best: ∼88%–92% for RNNs, ∼82%–92% for tCNNs, and
only ∼75%–82% for dTCNs.

The NN architectures learned on single-band and multiband
light curves (the blue band B versus the multiband RB) show
comparable classification accuracy. By comparing the indivi-
dual results in Table 2 for each layer type, the addition of the
MACHO red band data injects a moderate effect on the
classification accuracy. In particular, the accuracy of the best-
performing direct classifiers decreases by 0.1%–3% for RNNs
and 1%–7% for tCNNs and dTCNs when using the multiband
RB data in the merged approach in comparison with the B
band. On the other hand, networks processing the multiband
data via the hybrid approach mainly achieve a 1%–4%
increase in the classification accuracy compared to the B-band
data. Moreover, the results for the best-performing models do
not indicate a significant difference in the individual
performances reached by networks processing the multiband
photometry RB via the merged and hybrid approaches, as
individual results only indicate 0.3%–4% differences, due to
the photometric bands (red and blue) in MACHO equally
containing informative characteristics on the stellar variability
types. This moderate disparity may indicate the need for a
different strategy order when combining the data in the
merged approach, as, in the current application, we combine
the preprocessed (i.e., phase-folded and normalized) indivi-
dual measurements per band. A different strategy can consist
of combining the light curves prior to normalization. In
general, we would expect that classification using sparsely

observed multi-passband photometry would benefit from the
availability of several sources of information on stellar
variability. In such a case, the advantage of the hybrid
approach would be more prevalent for systems sequentially
processing the multi-passband photometry in an optimized
scheme, whereas the merged approach may call for higher
memory requirements in terms of CPU/GPU usage.
Classification performances are better summarized on a

confusion matrix that reports the fraction of predicted labels
compared to the true class labels. Optimal results correspond to
a diagonal matrix with a fraction of true positives per class (i.e.,
diagonal elements) close to unity. Figure 2 shows the
performance obtained from the test set for the best-performing
LSTM direct classifiers cF and cF,meta that, respectively,
reached overall accuracies of 75% and 92%. Overall, the
confusion matrices tell a similar story: the main stellar
variability groups, highlighted in red, are recovered to a fair
accuracy despite the overlap between subtypes and the
misclassifications. The network cF provides class predictions
based on the information from preprocessed (i.e., normalized
and phase-folded) light curves without metadata. The observed
degeneracy is to be expected between classes of objects that
share similarly shaped light curves. By supplementing the
network with the metadata, the accuracy per class for cF,meta

increases, and the number of false positives (i.e., off-diagonal
elements in confusion matrices) is significantly diminished.
Moreover, the observed porosity between adjacent classes in
the confusion matrix appears to remain within the main stellar
variability types.
From the confusion matrices, label predictions for the

eclipsing binaries in our sample appear to overlap with other
variability groups despite the use of the metadata. These
misclassifications are possibly due to some degree of (true)
label noise that impairs/affects the reliability of the mapping
generated from training. In the current tests, class predictions of
a few subtypes remain erroneous despite the use of metadata.
The second-overtone RR Lyrae pulsators (type e) are
inaccurately predicted as first-overtone RR Lyrae (type c). To
avoid confusion within subtypes, a proposed solution would be
to introduce a weighting scheme on the feature contributions
{Xenc, Xmeta} injecting some prior knowledge regarding the
features’ importance in VS classification.
We also investigate the accuracy within three main stellar

variability groups—short-period pulsators (group 1), eclip-
sing binaries (group 2), and long-period variables (group 3),
and report the classification accuracy achieved in the test set
for the best-performing models per group in Table E2.
Examining the results of the best-performing RNNs and
tCNN, the classification accuracy increases significantly after
incorporating the metadata. For short-period pulsators, the
accuracy of the best-performing networks reaches 78%–85%
without metadata solely based on the distinctive shape of
these stars’ light curves as the characteristic asymmetry and
steep luminosity increase observed in fundamental mode
pulsators. With metadata, the accuracy increases up to 92%–

94%. The classification of the eclipsing binaries in our
sample shows a comparable improvement, reaching 91%–

92% correct predictions at best when using metadata.
Similarly, the LPV sample benefits from the use of metadata
as a secondary input, as the best-performing networks

Table 2
Classification Accuracy Obtained on the Test Set for the Best-performing
Networks (See the Text for a Description) across Three Different Data Sets
(B-band Only (Top), and Two Variants of the Combination of R and B Bands

(Middle and Bottom))

MACHO – Bband ID Net LSTM GRU tCNN dTCN

cF 0.749 0.781 0.732 0.675

cF,meta 0.916 0.907 0.887 0.786

dF 0.730 0.739 0.701 0.689

dF,meta 0.905 0.886 0.900 0.802

MACHO – RBmerged ID Net LSTM GRU tCNN dTCN

cF 0.737 0.780 0.722 0.667

cF,meta 0.890 0.910 0.815 0.747

dF 0.726 0.738 0.691 0.686

dF,meta 0.906 0.883 0.912 0.814

MACHO – RBhybrid ID Net LSTM GRU tCNN dTCN

cF 0.776 0.789 0.744 0.696

cF,meta 0.917 0.905 0.845 0.768

dF 0.748 0.749 0.706 0.726

dF,meta 0.905 0.880 0.904 0.818

Note. The best performances among all nets are highlighted in bold.

8

The Astrophysical Journal Supplement Series, 250:30 (39pp), 2020 October Jamal & Bloom



achieve 65%–88% of true positives at best from an initial
30%–54% without metadata.

To further investigate the classification performances, we
compute additional metrics (see Table E3). The recall (i.e., the
true positives rate or sensitivity) characterizes the ability of the
network to properly retrieve the true labels, and the precision
depicts the level of agreement between the predictions per class
and the true labels. The F1-score corresponds to a combination
of both metrics. We report in Table E4 the averaged metrics for
the best-performing LSTM direct classifiers cF and cF,meta that,
respectively, showcased classification accuracies of 75% and
92%. The averaged precision, recall, and F1-score are boosted,
respectively, to 77%, 80%, and 78% from an initial ∼51% rate.
Individual metrics per class highlight an increased improve-
ment. However, the inability of the network to predict a few
subtypes such as the second-overtone RR Lyrae pulsators
affects the recall and precision averaged across all observations
in the test set. Table E3 reports the averaged metrics for the
best-performing models for the GRUs, tCNNs, and dTCNs.
Similar conclusions can be reached regarding the performances
of the RNNs and tCNNs outperforming the dTCNs in the
current tests.

To characterize the need for metadata and photometric
observables for classification, we performed a supplementary
classification test using only the metadata as inputs to the
classifier module. The results are reported in Table E5. Using
the metadata (i.e., the amplitudes, averaged magnitudes,
periods, and colors), the network achieves an 83% accuracy
(i.e., fraction of true positives). However, the classification
metrics per class indicate a high number of false predictions in
addition to the inability to predict some subtypes, which
corresponds to a lower precision, recall, and F1-score
compared, for instance, to the performances of the best-
performing RNN direct classifier and composite network in

Table E3. Overall, combining the information encoded in the
light curves and the metadata allows for a better mapping
characterizing the stellar variability types.

