
On the Physical Association of Fermi-LAT Blazars with Their Low-energy Counterparts

Raniere de Menezes1,2 , Raffaele D’Abrusco3 , Francesco Massaro2,4,5,6 , Dario Gasparrini7,8 , and Rodrigo Nemmen1
1 Universidade de São Paulo, Departamento de Astronomia, Rua do Matão, 1226, São Paulo, SP 05508-090, Brazil; raniere.m.menezes@gmail.com

2 Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino, Italy
3 Center for Astrophysics—Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 20138, USA

4 Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino, Italy
5 INAF-Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese, Italy

6 Consorzio Interuniversitario per la Fisica Spaziale (CIFS), via Pietro Giuria 1, I-10125, Torino, Italy
7 Istituto Nazionale di Fisica Nucleare, Sezione di Roma “Tor Vergata,” I-00133 Roma, Italy

8 Space Science Data Center—Agenzia Spaziale Italiana, Via del Politecnico, snc, I-00133, Roma, Italy
Received 2020 February 21; revised 2020 April 20; accepted 2020 April 21; published 2020 May 28

Abstract

Associating γ-ray sources to their low-energy counterparts is one of the major challenges of modern γ-ray
astronomy. In the context of the Fourth Fermi Large Area Telescope Source Catalog (4FGL), the associations rely
mainly on parameters such as apparent magnitude, integrated flux, and angular separation between the γ-ray source
and its low-energy candidate counterpart. In this work, we propose a new use of the likelihood ratio (LR) and a
complementary supervised learning technique to associate γ-ray blazars in 4FGL, based only on spectral
parameters such as the γ-ray photon index, mid-infrared colors, and radio-loudness. In the LR approach, we
crossmatch the Wide-field Infrared Survey Explorer Blazar-Like Radio-Loud Sources catalog with 4FGL and
compare the resulting candidate counterparts with the sources listed in the γ-ray blazar locus to compute an
association probability (AP) for 1138 counterparts. In the supervised learning approach, we train a random forest
algorithm with 869 high-confidence blazar associations and 711 fake associations and then compute an AP for
1311 candidate counterparts. A list with all 4FGL blazar candidates of uncertain type associated by our method is
provided to guide future optical spectroscopic follow-up observations.

Unified Astronomy Thesaurus concepts: Gamma-ray astronomy (628); Active galactic nuclei (16); Astronomical
methods (1043)

Supporting material: machine-readable table

1. Introduction

The association of γ-ray sources with their low-energy
counterparts is a long-standing challenge since the beginning of
modern γ-ray astronomy (Fichtel et al. 1994). Its major
underlying difficulty is related to the large positional
uncertainty of γ-ray observations. Even in the era of the Fermi
Large Area Telescope (LAT; Atwood et al. 2009), the
positional uncertainty of γ-ray sources ranges from a couple
of arcminutes up to ∼1° (Abdollahi et al. 2020). Then,
according to the recent release of the Fermi-LAT Fourth Source
Catalog (4FGL; Abdollahi et al. 2020), ∼25% of its sources
lack an assigned low-energy counterpart and thus have an
uncertain nature. Although the fraction of unassociated γ-ray
sources (UGSs) is still large, 4FGL presents a modest
improvement in comparison with its previous releases, which
had ∼30% of unassociated sources (Abdo et al. 2010; Nolan
et al. 2012; Acero et al. 2015). The largest population of
associated γ-ray sources is dominated by pulsars, pulsar wind
nebulae, and supernova remnant in the Galactic plane and by
blazars in the extragalactic sky (Abdollahi et al. 2020).

