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Abstract

The ability to make independent detections of the signatures of exoplanets with complementary telescopes and
instruments brings a new potential for robust identification of exoplanets and precision characterization. We
introduce PEXO, a package for Precise EXOplanetology to facilitate the efficient modeling of timing, astrometry,
and radial velocity data, which will benefit not only exoplanet science but also various astrophysical studies in
general. PEXO is general enough to account for binary motion and stellar reflex motions induced by planetary
companions and is precise enough to treat various relativistic effects both in the solar system and in the target
system. We also model the post-Newtonian barycentric motion for future tests of general relativity in extrasolar
systems. We benchmark PEXO with the pulsar timing package TEMPO2 and find that PEXO produces
numerically similar results with timing precision of about 1 ns, space-based astrometry to a precision of 1 μas, and
radial velocity of 1 μm s−1 and improves on TEMPO2 for decade-long timing data of nearby targets, due to its
consideration of third-order terms of Roemer delay. PEXO is able to avoid the bias introduced by decoupling the
target system and the solar system and to account for the atmospheric effects that set a practical limit for ground-
based radial velocities close to 1 cm s−1. Considering the various caveats in barycentric correction and ancillary
data Required to realize cm s−1 modeling, we recommend the preservation of original observational data. The
PEXO modeling package is available at GitHub (https://github.com/phillippro/pexo) and Zenodo (Feng et al.
2019).
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1. Introduction

The first decades of exoplanet science have enabled
detection and some characterization of exoplanets with a much
wider range of properties than anticipated. In turn, this has
prompted a reinvention of the formation history of the solar
system. However, so far we barely have the capability to be
sensitive to the planetary systems, like our own solar system,
around nearby stars. New high-precision facilities such as TESS
(Ricker et al. 2014), Gaia (Gaia Collaboration et al. 2018),
ESPRESSO (González Hernández et al. 2018), and the
upcoming James Webb Space Telescope (Beichman et al.
2014) bring us to a golden age of exoplanet science where a
comprehensive survey of nearby planets becomes feasible and
discoveries of nearby Earth-like planets around Sun-like stars
(or “Earth twins”) become possible. This in turn leads to the
ability to detect biosignatures and begin habitability studies and
to test planet formation theories. The high precision and
overlapping constraints afforded by these new instruments
might also suffice for tests of relativity theory (Jordán &
Bakos 2008; Mignard & Klioner 2010) analogous to that
achieved for pulsar timing (Hulse & Taylor 1975; Weisberg &
Taylor 2005; Wex 2014). For example, short-period binaries on
eccentric orbits would show strong variation of gravitational
Doppler shift.

Five primary methods are used to detect exoplanets: radial
velocity, transit, astrometry, microlensing, and direct imaging.
We classify these methods into four categories according to the
dimension of the data used in them. Modern instruments

produce timing, photometric, spectroscopic, and astrometric
data. The radial velocity method uses the timing and spectro-
scopic data; the transit method uses the timing and photometry
data; the astrometry method uses the timing and astrometry
data; the microlensing method uses the timing and photometry
or spectroscopic data; direct imaging typically uses all four
types of data. Thus, a general model for exoplanet detection
would require a precise modeling of timing, photometry,
astrometry, and spectroscopy. Considering that radial velocity
and transits are the main working methods for exoplanet
detection and the astrometry method will probably be used to
find thousands of exoplanets by Gaia (Perryman et al. 2014),
the immediate need for general and combined analysis of
precision exoplanet data is a combined model of timing, radial
velocity, and astrometry. In the pulsar timing community,
TEMPO2 (Edwards et al. 2006, here “E06”; Hobbs et al. 2006)
is currently the only known package used to test general
relativity (GR) and indirectly detect gravitational waves due to
its unprecedented timing precision at a level of a nanosecond
(ns). However, a similar high-precision package is not available
for independent pulsar timing analysis and for the search for
exoplanets despite various efforts being made to improve the
precision in some special cases (Eastman et al. 2010; Wright &
Eastman 2014).
In this work, we introduce a new package called “PEXO”5 to

model the timing, radial velocity, and astrometry simulta-
neously and precisely in order to detect and characterize small
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planets such as Earth twins and test GR. PEXO is able to model
timing to a precision of about 1 ns, radial velocity to a precision
of 1 μm s−1, and space-based astrometry to a precision of
1 μas. PEXO models the motion of the target star around the
target system barycenter (TSB) due to its companion (so-called
“reflex motion”), heliocentric motion of the TSB, and the
Earth’s motion simultaneously to avoid any bias caused by
decoupling and separating these motions. PEXO can be used
for combined analysis of timing, radial velocity, and astrometry
data and to determine the orbital parameters of potential
companions, as well as refining the astrometric parameters and
the motion of the observing instrument with respect to the
barycenter of the solar system. PEXO is also able to model the
relativistic effects in the binary motion and thus is able to test
GR in systems with multiple stars and companions.

PEXO is developed in particular to address the following
issues in previous exoplanet packages and studies:

1. The decoupling of remote and local effects or the so-
called “barycentric correction,” though efficient for single
stars hosting planets, is not appropriate for detection of
low-mass planets around stars with massive companions.
We will discuss this issue in Section 3.5.

2. The exoplanet community might be more focused on
exoplanet detection and characterization than tests of GR,
although the classical astrometric effects induced by
small planets could be comparable to relativistic effects.
In Section 3.6, we address this issue by proposing the
companion-induced gravitational redshift as a unique way
to test gravity theories.

3. The relativistic effects in extrasolar systems are not well
modeled, leading to potential bias in transit timing
variation and radial velocity detection of exoplanets.
This issue will be addressed in Section 5.1.

4. The current packages are not able to analyze multiple
types of exoplanet data in a consistent way, due to a lack
of simultaneous modeling of timing, radial velocity,
photometry, and astrometry. We will briefly discuss this
problem in Section 5.4.

This paper is structured as follows. In Section 2, we
introduce the geometric and kinematic model of astrometry and
radial velocity. We then introduce the relativistic effects in
timing, astrometry, and radial velocity in Section 3. We
compare PEXO with TEMPO2 and other packages to examine
the precision of PEXO in Section 4. This is followed by
assessments of the significance of various relativistic effects on
a few key nearby objects using two example transit systems
and α Centauri A and B in Section 5. Finally we conclude in
Section 6.

2. Geometric and Kinematic Model of Astrometry and
Radial Velocity

We follow the Hipparcos and Gaia team (ESA 1997;
Lindegren et al. 2012) and use vectors to model astrometry. In
this section, we assume that the speed of light is infinite and
ignore the relativistic effects on the light rays. In other words,
we consider the kinematics and geometry of stars and
observers. We show the propagation of light in Figure 1. As
we develop the model, the elements are described, though there
are many of these, so we also provide a tabulation in the
appendix.

