Large-scale Multiconfiguration Dirac–Hartree–Fock Calculations for Astrophysics: n = 4 Levels in P-like Ions from Mn xi to Ni xiv

, , , , , , , , , , , and

Published 2020 April 14 © 2020. The American Astronomical Society. All rights reserved.
, , Citation C. X. Song et al 2020 ApJS 247 70 DOI 10.3847/1538-4365/ab7cc6

Download Article PDF
DownloadArticle ePub

You need an eReader or compatible software to experience the benefits of the ePub3 file format.

0067-0049/247/2/70

Abstract

Using the multiconfiguration Dirac–Hartree–Fock and the relativistic configuration interaction methods, a consistent set of transition energies and radiative transition data for the lowest 546 (623, 701, and 745) states of the $3{p}^{4}3d$, $3s3{p}^{2}3{d}^{2}$, $3s3{p}^{3}4p$, $3s3{p}^{4}$, $3{s}^{2}3{d}^{3}$, $3{s}^{2}3{p}^{2}3d$, $3{s}^{2}3{p}^{2}4d$, $3{s}^{2}3{p}^{2}4s$, $3{p}^{3}3{d}^{2}$, $3{p}^{5}$, $3s3p3{d}^{3}$, $3s3{p}^{3}3d$, $3s3{p}^{3}4s$, $3{s}^{2}3p3{d}^{2}$, $3{s}^{2}3{p}^{2}4p$, and $3{s}^{2}3{p}^{3}$ configurations in Mn xi (Fe xii, Co xiii, and Ni xiv) is provided. The comparison between calculated excitation energies for the n = 4 states and available experimental values for Fe xii indicate that the calculations are highly accurate, with uncertainties of only a few hundred cm−1. Lines from these states are prominent in the soft X-rays. With the present calculations, several recent new identifications are confirmed. Other identifications involving $3{p}^{2}4d$ levels in Fe xii that were found to be questionable are discussed and a few new assignments are recommended. As some n = 4 states of the other ions also show large discrepancies between experimental and calculated energies, we reassess their identification. The present study provides highly accurate atomic data for the n = 4 states of P-like ions of astrophysical interest, for which experimental data are scarce.

Export citation and abstract BibTeX RIS

1. Introduction

In the ultraviolet (UV) and extreme ultraviolet (EUV) spectral regions, P-like ions of the iron group elements are used for plasma diagnostics, especially to measure electron densities (see, e.g., the review by Del Zanna & Mason 2018). Fe xii is especially important for the solar corona. The most prominent lines in the UV/EUV region were observed by Solar and Heliospheric Observatory and Skylab and were recently measured by the Hinode satellite  (Young et al. 2009; Del Zanna 2012a). In our recent work (Wang et al. 2018b), using the multiconfiguration Dirac–Hartree–Fock (MCDHF) and the relativistic configuration interaction (RCI) methods (Grant 2007; Froese Fischer et al. 2016), excitation energies for the lowest 143 states of the n = 3 ($3{s}^{2}3{p}^{3}$, $3s3{p}^{4}$, $3{s}^{2}3{p}^{2}3d$, $3s3{p}^{3}3d,3{p}^{5}$, and $3{s}^{2}3p3{d}^{2}$) configurations from Cr x to Zn xvi were provided. Using these data, we reassessed the previous identifications of the important $3{s}^{2}3{p}^{2}3d$ levels in Fe xii, confirming most of the previous suggestions by Del Zanna & Mason (2005). Based on our calculated energies, the atomic data from Del Zanna et al. (2012a), and Hinode EUV imaging spectrometer spectra, new identifications of a few $3s3{p}^{3}3d$ levels were also suggested, which have been included in the CHIANTI atomic database version 9 (Dere et al. 1997, 2019).

The n = 4 → n = 3 transitions in highly ionized Fe ions, including Fe xii, are the dominant lines in the soft X-rays (50–150 Å). These transitions have recently been reviewed by Del Zanna (2012b), where a series of large-scale scattering calculations (the first of its kind) for all the ions, provided by Del Zanna (2012b) and Del Zanna et al. (2012a, 2012b) in a series of papers, were used to assess the identifications in this spectral region. Most of the previous identifications of these n = 4 → n = 3 transitions were due to Fawcett et al. (1972), although some of the original ones were due to Edlén in his seminal work in the 1930s (see, e.g., the review in Del Zanna & Mason 2018). Del Zanna (2012b) pointed out that several of the strongest transitions were never assigned and proposed their identification, based on solar and laboratory spectra (the same used by Fawcett et al. 1972). A few problems with Fawcett's assignments were also noted, but the accuracy of the theoretical wavelengths did not allow firm identifications.

A significant fraction (about a third) of the spectral lines in the soft X-rays still awaits interpretation. One purpose of our work is to provide excitation energies and wavelengths involving the n = 4 states for P-like ions from Mn xi to Ni xiv with spectroscopic accuracy, to aid the identification process. Using the MCDHF and RCI method (in the following, referred to as MCDHF), excitation energies, wavelengths, lifetimes, and radiative transition data including oscillator strengths, line strengths, and transition rates, are provided for the main n = 3, 4 levels of the $3{p}^{4}3d$, $3s3{p}^{2}3{d}^{2}$, $3s3{p}^{3}4p$, $3s3{p}^{4}$, $3{s}^{2}3{d}^{3}$, $3{s}^{2}3{p}^{2}3d$, $3{s}^{2}3{p}^{2}4d$, $3{s}^{2}3{p}^{2}4s$, $3{p}^{3}3{d}^{2}$, $3{p}^{5}$, $3s3p3{d}^{3}$, $3s3{p}^{3}3d$, $3s3{p}^{3}4s$, $3{s}^{2}3p3{d}^{2}$, $3{s}^{2}3{p}^{2}4p$, and $3{s}^{2}3{p}^{3}$ configurations. In Section 3, using accurate wavelengths for the $n=4\to n=3$ transitions of Fe xii to Ni xiv, we will review their identification and suggest some new lines. This provides a stringent accuracy assessment of our calculations.

The other purpose of our work is to provide a consistent accurate set of radiative transition data for P-like ions from Mn xi to Ni xiv for spectral line modeling. This work extends and complements our long-term theoretical efforts (Wang et al. 2014, 2015, 2016a, 2016b, 2017a, 2017b, 2017c, 2017d, 2018a, 2018b, 2018c, 2018d, 2019, 2020; Guo et al. 2015, 2016; Si et al. 2016, 2017, 2018; Chen et al. 2017, 2018; Zhao et al. 2018) to provide atomic data for L- and M-shell systems with high accuracy. For a review, see Jönsson et al. (2017).

2. Theory and Calculations

The MCDHF method in the GRASP2K code  (Jönsson et al. 2007, 2013) is reviewed by Froese Fischer et al. (2016). This method is also described in our recent papers (Wang et al. 2018b, 2018c). For this reason, in the sections below, only the computational procedures are described.

In our MCDHF calculations, the multireference (MR) sets for even and odd parities include even configurations: $3{p}^{4}3d$, $3s3{p}^{2}3{d}^{2}$, $3s3{p}^{3}4p$, $3s3{p}^{4}$, $3{s}^{2}3{d}^{3}$, $3{s}^{2}3{p}^{2}3d$, $3{s}^{2}3{p}^{2}4d$, and $3{s}^{2}3{p}^{2}4s;$ odd configurations: $3{p}^{3}3{d}^{2}$, $3{p}^{5}$, $3s3p3{d}^{3}$, $3s3{p}^{3}3d$, $3s3{p}^{3}4s$, $3{s}^{2}3p3{d}^{2}$, $3{s}^{2}3{p}^{2}4f$, $3{s}^{2}3{p}^{2}4p$, and $3{s}^{2}3{p}^{3}$.

By allowing single and double substitutions from the n = 3, 4 electrons of the MR sets to orbitals with n ≤ 8, l ≤ 6, and by allowing single excitations of the n = 2 electrons to orbitals with n ≤ 6, l ≤ 4, configuration state function (CSF) expansions are generated. The 1s shell is defined as inactive closed shell in all CSFs of the expansions.

For both energy separations and transition probabilities, the neglected correlations from n = 1, 2 are comparatively unimportant (Wang et al. 2018b). In the following RCI calculation, the transverse electron interaction in the low-frequency limit and the leading quantum electrodynamic (QED) effects (vacuum polarization and self-energy) corrections are included. In the final CSF expansions for the different J symmetries, the number of CSFs is, respectively, about 5.9 millions for even parity and 8.1 millions for odd parity.

By using the jj-LSJ transformation approach (Gaigalas et al. 2004, 2017), the jj-coupled CSFs are transformed into LSJ-coupled CSFs, from which the LSJ labels used by experimentalists are obtained.