Several studies searching for the counterparts of γ-ray
sources have been performed in the past decade (Abdo et al.
2010; Nolan et al. 2012; Acero et al. 2015). Dedicated follow-
up observations at radio, infrared, and X-rays allowed for the
identification of potential counterparts for several Fermi-LAT
sources, for which optical spectra were then collected to
establish their nature (Paggi et al. 2014; Landoni et al.
2015; Massaro et al. 2015b, 2016; Álvarez Crespo et al.
2016a; Peña-Herazo et al. 2017, 2019; Marchesini et al. 2019;

de Menezes et al. 2020). Once a candidate counterpart is found,
it can be considered in the association methods of the Fermi-
LAT catalogs. All association methods used by Abdollahi et al.
(2020) consist of computing the association probability (AP)
based mainly on the angular separation between the center of
the γ-ray source and the position of its candidate counterpart,
thus being mostly a geometrical approach and neglecting
physical properties of candidate counterparts, such as colors,
spectral shapes, and radio-loudness to name a few. When a
candidate counterpart has AP > 80% in 4FGL, the source is
considered associated.
In this work, we propose two different association procedures,

both independent of angular separation and relying mainly on the
γ-ray–mid-infrared (MIR) connection of candidate blazar counter-
parts selected from the Wide-field Infrared Survey Explorer
(WISE) Blazar-Like Radio-Loud Sources catalog (WIBRaLS;
D’Abrusco et al. 2019). WIBRaLS is a catalog of radio-loud
candidate blazars whose WISE MIR colors are selected to be
consistent with the MIR colors of confirmed γ-ray emitting
blazars (Massaro et al. 2011; D’Abrusco et al. 2012; Massaro &
D’Abrusco 2016). We compute the APs with two different
methods: (i) the likelihood ratio (LR; Sutherland & Saunders
1992), already adopted by the Fermi-LAT Collaboration, but with
a different setup, and (ii) a random forest algorithm (RF;
Breiman 2001). By assigning an AP to each candidate counter-
part, we can schedule/program future optical spectroscopic
follow-ups on these results, prioritizing those targets with a
higher AP.
Computing an AP for each counterpart candidate is crucial

because all methods used to select candidate blazars are
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statistical in nature and do not take into account the specific
γ-ray properties of each Fermi source to be associated but do take
into account only collective features of a population of sources
(in our case, the γ-ray emitting confirmed blazars in the blazar
locus; see Section 2). Thus, association methods bridge the gap
between collective behavior and each specific case, giving an
intra-source prioritization—should there be multiple candidates
for the same γ-ray source—and an inter-source prioritization to
maximize the effectiveness of spectroscopic follow-ups.

Machine-learning techniques have been used before in the
context of Fermi-LAT catalogs to (i) predict the spectral class
of UGSs (Doert & Errando 2014; Parkinson et al. 2016;
Lefaucheur & Pita 2017; Salvetti et al. 2017) based only on the
γ-ray properties available in the Second and Third Fermi
Source Catalogs (2FGL and 3FGL, respectively; Nolan et al.
2012; Acero et al. 2015), (ii) predict the nature of blazar
candidates of an uncertain type (BCUs; Hassan et al. 2012;
Chiaro et al. 2016; Kovačević et al. 2019), and (iii) even spot
candidates of dark matter Galactic subhalos (Mirabal et al.
2012). This is the first time, however, that machine-learning is
used to associate Fermi-LAT sources with their low-energy
counterparts.

The idea underlying this work is that γ-ray blazars have
some specific radio–MIR characteristics that can tell them
between, e.g., two counterpart candidates lying in the same
elliptical uncertainty region of a γ-ray source. Indeed, some
sources associated in 4FGL have a very high AP with
counterparts that are not the closest ones if compared with
sources listed in the latest version of WIBRaLS (D’Abrusco
et al. 2019). This can happen simply because the latest version
of WIBRaLS was not taken into account when associating
4FGL sources, but it also highlights a possible bias in a method
that associate sources based mainly on angular separation: if
the real γ-ray source counterpart is not listed in one of the
catalogs used by the association algorithms, then the method
will simply choose the closest candidate.