3.3.3. Reconstructed Light Curves

In this section, the autoencoder performance is assessed
through the quality of reconstructed light curves Xrec. An ideal
reconstruction would preserve the embedded (denoised) struc-
ture of the input data Xphot. To visually assess the reconstruction
quality, we select a sample of objects for display (see Table 3)
and show the reconstructed light curves for the best-performing
composite network dF,meta in Figures E6–E7. A subset of the
reconstructed light curves for the best-performing LSTM
composite network is also shown in Figure 3.
Overall, the reconstruction results indicate a smoothing

effect on the magnitude measurements as well as a correlation
between the decoder performance and the input data quality. In
particular, low signal-to-noise levels in the data limits the
ability of the network to recover real structures, and the
resulting Xrec appears exaggeratedly smoothed out with no
distinct features (such as the characteristic pulsation profile or
peaks at maximum light). Furthermore, some pulsating
variables can exhibit irregularity or low-frequency modulations
that may evolve on timescales longer than the observed time
range, noticeably seen for long-secondary periodic (LSP) stars
in the Wood sequence D (Wood et al. 2004). In such cases, the
folded light curves using the primary period appear as a
mismatched superimposition of multiple cycles, as seen in the
irregular LPV displayed in Figure 3. To prevent such
limitations, detection of multi-periodicity, irregularity, and
low-frequency modulations should be considered to potentially
isolate those objects that may require a different preprocessing
strategy and classification approach.

Figure 2. Confusion matrices obtained from the test set predictions for the best-performing LSTM direct classifiers cF and cF,meta on the B band. The values in each
box correspond to the number of predictions vs. the initial count of true labels (indicated on the right). The main stellar variability groups are highlighted in red, and
comprise the RR Lyrae, Cepheids, LPVs, and eclipsing binaries.
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Table 3
Selected Subset of Objects from the MACHO VS Database for Display

Object IDa Variability Type α δ Period á ñR á ñB á ñKV á ñKR á ñ - á ñK KV R Amplitude Amplitude SSRb

(rad) (rad) (days) (mag) (mag) (mag) (mag) (mag) (in R) (in B)

n1 82.9138.798 RR Lyrae (type ab) 1.46723 −1.20004 0.539 −4.342 −4.198 20.096 19.692 0.403 0.729 1.053 0.416
n2 1.3449.1187 RR Lyrae (type c) 1.31759 −1.20170 0.337 −4.829 −4.906 19.427 19.244 0.183 0.258 0.399 0.652
n3 1.4052.2961 RR Lyrae (type e) 1.33093 −1.20398 0.264 −4.849 −4.848 19.471 19.21 0.261 0.226 0.396 1.005
n4 1.3441.45 CEP (FU) 1.31567 −1.21106 3.362 −8.420 −8.226 16.059 15.605 0.454 0.505 0.715 0.063
n5 81.9241.38 CEP (FO) 1.47038 −1.22092 1.973 −7.797 −7.420 16.832 16.195 0.637 0.217 0.320 0.208
n6 1.4046.1610 LPV (Wood seq. A) 1.33270 −1.21091 45.150 −9.351 −8.220 15.896 14.505 1.391 0.085 0.086 0.928
n7 5.4407.15 LPV (Wood seq. B) 1.34311 −1.21385 131.004 −9.397 −7.895 16.154 14.392 1.762 0.169 0.251 0.959
n8 82.9134.20 LPV (Wood seq. C) 1.46758 −1.20433 267.152 −7.578 −5.348 18.570 16.080 2.490 1.462 2.424 0.271
n9 1.3689.30 LPV (Wood seq. D) 1.32271 −1.20431 826.788 −8.949 −7.259 16.756 14.806 1.949 1.086 1.346 0.467
n10 1.3442.233 Eclipsing binary 1.31643 −1.21027 1.640 −6.332 −6.725 17.665 17.798 −0.132 0.930 1.090 0.208

Notes.
a The standard three-integer identifier in the MACHO photometry database (field.tile.sequence).
b Model-fit residuals from Supersmoother applied to the reduced photometric B-band data.
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To assess the global performances reached on the test set, we
evaluate the reconstruction error as a function of a data-quality
indicator (SSR) corresponding to the model-fit residuals computed
from the SuperSmoother algorithm in Friedman (1984). The
SuperSmoother performs a component-wise linear smoothing
of the time-series data using adaptive bandwidths. The residuals
are obtained from the averaged differences between the time series
and the regression fits. In the current application, we use the SSR
as a direct indicator of the data quality in order to discuss the
decoder reconstructions in the tested NNs. We expect the light-
curve measurements with low signal-to-noise, irregular variations,
or extended low-frequency modulations in time to be associated
with a high SSR. The distribution of the reconstruction error in
Figure 4 suggests a distinct trend: the system is able to moderately
recover the morphology of objects associated with low SSR (e.g.,
the Cepheids n4 and n5 and the Mira star n8) as opposed to noisier
and irregular light-curve profiles (e.g., objects n3, n6, and n7,
which are RR Lyrae of type e and LPVs from the Wood sequences
A and B).

A comparable analysis on the performances of the best-
performing GRU, tCNN, and dTCN composite models dF,meta
reaches a similar conclusion on the distribution of the reconstruc-
tion error (see Figure E8). From the reconstructed profiles of the
selected objects (see Figures E6–E7), networks achieve overall
comparable performances despite few noticeable differences, such
as the reconstruction of the shockwave propagating before the
maximum light in the fundamental model RR Lyrae (object n1)
that is recovered by the convolutional networks but heavily
smoothed out in the LSTM and GRUs. The RNNs also appear to
overly smooth out the modulations of the LPV star (object n9,
LPV Wood sequence D), while convolutional nets partially
restore discontinuous plateaus. Furthermore, the composite LSTM
model appears to preserve the shape of the primary and secondary
eclipses in the detached eclipsing binary (object n10), while
convolutional nets (dTCNs and tCNNs) partially recover the depth
of the eclipses and the GRU disproportionately smoothing out
these features. Based on the reconstructed profiles of selected
objects, the moderate smoothing of small-scale features by the

Figure 3. Reconstructed light curves from the test set for the best-performing LSTM composite network dF,meta.
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RNNs can be interpreted as these models focusing on an overall
data structure propagated through the RNN cells. The signal-to-
noise of these features plays a role as well in the reconstruction
quality. Convolutional NN variants, given the choice of kernel
sizes for convolutions, exhibit a similar behavior through a
localized smoothing in the reconstructed profiles.

From the reconstruction error distributions, the reconstruc-
tion performances of the best-performing LSTMs, GRUs,
tCNNs, and dTCNs show a comparable reconstruction ability.
In our current designs, the decoder outputs reconstructed
magnitudes. To further characterize the ability of the decoder
modules to unfold the generated embeddings into reconstructed
profiles close to the input data, the development of novel
designs to output reconstructed profiles along with the
associated prediction errors is left for future study.

3.3.4. Latent Space Exploration

Using dimensionality reduction algorithms, encoded features
of the train set can be projected onto a reduced (2D or 3D)
representation. The results for the best-performing LSTM
composite network dF,meta are shown in Figure 5. For better
visualization, projections are separated for the three main
variability groups in Figures E9–E11. We limit the analysis of
the latent representation to the training data set as it
corresponds to the learned partitioning.