3. Evaluation of Data

3.1. Energy Levels

In Table 1, excitation energies for the lowest 623 levels of the $3{p}^{4}3d$, $3s3{p}^{2}3{d}^{2}$, $3s3{p}^{3}4p$, $3s3{p}^{4}$, $3{s}^{2}3{d}^{3}$, $3{s}^{2}3{p}^{2}3d$, $3{s}^{2}3{p}^{2}4d$, $3{s}^{2}3{p}^{2}4s$, $3{p}^{3}3{d}^{2}$, $3{p}^{5}$, $3s3p3{d}^{3}$, $3s3{p}^{3}3d$, $3s3{p}^{3}4s$, $3{s}^{2}3p3{d}^{2}$, $3{s}^{2}3{p}^{2}4p$, and $3{s}^{2}3{p}^{3}$ configurations in Fe xii from the present MCDHF calculations (hereafter referred to as MCDHF1) are displayed. All these states are below the first $3{s}^{2}3{p}^{2}4f$ level. For comparison, experimental excitation energies compiled in the Atomic Spectra Database (ASD) of the National Institute of Standards and Technology (NIST; Kramida et al. 2018), while experimental (CHIANTI1) and calculated (CHIANTI2) values from the CHIANTI version 9 (Dere et al. 1997, 2019) are also included along with excitation energies from our recent MCDHF calculations (MCDHF2; Wang et al. 2018b). The previous calculations, such as Tayal (2011), Storey et al. (2005), and Vilkas & Ishikawa (2004), were focused on the n = 3 levels, and their comparison with our recently MCDHF results for the n = 3 levels was shown in our previous work (Wang et al. 2018b). Therefore, their results (Vilkas & Ishikawa 2004; Storey et al. 2005; Tayal 2011) are not included in Table 1.

Table 1.  Excitation Energies E in cm−1 for 623 States of Fe xii from the Present MCDHF1 Calculations

Key Level EMCDHF1 EMCDHF2 ΔEMCDHF2 ENIST ${\rm{\Delta }}{E}_{\mathrm{NIST}}$ ${E}_{{\rm{CHIANTI1}}}$ ${\rm{\Delta }}{E}_{{\rm{CHIANTI1}}}$ ${E}_{\mathrm{CHIANTI}2}$ ${\rm{\Delta }}{E}_{\mathrm{CHIANTI}2}$
1 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$ 0 0 0 0 0 0   0 0
2 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{3/2}^{\circ }$ 41872 41771 −101 41566 −306 41555.602 −316.398 41556 −316
3 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$ 46386 46320 −66 46075 −311 46088 −298 46088 −298
4 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{1/2}^{\circ }$ 74557 74373 −185 74109 −448 74107 −450 74107 −450
5 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{3/2}^{\circ }$ 80926 80763 −163 80515 −411 80515 −411 80515 −411
6 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{5/2}$ 274618 274499 −119 274373 −245 274373 −245 274373 −245
7 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{3/2}$ 284240 284127 −114 284005 −235 284005 −235 277374 −6866
8 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{1/2}$ 288550 288452 −98 288307 −243 288307 −243 288307 −243
9 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}{D}_{3/2}$ 340143 340105 −38 340020 −123 339725 −418 335258 −4885
10 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}{D}_{5/2}$ 342090 342051 −39 341703 −387 341716 −374 341716 −374

Note. For comparison, excitation energies from our recent MCDHF2 calculations (MCDHF2; Wang et al. 2018b), experimental excitation energies compiled in the NIST ASD (Kramida et al. 2018), experimental (CHIANTI1) and calculated (CHIANTI2) values from the CHIANTI version 9 (Dere et al. 1997, 2019) are also included, along with their differences (${\rm{\Delta }}{E}_{x}={E}_{x}-{E}_{\mathrm{MCDHF}1}$) in cm−1 with the present MCDHF values.

Only a portion of this table is shown here to demonstrate its form and content. A machine-readable version of the full table is available.

Download table as:  DataTypeset image

The differences between the MCDHF1 and MCDHF2 results for the lowest 143 states are listed in Table 1 and are generally within a few hundred cm−1. The average absolute difference with the standard deviation (Wang et al. 2017c) between the two data sets is 1 cm−1 ± 313 cm−1. When the present MCDHF1 excitation energies for the n = 3 levels are compared with the experimental values from the NIST and CHIANTI database, the agreement is also very good. The differences are generally within a few hundred cm−1. There is a misprint for experimental excitation energies of the two levels ($3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{P}_{3/2}$ with the key (#37) and $\#38/3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{S}_{1/2}$) in the CHIANTI version 9. The experimental values should be 577,680 cm−1 for the $\#37/3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{P}_{3/2}$ level and 579,630 cm−1 for the $\#38/3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{S}_{1/2}$ level, respectively (Del Zanna & Mason 2005). After correcting this misprint, the average absolute differences with our MCDHF1 energy values are −164 ± 313 cm−1 for NIST and −113 ± 313 cm−1 for CHIANTI1, respectively, where the standard deviations are indicated after the values.

Looking at higher-lying levels (above #143) in Fe xii, the present MCDHF1 calculations, as well as the CHIANTI2 theoretical values reported by the autostructure calculations by Del Zanna et al. (2012b), provide a complete data set. The autostructure calculations were carried out to provide target state wave functions for the scattering calculations. They are therefore not very accurate, providing excitation energies that indeed depart substantially from the present MCDHF1 values. For almost all higher-lying states of Fe xii, experimental values (NIST and CHIANTI1) are scarce. Only some levels of the $3{s}^{2}3{p}^{2}4s$, $3{s}^{2}3{p}^{2}4p$, $3{s}^{2}3{p}^{2}4d$, and $3s3{p}^{3}4s$ were identified, based on the solar and laboratory spectra of Behring et al. (1972) and Fawcett et al. (1972). The differences between our MCDHF1 excitation energies and the experimental values (NIST and CHIANTI1) are generally within a few hundreds of cm−1. However, several discrepancies have been noted, as described below.

Our MCDHF excitation energies, EMCDHF (cm−1), together with MCDHF radiative lifetimes, ${\tau }_{\mathrm{MCDHF}}^{l}$ (in s), in the length form and ${\tau }_{\mathrm{MCDHF}}^{v}$ (in s) in the velocity form are reported in Table 2 for the lowest 546 (623, 701, and 745) states of the $3{p}^{4}3d$, $3s3{p}^{2}3{d}^{2}$, $3s3{p}^{3}4p$, $3s3{p}^{4}$, $3{s}^{2}3{d}^{3}$, $3{s}^{2}3{p}^{2}3d$, $3{s}^{2}3{p}^{2}4d$, $3{s}^{2}3{p}^{2}4s$, $3{p}^{3}3{d}^{2}$, $3{p}^{5}$, $3s3p3{d}^{3}$, $3s3{p}^{3}3d$, $3s3{p}^{3}4s$, $3{s}^{2}3p3{d}^{2}$, $3{s}^{2}3{p}^{2}4p$, and $3{s}^{2}3{p}^{3}$ configurations in Mn xi (Fe xii, Co xiii, and Ni xiv). Observed values ENIST (cm−1) from the NIST ASD (Kramida et al. 2018) and energy differences ΔE (cm−1) between the values of EMCDHF and ENIST are also listed in this table. As many levels are strongly mixed, their configuration label is not unique. Here, the parity, J value, and energy are used to match the levels to the NIST ASD. For those levels, the NIST values are shown in italics. The experimental excitation energies ENIST agree well with our EMCDHF values for a majority of the n = 4 states. However, there are 14 levels, including 4 levels in Mn xi, 4 levels in Fe xii, 4 levels in Co xiii, and 2 levels in Ni xiv, for which differences are over 2000 cm−1. The $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{F}_{7/2}$ state in Fe xii, where ENIST and EMCDHF differ by 3616 cm−1, is discussed below in detail. For the same levels, large difference of about 3700 cm−1 also occur for Mn xi and Co xiii. As an example, the energy differences ΔE between EMCDHF and ENIST as a function of the nuclear charge Z are displayed in Figure 1 for the $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{3/2}$ and $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{5/2}$ states. Two anomalies appear for the $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{3/2}$ state in Co xiii and the $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{5/2}$ state in Ni xiv. Since the same MCDHF computational processes are carried out for all the ions, the accuracy of our MCDHF excitation energies along the sequence should be systematic and consistency is expected. Therefore, the large differences indicate that the identifications involving these levels are questionable or that the wavelengths are incorrect.

Figure 1.

Figure 1. Energy differences, ΔE (in cm−1), between EMCDHF and ENIST are displayed as a function of the nuclear charge Z for the $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{3/2}$ and $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{5/2}$ states. The corresponding data are available in Table 2. The real differences for the $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{3/2}$ state in Co xiii (Z = 27) and $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{5/2}$ state in Ni xiv (Z = 28) are reduced by a factor of 100, as marked by the (×100) label.