2.1. Astrometry Model

The observed position of the target star is

= + +r r r r , 1OT OS SB BT ( )

where rOS is the position of the solar system barycenter (SSB)
with respect to the observer, rSB is the position of the TSB with
respect to the SSB, and rBT is the target star with respect
to the TSB. We also define the opposite of these vectors as

= -r rTO OT, = -r rSO OS, = -r rBS SB, and = -r rTB BT. In
the following sections, the variable in bold is a vector, while
the variable in normal font is a scalar or the mode of the
corresponding vector. Denoting the velocity of the TSB relative
to the SSB as vSB and assuming vSB to be constant, that is,

=v vt tSB SB 0( ) ( ), we find that Equation (1) becomes

= - +
+ -

r v r
r r

t t t t t
t t , 2

OT SB 0 0 SB 0

BT SO

( ) ( )( ) ( )
( ) ( ) ( )

where t0 is a reference time. Here, rBT is determined by the
motion of the target star around the TSB (or reflex motion), and
rSO is determined by the ephemeris of the observer.
Considering that v tSB 0( ) and r tSB 0( ) are provided by

astrometric observations, we replace them with astrometry, and
Equation (2) becomes

w
m m

m

= + +

+ - + -

a dr r p q

u r r

t t
A

t t t t , 3

b b
b

b
b

b r
b

OT SB 0

0 BT SO

( ) ( ) (

)( ) ( ) ( ) ( )


Figure 1. Illustration of the propagation of a photon vastly exaggerated in order
to represent the underlying geometry of the model. A photon emitted from the
target star (T) is delayed and deflected by other bodies in the target system with
barycenter at B and deflected and delayed by solar system bodies with
barycenter at S before arriving at the observation site (O). The companion in
the target system is denoted by C. The vectors in the diagram are related
according to = +r r rOT OB BT and = +r r rOB OS SB. The time derivatives of
these vectors are corresponding velocities, which are related in the same way.
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where the relevant notations are defined as follows: ub is the
Barycentric Celestial Reference System (BCRS; Rickman 2001)
coordinate direction to the TSB at the reference TCB epoch t0;
α b is the BCRS R.A. of the TSB at the reference epoch; δ b is
the BCRS decl. of the TSB at the reference epoch; wb is the
annual parallax of the TSB at the reference epoch; ma

b is the

proper motion in R.A. of the TSB at the reference epoch; md
b is

the proper motion in decl. of the TSB at the reference epoch;
m m m= +a dp qb

b
b

b is the total proper motion of the TSB at the

reference epoch; m w= v Ar
b

r
b b is the so-called “radial proper

motion” of the TSB at the reference epoch, where vr is the
radial velocity of the TSB and A is the astronomical unit; the
unit vectors of pb, qb, and ub form a triad, which is

a d a d a
a d a d a

d d
=

- -
-p q u

sin sin cos cos cos
cos sin sin cos sin

0 cos sin

. 4b b b

b b b b b

b b b b b

b b

[ ] ( )
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

Here, pb and qb are respectively the unit vectors in the
directions of increasing α and δ at the reference epoch. The
coordinate system determined by the triad p q ub b b[ ] is
illustrated in Figure 2.

Because astrometric observations measure the direction of a
star on the sky, we estimate the observed direction of a star uoˆ
from Equation (3), following ESA (1997) and Lindegren et al.
(2012):

m m m

w

=á + + + -

+ - ñ
a du u p q u

r r

t t t

t t A , 5

b b
b

b
b

b r
b

b

OT 0

BT SO

( ) ( )( )
[ ( ) ( )] ( )

where the angular brackets denote vector normalization.
Similarly, the BCRS direction of the TSB is

m m m= á + + + - ña du u p q ut t t , 6b b
b

b
b

b r
b

SB 0( ) ( )( ) ( )

and the BCRS direction of the target star is

m m m

w

=á + + + -

+ ñ
a du u p q u

r

t t t

t A . 7

b b
b

b
b

b r
b

b

ST 0

BT

( ) ( )( )
( ) ( )

The only difference between Equation (5) in this paper and the
one in Equation (4) of Lindegren et al. (2012) is the inclusion
of stellar reflex motion.

Although a robust model of astrometry is typically expressed
with vectors, one is typically interested in the variation of the
sky position of a star rather than its absolute position. To model
the astrometry relative to a reference epoch, we follow ESA
(1997) to project the position of a component relative to the
TSB onto the offset coordinates (ξ, η), which are defined as
rectangular coordinates in the tangent plane at the reference
point r tSB 0( ), with ξ and η increasing in the directions of pb and
qb. The offset of the target with respect to the TSB in the
topocentric reference frame is

x
m w

m w

h
m w

m w

=
- + -

+ - + -

=
- + -

+ - + -

a

d

p r r

u r r

q r r

u r r

t
t t t t A

t t t t A

t
t t t t A

t t t t A

sin
1

,

sin
1

.
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b
b

b

r
b

b
b

b
b

b

r
b

b
b

0 BT SO

0 BT SO

0 BT SO

0 BT SO

( )
( ) · [ ( ) ( )]

( ) · [ ( ) ( )]

( )
( ) · [ ( ) ( )]

( ) · [ ( ) ( )]
( )







In the above equation, x tsin ( ) and h tsin ( ) differ from ξ(t) and
η(t) by about 0.2 mas over 100 yr for the case of α Centauri.
The above formula differs from Equation (1.2.26) of ESA
(1997) in terms of the consideration of the stellar reflex motion
and the use of the sinusoidal function for offset coordinates.
Although the companion-induced offset is small, the integra-
tion of this offset over time would strongly bias the predicted
position of a star. While Equation (8) can provide high-
precision geometric modeling in offset coordinates, we need to
model absolute astrometry to account for relativistic effects.
Thus we model the geometric astrometry in the equatorial
coordinate system using Equation (5). We then consider