The encoded features generated from the best-performing
composite network are projected onto a 3D representation using
the Uniform Manifold Approximation and Projection (UMAP)
algorithm (McInnes et al. 2018) described in Appendix B.2. The
degree of separation of the clusters in the reduced representation
space characterizes the type of information fed to the classifier
network. Without metadata, solely based on the encoded
morphology of the light curves, the projection outlines (see left
panel of Figure 5) a large fraction of RR Lyrae, Cepheids,

eclipsing binaries, and LPVs isolated to some extend in the
projected space. The level of separability of these clusters is limited
by the overlap between classes of objects sharing a similar shape of
(preprocessed) light curves, as noticed for the majority of LPVs,
overtone pulsating RR Lyrae, Cepheids, and a few eclipsing
binaries in our sample. In the detailed representations (see
Figures E9–E11), the encoded features of eclipsing binaries are
clustered into composition of a compact aggregate, a dispersed set,
and outliers, while short-period pulsators cluster into a compact
aggregate of fundamental mode pulsators and an overlapping
blend of overtone pulsators, given their similar light-curve profiles.
In the latent space, the LPV sample clusters into a compact
aggregate without a clear delineation between the different
subtypes; this suggests a lack of discriminating features in Xenc

that would be necessary to distinguish the different subtypes.
When metadata is supplemented, the projection of the

augmented features set {Xenc, Xmeta} shows a better separ-
ability in the reduced latent space (see Figure 5 on the right);
this separability also coincides with the improvement in the
classification accuracy for the networks utilizing metadata to
complement the encoded photometry. In particular, the detailed
representations for the main variability types highlight well-
separated clusters for the short-period pulsators, while the
sample of eclipsing binaries clusters into a composition of a
compact aggregate, a filamentary structure, and dispersed
outliers. The diversity in substructures in the eclipsing binaries
sample can be explained by the different categories of binaries
merged in the MACHO database (e.g., contact, detached, and
semidetached stellar binaries) in addition to possible label
contamination. Similarly, the LPV sample is well separated
from other variability groups and is projected onto a
filamentary structure with an enhanced separability between
the different subtypes. The best-performing GRU, tCNN, and
dTCN composite networks give comparable projection results.
To investigate the properties of the embeddings obtained from

composite networks versus direct classifiers, a projection of the
generated encodings obtained by the best-performing LSTM
direct classifier is reported in Figure E12. Compared to the
composite network, the direct classifier network generates an
embedding layer Xenc by propagating the information between
an encoder and a classifier module. In the latent representation,
distinct clusters are noticeable along with the expected overlap of
objects with a similar light-curve shape. From the 3D
representation, the main difference between the embeddings
generated from the LSTM direct classifier (see Figure E12) and
the LSTM composite network (see Figure 5) lies in the clusters’
(intraclass) dispersion. The encoder-decoder combination in the
composite network appears to narrow the clusters in the latent
representation; this effect would be useful for anomaly detection
to locate potential outliers at the outskirts of identified compact
aggregates or the intersection of adjacent clusters.
To summarize, composite NN architectures are able to

encode the photometric observables into substructures asso-
ciated with the stellar variability classes. Without metadata, the
encodings generated from the photometric data cluster into
distinct aggregates despite the overlap between classes of
objects sharing a similar morphology of preprocessed light
curves. By supplementing the metadata as a secondary input to
complement the encoded photometry, the level of separation in
the latent space is enhanced, which aligns with the overall
increase in classification accuracy. An examination of the
nature of the overlap regions of the latent space, as well as the

Figure 4. Reconstruction error (MAE) as a function of the model-fit residuals
from the SuperSmoother algorithm (Friedman 1984) for the best-
performing LSTM dF,meta on the B band. The highlighted numbers (1–10)
refer to the subset of selected objects from the test set used to showcase the
reconstruction quality of the autoencoder branch.
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properties of the different aggregates, is left for future study.
We expect that similar studies using larger VS data sets will
help test the potential universality of the latent space, and also
reveal potential outliers that could constitute new subclasses.

4. Conclusions

In this work, we explored the use of NN architectures for VS
classification through various use-case scenarios. These
architectures allowed us to generate higher-abstraction encod-
ings of the photometric data without the need for hand-coded
feature engineering.

Two types of architectures, identified as direct classifiers and
composite networks, were tested. Both networks are composed
of an encoder module to transform the data into a reduced
representation and a classifier to predict labels. Composite
networks include a decoder module to define an encoded
representation of the input data by optimal reconstruction. In our
analysis, VS classification using multi-passband photometric
data was performed by two approaches, either by encoding a
merged representation of all passband measurements (merged
approach) or jointly processing individual encodings (hybrid
approach). Sparsely observed multi-passband photometry would
benefit from adopting the latter approach.

In this work, we also experimented with a variety of NN
architectures and investigated the effect of ancillary metadata
on classification performance. Through an empirical search on
different hyperparameter set configurations, the best-perform-
ing models were identified. Models exploiting hyperparameter
tuning through optimized ML approaches or Bayesian optim-
ization are left for future work. In our work, we found that

systems solely exploiting the time-series data were able to
reach a ∼70% accuracy for the best-performing models. By
supplementing the metadata as a secondary input, a net increase
in the classification accuracy is observed across all network
types, reaching at best a ∼91% accuracy for the best-
performing LSTMs and temporal CNN models. Misclassifica-
tions for the best-performing networks are primarily restricted
to the main stellar variability types, which provides a strong
incentive for a multistage architecture for label predictions, to
first predict the main stellar variability type, followed by
subtype prediction. On a computational level, the training
convergence time for RNN models was found to be longer, due
in part to larger memory allocation costs.
For composite networks, the reconstruction quality of the

decoder module appears to be highly contingent on the input data
properties (i.e., the signal-to-noise level and smoothness of the
light-curve profiles). VSs exhibiting multi-periodicity, irregularity,
or modulations over time appear in their phase-folded representa-
tion as a mismatch of superimposed cycles that a network is
unable to learn and overly smooths out in reconstruction.
The exploration of the learned encodings indicated a clear

clustering linked to the stellar variability types. Without
metadata, clusters of variables appear isolated despite the
overlap noticed for objects sharing similar light-curve profiles.
Supplementing the encoded information with the metadata
predictably lessens such degeneracy and enhances the separa-
tion between the classes; this, in turn, accounts for the increase
in the fraction of correct predictions. We would expect the
latent representations to highlight interesting properties in the
data and pinpoint potential outliers, unknown stellar variability
types, or new subtypes within known variability classes.

Figure 5. Three-dimensional representation of encoded features from the best-performing LSTM composite networkdF,meta on the B band. Generated encodings are
projected into a reduced 3D representation using the UMAP algorithm.
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To conclude, various NN architectures are able to capture low-
dimensional data representations and achieve excellent classifica-
tion accuracy without the need for hand-coded featurization. The
best-performing networks in our tests are primarily LSTM- and
tCNN-based models, with the latter benefiting from smaller
training convergence time and smaller memory footprints.