Standard image High-resolution image

Table 2.  Excitation Energies in cm−1 for the 546 (623, 701, and 745) Lowest Levels of Mn xi (Fe xii, Co xiii, and Ni xiv), as well as Radiative Lifetimes (in s)

Z Key Level ${E}_{\mathrm{MCDHF}}$ ${E}_{\mathrm{NIST}}$ ${\rm{\Delta }}E$ ${\tau }_{\mathrm{MCDHF}}^{l}$ ${\tau }_{\mathrm{MCDHF}}^{v}$ LS-composition
25 1 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$ 3/2− 0 0 0     0.95 + 0.02 $3s{}^{2}S\,3{p}^{3}{(}_{3}^{2}D){}^{3}D\,3d{}^{4}S^\circ $
25 2 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{3/2}^{\circ }$ 3/2− 39688 39384 304 3.65E−02 3.65E−02 0.87 + 0.09 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}P^\circ $
25 3 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$ 5/2− 42986 42702 284 7.49E−01 7.49E−01 0.96
25 4 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{1/2}^{\circ }$ 1/2− 69389 68945 444 6.34E−03 6.34E−03 0.95
25 5 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{3/2}^{\circ }$ 3/2− 73967 73552 415 2.63E−03 2.63E−03 0.84 + 0.10 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}D^\circ $
25 6 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{5/2}$ 5/2+ 254257 253974 283 7.05E−10 6.83E−10 0.88 + 0.09 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}P$
25 7 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{3/2}$ 3/2+ 261964 261683 281 6.60E−10 6.43E−10 0.88 + 0.10 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}P$
25 8 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{1/2}$ 1/2+ 265557 265144 413 6.30E−10 6.16E−10 0.87 + 0.10 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}P$
25 9 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}{D}_{3/2}$ 3/2+ 314904 314532 372 3.19E−10 3.10E−10 0.76 + 0.17 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}D$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
25 10 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}{D}_{5/2}$ 5/2+ 316295 315881 414 3.48E−10 3.37E−10 0.76 + 0.17 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}D$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
25 11 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}{P}_{3/2}$ 3/2+ 361638 361400 238 1.22E−10 1.19E−10 0.46 + 0.45 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$ + 0.05 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}P$
25 12 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{P}_{1/2}$ 1/2+ 366070 365689 381 1.11E−10 1.09E−10 0.31 + 0.35 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}P$ + 0.23 $3s{}^{2}S\,3{p}^{4}{(}_{0}^{1}S){}^{2}S$
25 13 $3s{}^{2}S\,3{p}^{4}{(}_{0}^{1}S){}^{2}{S}_{1/2}$ 1/2+ 379642 379093 549 1.34E−10 1.31E−10 0.57 + 0.14 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$ + 0.12 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}P$
25 26 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{P}_{3/2}$ 3/2+ 467541 467240 301 1.66E−11 1.64E−11 0.24 + 0.42 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}P$ + 0.26 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}P$
25 27 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{P}_{5/2}$ 5/2+ 477149 477170 −21 1.28E−11 1.27E−11 0.83 + 0.09 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}P$
25 28 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}{P}_{1/2}$ 1/2+ 477269 476980 289 1.65E−11 1.63E−11 0.39 + 0.30 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}P$ + 0.21 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$
25 29 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{P}_{3/2}$ 3/2+ 480737 480720 17 1.26E−11 1.25E−11 0.82 + 0.09 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}P$ + 0.02 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
25 30 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{P}_{1/2}$ 1/2+ 483070 483040 30 1.21E−11 1.21E−11 0.82 + 0.09 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}P$ + 0.02 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}P$
25 33 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{D}_{3/2}$ 3/2+ 515486 515210 276 1.53E−11 1.52E−11 0.76 + 0.14 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}D$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
25 34 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{D}_{5/2}$ 5/2+ 515724 515430 294 2.15E−11 2.13E−11 0.68 + 0.17 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$ + 0.10 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}D$
25 35 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{P}_{1/2}$ 1/2+ 530912 530620 292 1.59E−11 1.58E−11 0.56 + 0.23 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$ + 0.09 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}S$
25 36 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{P}_{3/2}$ 3/2+ 537094 536800 294 1.55E−11 1.54E−11 0.61 + 0.27 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$ + 0.06 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}P$
25 39 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{F}_{7/2}$ 7/2+ 541095 541030 65 1.03E−11 1.03E−11 0.59 + 0.36 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}F$
25 40 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{D}_{5/2}$ 5/2+ 561720 561400 320 1.15E−11 1.15E−11 0.51 + 0.26 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$ + 0.07 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}F$
25 41 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{D}_{3/2}$ 3/2+ 563354 563060 294 1.18E−11 1.17E−11 0.56 + 0.36 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
25 227 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{4}{P}_{1/2}$ 1/2+ 1078017 1078200 −183 1.52E−11 1.52E−11 0.87 + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{2}P$ + 0.02 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,4s{}^{2}S$
25 231 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{4}{P}_{3/2}$ 3/2+ 1084219 1084130 89 1.60E−11 1.60E−11 0.91 + 0.02 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{2}P$
25 236 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{4}{P}_{5/2}$ 5/2+ 1091274 1091160 114 1.62E−11 1.62E−11 0.88 + 0.05 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4s{}^{2}D$
25 244 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{2}{P}_{3/2}$ 3/2+ 1103073 1102840 233 5.80E−12 5.81E−12 0.79 + 0.12 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4s{}^{2}D$
25 252 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4s{}^{2}{D}_{5/2}$ 5/2+ 1121369 1120870 499 1.06E−11 1.06E−11 0.69 + 0.05 $3s{}^{2}S\,3{p}^{2}{(}_{2}^{1}D){}^{2}D\,3{d}^{2}{(}_{2}^{1}D){}^{2}D$ + 0.05 $3{p}^{4}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}D$
25 255 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4s{}^{2}{D}_{3/2}$ 3/2+ 1122276 1121880 396 9.98E−12 9.98E−12 0.58 + 0.08 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{2}P$ + 0.05 $3{p}^{4}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}D$
25 422 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{P}_{5/2}$ 5/2+ 1325082 1324910 172 7.75E−12 7.68E−12 0.46 + 0.23 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}F$ + 0.11 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}D$
25 432 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{F}_{5/2}$ 5/2+ 1329453 1329310 143 1.11E−11 1.10E−11 0.54 + 0.35 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}P$ + 0.04 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}F$
25 433 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{P}_{3/2}$ 3/2+ 1331432 1332280 −848 6.44E−12 6.38E−12 0.50 + 0.16 $3s{}^{2}S\,3{p}^{2}{(}_{2}^{3}P){}^{2}P\,3{d}^{2}{(}_{0}^{1}S){}^{2}P$ + 0.10 $3s{}^{2}S\,3{p}^{2}{(}_{0}^{1}S){}^{2}S\,3{d}^{2}{(}_{2}^{3}P){}^{2}P$
25 437 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{F}_{5/2}$ 5/2+ 1333831 1331340 2491 9.86E−12 9.76E−12 0.73 + 0.11 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}F$ + 0.05 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}F$
25 440 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{F}_{7/2}$ 7/2+ 1340574 1336860 3714 1.53E−11 1.51E−11 0.57 + 0.17 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}D$ + 0.09 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}F$
25 455 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{D}_{7/2}$ 7/2+ 1345585 1345410 175 8.68E−12 8.59E−12 0.56 + 0.26 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}F$ + 0.09 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}F$
25 462 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{5/2}$ 5/2+ 1348983 1348630 353 6.22E−12 6.15E−12 0.65 + 0.22 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}F$ + 0.05 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}D$
25 464 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{3/2}$ 3/2+ 1350549 1350080 469 6.15E−12 6.05E−12 0.83 + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}P$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}D$
25 478 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{F}_{7/2}$ 7/2+ 1360953 1360590 363 8.94E−12 8.86E−12 0.77 + 0.13 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}D$ + 0.02 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}F$
25 481 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{F}_{5/2}$ 5/2+ 1362080 1361630 450 6.22E−12 6.16E−12 0.47 + 0.18 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}D$ + 0.08 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}D$
25 489 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{D}_{5/2}$ 5/2+ 1365951 1362940 3011 4.67E−12 4.61E−12 0.50 + 0.16 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}D$ + 0.14 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}F$
25 511 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{S}_{1/2}$ 1/2+ 1384507 1374650 9857 9.66E−12 9.53E−12 0.9
26 1 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$ 3/2− 0 0 0     0.94 + 0.02 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}P^\circ $ + 0.02 $3s{}^{2}S\,3{p}^{3}{(}_{3}^{2}D){}^{3}D\,3d{}^{4}S^\circ $
26 2 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{3/2}^{\circ }$ 3/2− 41872 41566 306 1.84E−02 1.84E−02 0.85 + 0.11 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}P^\circ $
26 3 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$ 5/2− 46386 46075 311 3.28E−01 3.28E−01 0.96
26 4 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{1/2}^{\circ }$ 1/2− 74557 74109 448 3.84E−03 3.84E−03 0.96
26 5 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{3/2}^{\circ }$ 3/2− 80926 80515 411 1.60E−03 1.60E−03 0.82 + 0.11 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}D^\circ $
26 6 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{5/2}$ 5/2+ 274618 274373 245 6.13E−10 5.94E−10 0.87 + 0.09 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}P$
26 7 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{3/2}$ 3/2+ 284240 284005 235 5.68E−10 5.54E−10 0.88 + 0.10 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}P$