The paper is organized as follows. In Sections 2 and 3, we
describe the samples used to carry out our analysis, providing
basic details on both WIBRaLS and 4FGL. In Sections 4 and 5,
we describe the adopted methods followed by the achieved
results in Sections 6 and 7. We conclude and summarize our
work in Section 8. The WISE magnitudes are in the Vega
system and are not corrected for the Galactic extinction, since,
as shown in D’Abrusco et al. (2014), such correction only
affects the magnitude at 3.4 μm for sources lying close to the
Galactic plane and it ranges between 2% and 5% of the
magnitude, thus it is not significantly affecting the results.
WISE bands are indicated as W1, W1, W3, and W4 and
correspond, respectively, to the nominal wavelengths at 3.4,
4.6, 12, and 22 μm, while the colors are defined as c12=
W1−W2, c23=W2−W3, and c34=W3−W4. The
adopted MIR radio-loudness parameter is defined as =q22

( )mS Slog 22 m radio , where mS22 m is the flux density in the WISE
W4 band, and Sradio is the radio flux density at 1.4 GHz or at
843 MHz, depending on the radio survey in which the
WIBRaLS radio counterpart is identified (see D’Abrusco et al.
2019, for more details).

2. Samples Used for the LR Method

We apply the LR method to all 1311 sources listed in 4FGL
with at least one counterpart in WIBRaLS, comparing their

MIR colors and radio-loudness with those of the γ-ray blazars
lying within the blazar locus (D’Abrusco et al. 2013).
The blazar locus is defined by a sample of confirmed Fermi-

LAT blazars listed in Roma-BZCAT (Massaro et al. 2015a)
and associated with WISE counterparts detected in all four
filters: W1, W2, W3, and W4. The locus is modeled in a three-
dimensional space generated by the principal components of
the MIR color–color–color distribution and describes the
typical MIR colors of γ-ray blazars, thus being ideal for our
purposes (see, e.g., D’Abrusco et al. 2013, 2019).

3. Samples Used for the Supervised Learning Method

The training set of supervised learning algorithms needs to
be representative of the expected distribution of outcomes in
the test set or the sample on which the trained algorithm will be
applied. In this case, we train an RF algorithm by gathering
high-confidence associations and not associated (fake) counter-
parts. We do this by selecting all associated sources in 4FGL
that have a counterpart in WIBRaLS and with γ-ray statistical
significance above 10σ. Such high-confidence γ-ray detections
tend to have smaller error ellipses, and for this reason, they are
easier to correctly associate with low-energy counterparts. The
final number of high-confidence associations in the training set
was 869. The fake associations were selected as the WIBRaLS
sources not associated in 4FGL but lying within 0°.5 from
4FGL sources that are already associated with a low-energy
counterpart, resulting in a total of 711 fake counterparts for the
training sample. It is possible that a few of these fake
associations are the real counterparts of the γ-ray sources.
The panels in Figure 1 show the differences between high-

confidence associations (contours) and fake associations
(orange dots) in the training sample. Based on these γ-ray-
MIR characteristics, supervised learning algorithms can be
trained to tell how likely a WIBRaLS source is associated as
the counterpart of a γ-ray source. Once trained, we applied the
RF method to a test sample made up of the 1311 4FGL-
WIBRaLS crossmatches, which is the same sample used in the
LR method.

4. The LR Method

The LR technique was first used in the context of source
association by Richter (1975) and has been introduced and
developed to look for possible counterparts among faint radio,
infrared, and X-ray sources (Wolstencroft et al. 1986; Suther-
land & Saunders 1992; Masci et al. 2001). In the context of
Fermi-LAT, the LR between a candidate counterpart, i, within
the error ellipse of a 4FGL source, j, is computed as
(Ackermann et al. 2011; Ajello et al. 2019)

( )=
-e

NA
LR , 1ij

r 2ij
2

where ( )q s s= +rij i j
2 2 1 2 is the normalized angular separa-

tion between the γ-ray source j and candidate counterpart i,
with θ being the angular separation between the counterpart
and the center of the γ-ray source, σi being the low-energy
positional uncertainty, and σj ≡ σ95%/2.4477 being the
normalized geometric mean of the semimajor and semiminor
axes of the 95% 4FGL confidence error ellipse. N is the surface
density of objects brighter than the candidate i and A is the
solid angle encompassed by the 95% confidence LAT error
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ellipse. Below, we modify this method by taking into account
only spectral properties of the candidate counterparts, as MIR
colors and radio-loudness, and comparing these properties with
what is expected for γ-ray blazars lying in the blazar locus
(D’Abrusco et al. 2013). In Section 6.1, we add a dependence
on the angular separation to this method to measure the impact
of angular separation in our results.