Figure 2. Illustration of the binary motion in the sky-plane reference frame
defined by the triad p q ub b b[ ]. This coordinate system is fixed at the reference
epoch and does not rotate as the TSB moves with respect to the Sun. In the
orbital-plane coordinate system, the x axis ex points to the periastron, the y axis
ey is 90° in the direction of orbital motion from ey in the orbital plane, and the z
axis ez is perpendicular to the orbital plane (parallel to the angular momentum).
The three axes form a right-handed Cartesian coordinate system. Here, qb
points to the north while pb points to the east from the barycentric observer’s
perspective. The reflex motion of the target star T is determined by the five
orbital elements: semimajor axis aT, eccentricity e, inclination I (the angle
between -ub and the angular momentum), longitude of ascending node Ω
(counterclockwise angle from the north to the ascending node viewed from the
observer), and argument of periastron ωT. The true anomaly f is needed to
determine the location of the target star. For the orbit of a companion around
the barycenter, the semimajor axis is =a aC

m

m T
T

C
, where mT and mC are

respectively the masses of the target and the companion. The argument of
periastron is ωC=ωT+π, while the other orbital elements are the same as the
reflex orbit of the target star. We call the convention illustrated by this figure
the “astrometric convention.” This and other conventions of binary motion and
the transformation between the orbital-plane frame and the sky-plane frame are
explained in detail in Appendix A. According to Equation (4), the sky-plane
system can be further transformed into the equatorial coordinate system defined
by the Vernal Equinox and the North Celestial Pole (NCP).
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relativistic effects (Section 3) to form the full astrometry model.
This model is formulated in the offset coordinates according to
Equation (8) if the astrometric data are given in the offset
coordinate system.

To compare Equation (8) with the astrometry model in
previous studies, we expand the offsets to second order
in a Taylor series. Because all terms in the equations are
small quantities compared with 1, the second-order Taylor
expansion is

x m m m m

m x

h m m m m

m h

= - + - - -

+ - - +

= - + - - -

+ - - +

a a a

d d d





p R u R

p R p R u R

q R u R

q R q R u R

t t t t t

t t

t t t t t

t t

,

,

9

b
b

b
r
b b

b

r
b

b b b

b
b

b
r
b b

b

r
b

b b b

0 0
2

0
3

0 0
2

0
3

( ) ( ) · ( ) [ ·

· ]( ) ( · )( · ) ( )

( ) ( ) · ( ) [ ·

· ]( ) ( · )( · ) ( )
( )

where wº -R r rt t Ab
BT SO[ ( ) ( )] . We explain the terms in the

above equations as follows:

1. m -a t tb
0( ) and m -d t tb

0( ) are linear displacements from
the TSB due to proper motions and so are first-order
terms.

2. p Rb · and q Rb · are the parallax of a star if there is no
companion around the star. If a star hosts companions,
these terms reflect the combined effect of the motion of
the observer and the reflex stellar motion on the
displacement of the star with respect to the TSB. This
is a first-order term.

3. m m -a t tb
r
b

0
2( ) and m m -d t tb

r
b

0
2( ) are second-order terms

related to the so-called “perspective acceleration.”
Because this effect is proportional to the square of time,
it becomes significant for long-baseline astrometry. For
example, μα will change by about 6 mas yr−1 due to the
perspective acceleration over 10 years of observations of
α Centauri.

4. m m+ -au R p R t tb
b r

b
b 0[ · · ]( ) and m m+d u R qb

b r
b

b[ · ·
-R t t0]( ) are second-order terms and are linearly

proportional to time. These terms are related to the
coupling of the proper motion or radial velocity with the
motion of the Earth and stellar reflex motion. Because
they are linear functions of time, they only become
important for the interpretation of observations taken over
decades. For example, this term will contribute to 0.1 mas
offset over a decade of observation of α Centauri.

5. p R u Rb b( · )( · ) and q R u Rb b( · )( · ) are terms related to
the coupling of Earth’s motion and stellar reflex motion
in different directions. This term does not significantly
increase with time because the orbits of the observer and
the stellar reflex motion are periodic and the corresp-
onding semimajor axis does not change much over time.
Thus this term only contributes to a microarcsecond
displacement even for nearby stars such as α Centauri.

Although Equation (9) only expands the offset to the second
order, there are two third-order terms that become important for
decades-long astrometry observations:

1. x x x= -t t t6 sin3( ) ( ) ( ) and h h h= -t t t6 sin3( ) ( ) ( )
are the third-order terms for a Taylor expansion of a
sinusoidal function in the vicinity of zero. This term can
introduce a submilliarcsecond offset for high proper
motion stars. For example, this term is about 0.3 mas for

α Centauri for a 100 yr observational baseline. It would
be about 8.8 mas for a century of observations of
Barnard’s star.

2. m m -a t tr
2

0
3( ) and m m -d t tr

2
0

3( ) are related to the
coupling of proper motion and radial motion of the
TSB. The sums of these two terms are respectively about
1 and 40 mas for 100 yr observations of α Centauri and
Barnard’s star.

Models that only account for the first-order terms are not
reliable for the detection or characterization of planets that
induce submilliarcsecond reflex motion. For example, the
maximum reflex offset of a Sun-like star at 10 pc is 0.50 mas
for a Jupiter-like planet, 0.27 mas for a Saturn-like planet,
0.08 mas for Uranus, and 0.16 mas for Neptune. Without
including these higher order terms, it would be impossible to
robustly detect them even if data from all the individual Gaia
epochs were available.
Reference stars are typically difficult to obtain due to the

large relative brightness of stars, such as α Centauri A and B.
Thus, relative astrometry is more reliable than absolute
astrometry in terms of constraining the orbit of α Centauri
(Kervella et al. 2016; Pourbaix & Boffin 2016). By removing
the third-order terms from Equation (9), we derive the relative
offset of the secondary with respect to the primary:

x m

m

h m

m

D = D - D

+ D -

D = D - D

+ D -

a

a

p R u R

p R

q R u R

q R

t t t

t t t

t t t

t t t

,

, 10

b
b

b

r
b

b

b
b

b

r
b

b

0

0

( ) · ( ) [ · ( )

· ( )]( )

( ) · ( ) [ · ( )

· ( )]( ) ( )

where wD º - = DR R R rt t t t Ab
2 1( ) ( ) ( ) ( ) , and D ºr

-r rt tBT2 BT1( ) ( ) denotes the Keplerian motion of the second-
ary with respect to the primary. It is notable that the relative
astrometry depends not only on the reflex motion but also on
the astrometry and radial velocity of the TSB when considering
secondary effects. This linear-time secondary effect could
contribute to submilliarcsecond offsets that are comparable
with the signal caused by Jupiter-like planets around nearby
stars.