26 8 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{1/2}$ 1/2+ 288550 288307 243 5.37E−10 5.26E−10 0.87 + 0.10 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}P$
26 9 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}{D}_{3/2}$ 3/2+ 340143 340020 123 2.73E−10 2.66E−10 0.75 + 0.17 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}D$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
26 10 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}{D}_{5/2}$ 5/2+ 342090 341703 387 3.03E−10 2.94E−10 0.76 + 0.17 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}D$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
26 11 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}{P}_{3/2}$ 3/2+ 389908 389706 202 1.08E−10 1.05E−10 0.45 + 0.44 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$ + 0.05 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}P$
26 12 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{P}_{1/2}$ 1/2+ 394654 394120 534 9.66E−11 9.46E−11 0.29 + 0.33 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}P$ + 0.27 $3s{}^{2}S\,3{p}^{4}{(}_{0}^{1}S){}^{2}S$
26 26 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{P}_{3/2}$ 3/2+ 502031 501800 231 1.51E−11 1.49E−11 0.24 + 0.42 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}P$ + 0.25 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}P$
26 27 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{P}_{5/2}$ 5/2+ 512330 512510 −180 1.19E−11 1.18E−11 0.83 + 0.08 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}P$
26 28 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}{P}_{1/2}$ 1/2+ 514055 513850 205 1.49E−11 1.48E−11 0.37 + 0.30 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}P$ + 0.20 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$
26 29 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{P}_{3/2}$ 3/2+ 516617 516740 −123 1.17E−11 1.17E−11 0.80 + 0.09 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}P$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
26 30 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{P}_{1/2}$ 1/2+ 519641 519770 −129 1.12E−11 1.12E−11 0.78 + 0.09 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}P$ +0.04 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}P$
26 31 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}{D}_{3/2}$ 3/2+ 526302 526120 182 5.62E−11 5.58E−11 0.47 + 0.36 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}D$ + 0.05 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}P$
26 32 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}{D}_{5/2}$ 5/2+ 537078 538040 −962 2.92E−11 2.90E−11 0.41 + 0.38 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}D$ + 0.08 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}D$
26 33 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{D}_{3/2}$ 3/2+ 554046 554030 16 1.39E−11 1.39E−11 0.76 + 0.14 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}D$ +0.03 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
26 34 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{D}_{5/2}$ 5/2+ 554772 554610 162 2.16E−11 2.14E−11 0.65 + 0.20 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$ + 0.09 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}D$
26 35 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{P}_{1/2}$ 1/2+ 569880 568940 940 1.47E−11 1.47E−11 0.57 + 0.23 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$ + 0.09 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}S$
26 36 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{F}_{5/2}$ 5/2+ 576848 576740 108 9.62E−12 9.58E−12 0.48 + 0.34 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}F$ + 0.08 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}D$
26 37 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{P}_{3/2}$ 3/2+ 577759 577740 19 1.44E−11 1.43E−11 0.60 + 0.26 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$ + 0.05 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}P$
26 38 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{S}_{1/2}$ 1/2+ 579837 579630 207 1.48E−11 1.46E−11 0.69 + 0.13 $3s{}^{2}S\,3{p}^{4}{(}_{0}^{1}S){}^{2}S$ + 0.05 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}P$
26 39 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{F}_{7/2}$ 7/2+ 581261 581180 81 9.63E−12 9.59E−12 0.59 + 0.36 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}F$
26 40 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{D}_{5/2}$ 5/2+ 604088 603930 158 1.07E−11 1.07E−11 0.50 + 0.25 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$ + 0.08 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}F$
26 41 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{D}_{3/2}$ 3/2+ 605721 605480 241 1.10E−11 1.10E−11 0.56 + 0.36 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
26 272 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{4}{P}_{1/2}$ 1/2+ 1242245 1242000 245 1.27E−11 1.27E−11 0.65 + 0.14 $3s{}^{2}S\,3{p}^{2}{(}_{2}^{3}P){}^{4}P\,3{d}^{2}{(}_{0}^{1}S){}^{4}P$ + 0.06 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{2}P$
26 282 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{4}{P}_{3/2}$ 3/2+ 1249844 1249660 184 1.36E−11 1.36E−11 0.72 + 0.11 $3s{}^{2}S\,3{p}^{2}{(}_{2}^{3}P){}^{4}P\,3{d}^{2}{(}_{0}^{1}S){}^{4}P$ + 0.03 $3s{}^{2}S\,3{p}^{2}{(}_{0}^{1}S){}^{2}S\,3{d}^{2}{(}_{2}^{3}P){}^{4}P$
26 291 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{2}{P}_{1/2}$ 1/2+ 1257717 1257730 −13 4.34E−12 4.35E−12 0.86 + 0.06 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{4}P$
26 292 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{4}{P}_{5/2}$ 5/2+ 1258123 1258050 73 1.39E−11 1.38E−11 0.72 + 0.10 $3s{}^{2}S\,3{p}^{2}{(}_{2}^{3}P){}^{4}P\,3{d}^{2}{(}_{0}^{1}S){}^{4}P$ + 0.06 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4s{}^{2}D$
26 297 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{2}{P}_{3/2}$ 3/2+ 1266649 1266360 289 4.84E−12 4.85E−12 0.69 + 0.14 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4s{}^{2}D$ + 0.06 $3s{}^{2}S\,3{p}^{2}{(}_{2}^{3}P){}^{4}P\,3{d}^{2}{(}_{2}^{3}P){}^{4}S$
26 327 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4s{}^{2}{D}_{5/2}$ 5/2+ 1287928 1287700 228 8.68E−12 8.67E−12 0.62 + 0.05 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{4}P$ + 0.04 $3s{}^{2}S\,3{p}^{2}{(}_{2}^{1}D){}^{2}D\,3{d}^{2}{(}_{2}^{1}G){}^{2}F$
26 328 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4s{}^{2}{D}_{3/2}$ 3/2+ 1289213 1289060 153 6.83E−12 6.84E−12 0.71 + 0.12 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{2}P$ + 0.03 $3s{}^{2}S\,3{p}^{2}{(}_{2}^{3}P){}^{2}P\,3{d}^{2}{(}_{2}^{1}D){}^{2}D$
26 488 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{P}_{5/2}$ 5/2+ 1507751 1508360 −609 6.20E−12 6.16E−12 0.21 + 0.30 $3{s}^{2}\,3{d}^{3}{(}_{3}^{2}F){}^{2}F$ + 0.14 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}F$
26 493 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{F}_{5/2}$ 5/2+ 1514177 1514070 107 7.30E−12 7.23E−12 0.52 + 0.37 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}P$ + 0.04 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}F$
26 496 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{P}_{3/2}$ 3/2+ 1517434 1517340 94 4.22E−12 4.17E−12 0.67 + 0.16 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}P$ + 0.06 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}D$
26 498 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{F}_{5/2}$ 5/2+ 1518836 1516030 2806 7.13E−12 7.05E−12 0.70 + 0.12 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}F$ + 0.06 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}F$
26 507 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{F}_{7/2}$ 7/2+ 1526756 1523140 3616 1.32E−11 1.31E−11 0.52 + 0.18 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}D$ + 0.10 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}F$
26 520 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{D}_{7/2}$ 7/2+ 1532429 1532160 269 5.12E−12 5.07E−12 0.50 + 0.30 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}F$ + 0.11 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}F$
26 525 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{5/2}$ 5/2+ 1535024 1534990 34 4.27E−12 4.22E−12 0.63 + 0.24 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}F$ + 0.05 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}D$
26 528 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{3/2}$ 3/2+ 1536959 1536480 479 4.18E−12 4.12E−12 0.78 + 0.05 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}D$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}P$
26 542 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{F}_{7/2}$ 7/2+ 1549492 1549250 242 6.95E−12 6.90E−12 0.73 + 0.16 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}D$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}F$
26 545 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{F}_{5/2}$ 5/2+ 1550449 1551400 −951 4.48E−12 4.44E−12 0.41 + 0.30 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}D$ + 0.07 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}D$
26 552 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{D}_{5/2}$ 5/2+ 1555381 1551640 3741 3.21E−12 3.17E−12 0.40 + 0.21 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}D$ + 0.16 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}F$
26 570 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{P}_{3/2}$ 3/2+ 1566331 1565720 611 5.05E−12 4.96E−12 0.87 + 0.02 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}P$
26 581 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{S}_{1/2}$ 1/2+ 1574583 1569410 5173 6.67E−12 6.58E−12 0.89
27 1 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$ 3/2− 0 0 0     0.93 + 0.03 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}P^\circ $ + 0.02 $3s{}^{2}S\,3{p}^{3}{(}_{3}^{2}D){}^{3}D\,3d{}^{4}S^\circ $
27 2 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{3/2}^{\circ }$ 3/2− 43985 43650 335 9.84E−03 9.84E−03 0.83 + 0.12 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}P^\circ $
27 3 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$ 5/2− 49988 49690 298 1.50E−01 1.50E−01 0.97
27 4 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{1/2}^{\circ }$ 1/2− 79931 79460 471 2.38E−03 2.39E−03 0.96
27 5 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{3/2}^{\circ }$ 3/2− 88576 88170 406 9.94E−04 9.95E−04 0.80 + 0.13 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}D^\circ $ + 0.02 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}S^\circ $
27 6 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{5/2}$ 5/2+ 295345 295160 185 5.39E−10 5.22E−10 0.87 + 0.09 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}P$
27 7 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{3/2}$ 3/2+ 307216 307030 186 4.93E−10 4.81E−10 0.88 + 0.09 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}P$