The LR method we adopt to estimate the AP is a
modification of the LR method described in Sutherland &
Saunders (1992) and Ackermann et al. (2011). The adopted
steps are as follows.

1. We crossmatch WIBRaLS with 4FGL to create the list of
all γ-ray blazar candidates that lie within the positional
uncertainty region at 95% level of confidence of each
Fermi-LAT object. With a total of 1311 potential
counterparts, the result of this crossmatch corresponds
to all of the 4FGL candidate counterparts listed in
WIBRaLS.

2. For each 4FGL source, we consider the γ-ray photon index
interval [ ]s sDG = G - G +G G, , where σΓ is the uncer-
tainty on the photon index as listed in 4FGL. Then, given the
correlations between Γ, the MIR colors c12 and c34, and the
MIR radio-loudness q22 for the blazars in the γ-ray blazar
locus (D’Abrusco et al. 2012), we select from WIBRaLS
only those sources with parameters within the blazar locus
ranges of [ ]D =c c c,12 12

min
12
max , [ ]D =c c c,34 34

min
34
max , and

[ ]D =q q q,22 22
min

22
max corresponding to the ΔΓ interval, as

shown in Figure 2. This step reduces the total number of
candidate counterparts from 1311 to 1138.

3. For each MIR counterpart, i, of a 4FGL source, j, we
compute the LR using the following equation:

⎡
⎣⎢

⎤
⎦⎥

( )
( )ps s

=
D D D
D D D

Q c c q

N c c q
log LR log

1

2

, ,

, ,
,i j,

1 2

12 34 22

12 34 22

where Q(Δc12, Δc34, Δq22) is the probability of finding a
WIBRaLS source with MIR colors and radio-loudness
within the ranges of Δc12, Δc34 and Δq22 over the entire
WIBRaLS catalog (i.e., it is the ratio between the total
number of sources lying within the specified intervals and
the total number of WIBRaLS sources), and N(Δc12,
Δc34, Δq22) is the local surface density of WIBRaLS
sources within a circle of 8° radius centered in the 4FGL
source and that has MIR colors and radio-loudness within
the specified ranges (i.e., it is the surface density of the
background objects at the appropriate Galactic latitude).
The positional uncertainty errors of the 95% confidence
regions of 4FGL sources are given by σ1 and σ2. Angular
separation between the γ-ray source and its counterpart is
not taken into account.

4. To compute the AP based on the LR calculated above, we
first generate 500 fake γ-ray catalogs by shifting the sky
positions of each 4FGL source by a random value
between 0.3° and 3° in a random direction of the sky.
These small shifts in R.A. and decl. guarantee that we
preserve the inhomogeneity of the γ-ray sky, which has

Figure 1. Training sample for the RF algorithm. The contours represent the distribution of the 869 high-confidence associations, while the orange dots represent the
fake associations. The spectral parameters for the training sample are shown in terms of the γ-ray photon index, Γ; the three MIR colors, c12, c23, and c34 (as defined in
the last paragraph of Section 1); and the MIR radio-loudness, q22.
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more sources concentrated toward the Galactic plane. We
then repeat steps 2 and 3 above for all matches between
the fake sources (belonging to the 500 generated
catalogs) and WIBRaLS sources to compute the average
distribution function ( ( )á ñG LRi jfake , ) of fake log LRi j, . The
log LRi j, distributions for the real and fake matches are
shown in blue and green, respectively, in Figure 3. As a
matter of comparison, we overplot the log LRi j, distribu-
tions when adding the exponential dependence of angular
separation, r, shown in Equation (1), to our method
(hatched distributions).