As part of future work, the development of a baseline for an
automated system able to learn a wider range of stellar
variability traits can be explored. The need for general
architectures is strongly motivated by the fact that massive
surveys are set to produce large data sets with a blend of
different types of stellar variables such as aperiodic VSs (e.g.,
cataclysmic stars and microlensing events) as well as periodic
and quasi-periodic variables (e.g., pulsators, rotators, and
eclipsing binaries). The automated classification for periodic
VSs presented here exploits phase-folded representations as
well as information from the frequency domain, while
classification of quasi-periodic variables requires the use of a
combination of multiple data representations—phase-folded
light curves, periodograms, O− C diagrams, and time series—
to produce reliable class predictions. To meet the need for a
general framework, one proposed design would consist of a
multistage architecture with different components specialized
to distinguish distinct stellar variability traits, to first dis-
criminate between the three categories of periodic, quasi-
periodic, and aperiodic VSs, then follow with classification into
the stellar variability types and subtypes.

Despite our analysis being focused on applications for
periodic VS classification, all arguments presented in the scope
of this work extend to other types of astronomical time series.
NNs can be built with a comparable architecture for supernovae
classification and transient detection, with adaptations of the
input data representation, the preprocessing strategy, and the
necessary metadata (e.g., redshift measurements and spectral
features). Similarly, our approaches in processing multi-pass-
band photometric data for classification can be generalized to
other variable objects. On the network design, the complexity of
the networks should conform to the type of data. In particular,
higher-level multidimensional data would require deeper and
complex architectures compared to 1D information such as
phase-folded light curves. Using the presented methodology on
different data sets, we would expect, on one hand, an increase in
the classification accuracy when supplementing the metadata,
and on the other hand, a significant improvement in classification
when combining sparse observations across multiple photo-
metric bands. For sparsely observed light curves, the networks
processing multiband data would very likely exceed the
classification results obtained with a single photometric band.
We expect the landscape of the latent space representation to
differ from the current results. Further analysis of latent
representations obtained from a larger scope of variability types
is left for future study.
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Appendix A
Classification Using Multiband Photometric Data

This section details our approaches for classification with
NNs using multiband photometric data. We represent, in
Figure A1, the two approaches identified as merged and hybrid
approaches. In the merged approach, the multi-passband
photometric data can be combined into a 2D tabular data of
dimension ´ +N m2 1p,merged*( ( )), in which the m photometric
band magnitude and associated error measurements are
provided along with the observation epochs.
The ith observation in Xphot,merged corresponds to the matrix
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where m refers to the number of photometric bands and P*

designates the total count of data points Np,merged* for the ith
observation. In this representation, the sparsity level of the
matrix depends on the observation times across the different
photometric bands.
Alternatively, multi-passband data can be combined into a

2D tabular data of dimension ´N 4p,merged( ), in which an
auxiliary vector encoding the photometry band is provided
along with the observation epochs and the m band magnitude
and associated error measurements. The encoding vector
associates each photometric band type with a dictionary item
(numerical or qualitative variables).
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where the enclosed measurements per band b b m:1{ } corre-
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where Pb b m:1{ } refers to the data point count per band.
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Appendix B
Description of NNs, UMAP, and Gaussian Process

Modeling

B.1. RNNs, CNNs, and TCNs

RNN refers to an NN architecture composed of intercon-
nected nodes through a directed graph (cyclic or acyclic) along
a temporal sequence. In the standard architecture, the fully
connected RNN layer is constructed such that each node is
interlinked to the adjacent units. Each node in the standard
architecture corresponds to a neural unit with an activation
function and a weight. The LSTM (Hochreiter & Schmidhuber
1997) and the GRU (Cho et al. 2014) are variants of the RNN
with a higher-level node structure composed with multiple
subunits acting as internal regulators to the propagated

information within the network. Both the LSTM and GRU
cells exploit a forget gate and an input gate, and the LSTM
utilizes an additional output gate. RNN applications to
astronomical time series include SNe classification (Charnock
& Moss 2017), VS classification using autoencoders (Naul
et al. 2018), gravitational-wave signal denoising (Shen et al.
2019), periodic VS classification (Tsang & Schultz 2019), and
online transient event detection (Möller & de Boissière 2019;
Muthukrishna et al. 2019a).
CNN refers to an NN architecture with convolutional layers

that applies a series of convolutions through overlapping
windows, allowing one to capture spatial correlations in the
data. The standard CNN architecture utilizes pooling layers
after convolutions to downsize the data in addition to fully
connected layers. The performances of convolutional-based

Figure A1. High-level architecture of the direct classifier (top) and composite (bottom) networks across two variants of the combination of multi-passband
photometric data, identified as merged and composite approaches (left and right). In the merged approach, multi-passband measurements are merged into a unique
observable Xphot,merged processed by the encoder module to compute the latent representation Xenc, whereas the hybrid approach independently encodes the multi-
passband measurements into individual features merged at a later time into a compact encoded representation Xenc. In both scenarios, the classifier module exploits
the generated encodings Xenc, along with metadata Xmeta, for label predictions. Composite networks differ from the direct classifiers by the addition of a decoder
module connected at the bottleneck level to the encoder to generate the embeddings by optimal reconstruction.
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NNs have been demonstrated in a broad range of astronomical
data applications such as galaxy classification (Dieleman et al.
2015; Aniyan & Thorat 2017; Kim & Brunner 2017;
Domínguez Sánchez et al. 2018), VS classification using
asteroseismology (Hon et al. 2017), supernovae classification
(Cabrera-Vives et al. 2016; Brunel et al. 2019; Pasquet et al.
2019b), photometric redshift estimation (Hoyle 2016; D’Isanto
& Polsterer 2018; Pasquet et al. 2019a), cosmological
parameter inference (Ntampaka et al. 2020), parameter
estimation from 21 cm tomography (Gillet et al. 2019), strong
lensing detection (Lanusse et al. 2018; Jacobs et al. 2019),
gravitational-wave signal detection (Gebhard et al. 2017, 2019;
Gabbard et al. 2018; George & Huerta 2018a, 2018b; Fan et al.
2019), generator models for weak lensing convergence maps
(Mustafa et al. 2019), cosmic-ray modeling (Erdmann et al.
2018), detection of damped Lyα systems in quasar spectra
(Parks et al. 2018), fast radio burst classification (Connor &
Leeuwen 2018), and classification of supernovae spectra
(Muthukrishna et al. 2019b).

TCN refers to an NN architecture in Lea et al. (2017),
initially derived from the Wavenet architecture (Oord et al.
2016). The network is a composition of a series of dilated
convolutions and residual blocks used to expand the filters’
receptive fields and reduce the training convergence time. A
detailed description of deep learning techniques is available in
specialized computer science publications, such as the over-
view of DL techniques by Schmidhuber (2015).

B.2. UMAP

The UMAP algorithm is a nonlinear dimensionality reduc-
tion algorithm introduced by McInnes et al. (2018). Assuming
a uniform distribution of the data on a locally connected
Riemannian manifold, the algorithm computes a low-dimen-
sional representation by optimizing a fuzzy set cross-entropy
between the simplicial set representations of the data and the
target embeddings. The UMAP has gained interest and has
been used recently for astronomical data applications such as
the SDSS DR15 spectroscopic data classification in Clarke
et al. (2020) and anomaly detection in SDSS galaxy samples in
Reis et al. (2019).