27 8 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{1/2}$ 1/2+ 312302 312110 192 4.62E−10 4.53E−10 0.87 + 0.10 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}P$
27 9 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}{D}_{3/2}$ 3/2+ 365890 365530 360 2.37E−10 2.31E−10 0.75 + 0.16 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}D$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
27 10 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}{D}_{5/2}$ 5/2+ 368568 368250 318 2.67E−10 2.59E−10 0.76 + 0.17 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}D$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
27 11 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}{P}_{3/2}$ 3/2+ 418617 418480 137 9.67E−11 9.46E−11 0.45 + 0.44 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$ + 0.05 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}P$
27 12 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{P}_{1/2}$ 1/2+ 423634 423290 344 8.49E−11 8.32E−11 0.27 + 0.31 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}P$ + 0.30 $3s{}^{2}S\,3{p}^{4}{(}_{0}^{1}S){}^{2}S$
27 27 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{P}_{5/2}$ 5/2+ 547650 547890 −240 1.11E−11 1.10E−11 0.82 + 0.08 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}P$ + 0.02 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
27 29 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{P}_{3/2}$ 3/2+ 552688 552880 −192 1.10E−11 1.10E−11 0.78 + 0.08 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}P$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
27 30 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{P}_{1/2}$ 1/2+ 556693 556820 −127 1.05E−11 1.04E−11 0.72 + 0.08 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}P$ + 0.07 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}P$
27 33 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{D}_{3/2}$ 3/2+ 592920 592830 90 1.28E−11 1.27E−11 0.76 + 0.14 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}D$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
27 34 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{D}_{5/2}$ 5/2+ 594302 594200 102 2.21E−11 2.19E−11 0.62 + 0.24 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$ + 0.08 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}D$
27 35 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{P}_{1/2}$ 1/2+ 608977 608870 107 1.38E−11 1.37E−11 0.57 + 0.22 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$ + 0.10 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}S$
27 37 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{P}_{3/2}$ 3/2+ 618896 618880 16 1.33E−11 1.33E−11 0.60 + 0.26 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$ + 0.05 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}P$
27 39 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{F}_{7/2}$ 7/2+ 621687 621710 −23 9.00E−12 8.97E−12 0.60 + 0.36 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}F$
27 40 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{D}_{5/2}$ 5/2+ 646974 646890 84 1.00E−11 9.99E−12 0.48 + 0.24 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$ + 0.10 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}F$
27 41 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{D}_{3/2}$ 3/2+ 648502 648390 112 1.03E−11 1.03E−11 0.56 + 0.37 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
27 354 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{4}{P}_{5/2}$ 5/2+ 1431966 1432000 −34 9.71E−12 9.67E−12 0.44 + 0.13 $3s{}^{2}S\,3{p}^{2}{(}_{0}^{1}S){}^{2}S\,3{d}^{2}{(}_{2}^{3}P){}^{4}P$ + 0.07 $3s{}^{2}S\,3{p}^{2}{(}_{2}^{3}P){}^{2}P\,3{d}^{2}{(}_{2}^{3}P){}^{4}D$
27 355 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{2}{P}_{1/2}$ 1/2+ 1432716 1432200 516 4.83E−12 4.82E−12 0.40 + 0.16 $3s{}^{2}S\,3{p}^{2}{(}_{2}^{3}P){}^{2}P\,3{d}^{2}{(}_{2}^{1}D){}^{2}P$ + 0.15 $3s{}^{2}S\,3{p}^{2}{(}_{2}^{1}D){}^{2}D\,3{d}^{2}{(}_{2}^{3}P){}^{2}P$
27 363 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{2}{P}_{3/2}$ 3/2+ 1441639 1441700 −61 4.16E−12 4.16E−12 0.57 + 0.11 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4s{}^{2}D$ + 0.03 $3s{}^{2}S\,3{p}^{2}{(}_{2}^{3}P){}^{2}P\,3{d}^{2}{(}_{2}^{1}D){}^{2}P$
27 378 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4s{}^{2}{D}_{5/2}$ 5/2+ 1464096 1464500 −404 6.30E−12 6.29E−12 0.59 + 0.11 $3s{}^{2}S\,3{p}^{2}{(}_{2}^{3}P){}^{2}P\,3{d}^{2}{(}_{2}^{3}P){}^{4}P$ + 0.06 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{4}P$
27 569 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{F}_{5/2}$ 5/2+ 1714631 1710600 4031 5.16E−12 5.11E−12 0.68 + 0.14 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}F$ + 0.06 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}F$
27 584 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{F}_{7/2}$ 7/2+ 1723923 1720300 3623 1.15E−11 1.14E−11 0.48 + 0.19 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}D$ + 0.11 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}F$
27 593 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{D}_{7/2}$ 7/2+ 1730080 1729500 580 3.19E−12 3.15E−12 0.44 + 0.33 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}F$ + 0.14 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}F$
27 601 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{3/2}$ 3/2+ 1735374 1466300 269074 2.94E−12 2.90E−12 0.78 + 0.07 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}D$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}P$
27 641 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{D}_{5/2}$ 5/2+ 1755567 1751800 3767 2.17E−12 2.14E−12 0.38 + 0.24 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}D$ + 0.20 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}F$
28 1 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$ 3/2− 0 0 0     0.92 + 0.04 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}P^\circ $
28 2 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{3/2}^{\circ }$ 3/2− 45966 45767.8 198.2 5.51E−03 5.51E−03 0.81 + 0.14 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}P^\circ $ + 0.02 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}S^\circ $
28 3 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$ 5/2− 53763 53569 194 7.20E−02 7.20E−02 0.97
28 4 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{1/2}^{\circ }$ 1/2− 85411 85126.7 284.3 1.51E−03 1.51E−03 0.96
28 5 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{3/2}^{\circ }$ 3/2− 96917 96630 287 6.31E−04 6.31E−04 0.78 + 0.15 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}D^\circ $ + 0.03 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}S^\circ $
28 6 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{5/2}$ 5/2+ 316289 316343 −54 4.79E−10 4.62E−10 0.87 + 0.09 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}P$
28 7 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{3/2}$ 3/2+ 330776 330837 −61 4.32E−10 4.20E−10 0.87 + 0.09 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}P$
28 9 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}{D}_{3/2}$ 3/2+ 392010 391916 94 2.07E−10 2.02E−10 0.74 + 0.16 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}D$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
28 10 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}{D}_{5/2}$ 5/2+ 395637 395567 70 2.38E−10 2.31E−10 0.76 + 0.17 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}D$ + 0.03 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
28 11 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}{P}_{3/2}$ 3/2+ 447660 447765 −105 8.83E−11 8.63E−11 0.44 + 0.44 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$ + 0.05 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}P$
28 12 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}{P}_{1/2}$ 1/2+ 452920 452850 70 7.55E−11 7.38E−11 0.30 + 0.32 $3s{}^{2}S\,3{p}^{4}{(}_{0}^{1}S){}^{2}S$ + 0.25 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$
28 27 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{P}_{5/2}$ 5/2+ 583004 583530 −526 1.04E−11 1.03E−11 0.81 + 0.08 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}P$ + 0.02 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
28 29 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{P}_{3/2}$ 3/2+ 588832 589310 −478 1.04E−11 1.04E−11 0.76 + 0.08 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}P$ + 0.04 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
28 30 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{P}_{1/2}$ 1/2+ 594316 594810 −494 9.99E−12 9.91E−12 0.60 + 0.13 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}P$ + 0.09 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$
28 33 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{D}_{3/2}$ 3/2+ 632033 632280 −247 1.17E−11 1.16E−11 0.75 + 0.14 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}D$ + 0.02 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
28 34 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{D}_{5/2}$ 5/2+ 634264 634430 −166 2.31E−11 2.30E−11 0.59 + 0.28 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$ + 0.06 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}D$
28 35 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{P}_{1/2}$ 1/2+ 648108 648320 −212 1.29E−11 1.29E−11 0.57 + 0.22 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$ + 0.10 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}S$
28 37 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{P}_{3/2}$ 3/2+ 660460 660710 −250 1.25E−11 1.24E−11 0.59 + 0.26 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}P$ + 0.05 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{2}P$
28 38 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{F}_{7/2}$ 7/2+ 662315 662780 −465 8.46E−12 8.43E−12 0.60 + 0.35 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}F$
28 40 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{D}_{5/2}$ 5/2+ 690353 690560 −207 9.41E−12 9.37E−12 0.47 + 0.24 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$ + 0.11 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}F$
28 41 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{D}_{3/2}$ 3/2+ 691654 691930 −276 9.72E−12 9.68E−12 0.56 + 0.37 $3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,3d{}^{2}D$
28 638 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{P}_{3/2}$ 3/2+ 1914451 1628400 286051 5.35E−12 5.31E−12 0.42 + 0.40 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}F$ + 0.10 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}P$
28 674 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{5/2}$ 5/2+ 1940510 1653100 287410 2.27E−12 2.25E−12 0.56 + 0.28 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}F$ + 0.08 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}D$