2.2. Radial Velocity Model

The time derivative of rOT (Equation (1)) determines the
observed velocity of a star:

= + +v v v v . 11OT OS SB BT ( )

The observed radial velocity is the projection of vOT onto the
observed direction of the star:

= v uv t t t 12r OT OT( ) ( ) · ( ) ( )

The terms v tOT ( ) and uOT can be respectively calculated from
Equations (5) and (11) given the astrometry and radial velocity
of a star and its reflex motion as well as the Jet Propulsion
Laboratory (JPL) ephemeris such as DE430 (Folkner et al.
2014) and the rotation of the Earth. Thus, the above vectorized
formula is the most robust nonrelativistic modeling of radial
velocity. However, to compare with other radial velocity
models, we need to approximate this model through Taylor
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expansions. We expand u tOT ( ) to the first-order Taylor series

= + D + Du u u ut t t , 13tb tOT
2( ) ( ) (∣ ( )∣ ) ( )

where

m mD = + - +a du p q Rt t t t 14t tb
b

b
b

0( ) ( )( ) ( ) ( )

is the tangential component of the change of uOT, and R tt ( ) is
the tangential component of R t( ). Then the radial velocity
becomes

= + Dv u v uv t t t t . 15tr bOT OT( ) ( ) · ( ) · ( ) ( )

In the above equation, the first term is the classical radial
velocity model, which does not account for the influence of
the perspective variation on the radial velocity. This pers-
pective change is approximated by the second term, which is
related to the tangential reflex motion and the tangential
motion of the observer perpendicular to ub. Because the radial
velocities are typically measured with respect to a reference
epoch t0, we derive the variation of radial velocity, which is

D = -v u v uv t t t t t . 16r OT OT OT 0 OT 0( ) ( ) ( ) ( ) ( ) ( )

The above geometric model of radial velocity does not account
for relativistic effects, which will be discussed in Section 3.4.

2.3. Stellar Reflex Motion

We calculate the stellar reflex motion in the coordinate
system formed by the triad p q ub b b[ ]. Because this coordinate
system is determined at the reference epoch, the orbital
parameters are also calculated with respect to the reference
epoch. This is different from the rotation reference frame ,
where the orbital elements may vary with time due to the
adoption of a noninertial frame (Kopeikin 1996).

In the orbital-plane coordinate system shown in Figure 2,
the position of the target star is denoted by =r x y, , 0orb

T( ) .
The orbital-plane coordinate system is transformed into the
sky-plane coordinate system through a sequence of rotations
such that the position of the target star with respect to the
TSB is

=
¢ ¢ W
¢ ¢ - W
¢ ¢ -

x
y
z

B G I
A F I
C H I

x
y

cos sin
sin sin

cos 0
, 17

BT

BT

BT

( )
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

where

w w
w w
w w
w w

w
w

¢ = W - W
¢ = W + W
¢ =- W - W
¢ =- W + W
¢ =
¢ =

A I
B I
F I
G I
C I
H I

cos cos sin sin cos
sin cos cos sin cos

cos sin sin cos cos
sin sin cos cos cos

sin sin
cos sin

T T

T T

T T

T T

T

T

are the elements of the rotation matrix and a scaled version of
the so-called “Thiele–Innes constants.” In the above
equations, Ω is the longitude of the ascending node, ωT is
the argument of periastron for the orbit of the target star
around the TSB, and I is the inclination. The argument of
periastron for the barycentric motion of the companion is
ωC=ωT+π. Because this convention of binary motion is

consistent with the triad used for the astrometry model, we
call it the “astrometric convention,” which is described in
detail in Appendix A.4.
The Keplerian motion of the target star with respect to the

TSB is

= ¢ + ¢ + ¢
+ ¢ + ¢ + ¢

= ¢ + ¢ + ¢
+ ¢ + ¢ + ¢

r p

q u

v p

q u

t B x t G y t A x t

F y t C x t H y t
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F y t C x t H y t
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( )] [ ( ) ( )]

( ) [ ˙( ) ˙( )] [ ˙( )
˙( )] [ ˙( ) ˙( )] ( )

and the Keplerian motion in the orbital plane (see Figure 2) is

= -

= -
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-
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-
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where =
+

a am

m mT
C

C T
is the semimajor axis of the target star

with respect to the TSB; a is the semimajor axis of the target
star with respect to its companion; E(t) is the eccentric
anomaly, which is determined by solving Kepler’s equation

= -M t E t e E tsin( ) ( ) ( ) for a given time, t; e is the
eccentricity; n≡2π/P is the mean orbital motion; and P is
the orbital period. By transforming the Keplerian motion from
the orbital-plane reference frame into the sky-plane reference
frame using Equation (18), we derive rBT and vBT to model
astrometry and radial velocity fully using Equations (5)
and (12).

3. Relativistic and High-order Geometric Effects

Relativistic effects can be important for nearby or binary
systems such as α Centauri. For example, assuming an orbital
period of 80 yr, a semimajor axis of 17.6 au, and an inclination
of 79° for α Centauri A and B, the arrival time of light from A
or B is changed by 6.3 hr due to binary motion over 40 yr.
Although this is small compared with the binary orbital period,
it would introduce timing noise and thus bias the detection of
potential exoplanets in this system.
For the convenience of calculation of relativistic terms, we

define various times following E06. The proper emission time
τe of a photon is derived from the proper observed arrival time
τo by including various delays as follows:

t t= - D - D - D , 20e o S is T ( )

where ΔS is the time delay due to effects in the solar system,
Δis is related to the travel time of a photon in the interstellar
medium, and ΔT is the delay related to the target system. We
introduce the coordinate time of light arrival at the SSB,

t= - Dta o
SSB

S, and the coordinate time of light arrival at the
TSB, = - Dt ta a

TSB SSB
is. The proper emission time and the

arrival time at TSB are related by t = - Dte a
TSB

T. We also
define the coordinate reference time tpos as the epoch when
the position or astrometry of the target star is measured. At
the reference epoch, = =t t ta a

SSB TSB
pos. We will introduce
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post-Newtonian and GR models of binary motion in
Section 3.1 and describe various relativistic terms in the
models of timing (Section 3.2), astrometry (Section 3.3), and
radial velocity (Section 3.4).

3.1. Post-Newtonian Stellar Reflex Motion

In Section 2.3, we derive the formula for the classical
Keplerian motion in the reference frame formed by the triad
p q ub b b[ ]. Here we model the post-Newtonian Keplerian (PPK)
motion in terms of proper emission time τe according to
previous works (Damour & Deruelle 1986; Taylor & Weisberg
1989, and E06):

q
q
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W W - -
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´

r p q u I I
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where ω0, e0, P0 are the Keplerian parameters at the reference
epoch, τp is the proper time of periastron, U is the relativistic
eccentric anomaly, ar is the semimajor axis of the primary with
respect to the barycenter of the target system, δr and δθ are PPK
terms used to define eccentricities, and ºx a I csina is the
light travel time across the projected semimajor axis. Because
this model was first proposed by Damour & Deruelle (1986),
we call it “DD,” following Taylor & Weisberg (1989) and E06.
Because the x axis of the orbital plane is in the direction of the
ascending node rather than periastron as in the astrometric
convention, we call this coordinate system framework the
“precession-compatible convention,” which is described in
detail in Appendix A.4.