5. We then compare the real and the fake distributions of
log LRi j, to determine the reliability for the real
associations by computing

( )
( )
( )

r = -
á ñG

G
LR 1

LR

LR
,i j

i j

i j
,

fake ,

real ,

where ( )á ñG LRi jfake , is the average log LRi j, distribution
for fake catalogs and ( )G LRi jreal , is the log LRi j,
distribution for the real γ-ray source catalog, as shown in
Figure 3. The reliability, ρ, computed according to this
equation represents an approximate measurement of the

AP for a potential counterpart having a given log LRi j, . In
Figure 4, we show the dependence of ρ on ( )log LRi j, .
Some fluctuations are observed for ( ) <log LR 1.5i j, ,
but the overall behavior of the curve is clear: for

( ) >log LR 1.5i j, , basically all counterpart candidates
have very high (>95%) APs. The orange shadow in
Figure 4 represent the uncertainty region caused by
choosing different radii when computing the local surface
density (see step 3 above). This region was generated by
ranging the radii from 3.5° up to 15° in 200 linearly
spaced intervals. We observe that, in the region defined
by ( ) >log LR 1.5i j, , the APs do not really depend on how
we choose the background region radius.

The APs obtained with this method range from 60% to
100%. Among the sources listed as identified in 4FGL—those
for which the association to the low-energy counterpart is
guaranteed—the APs are always above 99%.

5. The RF Method

In the context of supervised learning algorithms, we use a RF
(Breiman 2001) to compute the AP of 4FGL counterparts. The
RF method is an ensemble classifier that uses decision trees as

Figure 2. Region selected in the blazar locus for a source with the γ-ray photon index of Γ=2.65±0.10. Given an interval ΔΓ, only the sources within the ranges
of Δc12, Δc34, and Δq22 can be selected as possible counterparts of γ-ray sources.

Figure 3. Distribution of the ( )log LRi j, for the crossmatches between
WIBRaLS and 4FGL (Greal) is shown in blue; the average distribution for
the crosmatches between WIBRaLS and the fake γ-ray catalogs (á ñGfake ) is
shown in green. The hatched histograms represent the same distributions when
taking angular separation, r, into account with the exponential behavior shown
in Equation (1).

Figure 4. Reliability ρ derived from the LR method as a function of ( )log LRi j, .
The black dots are the points adopted in this work, while the orange shadow
represents the uncertainty region due to different choices of radii when
computing the local surface density, N(Δc12, Δc34, Δq22). In the region

( ) >log LR 1.5i j, , the impact of choosing different radii is negligible.
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building blocks for classification (James et al. 2013). For
classifying a new object, each tree in the forest chooses one
class and, by aggregating the predictions of all decision trees,
the RF makes a final prediction based on the choice made by
the majority of the trees, thus improving the predictive
capability and reducing the tendency of standard decision trees
to over-fit the training sample.

We train and estimate the accuracy of the RF method with
the sample described in Section 3 using cross-validation: the
RF algorithm has been trained with 10 subsets, each containing
90% of the training sample (where the sources are randomly
chosen) and has been tested on the complementary 10 subsets
containing 10% of the training sample, in a way that the final
accuracy of 78.2%±3.3% is simply the average ratio of
correctly predicted observations to the total observations. The
following attributes listed in 4FGL and WIBRaLS were used
during the learning process: the γ-ray power-law photon index,
Γ; WISE colors c12, c23, and c34; and radio-loudness, q22,
computed with respect to the infrared flux in band W4. We
tested several other parameters available in 4FGL and
WIBRaLS, as γ-ray variability index and ratios between
γ-ray flux densities (power-law and logparabola spectral
models) and the radio flux density, but all of them presented
a negligible impact on the results, with improvements in the
algorithm accuracy of ∼3% in the best case (i.e., γ-ray
variability index) and sometimes only adding noise. Among the
used parameters, the one with largest impact in the accuracy
when combined with Γ is c12, followed by c34, q22, and c23,
respectively. As discussed in Section 1, we are neglecting
angular separation between the center of the γ-ray sources and
the position of the MIR sources listed in WIBRaLS, as we are
proposing an association method that relies only on spectral
properties.