Note. ${E}_{\mathrm{MCDHF}}$: our MCDHF excitation energies. ${E}_{\mathrm{NIST}}$: observed values compiled in the NIST ASD  (Kramida et al. 2018). ΔE: energy differences (in cm−1) between the values of EMCDHF and ${E}_{\mathrm{NIST}}$. ${\tau }_{\mathrm{MCDHF}}^{l}$: our MCDHF lifetimes in length form. ${\tau }_{\mathrm{MCDHF}}^{v}$: our MCDHF lifetimes in velocity form. LS-composition: the LS eigenvector compositions. Many levels are strongly mixed, implying ambiguous configuration labels. In these cases, the parity, J, and energy are used to match the theoretical levels with the atomic energy levels from NIST ASD. For those levels, the NIST values are shown in the italics. Energy differences larger than 2000 cm−1 are displayed in bold. The results for the levels, for which the NIST values are available, are shown here for guidance regarding its form and content.

Only a portion of this table is shown here to demonstrate its form and content. A machine-readable version of the full table is available.

Download table as:  DataTypeset images: 1 2 3 4

3.2. Fe xii Line Identifications

In this section, we review the identifications of the main Fe xii transitions n = 4 → n = 3 transitions. While Del Zanna et al. (2012b) only considered the strongest transitions at low plasma density (108 electrons cm−3), here we consider the strongest transitions at high plasma density (1019 electrons cm−3) to review Fawcett's identifications based on the laboratory plates. We have also considered one of Fawcett's plates for the evaluation. Table 3 lists the strongest n = 4 → n = 3 transitions in Fe xii, calculated with the atomic data described in Del Zanna et al. (2012b). In addition to Fawcett's wavelengths, we list the approximate autostructure values and our MCDHF wavelengths, with several comments. Spectral lines that are strongest in low plasma density are noted with an asterisk.

Table 3.  A List of the Strongest Lines from n = 4 Levels for Fe xii

ij Transition Int ${\lambda }_{\exp }$ ${\lambda }_{\mathrm{AS}}$ ${\lambda }_{\mathrm{MCDHF}}$ ${\lambda }_{\mathrm{rev}}$ Notes
18–387 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{F}_{9/2}$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4p{}^{4}{D}_{7/2}^{\circ }$ 1.2 108.440 107.04 108.38 (−0.06)    
25–408 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{G}_{9/2}$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4p{}^{2}{F}_{7/2}^{\circ }$ 1.1 110.591 109.20 110.527 (−0.06)    
16–380 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{F}_{7/2}$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4p{}^{4}{D}_{5/2}^{\circ }$ 0.85 108.605 107.16 108.552 (−0.05)    
24–407 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{G}_{7/2}$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4p{}^{2}{F}_{5/2}^{\circ }$ 0.81 110.732 109.34 110.676 (−0.06)    
19–386 $3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,3d{}^{2}{F}_{7/2}$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4p{}^{4}{P}_{5/2}^{\circ }$ 0.65 107.53 108.963    
23–397 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{D}_{7/2}$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4p{}^{2}{D}_{5/2}^{\circ }$ 0.63 107.62 109.024    
39–410 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{2}{F}_{7/2}$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4p{}^{2}{D}_{5/2}^{\circ }$ 0.59 119.13 120.962    
15–371 $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{F}_{5/2}$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4p{}^{4}{D}_{3/2}^{\circ }$ 0.54 108.862 107.33 108.802 (−0.06)    
6–392 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{5/2}$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4p{}^{4}{S}_{3/2}^{\circ }$ 0.33 91.004D 89.03 91.013 (0.009)   *
7–392 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{3/2}$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4p{}^{4}{S}_{3/2}^{\circ }$ 0.28 91.808D 89.78 91.817 (0.009)   *
1–593 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$$3s{}^{2}S\,3{p}^{3}{(}_{3}^{4}S){}^{5}S\,4p{}^{4}{P}_{5/2}$ 0.28 62.40 63.24    
1–292 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{4}{P}_{5/2}$ 1.0 79.488 78.29 79.483 (−0.005)    
3–327 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4s{}^{2}{D}_{5/2}$ 0.83 80.540 79.32 80.545 (0.005)    
1–282 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{4}{P}_{3/2}$ 0.66 80.022 78.78 80.010 (−0.01)    
6–471 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{5/2}$$3s{}^{2}S\,3{p}^{3}{(}_{3}^{4}S){}^{5}S\,4s{}^{4}{S}_{3/2}^{\circ }$ 0.65 82.672D 80.76 82.672 (0.)   *
3–297 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{2}{P}_{3/2}$ 0.60 81.949 80.69 81.950 (0.)    
10–547 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}{D}_{5/2}$$3s{}^{2}S\,3{p}^{3}{(}_{3}^{2}D){}^{3}D\,4s{}^{2}{D}_{5/2}^{\circ }$ 0.60 80.99 82.685    
9–543 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{1}D){}^{2}{D}_{3/2}$$3s{}^{2}S\,3{p}^{3}{(}_{3}^{2}D){}^{3}D\,4s{}^{2}{D}_{3/2}^{\circ }$ 0.59 80.92 82.661    
2–291 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{2}{P}_{1/2}$ 0.58 82.225 81.01 82.247 (0.02)    
6–518 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{5/2}$$3s{}^{2}S\,3{p}^{3}{(}_{3}^{2}D){}^{3}D\,4s{}^{4}{D}_{7/2}^{\circ }$ 0.47 78.27 79.603    
5–328 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4s{}^{2}{D}_{3/2}$ 0.43 82.744 81.47 82.762 (0.018)    
2–328 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4s{}^{2}{D}_{3/2}$ 0.42 80.160 78.95 80.170 (0.010)    
7–471 $3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{3/2}$$3s{}^{2}S\,3{p}^{3}{(}_{3}^{4}S){}^{5}S\,4s{}^{4}{S}_{3/2}^{\circ }$ 0.38 83.336D 81.39 83.335 (0.)   *
1–272 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4s{}^{4}{P}_{1/2}$ 0.34 80.515 79.20 80.499 (−0.016)   *
3–542 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{F}_{7/2}$ 0.97 66.526 65.62 66.529 (0.003)    
3–507 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{F}_{7/2}$ 0.89 67.702 No 66.68 67.551 (−0.15)   ?
3–520 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{D}_{7/2}$ 0.83 67.291 66.44 67.293 (0.002)    
2–498 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{F}_{5/2}$ 0.81 67.821 No 66.81 67.706 67.702 N
1–488 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{P}_{5/2}$ 0.75 66.297 65.31 66.324   ?
1–493 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{F}_{5/2}$ 0.72 66.047 65.10 66.042 (−0.005)    
5–552 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{D}_{5/2}$ 0.72 67.972 No 66.88 67.822 (−0.15) 67.821 N
3–497 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{F}_{7/2}$ 0.57 67.11 67.975 67.972 N
1–496 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{P}_{3/2}$ 0.48 65.905 64.97 65.901 (−0.005)    
3–545 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{F}_{5/2}$ 0.46 66.431 65.57 66.486   ?
3–561 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{G}_{7/2}$ 0.41 65.06 65.999   ?
4–528 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{1/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{3/2}$ 0.40 68.382 67.43 68.381 (−0.001)    
2–525 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{5/2}$ 0.38 66.960 66.03 66.972 (0.012)    
5–613 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,4d{}^{2}{D}_{5/2}$ 0.38 64.41 65.632   ?
5–570 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{P}_{3/2}$ 0.34 67.331 66.36 67.321 (−0.02)    
2–548 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{D}_{3/2}$ 0.33 65.30 66.235 66.224 ?
2–545 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{F}_{5/2}$ 0.31 66.232 No 65.38 66.288 66.297 sbl
1–514 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{D}_{3/2}$ 0.27 64.48 65.386   ?
4–612 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{1/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{0}^{1}S){}^{1}S\,4d{}^{2}{D}_{3/2}$ 0.25 64.19 65.378   ?
1–492 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{P}_{3/2}$ 0.25 65.16 66.103   ?
3–517 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{D}_{5/2}$ 0.22 66.53 67.382   ?
1–501 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{P}_{1/2}$ 0.21 64.80 65.712   ?
1–486 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{4}{F}_{3/2}$ 0.20 65.39 66.380   ?
3–525 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{D}_{5/2}$ 0.20 67.164 66.23 67.175 (0.011)    
1–495 $3{s}^{2}\,3{p}^{3}{(}_{3}^{4}S){}^{4}{S}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{P}_{1/2}$ 0.20 64.98 65.910   ?
5–581 $3{s}^{2}\,3{p}^{3}{(}_{1}^{2}P){}^{2}{P}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{S}_{1/2}$ 0.15 67.164 No 65.94 66.950   ?
3–570 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{P}_{3/2}$ 7.9 × 10−2 65.805 64.87 65.792 (−0.013)    
2–552 $3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{3/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{1}D){}^{1}D\,4d{}^{2}{D}_{5/2}$ 4.9 × 10−2 66.221 No 65.17 66.072   ?