Considering GR, we define mtot=mC+mT and give the
following relativistic terms after E06ʼs Equations (71) and

(80)–(88):
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where GR denotes general relativity, c is the speed of light,
Te=Gme/c

3 is half the light travel time across the solar
Schwarzschild radius, me is the solar mass, G is the
gravitational constant, g is the timing model parameter, and
rs

GR and ss
GR are parameters for the Shapiro delay in the target

system assuming GR. We call this model “DDGR” following
the syntax of TEMPO2.
In a combined model of radial velocity and astrometry, the free

classical orbital parameters are {P0, e0, ω0, I, Ω, τp} as well as
masses {mC, mT}. For general post-Newtonian theories, the
additional fittable parameters are w g P s r x e, , , , , ,s s a{ ˙ ˙ ˙ ˙}, where ss
and rs are respectively the shape and range parameters of Shapiro
delay. For a classical Keplerian orbit, w P x e, , ,a˙ ˙ ˙ ˙ are all zero.

3.2. Timing Model

We transform the proper light arrival time at the observatory
τo to the barycentric coordinate time (ta

SSB) by calculating the
“tropospheric delay” (Δtropo), “Roemer delay” (ΔrS), “Shapiro
delay” (ΔsS), and “Einstein delay” (ΔeS). Then we transform
ta

SSB to the light arrival coordinate time at the TSB (ta
TSB) by

calculating the vacuum propagation time of the light traveling
from SSB to TSB (Δvp) as well as the Einstein delay (Δei) due
to the relative motion between TSB and SSB. Finally, we
derive the proper emission time τe from ta

TSB by calculating the
Roemer delay (ΔrT), Shapiro delay (ΔsT), and Einstein delay
(ΔeT) in the target system.
The purpose of modeling the light emission time is to

calculate the mean anomaly of the stellar reflex orbit precisely
given an observation proper time τo. The formulae in the
following sections are similar to the formulae given in E06 for
pulsar timing but are adapted and implemented to be more
suitable for exoplanets.

3.2.1. Tropospheric Delay

The time delay in the solar system is

D D + D + D + D + D , 24S tropo eS rS pS sS ( )

where ΔpS is a second-order Roemer delay, called “parallax
delay” (E06).
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An incident light ray is refracted by Earth’s atmosphere and
is delayed by (Nilsson et al. 2013)

òD = - + -


 c n l dl t t1 , 25tropo [ ( ) ] ( ) ( )

where  is the light ray path in the atmosphere, n is the
refractive index, and t and t are respectively the vacuum light
propagation times for deflected and straight light rays. Because
the atmosphere model typically consists of the hydrostatic and
wet components, the tropospheric delay is typically split into
two parts:

ò
ò

D = +

´ + -

- -




 

c
N l dl

c

N l dl t t

10 10

26
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6

hydro

6

wet

( )

( ) ( ) ( )

= D + D + - t t , 27hydro wet ( ) ( )

where Nhydro and Nwet are respectively the hydrostatic and wet
refractivity. The refractivity is related to the refractive index by
N=10−6(n−1). Each of these two components is a product
of a zenith delay and a mapping function. The geometric delay
term - t t is typically included in the mapping function of
the hydrostatic component (Nilsson et al. 2013). Hence, the
tropospheric delay becomes

D = D Q + D Qm m , 28h wtropo hydro wz( ) ( ) ( )

where Θ is the observed elevation angle of the source, and
Δhydro is

6

f
D =

- - ´ -
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1
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[ ( ) ]

where fO is the latitude of the observatory, pO is the air
pressure, and hO is the telescope altitude. The zenith
hydrostatic delay is typically a few nanoseconds. On the other
hand, the wet zenith delay is not well modeled and is highly
variable. However, it is about one order of magnitude smaller
than the hydrostatic delay and thus is only important for high-
precision applications. Following E06, we adopt the Niell
mapping function (Niell 1996) to calculate mh and mw in
Equation (28). Like E06, we only consider the wet component
if the zenith wet delay is given by the observatory. Similar to
the wet component, the refraction caused by the ionosphere is
highly variable and cannot be separated from the dispersion in
the interstellar and interplanetary medium. Thus, we consider
them as time-correlated noise, which can be modeled using a
red noise model such as the moving-average model (Feng et al.
2017).

3.2.2. Time Delay in the Solar System

The Einstein delay is caused by the gravitational effect on
the time measurement in different reference systems.

According to E06 and Irwin & Fukushima (1999), the Einstein
delay is

ò
t

D = + + D + D

+
+

Å
Å

Ås r

c
U

v
L L dt

W

c

1

2

, 30
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t

C C

o

eS 2

2
PN A

0
2

0

· ˙ ( )
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⎛
⎝⎜

⎞
⎠⎟

where U⊕ is the gravitational potential of all solar system objects
apart from the Earth, v⊕ is the barycentric velocity of the
geocenter, W0 is approximately the gravitational and spin potential
of the Earth at the geoid, and DLC

PN( ) and DLC
A( ) respectively

characterize the post-Newtonian effects and asteroidal effects. The
integral is to transform the Geocentric Coordinate Time (TCG) into
the barycentric time (TCB) at the geocenter. In the above equation,
the last term corresponds to the time difference between the
observer and the geocenter and transforms the terrestrial time (TT)
to TCG. The rate of TT with respect to TCG at the geocenter
is = = ´ -L W c 6.969290134 10G 0

2 10. The term D =rot

Ås r c2· ˙ induces a periodic delay with an amplitude of
about 2μs. We model the Earth’s rotation using Equation (26)
in E06.
Instead of calculating the integral in Equation (30) directly,

we use the time ephemeris of the Earth in JPL DE430 to
transform TT at the geocenter to Barycentric Dynamical Time
(TDB) and use LB=1.550519768×10−8 to transform TDB
into TCB according to TCB=TDB/(1−LB). Because the
rotation-induced delay Ås r c2· ˙ is not accounted for in the
transformation from TT to TDB by the JPL ephemeris, we add
it in the transformation and determine TDB in an iterative way
as follows:

1. Transform Coordinate Universal Time (UTC) to the
International Atomic Time (TAI; Temps Atomique in
French) using the SOFA7 routine iauUtctai.