B.3. Model Prediction Using Gaussian Processes

Part of preprocessing, data reduction is performed using a
GP model to generate fixed-length representations of each
source. Foreman-Mackey et al. (2017) provided GP kernels
suitable for astronomical time series, with various applications
including radial velocity fitting and transit modeling. For
periodic VSs, we select a GP kernel based on a composition of
SHOs with a quasi-periodic covariance term. For each SHO
model, the associated power spectral density S(ω) is defined as
follows:
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where ω0,j and Qj, respectively, refer to the frequency of the
undamped oscillator and the associated quality factor of the jth
oscillator. The parameter S0,j is proportional to the resonance
(i.e., ω=ω0,j) power.
Our data reduction approach is a twofold process: first, we fit

a GP model to the observed data xobs, and second, we use the
model to predict a representation of the time series over a
reduced time frame Tred along with the uncertainties from the
GP fit.
For periodic VSs, we use a GP model corresponding to a

mixture of NSHO=2 SHOs. We based our selection on the
applications of GP modeling to data showcasing periodicity
patterns as transit light curves or stellar variables in Foreman-
Mackey et al. (2017). The GP model with two SHOs is chosen
in order to take into consideration the multi-periodicity often
encountered in variables stars. The current parameterization
and kernel type are proper to the current work with a data set of
pulsating variables and eclipsing binaries.
In the model parameterization, the periodicity (due to

pulsation or binarity) is captured by the resonance frequency,
such that:
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Here, Pj and Aj refer, respectively, to the period and amplitude
of the variability per SHO model j. For each observed light
curve, an independent GP model is fitted. A full description of
the GP modeling can be found in Foreman-Mackey et al.
(2017) and the available open-source code by Foreman-
Mackey et al. (2019).
Using the MAP solution, model prediction is performed on a

time frame Tred sampled within the range of observed epochs
Tobs. For unevenly sampled data, the GP predictions located in
large time gaps are associated with a high uncertainty of the
model. To prevent such limitation, we developed an approach
to generate a random time range within the observed Tobs

outside significant time gaps. Using the unsupervised K-means
algorithm applied to the time differences DTobs, observations
are clustered based on their proximity in time. Significant time
gaps Tgaps are identified within the group of large time
differences, and an optional rejection criterion is supplemented
to refine the detected time gaps to span, at least, higher than n
cycles of the primary period of the light curve. The reduced
time frame Tred is generated via random sampling of time
values within the observed time range outside of the identified
time gaps = T T Tset obs gaps{ }. For each detected subset j of
clustered observations, time values are obtained either by
randomly generating values within the range of Tset,j or by
randomly selecting of values in Tset,j shifted by a random
δt>0. The second approach generates a time frame Tred close
to the observed Tset.
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The GP model fitted to the data is a mixture of two SHOs
with the following parameters:
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where P is the primary period of the time series, m s,A A
2( ) refers

to the amplitude of the time series and the associated error (or a

fixed variance), and m s,Q Q
2( ) are strictly positive values set to

separate the two oscillation modes.
To illustrate the results of data reduction using the

aforementioned GP model and prediction scheme, a display
of MACHO light curves is provided in Figure B1.

Appendix C
Metrics for Multi-class Classification

To quantify the performances in multi-class classification,
the precision, recall, F1-score, and accuracy are computed (see
Table C1).

Figure B1. Displays of reduced MACHO light curves using GP model fit and prediction. A GP model is fitted to each observed light curve, and the best-fit model is
associated with the MAP solution. The predictions—magnitudes and associated errors—are computed on a reduced time range Tred of 200 data points obtained by a
random selection of time values within the observed time range Tset (outside the identified large gaps highlighted in light blue) and shifted with a random lag δtä[0,
ΔTset]. Phase-folded representations of light curves are given only as a reference. GP predictions are computed on the initial time series.
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Table C1
Classification Metrics

Metrics Per Class j j N:1 C{ } Macro-averaging
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Note. Where NC is the total number of classes, Ns is the number oftrue samples, and TP( j), TN( j), FP( j), and FN( j), respectively, refer to the true positives, the true
negatives, the false positives, and the false negatives computed from the predictions onobjects from the true class j.
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Appendix D
Networks

This section presents visual representations and tables
detailing the architectures of the neural networks used in this
work. In particular, we reprensent in Figures D1–D3 the
architectures of the direct classifiers and the composite
networks. The encoder and decoder modules are constructed

using stacks of different types of layers (RNNs, tCNNs, or
dTCNs), while the classifier module is constructed using two
dense layers.
The various configurations of the proposed architectures are

described in Table D1 and D2, and we also report in Table D3
the network sizes, thus referring to the number of parameters in
the networks.

Figure D1. Architectures of the direct classifier and composite RNNs. Naming convention follows the implementation in keras.
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

Figure D2. Architectures of the direct classifier and composite tCNNs. Naming convention follows the implementation in keras.
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Figure D3. Architectures of the direct classifier and composite dTCNs. The series of dilated convolutions and residual stacks follow the Wavenet architecture (Oord
et al. 2016) augmented with additional dropout functions to prevent overfitting. Naming convention follows the implementation in keras.
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Table D1
Networks Configuration: Entries

Network type Inputs Outputs

Classifier cF Xphot Ylabel

Classifier cF,meta {Xphot, Xmeta} Ylabel

Composite dF Xphot {Ylabel, Xrec}
Composite dF,meta {Xphot, Xmeta} {Ylabel, Xrec}

Table D2
Networks Configuration: Hyperparameters

Layer Type Configuration ID Nb Layers (nL) Size (nS) Common Hyperparameters

RNN {LSTM; GRU} (1) 1 16 Bidirectional network;

(2) 2 Categorical classification;

(3) 3 Drop fraction=0.25;

(4) 1 32 Batch size=128; maximum training epochs=200;

(5) 2 Adama optimizer; optimizer learning rate=5×10−4;

(6) 3 (Composite nets: embedding dimension nE=8; loss weightsb={1:1})

Layer Type Configuration ID Nb Layers (nL) Size (nS) Common Hyperparameters

Temporal CNN (1) 1 16 Convolution kernel size nK=5;

(2) 2 Categorical classification;

(3) 3 Drop fraction=0.25;

(4) 1 32 Batch size=128; maximum training epochs=200;

(5) 2 Adama optimizer; optimizer learning rate=5×10−4;

(6) 3 (Composite nets: embedding dimension nE=8; loss weightsb={1:1})

Layer Type Configuration ID Nb Stacks (nL) Size (nS) Common Hyperparameters

Dilated TCN (1) 1 16 Dilation ratec r=2; convolution kernel size nK=3;

(2) 2 Categorical classification;

(3) 3 Drop fraction=0.25;

(4) 1 32 Batch size=128; maximum training epochs=200;

(5) 2 Adama optimizer; optimizer learning rate=5×10−4;

(6) 3 (Composite nets: embedding dimension nE=8; loss weightsb={1:1})

Notes.
a Adam optimization algorithm (Kingma & Ba 2017).
b Loss weights report the contributions of individual branches {wec, wed} in the composite networks, respectively, the encoder-classifier and encoder-decoder
branches.
c Dilation factors in dTCN correspond to -