Note. The relative intensities in Column 3, $\mathrm{Int}={N}_{j}{A}_{{ji}}/{N}_{{\rm{e}}}$ , are normalized (photons) and are calculated at high density (1019 cm−3), using the atomic data in Del Zanna et al. (2012b). Column 4 gives the experimental wavelength ${\lambda }_{\exp }$ (Å), as in NIST (due to Fawcett) or due to Del Zanna (2012b; D). We add a "No" if we consider the previous identification incorrect. Column 5 gives the autostructure (AS) wavelength, ${\lambda }_{\mathrm{AS}}$. In Column 6, our present wavelength ${\lambda }_{\mathrm{MCDHF}}$ (with differences with the experimental ones in bracket), while the following column (${\lambda }_{\mathrm{rev}}$) reports the new experimental wavelengths that we propose. The last column indicates if a line is strong in low-density astrophysical plasma (*), if it is blended (sbl), if its identification is questionable (?), or if it is new (N).

Download table as:  ASCIITypeset image

For the strongest lines of the $3{s}^{2}3{p}^{2}3d$$3{s}^{2}3{p}^{2}4p$ transition array, we find a good agreement (within 0.05 Å) between Fawcett's wavelengths and our predicted values. There are some important transitions visible at low densities, from the $\#392/3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4p{}^{4}{S}_{3/2}^{\circ }$ level. Our values are in excellent agreement (0.009 Å) with the identifications proposed by Del Zanna (2012b). Generally, we confirm the CHIANTI1 experimental excitation energies for the $3{s}^{2}3{p}^{2}4p$ levels (#371, #380, #387, #392, #407, and #408), proposed by Del Zanna (2012b), as the differences with our MCDHF1 are around a few hundreds cm−1. However, for level $\#387/3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P4p{}^{4}{D}_{7/2}^{\circ }$, the difference is larger (−5252 cm−1). The original assignment by Fawcett et al. (1972) of the line at 108.44 Å value to the transition $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4p{}^{4}{D}_{7/2}^{\circ }$$3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,3d{}^{4}{F}_{9/2}$ is most likely correct. Using the CHIANTI1 experimental excitation energy 443,121 cm−1 for the lower level, this results in an energy of 1,365,290 cm−1 for the upper level, which is in good agreement with our MCDHF1 result (1,365,552 cm−1).

Regarding the $3{s}^{2}3{p}^{3}$$3{s}^{2}3{p}^{2}4s$ transition array, very good agreement with Fawcett's values is observed. The differences of our MCDHF1 excitation energies and experimental values (NIST and CHIANTI1) for the $3{s}^{2}3{p}^{2}4s$ levels are within 300 cm−1.

We also confirm the identifications proposed by Del Zanna (2012b) of the decays from the $\#471/3s{}^{2}S\,3{p}^{3}{(}_{3}^{4}S){}^{5}S\,4s{}^{4}{S}_{3/2}^{\circ }$ level, which are the strongest Fe xii transitions at low astrophysical densities. In Del Zanna (2012b), the 83.336 and 83.631 Å lines observed by Behring et al. (1972) were tentatively assigned to the decays from level $\#471/3s{}^{2}S\,3{p}^{3}{(}_{3}^{4}S){}^{5}S\,4s{}^{4}{S}_{3/2}^{\circ }$ to the lower levels $\#7/3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{3/2}$ and $\#8/3s{}^{2}S\,3{p}^{4}{(}_{2}^{3}P){}^{4}{P}_{1/2}$, respectively. Our MCDHF1 wavelengths (83.335 and 83.636 Å) for these two transitions show excellent agreement with the observations. The difference between the MCDHF1 excitation energy (1,484,211 cm−1) and the resulting CHIANTI1 experimental energy (1,483,972 cm−1) for the upper level is only −239 cm−1.

The situation for the experimental energies of the $3{s}^{2}3{p}^{2}4d$ levels is more complex and Fawcett's identifications of several states are questionable, although we note that none of the transitions are strong in low-density astrophysical plasma. As pointed out by Del Zanna (2012b), the accuracy of previous theoretical wavelengths did not allow firm identifications for the $3{s}^{2}3{p}^{2}4d$ levels. In Table 3, we present suggestions for several revised identifications. The experimental excitation energies due to Fawcett et al. (1972) for the $3{s}^{2}3{p}^{2}4d$ levels #498, #507, #552, and #581 have large deviations from our MCDHF1 results, with differences between −2800 and −5200 cm−1.

As an example, we consider the transition $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P)$ ${}^{3}P\,4d{}^{2}{F}_{7/2}$$3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{5/2}^{\circ }$ between levels #507 and #3. This transition was assigned by Fawcett et al. (1972) to the 67.702 Å line, i.e., with a wavelength about 0.151 Å greater than our MCDHF1 value (67.551 Å). We have noted that the observed wavelength is very close to the MCDHF1 value (67.706 Å) associated with the $3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{F}_{5/2}$$3{s}^{2}\,3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{3/2}^{\circ }$ transition between levels #498 and #2. The transition rate for this latter (#498–#2) transition is 1.252 × 1011 s−1, which is about two times larger than the rate (6.804 × 1010 s−1) of the #507–#3 transition, although the two predicted intensities are very similar. Therefore, we suggest to assign the 67.702 Å line to the transition $\#498/3{s}^{2}\,3{p}^{2}{(}_{2}^{3}P){}^{3}P\,4d{}^{2}{F}_{5/2}$$\#2/3{s}^{2}3{p}^{3}{(}_{3}^{2}D){}^{2}{D}_{3/2}^{\circ }$. As a consequence, the NIST (and CHIANTI1) energy for the upper level #498 should be changed to 1,518,627 cm−1, which agrees with our MCDHF1 1,518,836 cm−1 to within 210 cm−1. Similar discrepancies are noted in Table 3.

3.3. Transition Rates and Lifetimes

Wavelengths, λij, and the present MCDHF radiative transition data, which include transition rates, Aji; weighted oscillator strengths, gfji; line strength, Sji; and branching fractions (${\mathrm{BF}}_{{ji}}\,={A}_{{ji}}/{\sum }_{k=1}^{j-1}{A}_{{jk}}$) for electric-dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among all the levels listed in Table 2 are reported in Table 4. E1 and E2 radiative transition data are given in both length (l) and velocity (v) forms. Using the uncertainty estimation approach (Kramida 2013, 2014), for E1 and E2 transitions we provide the estimated uncertainties of line strengths S adopting the NIST ASD (Kramida et al. 2018) terminology (A+ ≤ 2%, A ≤ 3%, B+ ≤ 7%, B ≤ 10%, C+ ≤ 18%, C ≤ 25%, D+ ≤ 40%, D ≤ 50%, and E > 50% ) in the last column of this table. The difference, δS, between line strengths Sl and Sv (in length and velocity forms, respectively) is defined as δS = $\left|{S}_{v}-{S}_{l}\right|$/max(SvSl). The averaged uncertainties, δSav, for line strengths S for E1 transitions Fe xii in various ranges of S are assessed to 1% for S ≥ 10−1, 1.5% for 10−1 > S ≥ 10−2, 2.7% for 10−2 > S ≥ 10−3, 6% for 10−3 > S ≥ 10−4, 12% for 10−4 > S ≥ 10−5, and 23% for 10−5 > S ≥ 10−6. Then, the larger of δSav and δSji is accepted as the uncertainty of each particular line strength. In Table 4, about 24% of E1 S values in Fe xii have uncertainties of ≤2% (A+), 27% have uncertainties of ≤3% (A), 29% have uncertainties of ≤7% (B+), 2.4% have uncertainties of ≤10% (B), 12% have uncertainties of ≤18% (C+), 3.6% have uncertainties of ≤25% (C), and 0.9% have uncertainties of ≤40% (D+), while only 0.3% have uncertainties of >40% (D and E).