2. Transform TAI to TT(BIPMXY). BIPM denotes the
International Bureau of Weights and Measures, and XY
represents the year when the BIPM realization of TT is
published. TT(BIPMXY)=TAI+32.184 s+dt , where δT is
the difference between the BIPMXY and TAI realizations
of TT (Petit 2004) and can be downloaded fromhttps://
www.bipm.org/jsp/en/TimeFtp.jsp?TypePub=ttbipm. In
this work, we use the TT(BIPM17) realization by default.
The BIPM file is automatically updated to the latest
version by PEXO.

3. Determine TT-TDB as a function of TT at the geocenter
using the latest JPL time ephemeris (e.g., DE430t).

4. For a ground-based observer, determine the observer’s
geocentric position and velocity using the Earth rotation
model recommended by IAU2006 resolutions (Capitaine
& Wallace 2006; Wallace & Capitaine 2006). For space
telescopes, their ephemerides are determined using the
JPL HORIZONS system. We have implemented an
automated downloading of JPL ephemerides in PEXO.

5. Calculate Δrot in the TDB coordinate system based on
step 4 and add it onto TT-TDB. Note that Δrot is
calculated using TT and thus needs to be scaled with
dTT/dTDB, although this scaling is a negligible
secondary effect and only contributes at most 1 ps
(1 ps= picosecond= 1× 10−12 s).

6 Note that the routine tropo.C in the TEMPO2 package contains an error.
The cosine function in the denominator should be cos(2fO) rather than fcos O.
However, this error may not significantly influence the TEMPO2 precision
because fcos 2 O( ) is multiplied by 0.00266. 7 http://www.iausofa.org/
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6. Transform TDB to TCB using TCB= TDB/(1− LB).

In summary, the transformation chain of various time standards
is UTC  TAI  TT  TCG  TDB  TCB.

To derive the barycentric time, we need to account for the
difference in the light travel time to the observer and to the
SSB. This is the so-called Roemer delay, which is

D =
r u

c
, 31rS

SO SB· ( )

where = +År r sSO is the sum of the BCRS position of the
geocenter År and the position of the observatory with respect to
the geocenter s. For space telescopes, rSO can be obtained from
the ephemeris of the telescope from JPL HORIZONS.
However, the Roemer delay assumes that the fiducial observer
at the SSB receives plane waves from the light source. To
account for the curvature of the wave, we include the second-
order “Roemer delay”:

D =
´r u
cr2

. 32pS
SO SB

2

SB

∣ ∣ ( )

This so-called “parallax delay” is included in the Roemer delay
in some other studies (e.g., Lindegren & Dravins 2003 and
Eastman et al. 2010). For example, the parallax delay for α
Centauri is about 0.7 ms. Note that this parallax delay is equal
to the one in Equation (8) of Eastman et al. (2010;
hereafter E10), who use uOT rather than uSB as the reference
unit vector, leading to an opposite sign of parallax delay.
However, Equations (31) and (32) do not account for higher-
order astrometric effects, as mentioned in Section 2.1. To
improve the precision of PEXO for solar system objects, we
calculate the total Roemer delay (including parallax delay)
using

D =
-r r

c
. 33rS

OT ST ( )

Because the third-order astrometric terms contribute submil-
liarcsecond position offsets over decades, we expect tens of
nanoseconds bias to be introduced by using Equations (31) and
(32). Such a bias is inversely proportional to the heliocentric
distance and increases with time, as we will see in Section 4.1.
Because this bias is cumulative, the estimation of <1 ns for
third-order delays in E10 is not representative for long-term
timing observations.

A photon is deflected by the gravitational field of the solar
system, leading to the so-called “Shapiro delay” (Shapiro 1964),
which is

åg
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where A=1 au, and ψi is the coordinate angle distance
between the center of the body i and the target star from the
perspective of the observer. The angle between the Sun and the
target star dominates the Shapiro delay and is determined by

y =cos r r
i r r

OT OS

OT OS
. The Shapiro delay formulated in Equation (34)

differs from Equation (5) of Eastman et al. (2010), who ignore
the terms related to rST and rSO. However, rSO is not constant
for an observer on an eccentric orbit. Although this change may
not be important for current exoplanet research, it is crucial for
high-precision pulsar timing and thus is included in the model
of TEMPO2 by E06.
In summary, the barycentric Julian date (BJD) in the TCB

standard (BJDTCB) is determined by the corresponding Julian date
(JDTCB) through = - D - D - DBJD JDTCB TCB rS pS sS, where
BJDTCB and JDTCB are BJD and JD in the TCB time standards,
respectively. BJD can only be determined precisely if the precise
location of the observed target is known at a given epoch.
However, this is impossible even with Gaia astrometry because
the astrometric solution is based on the assumption of a single star.
Thus, BJD is known a posteriori rather than a priori by
simultaneously modeling the motions of the Earth, the barycenter
of the target system, and the stellar reflex motion. We will discuss
the influence of decoupling the solar and target systems on timing
in Section 3.5. Although PEXO does not separate the solar system
dynamics and the target system dynamics in its timing model, we
provide BJDTDB and BJDTCB for users who do not require a
timing precision of <0.02 s. The upper limit of this precision
corresponds to the timing bias amplitude for α Centauri A due to
the decoupling of α Centauri and the solar system over one
decade (see Section 5.4). For users who need a high-precision
timing model, PEXO provides a combined modeling of all
motions and various times as optional outputs.
PEXO generates quantities compatible with both TDB and

TCB time standards. TCB is used as the time standard for Gaia
(Gaia Collaboration et al. 2018), while TDB is used by TESS
(Ricker et al. 2014). Because TDB is a time standard
compatible with JPL ephemeris and has a time-increasing rate
very similar to that of TT and TAI, it is frequently used in the
exoplanet community. TCB by definition is not a relativistic
time standard and is not sensitive to relativistic effects in the
solar system, although its realization may depend on the
relativistic simulation of the solar system. Both TDB and TCB
systems have particular advantages; we provide the ability to
introduce data from both time standards, for example, for the
combined analysis of the data from Gaia and TESS. The critical
matter is a consistent transformation when using data sets with
different time standards. PEXO is designed to provide for this.
We refer the readers to Klioner et al. (2010) and Petit & Luzum
(2010) for a detailed discussion of different time standards.

3.2.3. Interstellar Time Delay

Ignoring the interaction between a photon with the
interstellar medium, the arrival time at the SSB is delayed
with respect to the TSB by

D D + D , 35is vp ei ( )

where D = - +v rt t t cavp SB
SSB

pos SB pos∣ ( ) ( )∣ . Because the
vacuum propagation of light at the reference time ( r t cSB pos∣ ( )∣ )
is a constant, we only model the relative vacuum propagation
delay, D = - + -v r rt t t c t cavp SB

SSB
pos SB pos SB pos∣ ( ) ( )∣ ∣ ( )∣ .