2j
j r

1
:1{ } , where r>1 is the dilation rate.
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Table D3
Network Sizes Corresponding to the Total Number of Parameters per Model
across Three Different Data Sets (B band Only (Top), and Two Variants of the

Combination of R and B Bands (Middle and Bottom))

MACHO – Bband Network cF cF,meta dF dF,meta

Type

LSTM 3292; (1) 3388; (1) 6661; (1) 6757; (1)
9564; (2) 9660; (2) 19205; (2) 19301; (2)
10460; (4) 10556; (4) 21157; (4) 21253; (4)
15836; (3) 15932; (3) 31749; (3) 31845; (3)
35292; (5) 35388; (5) 70821; (5) 70917; (5)
60124; (6) 60220; (6) 120485; (6) 120581; (6)

GRU 2652; (1) 2748; (1) 5157; (1) 5253; (1)
7356; (2) 7452; (2) 14565; (2) 14661; (2)
8156; (4) 8252; (4) 16101; (4) 16197; (4)
12060; (3) 12156; (3) 23973; (3) 24069; (3)
26780; (5) 26876; (5) 53349; (5) 53445; (5)
45404; (6) 45500; (6) 90597; (6) 90693; (6)

tCNN 5329; (3) 5425; (3) 8371; (3) 8467; (3)
12118; (6) 12214; (6) 15925; (2) 16021; (2)
13924; (2) 14020; (2) 16465; (6) 16561; (6)
28908; (5) 29004; (5) 26853; (5) 26949; (5)
51676; (1) 51772; (1) 41349; (1) 41445; (1)
103132; (4) 103228; (4) 67941; (4) 68037; (4)

dTCN 54100; (1) 54196; (1) 60335; (1) 60431; (1)
56212; (2) 56308; (2) 64559; (2) 64655; (2)
58324; (3) 58420; (3) 68783; (3) 68879; (3)
61380; (4) 61476; (4) 75119; (4) 75215; (4)
69700; (5) 69796; (5) 91759; (5) 91855; (5)
78020; (6) 78116; (6) 108399; (6) 108495; (6)

MACHO – RBmerged Network cF cF,meta dF dF,meta

Type

LSTM 3292 ; (1) 3388 ; (1) 6661 ; (1) 6757 ; (1)
9564 ; (2) 9660 ; (2) 19205 ; (2) 19301 ; (2)
10460 ; (4) 10556 ; (4) 21157 ; (4) 21253 ; (4)
15836 ; (3) 15932 ; (3) 31749 ; (3) 31845 ; (3)
35292 ; (5) 35388 ; (5) 70821 ; (5) 70917 ; (5)
60124 ; (6) 60220 ; (6) 120485 ; (6) 120581 ; (6)

GRU 2652 ; (1) 2748 ; (1) 5157 ; (1) 5253 ; (1)
7356 ; (2) 7452 ; (2) 14565 ; (2) 14661 ; (2)
8156 ; (4) 8252 ; (4) 23973 ; (3) 16197 ; (4)
12060 ; (3) 12156 ; (3) 16101 ; (4) 24069 ; (3)
26780 ; (5) 26876 ; (5) 53349 ; (5) 53445 ; (5)
45404 ; (6) 45500 ; (6) 90597 ; (6) 90693 ; (6)

tCNN 9329 ; (3) 9425 ; (3) 13971 ; (3) 14067 ; (3)
20118 ; (6) 20214 ; (6) 24065 ; (6) 24161 ; (6)

Table D3
(Continued)

MACHO – Bband Network cF cF,meta dF dF,meta

Type

26724 ; (2) 26820 ; (2) 29525 ; (2) 29621 ; (2)
54508 ; (5) 54604 ; (5) 46853 ; (5) 46949 ; (5)
102876 ; (1) 102972 ; (1) 81349 ; (1) 81445 ; (1)
205532 ; (4) 205628 ; (4) 133541 ; (4) 133637 ; (4)

dTCN 105300 ; (1) 105396 ; (1) 114735 ; (1) 114831 ; (1)
107412 ; (2) 107508 ; (2) 118959 ; (2) 119055 ; (2)
109524 ; (3) 109620 ; (3) 123183 ; (3) 123279 ; (3)
112580 ; (4) 112676 ; (4) 129519 ; (4) 129615 ; (4)
120900 ; (5) 120996 ; (5) 146159 ; (5) 146255 ; (5)
129220 ; (6) 129316 ; (6) 162799 ; (6) 162895 ; (6)

MACHO – RBhybrid Network cF cF,meta dF dF,meta

Type

LSTM 6364 ; (1) 6460 ; (1) 13110 ; (1) 13206 ; (1)
18908 ; (2) 19004 ; (2) 38198 ; (2) 38294 ; (2)
20700 ; (4) 20796 ; (4) 42102 ; (4) 42198 ; (4)
31452 ; (3) 31548 ; (3) 63286 ; (3) 63382 ; (3)
70364 ; (5) 70460 ; (5) 141430 ; (5) 141526 ; (5)
120028 ; (6) 120124 ; (6) 240758 ; (6) 240854 ; (6)

GRU 5084 ; (1) 5180 ; (1) 10102 ; (1) 10198 ; (1)
14492 ; (2) 14588 ; (2) 28918 ; (2) 29014 ; (2)
16092 ; (4) 16188 ; (4) 31990 ; (4) 32086 ; (4)
23900 ; (3) 23996 ; (3) 47734 ; (3) 47830 ; (3)
53340 ; (5) 53436 ; (5) 106486 ; (5) 106582 ; (5)
90588 ; (6) 90684 ; (6) 180982 ; (6) 181078 ; (6)

tCNN 10438 ; (3) 10534 ; (3) 16530 ; (3) 16626 ; (3)
24016 ; (6) 24112 ; (6) 31638 ; (2) 31734 ; (2)
27628 ; (2) 27724 ; (2) 32718 ; (6) 32814 ; (6)
57596 ; (5) 57692 ; (5) 53494 ; (5) 53590 ; (5)
103132 ; (1) 103228 ; (1) 82486 ; (1) 82582 ; (1)
206044 ; (4) 206140 ; (4) 135670 ; (4) 135766 ; (4)

dTCN 107980 ; (1) 108076 ; (1) 120458 ; (1) 120554 ; (1)
112204 ; (2) 112300 ; (2) 128906 ; (2) 129002 ; (2)
116428 ; (3) 116524 ; (3) 137354 ; (3) 137450 ; (3)
122540 ; (4) 122636 ; (4) 150026 ; (4) 150122 ; (4)
139180 ; (5) 139276 ; (5) 183306 ; (5) 183402 ; (5)
155820 ; (6) 155916 ; (6) 216586 ; (6) 216682 ; (6)

Note. The identifiers of the hyperparameter set configurations (1) to (6) are ordered by
increasing size. The largest networks for the RNNs, tCNNs, and dTCNs correspond,

respectively, to the identifiers (6), (4), and (6), and the smallest configurations

correspond, respectively, to (1), (3), and (1). The metadata in the current application

(Nf=6) adds 96 parameters.
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Appendix E
Global Performances

This section summarizes the main results of the VS
classification tests on the MACHO data with the neural
networks architectures presented in this work.