Table 4.  Transition Wavelengths, λ (in Å); Transition Rates, A (in s−1); Weighted Oscillator Strengths, gf; and Line Strengths, S (in au), between the States of Mn xi (Fe xii, Co xiii, and Ni xiv) Listed in Table 2

Z i j λ Type BF Al gfl Sl Av gfv Sv Acc.
26 1 2 2.388218E+03 M1 9.992E−01 5.417E+01 1.853E−07 1.094E−01        
26 1 2 2.388218E+03 E2 8.153E−04 4.420E−02 1.512E−10 1.227E−02 4.393E−02 1.502E−10 1.219E−02 B+
26 1 3 2.155836E+03 M1 6.796E−01 2.073E+00 8.667E−09 4.621E−03        
26 1 3 2.155836E+03 E2 3.473E−02 1.060E−01 4.430E−10 2.644E−02 1.055E−01 4.408E−10 2.631E−02 B+
26 1 4 1.341248E+03 M1 7.257E−01 1.889E+02 1.019E−07 3.380E−02        
26 1 4 1.341248E+03 E2 3.788E−04 9.862E−02 5.319E−11 7.644E−04 9.696E−02 5.230E−11 7.515E−04 B+
26 1 5 1.235704E+03 M1 5.511E−01 3.449E+02 3.159E−07 9.652E−02        
26 1 6 3.641427E+02 E1 9.769E−01 1.593E+09 1.900E−01 2.278E−01 1.644E+09 1.961E−01 2.351E−01 B+
26 1 7 3.518149E+02 E1 9.914E−01 1.747E+09 1.297E−01 1.502E−01 1.790E+09 1.329E−01 1.539E−01 A
26 1 8 3.465609E+02 E1 9.910E−01 1.845E+09 6.645E−02 7.581E−02 1.885E+09 6.787E−02 7.744E−02 A
26 1 9 2.939938E+02 E1 1.337E−03 4.892E+06 2.536E−04 2.454E−04 4.905E+06 2.543E−04 2.461E−04 B+
26 1 10 2.923208E+02 E1 2.489E−03 8.219E+06 6.318E−04 6.080E−04 8.329E+06 6.402E−04 6.161E−04 B+
26 1 11 2.564707E+02 E1 4.754E−03 4.416E+07 1.742E−03 1.471E−03 4.342E+07 1.713E−03 1.446E−03 A
26 1 12 2.533862E+02 E1 4.658E−03 4.823E+07 9.284E−04 7.745E−04 4.970E+07 9.569E−04 7.982E−04 B+
26 1 13 2.434208E+02 E1 9.275E−03 7.791E+07 1.384E−03 1.109E−03 7.846E+07 1.394E−03 1.117E−03 A
26 1 14 2.343153E+02 E1 8.934E−02 1.773E+07 5.839E−04 4.504E−04 1.790E+07 5.895E−04 4.547E−04 B+
26 1 15 2.322629E+02 E1 3.065E−01 3.467E+07 1.682E−03 1.287E−03 3.480E+07 1.689E−03 1.291E−03 A
26 1 17 2.259146E+02 E1 9.249E−01 9.726E+07 4.465E−03 3.321E−03 9.764E+07 4.483E−03 3.334E−03 A
26 1 20 2.235926E+02 E1 1.087E−01 7.350E+07 1.102E−03 8.110E−04 7.404E+07 1.110E−03 8.170E−04 B+
26 1 21 2.230702E+02 E1 4.464E−01 3.079E+08 9.189E−03 6.748E−03 3.100E+08 9.252E−03 6.794E−03 A
26 1 22 2.209654E+02 E1 7.735E−01 3.649E+08 1.603E−02 1.166E−02 3.666E+08 1.610E−02 1.171E−02 A+
26 1 23 2.164983E+02 M2 1.037E−05 5.189E+00 2.917E−10 1.324E+00        
26 1 26 1.991910E+02 E1 1.600E−03 1.060E+08 2.522E−03 1.654E−03 1.078E+08 2.565E−03 1.682E−03 A
26 1 27 1.951865E+02 E1 9.793E−01 8.262E+10 2.831E+00 1.819E+00 8.306E+10 2.846E+00 1.829E+00 A+
26 1 28 1.945316E+02 E1 1.044E−01 6.988E+09 7.930E−02 5.078E−02 7.032E+09 7.979E−02 5.110E−02 A+
26 1 29 1.935670E+02 E1 9.914E−01 8.446E+10 1.898E+00 1.209E+00 8.497E+10 1.909E+00 1.217E+00 A+
26 1 30 1.924406E+02 E1 9.250E−01 8.238E+10 9.147E−01 5.795E−01 8.290E+10 9.205E−01 5.832E−01 A+
26 1 31 1.900050E+02 E1 2.305E−01 4.104E+09 8.884E−02 5.557E−02 4.126E+09 8.933E−02 5.588E−02 A+
26 1 32 1.861927E+02 E1 7.855E−02 2.695E+09 8.403E−02 5.151E−02 2.707E+09 8.441E−02 5.174E−02 A+
26 1 34 1.802542E+02 E1 2.061E−03 9.564E+07 2.795E−03 1.659E−03 9.603E+07 2.807E−03 1.666E−03 A

Note. E1 and E2 transition data in both the length (l) and velocity (v) forms are provided. Type is the type of the multipole, and BF is the branching fraction from the upper level. The last column (Acc.) represents the estimated accuracies of the S values using the terminologies of the NIST ASD. Only transitions with BF ≥ 10−5 are presented. A part of the values for Fe xii are shown here for guidance regarding its form and content.

Only a portion of this table is shown here to demonstrate its form and content. A machine-readable version of the full table is available.

Download table as:  DataTypeset image

In the spirit of the uncertainty estimation approach (Kramida 2013, 2014), the estimated uncertainties of line strengths S for E2 transitions in Fe xii are estimated, as well as those for E1 and E2 transitions in Mn xi, Co xiii, and Ni xiv. The estimated uncertainties for all E1 and E2 transitions with BF ≥ 10−5 in Mn xi, Fe xii, Co xiii, and Ni xiv are listed in Table 4.

Our MCDHF radiative lifetimes ${\tau }_{\mathrm{MCDHF}}^{l}$ (in s) in the length form and ${\tau }_{\mathrm{MCDHF}}^{v}$ (in s) in the velocity form, for the lowest 546 (623, 701, and 745) states of the $3{p}^{4}3d$, $3s3{p}^{2}3{d}^{2}$, $3s3{p}^{3}4p$, $3s3{p}^{4}$, $3{s}^{2}3{d}^{3}$, $3{s}^{2}3{p}^{2}3d$, $3{s}^{2}3{p}^{2}4d$, $3{s}^{2}3{p}^{2}4s$, $3{p}^{3}3{d}^{2}$, $3{p}^{5}$, $3s3p3{d}^{3}$, $3s3{p}^{3}3d$, $3s3{p}^{3}4s$, $3{s}^{2}3p3{d}^{2}$, $3{s}^{2}3{p}^{2}4p$, and $3{s}^{2}3{p}^{3}$ configurations in Mn xi (Fe xii, Co xiii, and Ni xiv), which are calculated by considering all possible E1, E2, M1, and M2 transitions, are provided in Table 2. Our MCDHF radiative lifetimes ${\tau }_{\mathrm{MCDHF}}^{l}$ and ${\tau }_{\mathrm{MCDHF}}^{v}$ show good agreement. For example, the average deviation between ${\tau }_{\mathrm{MCDHF}}^{l}$ and ${\tau }_{\mathrm{MCDHF}}^{v}$ for all 623 levels in Fe xii is 1%.

3.4. Summary

Using the MCDHF method combined with the RCI approach, including the transverse electron interaction in the low-frequency limit and the leading QED effects corrections, calculations have been performed for the lowest 546 (623, 701, and 745) levels of the $3{p}^{4}3d$, $3s3{p}^{2}3{d}^{2}$, $3s3{p}^{3}4p$, $3s3{p}^{4}$, $3{s}^{2}3{d}^{3}$, $3{s}^{2}3{p}^{2}3d$, $3{s}^{2}3{p}^{2}4d$, $3{s}^{2}3{p}^{2}4s$, $3{p}^{3}3{d}^{2}$, $3{p}^{5}$, $3s3p3{d}^{3}$, $3s3{p}^{3}3d$, $3s3{p}^{3}4s$, $3{s}^{2}3p3{d}^{2}$, $3{s}^{2}3{p}^{2}4p$, and $3{s}^{2}3{p}^{3}$ configurations in Mn xi (Fe xii, Co xiii, and Ni xiv). Excitation energies, radiative transition data, and lifetimes are reported.

Our detailed discussion of the excitation energies of the n = 4 levels for Fe xii highlights that the identifications are questionable for a few n = 4 states. The comparison between experimental and predicted energies clearly shows that the present calculations reach spectroscopic accuracy for these high-lying states. Based on that, several identifications in the other isoelectronic ions are also uncertain. Our calculated excitation energies, as well as radiative transition data, can be used to reliably identify the remaining Fe xii and Ni xiv levels and especially to identify all the n = 4 states along the isoelectronic sequence of P-like ions, where very little experimental data are available. The present MCDHF study should therefore stimulate further experimental investigations for those ions. The resulting accurate and consistent MCDHF data set will be useful for astrophysical modeling, line identification work, and also for benchmarking other calculations.

We acknowledge the support from the National Key Research and Development Program of China under grant No. 2017YFA0403200, the Science Challenge Project of China Academy of Engineering Physics (CAEP) under grant No. TZ2016005, the National Natural Science Foundation of China (grant No. 11703004, No. 11674066, No. 11504421, and No. 11734013), the Natural Science Foundation of Hebei Province, China (A2019201300 and A2017201165), and the Natural Science Foundation of Educational Department of Hebei Province, China (BJ2018058). This work is also supported by the Fonds de la Recherche Scientifique (FNRS) and the Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO) under EOS Project No. O022818F, and by the Swedish research council under contracts 2015-04842 and 2016-04185. G.D.Z. acknowledges support form STFC (UK) via the consolidated grant to the solar/atomic astrophysics group, DAMTP, University of Cambridge. K.W. expresses his gratitude to the support from the visiting researcher program at the Fudan University.

Software: GRASP2K (Jönsson et al. 2007, 2013) and CHIANTI (Dere et al. 1997, 2019) are used in the present work.

Please wait… references are loading.
10.3847/1538-4365/ab7cc6