We use the RF classifier available in the Python library
sklearn (Pedregosa et al. 2011). The code fits several
decision trees on subsamples of the data set and average them
to improve the predicted accuracy and prevent over-fitting. To
guarantee the stability of our results, we use 5000 trees and let
the nodes grow until all leaves contain less than the minimum
number of samples required to split an internal node. The APs
obtained with the RF algorithm range from 5% to 100% and the
lowest AP obtained for blazars listed as identified in 4FGL (all
of them included in the training sample) is 70%.

6. Results from the LR Approach

The total number of associations with AP >99% (i.e., as high
as the AP obtained for the identified 4FGL sources; see Section 4)
is 743 out of the 1138 original 4FGL-WIBRaLS crossmatches
within the intervals Δc12, Δc34, and Δq22. This number increases
to 1051 when considering counterparts with AP >95%. Among
all the 1138 sources for which we compute an AP, 283 are
associated in 4FGL as BCUs, 473 as BL Lacs, 350 as flat
spectrum radio quasars, and the rest of them are divided into a few
non-blazar extragalactic and unknown objects. We found five
UGSs with a counterpart in WIBRaLS and with APs ranging from
93% up to 99%. The BCUs and UGSs associated here—
especially those with APs as high as the identified 4FGL sources
—are promising targets for future optical spectroscopic follow-up
missions. In fact, optical spectroscopic observations for some of
them are available in de Menezes et al. (2020) and H. A. Peña-
Herazo et al. (2020, in preparation), where all of the sources have
blazar-like optical spectra. All BCUs and UGSs associated here
are listed in Tables A1 and A2 in the Appendix.
Among the γ-ray sources associated here (with any AP), 22

of them have different counterparts in 4FGL that are not listed
in WIBRaLS (see Table 1). The 22 counterparts listed in 4FGL

Table 1
List of Sources with Associations Provided with the LR Method Developed Here and that Have a Different Association in 4FGL

4FGL name Association WIBRaLS Association 4FGL AP LR WIB AP LR 4FGL

J0119.9+4053 J011947.90+405418.4 CRATES J012018+405314 0.97 L
J0211.1-0646 J021116.95-064419.9 LEDA 1029376 0.99 0.96
J0237.7+0206 J023737.97+020742.5 PKS 0235+017 0.93 L
J0402.9+6433 J040254.43+643510.0 1RXS J040301.8+643446 0.99 0.83
J0640.9-5204 J064111.26-520232.2 ERC217 G261.25-22.62 0.99 L
J0725.6-3530 J072548.16-353041.8 NVSS J072547-353039 0.99 L
J0801.3-0617 J080141.07-060535.2 CRATES J080140-054037 0.61 L
J0807.7-1206 J080730.69-120608.9 CRATES J080736.06-120745.9 0.93 0.92
J1122.0-0231 J112213.71-022914.0 2QZ J112156-0229 0.96 L
J1136.3-0501 J113547.40-050804.8 NVSS J113607-050156 0.86 L
J1145.7+0453 J114631.75+045819.2 PKS 1142+052 0.93 0.89
J1300.4+1416 J130020.92+141718.4 OW 197 0.96 0.95
J1305.3+5118 J130645.87+511655.0 IERS B1303+515 0.83 L
J1516.8+2918 J151641.71+291816.5 RGB J1516+293 0.97 0.89
J1518.6+0614 J151847.70+061259.0 TXS 1516+064 0.96 0.96
J1550.8-1750 J155053.18-175618.4 TXS 1548-177 0.97 0.88
J1734.0+0805 J173510.44+080831.0 2MASS J17340287+0805237 0.86 0.83
J1807.1+2822 J180712.91+282059.5 WISE J180634.08+281908.0 0.86 L
J1953.0-7025 J195306.71-702428.7 PKS 1947-705 0.99 0.96
J2110.2-1021 J211038.30-103337.2 PKS 2107-105 0.86 0.95
J2209.8-5028 J221040.80-502652.5 PMN J2210-5030 0.96 L
J2329.7-2118 J232940.19-211345.0 PKS 2327-215 0.97 0.88