We provide results obtained for all tested configurations
across the three different data sets (B band and the two variants
of R and B bands).

The training convergence times are detailed in Figure E1,
while Figures E2 and E3 report on the total loss and accuracy
values obtained by the networks at convergence (i.e., the end
of training) for the training, validation, and test data sets.
Moreover, the evolution of the metrics (total loss and accuracy)

during training is illustrated in Figures E4 and E5 for the
LSTM composite networks dF and dF,meta.
For the best performing composite networks using the B

band, examples of reconstructed light curves are illustrated in
Figure E6 and E7. The distribution of the reconstruction errors
is further reported on Figure E8.
In this section, the representation of the generated embed-

dings is reported on Figures E9–E12 for the best performing
LSTM direct classifier and composite networks.
The identifiers of the best performing networks in the current

tests are summarized on Table E1.
Detailed results on the accuracy and classification metrics are

reported for the best-performing networks in Tables E2–E5.

Figure E1. Training convergence time (expressed in hours) of all models across three different data sets (B-band only (top), and two variants of the combination of R
and B bands (middle and bottom)). Runs are performed on a CPU model Intel Xeon E5-2643v3 using four cores per run at maximum capacity. The identifiers of
the hyperparameter set configurations (1) to (6) are stated in Table D2.
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Figure E2. Total loss (weighted MAE for reconstruction and categorical cross-entropy for classification) computed for all trained models across three different data
sets (B-band only (top), and two variants of the combination of R and B bands (middle and bottom)). Solid underlines highlight the best-performing models associated
with the minimum loss obtained in the test set. The identifiers (1) to (6) refer to the hyperparameter set configurations.
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Figure E3. Classification accuracy, defined as the fraction of true positives within the sample, computed for all trained models across three different data sets (B-band
only (top), and two variants of the combination of R and B bands (middle and bottom)). Solid underlines highlight the best-performing models associated with the
minimum loss obtained in the test set. The identifiers (1) to (6) refer to the hyperparameter set configurations.
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Figure E4. Total loss and classification accuracy for the LSTM composite dF on the B band.

Figure E5. Total loss and classification accuracy for the LSTM composite dF,meta using metadata as a secondary input on the B band.
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Figure E6. Displays (1) of reconstructed light curves from the test set for the best-performing composite dF,meta on the B band (left to right: the best-performing
LSTM, GRU, tCNN, and dTCN). For visualization purposes, the 1σ error measurements of the input data are not displayed in the reconstruction results.
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Figure E7. Displays (2) of reconstructed light curves from the test set for the best-performing composite dF,meta on the B band (left to right: the best-performing
LSTM, GRU, tCNN, and dTCN). For visualization purposes, the 1σ error measurements of the input data are not displayed in the reconstruction results.
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Figure E8. Reconstruction error (MAE) as a function of the model-fit residuals from the SuperSmoother algorithm (Friedman 1984) for the best-performing GRU,
tCNN (top, left to right), and dTCN (bottom) dF,meta on the B band. The highlighted numbers (1 to 10) refer to the subset of selected objects from the test set used to
showcase the reconstruction quality of the autoencoder branch.
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Figure E9. Three-dimensional representation of encoded features for the short-period pulsators in MACHO. The generated features from the best-performing LSTM
composite networkdF,meta on the B band are projected onto a reduced 3D representation using the UMAP algorithm.

Figure E10. Three-dimensional representation of encoded features for the LPVs in MACHO. The generated features from the best-performing LSTM composite
networkdF,meta on the B band are projected onto a reduced 3D representation using the UMAP algorithm.
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Figure E11. Three-dimensional representation of encoded features for the eclipsing binaries in MACHO. The generated features from the best-performing LSTM
composite networkdF,meta on the B band are projected onto a reduced 3D representation using the UMAP algorithm.
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Figure E12. Three-dimensional representation of encoded features for the best-performing LSTM direct classifier cF,meta on the B band. Generated encodings are
projected onto a reduced 3D representation using the UMAP algorithm.
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Table E1
Hyperparameter Set Configurations Identified for the Best-performing Networks Based on Minimum Loss Obtained on
the Test Set across Three Different Data Sets (B-band Only (top), and Two Variants of the Combination of R and B

Bands (Middle and Bottom))

MACHO – Bband ID Net LSTM GRU tCNN dTCN

cF (6) (6) (3) (1)
cF,meta (1) (5) (3) (1)
dF (5) (5) (4) (4)

dF,meta (6) (4) (5) (1)

MACHO – RBmerged ID Net LSTM GRU tCNN dTCN

cF (6) (6) (3) (3)
cF,meta (1) (5) (2) (1)
dF (5) (5) (5) (5)

dF,meta (6) (4) (6) (4)

MACHO – RBhybrid ID Net LSTM GRU tCNN dTCN

cF (5) (3) (3) (1)
cF,meta (3) (2) (6) (1)
dF (5) (5) (5) (4)

dF,meta (5) (1) (4) (4)

Note. The identifiers (1) to (6) are stated in Table D2.
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Table E2
Classification Accuracy Evaluated on the Test Set for the Best-performing Networks (See the Text for a Description) across Three Different Data Sets (B-band Only (Top), and Two Variants of the Combination of R and

B Bands (Middle and Bottom))

MACHO – Bband ID Net LSTM GRU tCNN dTCN

Full Group1 Group2 Group3 Full Group1 Group2 Group3 Full Group1 Group2 Group3 Full Group1 Group2 Group3

cF 0.749 0.819 0.802 0.428 0.781 0.834 0.831 0.520 0.732 0.811 0.797 0.359 0.675 0.765 0.752 0.247
cF,meta 0.916 0.936 0.886 0.879 0.907 0.924 0.905 0.850 0.887 0.909 0.890 0.801 0.786 0.807 0.868 0.608
dF 0.730 0.798 0.787 0.407 0.739 0.811 0.772 0.431 0.701 0.781 0.760 0.337 0.689 0.782 0.777 0.239

dF,meta 0.905 0.930 0.887 0.833 0.886 0.943 0.907 0.652 0.900 0.929 0.838 0.870 0.802 0.848 0.819 0.611

MACHO – RBmerged ID Net LSTM GRU tCNN dTCN

Full Group1 Group2 Group3 Full Group1 Group2 Group3 Full Group1 Group2 Group3 Full Group1 Group2 Group3

cF 0.737 0.808 0.755 0.455 0.780 0.834 0.819 0.532 0.722 0.794 0.785 0.379 0.667 0.729 0.768 0.315
cF,meta 0.890 0.913 0.856 0.845 0.910 0.933 0.888 0.852 0.815 0.848 0.805 0.707 0.747 0.783 0.772 0.582
dF 0.726 0.810 0.771 0.364 0.738 0.813 0.779 0.412 0.691 0.770 0.774 0.298 0.686 0.769 0.762 0.290

dF,meta 0.906 0.924 0.896 0.854 0.883 0.938 0.907 0.653 0.912 0.935 0.894 0.848 0.814 0.856 0.864 0.594