The Einstein delay due to the relative motion between TSB and
SSB is

D = - - D
v

c
t t

2
. 36aei

SB
2

2
SSB

pos vp( ) ( )
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3.2.4. Time Delay in the Target System

Similar to the time delay in the solar system, the delay in the
target system is

D D + D + D + D . 37T rT pT eT sT ( )

According to E06, the Roemer delay is

m
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BT, SO, BT,
BT,

2

·

· · ∣ ∣ ( )
⎛
⎝⎜

⎞
⎠⎟

where = ´ ´^r u r ub bSO, SO( ) and = ´ ´^r u r ub bBT, BT( ).
In the above equation, the first term is related to the Roemer
delay that is due to the motion of TSB, while the other terms
are named “Kopeikin terms” related to the orbital variation of
the target system that is due to the changing perspective caused
by the proper motion of TSB (Kopeikin 1996). In a rotation
reference frame perpendicular to the line of sight, these terms
can “change” the orbital elements of the target system.
However, such an apparent change disappears if the orbit is
defined at the reference epoch in a fixed reference frame, as in
Equation (3).

Instead of using the reference unit vector ub, we use the time-
varying vector uSB to calculate the combined Roemer and
parallax delay as

D + D = -
´r u r u

c cr2
. 39rT pT

BT SB BT SB
2

SB

· ∣ ∣ ( )

This delay is similar to its counterpart in the solar system, as
expressed in Equations (31) and (32).

According to Blandford & Teukolsky (1976) and Damour &
Deruelle (1986), the Einstein delay in the target system is

D = gU, 40eT ( )

where g is the timing model parameter.
According to Damour & Deruelle (1986), the Shapiro delay

for the target system is

w
w

D =- - - -
+ -

r e U s U e

e U

2 log 1 cos sin cos

1 cos sin , 41
s ssT

2 1 2

{ [ ( )
( ) ]} ( )

where all of the variables are given in Section 3.1. Although
higher-order Shapiro delay terms are available (Kopeikin &
Schäfer 1999), they are insignificant because the first-order
term is of the order of (vBT/c)

3.

3.3. Astrometry Model

The direction of a light ray observed by an observer is
deflected by the gravitational field between the source and the
frame transformation between the observer and the target. Thus
we aim to find the observed direction of the target star by
tracing the direction of a photon forward from the emission
time to the arrival time at the observatory. To avoid confusion
with the geometric modeling of the observed direction of the
source derived in Section 2.1, we use l to denote the direction
of a light ray at a given time.

3.3.1. Stellar Aberration

According to special relativity, the Lorentz transformation
from a static reference frame to a moving reference frame
would introduce a change in the direction of the target star.
This effect is called “stellar aberration.” After Equation (7) of
Klioner (2003), the direction of the observed light ray is

g
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where lo is the light ray direction when it is observed, the
absolute value of potential w(rSO) is approximated by a
spherically symmetric Sun by

»w r Gm r , 43SO SO( ) ( )

and γ is a dimensionless parameter in the parameterized post-
Newtonian formalism (PPN; Nordtvedt & Will 1972). It is
equal to 1 if GR is true. It could be fitted to astrometry data in
the case of weak-field relativity tests, although a fully post-
Newtonian formulization of the timing, astrometry, and radial
velocity models is required to test GR consistently. For strong-
field relativity tests, only the PPK parameters (see
Equation (22)) are fitted. For the difference between PPN and
PPK parameters, we recommend Taylor et al. (1992) for more
details. Due to gravitational lensing, ¹ -l uo OT.

3.3.2. Atmospheric Refraction

As mentioned in Section 3.2.1, a light ray is refracted when it
propagates in the Earth’s atmosphere. This effect is one of the
main factors that limits the precision of ground-based astrometry
(Gubler & Tytler 1998; Mangum & Wallace 2015). We use the
routine slaRefro in SLALIB8 to calculate the refraction,

ò=
Z

n
dn

tan
, 44

n

1

O

( )

where nO is the refractive index at the telescope and Z is the
refracted zenith angle. The observed zenith angle Zo is the sum
of the incident zenith angle above the atmosphere Zi and the
refraction:

= + Z Z . 45o i ( )

As Ztan diverges when Z approaches 90° (see Equation (44)),
Auer & Standish (2000) reformulate the integrant as a function
of zenith angle, and the refraction becomes

ò= -
+


rdn dr

n rdn dr
dZ, 46

Z

0

o

( )

where r is the distance from the geocenter. Because refraction
is wavelength dependent, the effective temperature or wave-
length of a star should be known in order to calculate the

8 http://star-www.rl.ac.uk/star/docs/sun67.htx/sun67.html
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refraction. By adopting the atmospheric model developed by
Rüeger (2002) and using the slaRefro routine adapted from the
AREF routine given by Hohenkerk & Sinclair (1985), we can
calculate refraction R to a precision of about 1 arcsec (Mangum
& Wallace 2015) and the differential refraction DR to a
precision of 10 μas (Gubler & Tytler 1998). However, in order
to achieve such relative astrometric precision for a typical
binary, those authors find that the effective temperature of stars
should be measured to a precision of 100 K, absolute zenith
angle to a precision of 36 arcsec, relative zenith angle to a
precision of 30 mas, air temperature at the observatory to a
precision of 0.6 K, air pressure to a precision of 160 Pa, and
relative humidity to a precision of 10%. Because the refraction
is calculated using the observed zenith in slaRefro, we set
Zo=Zi and repeat the calculation of R until it converges.
Because the refraction occurs in the plane formed by the zenith
and the incident light ray and is perpendicular to the incident
light ray, the refraction vector is

=
-

R
u u u u

Z
R

sin
, 47Z Z OT OT( · ) ( )

where uZ is the unit vector in the zenith direction. Then the
light ray direction when it is observed is

= - l l , 48o i ( )

where li is approximately-uOT. Such an assumption would at
most induce third-order effects.

3.3.3. Gravitational Light Deflection

For a target system outside of the solar system (with
heliocentric distance >105 au), the emitted light from the target
star would be deflected by the gravitational fields of
companions. This effect is also called gravitational lensing
and will also contribute to the Shapiro delay, as discussed in
Section 3.2. After Equation (70) of Klioner (2003), we convert
the light ray direction at the emission time le into the direction
after leaving the target system as

å g
= -

+

´
´ ´

+

l l

r r r
r r r r r r

Gm

c

1

, 49

l e
A

A
2

OT TA OA

OT OA TA OA OA TA

( )

( )
∣ ∣∣ ∣(∣ ∣∣ ∣ )

( )

where A denotes the body in the target system parameter and
γ=1 if GR is assumed. We ignore the gravitational deflection
of light that is due to the nonspherical gravitational potential of
lenses because it only contributes 1 μas when the light source is
very close to the lens (see Table 1 of Klioner 2003 for details).