Note. As expected, most (but not all) of the associations listed in 4FGL are closer to the γ-ray emission center than the WIBRaLS candidate counterparts selected
based on MIR colors. Starting from the left side, the columns are (i) the name of the γ-ray source in 4FGL, (ii) the WISE name of the WIBRaLS candidate counterpart
selected based on MIR colors, (iii) the candidate counterpart listed in 4FGL, (iv) the AP obtained with the LR method developed here, and (v) the AP obtained with
the LR used in 4FGL.
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are generally closer to the center of the γ-ray sources than the
WIBRaLS counterparts selected based on MIR colors, which is
probably due to the exponential dependence with angular
separation (see Equation (1)) adopted in 4FGL. Furthermore,
165 of the 1138 WIBRaLS counterpart candidates are not
associated by the LR method adopted in 4FGL. These sources
were associated in 4FGL mainly via the Bayesian method
(Abdollahi et al. 2020). Additionally, no correlation is observed
between the APs computed here and the APs computed with
the LR method adopted in 4FGL, indicating that the methods
are completely independent.

6.1. Considering Angular Separation

When we consider angular separation (with an exponential
dependence as shown in Equation (1)) together with WISE
MIR colors and q22, the LR distributions look like the hatched
histograms in Figure 3. As the distributions are very similar, the
APs resulting when considering angular separation are also
similar. The total number of associated counterparts in this case
is 580 with AP > 99%, or 1071 when considering AP > 95%.
Furthermore, all sources with AP < 95% have low γ-ray
statistical significance (<10σ), which generally implies in large
positional and γ-ray photon index errors.

In the upper panel of Figure 5, we compare the APs obtained
with the LR method developed here with those obtained with
the LR adopted in 4FGL. In the bottom panel, we show the
same comparison when taking into account the angular

separation, r, in the LR method. In both cases, our method
tends to give higher APs.

7. Results from the RF Approach

We found a total of 960 associations with AP > 70% (i.e., in
the same range of the identified 4FGL sources; see Section 5)
out of 1311 test sources (see Section 3). Furthermore, the
number of counterparts with AP > 50% increases to 1109. Due
to the low accuracy presented by the RF method (see
Section 5), we use these results only as a comparison to the
LR method described in the previous section. The APs for
the BCUs and UGSs associated with the RF are shown in
Tables A1 and A2 in the Appendix.
When comparing the APs obtained with the RF algorithm

and those obtained with the LR methods used here and in
4FGL, we found no significant correlation, although the APs
computed with the RF approach tend to be smaller and
distributed over a larger range. The major difference between
both methods is the way we feed the two algorithms with the
data. In Figure 1, it is clear that several fake associations
(orange dots) occupy the same region as the high-confidence
associations, thus counterparts lying within the high-confidence
association region (black contours) still have a high chance of
being a fake association in the RF approach. The same does not
happen with the LR method. Furthermore, based on how we
defined the training set and the fake associations, we are
solving an intrinsically more complicated task with the RF
approach than with the LR method.

8. Discussion and Conclusions

Associating γ-ray sources with their low-energy counterparts
is challenging (Massaro et al. 2013). Given the absence of
multiwavelength monitoring and optical spectroscopic data
within the error ellipses of many 4FGL sources, we have to
recur to statistical methods when associating γ-ray sources to
their counterparts.
In this work, we propose an alternative to the LR association

method adopted by the Fermi-LAT Collaboration (Abdollahi
et al. 2020). Here, the APs are independent of angular
separation and apparent magnitude and rely only on spectral
parameters such as MIR colors and radio-loudness. As a
complementary association method, we trained an RF algo-
rithm to associate γ-ray sources to their counterparts. Both
methods, however, are suited only for associating blazar
candidates to γ-ray sources. Other types of γ-ray sources, like
pulsars and starburst galaxies (to name a few), cannot be
directly associated with the proposed methods.
In the LR method adopted here, we naturally loose some true