MACHO – RBhybrid ID Net LSTM GRU tCNN dTCN

Full Group1 Group2 Group3 Full Group1 Group2 Group3 Full Group1 Group2 Group3 Full Group1 Group2 Group3

cF 0.776 0.841 0.809 0.495 0.789 0.852 0.808 0.535 0.744 0.821 0.779 0.412 0.696 0.768 0.755 0.359
cF,meta 0.917 0.935 0.914 0.857 0.905 0.919 0.892 0.867 0.845 0.858 0.866 0.768 0.768 0.801 0.816 0.588
dF 0.748 0.819 0.789 0.434 0.749 0.821 0.772 0.456 0.706 0.788 0.779 0.311 0.726 0.803 0.777 0.379

dF,meta 0.905 0.921 0.894 0.859 0.880 0.939 0.890 0.648 0.904 0.933 0.881 0.825 0.818 0.873 0.872 0.545

Note. The classification accuracy is evaluated for the three main variability groups: short-period pulsators (group 1), eclipsing binaries (group 2), and LPVs (group 3).
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Table E3
Classification Metrics Evaluated on the Test Set for the Best-performing Networks (See the Text for a Description) across Three Different Data Sets (B-band Only (Top), and Two Variants of the Combination of R and B

Bands (Middle and Bottom))

MACHO – Bband ID Net LSTM GRU tCNN dTCN

PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM

cF 0.503 0.515 0.504 0.559 0.564 0.552 0.510 0.487 0.488 0.447 0.424 0.425
cF,meta 0.771 0.800 0.784 0.763 0.780 0.770 0.744 0.753 0.748 0.642 0.599 0.609
dF 0.477 0.497 0.484 0.500 0.504 0.500 0.459 0.452 0.454 0.446 0.418 0.426

dF,meta 0.765 0.774 0.768 0.679 0.705 0.689 0.748 0.796 0.768 0.597 0.627 0.603

MACHO – RBmerged ID Net LSTM GRU tCNN dTCN

PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM

cF 0.504 0.519 0.507 0.539 0.567 0.548 0.472 0.483 0.474 0.373 0.389 0.380
cF,meta 0.744 0.757 0.749 0.759 0.794 0.775 0.667 0.673 0.668 0.565 0.566 0.562
dF 0.481 0.475 0.477 0.499 0.498 0.496 0.450 0.423 0.433 0.444 0.431 0.435

dF,meta 0.773 0.778 0.774 0.677 0.702 0.687 0.765 0.788 0.776 0.614 0.627 0.619

MACHO – RBhybrid ID Net LSTM GRU tCNN dTCN

PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM PrecisionM RecallM F1-scoreM

cF 0.561 0.559 0.549 0.564 0.570 0.563 0.520 0.520 0.518 0.468 0.480 0.470
cF,meta 0.784 0.790 0.785 0.770 0.785 0.776 0.704 0.691 0.694 0.615 0.600 0.606
dF 0.505 0.518 0.508 0.516 0.522 0.516 0.457 0.443 0.447 0.478 0.481 0.478

dF,meta 0.763 0.783 0.772 0.671 0.708 0.688 0.747 0.774 0.758 0.534 0.578 0.551
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Table E4
Classification Metrics Computed on the Test Set for the Best-performing LSTM Direct Classifiers cF and cF,meta on the B Band

NetworkcF; LSTM; Best Configuration (6); Bband

MACHO – Bband Classes = i i N1 C{ } NB OF  Ytrue NB OF  Ypred TP(i) FN(i) FP(i) TN(i) Precision(i) Recall(i) F1-score(i)
(in counts) (in counts)

RR Lyrae (type ab) 1430 1574 1370 60 204 1890 0.870 0.958 0.912
RR Lyrae (type c) 344 333 172 172 161 3019 0.517 0.500 0.508
RR Lyrae (type e) 60 0 0 60 0 3464 L L L

CEP (FU) 229 202 174 55 28 3267 0.861 0.760 0.807
CEP (FO) 133 153 82 51 71 3320 0.536 0.617 0.573

LPV (Wood seq. A) 62 0 0 62 0 3462 L L L
LPV (Wood seq. B) 160 289 87 73 202 3162 0.301 0.544 0.388
LPV (Wood seq. C) 220 164 64 156 100 3204 0.390 0.291 0.333
LPV (Wood seq. D) 152 158 103 49 55 3317 0.652 0.678 0.665
Eclipsing binaries 734 651 589 145 62 2728 0.905 0.802 0.851

NC=10 Ns=3524 Accuracy PrecisionM RecallM F1-scoreM
0.749 0.503 0.515 0.504

NetworkcF,meta; LSTM; Best Configuration (1); Bband

MACHO – Bband Classes = i i N1 C{ } NB OF  Ytrue NB OF  Ypred TP(i) FN(i) FP(i) TN(i) Precision(i) Recall(i) F1-score(i)

(in counts) (in counts)

RR Lyrae (type ab) 1430 1460 1422 8 38 2056 0.974 0.994 0.984
RR Lyrae (type c) 344 388 316 28 72 3108 0.814 0.919 0.863
RR Lyrae (type e) 60 0 0 60 0 3464 L L L

CEP (FU) 229 232 204 25 28 3267 0.879 0.891 0.885
CEP (FO) 133 141 113 20 28 3363 0.801 0.850 0.825

LPV (Wood seq.A) 62 65 49 13 16 3446 0.754 0.790 0.772
LPV (Wood seq. B) 160 157 131 29 26 3338 0.834 0.819 0.826
LPV (Wood seq. C) 220 230 195 25 35 3269 0.848 0.886 0.867
LPV (Wood seq. D) 152 175 147 5 28 3344 0.840 0.967 0.899
Eclipsing binaries 734 676 650 84 26 2764 0.962 0.886 0.922

NC=10 Ns=3524 Accuracy PrecisionM RecallM F1-scoreM
0.916 0.771 0.800 0.784

Table E5
Classification Metrics Computed on the Test Set Using the Metadata via the Classifier Module

Network Classifier Module (MLP); Metadata

MACHO—Metadata Classes = i i N1 C{ } Nb of Ytrue Nb of Ypred TP(i) FN(i) FP(i) TN(i) Precision(i) Recall(i) F1-score(i)
(in counts) (in counts)

RR Lyrae (type ab) 1430 1457 1414 16 43 2051 0.970 0.989 0.980
RR Lyrae (type c) 344 397 323 21 74 3106 0.814 0.939 0.872
RR Lyrae (type e) 60 0 0 60 0 3464 L L L

CEP (FU) 229 254 213 16 41 3254 0.839 0.930 0.882
CEP (FO) 133 114 95 38 19 3372 0.833 0.714 0.769

LPV (Wood seq. A) 62 50 42 20 8 3454 0.840 0.677 0.750
LPV (Wood seq. B) 160 265 158 2 107 3257 0.596 0.988 0.744
LPV (Wood seq. C) 220 0 0 220 0 3304 L L L
LPV (Wood seq. D) 152 0 0 152 0 3372 L L L
Eclipsing binaries 734 987 686 48 301 2489 0.695 0.935 0.797

NC=10 Ns=3524 Accuracy PrecisionM RecallM F1-scoreM
0.832 0.559 0.617 0.579
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