blazar associations that have MIR colors just outside the blazar
locus (i.e., the region of the WISE color–color–color diagram
populated by confirmed γ-ray blazars). The sources associated
here, however, are very good γ-ray blazar candidates and
excellent targets for future optical spectroscopic follow-ups.
Furthermore, as all sources in WIBRaLS are radio-loud with
respect to the q22 parameter (D’Abrusco et al. 2019), it is likely
to find many BL Lac-galaxy dominated among the sources
excluded by our method. It is really unlikely that these sources
have no sign of nuclear activity, as the presence of non-active
galactic nuclei in WIBRaLS is estimated to be <5% (de
Menezes et al. 2019). The results from our analysis are as
follows.

Figure 5. Comparison between the APs obtained with our LR method
neglecting (upper panel) and considering (bottom panel) angular separation and
the APs obtained with the LR method used in 4FGL. The APs computed by our
method tend to be higher than those listed in 4FGL paper.
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1. The total number of associations computed with the LR
method is 743 with AP > 99%, or 1051 associations with
AP > 95%. We associate a total of 283 BCUs and five
UGSs (listed in Tables A1 and A2 in the Appendix).

2. Adding a dependence on angular separation to the LR
method does not significantly change the results,
indicating that WIBRaLS sources are generally in good
positional agreement with 4FGL sources.

3. A supervised learning method is used for the first time to
associate counterparts to γ-ray sources. As the perfor-
mance of the algorithm is ∼80%, the results derived from
this method are considered complementary to those
obtained with the LR method and should not be
interpreted as giving definitive associations to 4FGL
sources.

This is the first work where spectral properties of blazars are
used to associate γ-ray sources to their low-energy counter-
parts. Previous methods rely basically on parameters like the
apparent magnitude and angular separation between the γ-ray
source center and the position of its candidate counterpart.

The lists of BCUs and UGSs available in the Appendix give
us the excellent opportunity to test the LR method presented
here. In Tables A1 and A2, the targets are sorted alphabetically
and can be prioritized by choosing those with higher APs.
Optical spectroscopy follow-ups of these targets may be crucial
to test if the association based on MIR colors is indeed an
appropriate approach.
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Appendix
List of Targets for Optical Spectroscopic Follow-up

A list with all BCUs associated with the LR method is
provided in Table A1, where the sources are promising targets
for future optical spectroscopic follow-ups (Massaro et al.
2015c; Ricci et al. 2015; Álvarez Crespo et al. 2016b). The
columns are the name of the source in γ-rays and MIR, the AP
obtained with the LR method developed here, the AP obtained
with the RF approach, the AP obtained with the Bayesian
method used in 4FGL, and the AP computed with the LR
method based on the angular distance as in 4FGL. Similarly,
Table A2 lists the five UGSs described in Sections 6 and 7 and
their APs.

Table A1
BCUs Associated by the LR Method Based Only on Spectral Parameters

4FGL Name WISE Name LR WISE RF Bayesian LR 4FGL

J0001.6-4156 J000132.74-415525.2 0.99 0.97 1.0 0.85
J0008.0-3937 J000809.17-394522.8 0.87 0.61 0.92 0.88
J0010.8-2154 J001053.64-215704.2 0.96 0.42 0.99 0.95
... ... ... ... ... ...
J1238.1-4541 J123806.03-454129.6** 0.99 1.0 1.0 0.94
J1239.4+0728 J123924.58+073017.2* 1.0 0.96 1.0 0.94
... ... ... ... ... ...

Note. The BCUs listed here are good targets for future optical spectroscopic follow-ups. In the first two columns, we have the names of the γ-ray source and its WISE
counterpart. The last four columns show the APs as given by the LR and RF methods in this work and by the Bayesian and LR methods used in 4FGL. Sources tagged
with “

*
” and “

**
” are confirmed blazars, with optical spectra available in de Menezes et al. (2020) and H. A. Peña-Herazo et al. (2020, in preparation), respectively.

(This table is available in its entirety in machine-readable form.)

9 http://www.star.bris.ac.uk/~mbt/topcat/
10 https://www.astropy.org/index.html
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