Assuming vacuum propagation of the light ray between the
target and the solar system, the direction of the incident light
beyond the atmosphere is

å g
y= -

+
+l l

dGm

c d

1
1 cos , 50i l

L

L L
2

L
2 L

( ) ( ) ( )

where y = u r rcos L OT OL OL· is the angular distance between
the light ray and lens L, and = ´ ´d l r le eL OL( ). For an
observer at the geocenter, the light ray does not bend if one
assumes the gravitational field of the Earth is spherically
symmetric. According to Klioner (2003), the main light

deflection is caused by the Sun and the Earth, while the Moon
and other planets are only important if the light ray passes them
closely.
In summary, the emitted light ray direction is derived from

the geometric observed direction using = -l ue OT with uOT
derived from Equation (5). Here, li is calculated using
Equations (49) and (50). The incident light is further refracted
by the atmosphere by . The direction of the light ray at the
telescope is = - l lo i . Then uoˆ is calculated using
Equation (42) to model the observed direction of star uo.

3.4. Radial Velocity Model

In this section, we model the observed radial velocity related
to the kinematics, geometry, and relativistic effects of the target
star and the observer.

3.4.1. Einstein Doppler Shift

In an inertial reference frame, the Schwarzschild solution to
the Einstein field equations leads to the following exact ratio
between the rate of proper time and the rate of coordinate time
for a clock:

t
= - + +

-
d

dt

v

c

v

c

v c v c

v c
1

1
, 51e e

e

2

2

2

2

2 2

2

( ) ( )
( )

( )∣∣⎛
⎝⎜

⎞
⎠⎟

where v∣∣ is the radial velocity of the clock with respect to the
inertial frame, and

å=v
Gm

r

2
52e

i

i

i
( )

is the escape velocity determined by the sum of the
gravitational potential of nearby bodies. Applying the above
formula to the solar system and the target system and ignoring
c−4 terms, we derive the increment ratio of the proper
observation time τo and the proper emission time τe as

l
l

n
n

t
t

t
t

+ º = = =

= -
F

- -
F

-
-

z
d

d

d

dt

dt

dt

dt

dt

dt

d

c

v

c c

v

c

dt

dt

dt

dt

1

1
2

1
2

,

53

o

e

e

o

o

e

o

o

o

i

i

e

e

e

o

i

i

e

S
2

SO
2

2
T
2

ST
2

2

1

( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

where λo and λe are respectively the observed and emission
wavelength, λo and λe are respectively the observed and
emitted light frequency, F = åi

Gm

rS
i

i
is the absolute value of

gravitational potential of the solar system at the observer’s

location while F = åj
Gm

rT
j

j
is the absolute value of gravita-

tional potential of the target system when it emits the light,
dto/dti is determined by the atmospheric refraction, and dti/dte
is determined by Shapiro delay and vacuum propagation. We
define

º Fz c 54grS S
2 ( )

and

º Fz c 55grT T
2 ( )
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as gravitational Doppler shifts in the solar and target systems,
respectively. We also define

ºz
v

c2
56srS

SO
2

2
( )

and

ºz
v

c2
57srT

ST
2

2
( )

as the Doppler shifts due to special relativity effects in the solar
and target systems, respectively. Because

t
= = - +

d

dt

d

d
z z

TT

TCB
1 , 58o

o
grS srS ( )

the relativistic effects on the Doppler shift in the SS can be
derived from ΔeS later in Section 3.2.

For photons emitted from different places on the surface of a
star, they experience different gravitational Doppler shifts,
especially if there is a massive companion close to the target
star. For example, the velocity variation corresponding to the
gravitational Doppler shift caused by a Sun-like star located
about 1 au from the target star is 3 m s−1. Assuming that the
radius of the target star is comparable with the solar radius,
which is about 1/215 au, the differential Doppler shift would
lead to about 1 cm s−1 of radial velocity variation. Such a
differential Doppler shift should be accounted for together with
the rotation-induced differential Doppler shift in the case of
exoplanet detection in close binary systems.

3.4.2. Kinematic, Lensing, and Tropospheric Doppler Shift

As discussed in Section 3.2, the emission coordinate time te
is delayed from the coordinate arrival time of a nonrefracted
light ray ti by

- = D + D + Dt t , 59i e geo sS sT ( )

where

D =
r

c
60geo

OT ( )

is the vacuum propagation time from the target to the observer.
The differential of the above delay gives

=
+ -
+ -

dt

dt

z z

z z

1

1
, 61e

i

kS lS

kT lT
( )

where zlS and zlT are respectively the lensing Doppler shift
corresponding to the Shapiro delay in the solar system and in
the target system. Thus the ratio of time rate is

=
u v

z
c

62kS
OT SO· ( )

and

=
u v

z
c

, 63kT
OT ST· ( )

respectively the kinematic Doppler shift in the solar and target
systems. We calculate the relativistic effects by adopting the
direction from the observer to the target as in Kopeikin &
Schäfer (1999) and Lindegren & Dravins (2003).

In Lindegren & Dravins (2003), the gravitational deflection
and the Shapiro delay of the light are not thoroughly treated
because of their negligible effects. For example, Lindegren &

Dravins (2003) dropped the Shapiro delay term because it
contributes at most 0.3 m s−1 radial velocity variation.
Although this upper limit is determined from the extreme
situation when the light ray grazes the solar limb, the lensing
effect for stars with a large angular distance from the Sun can
still be important for achieving 1 cm s−1 radial velocity
precision, and we consider this further below. Based on a
more rigorous treatment of the Shapiro effect in
Equations (169), (173), and (238) of Kopeikin & Schäfer
(1999), the lensing Doppler shift in the solar system is

å

a l

dn
n

= =

´ - -v v v

z
c

r

r

r

r

1

, 64

S
lS

o L

SL
LT

OT
SO

OL

OT
ST L· · ( ) ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

where lL is the impact parameter of the unperturbed path of
photons with respect to lens L, and

a l lg
l

= +
Gm

c
2 1 , 65L

L
2

L
2 L( ) ( ) ( )

where mL is the mass of lens L. Ignoring the lensing effects of
planets, assuming a static Sun with respect to the SSB, and
considering rOA=rAT and rOT;rOA+rAT, we find that
Equation (64) becomes

a ldn
n

= = -
v

z
c

, 66
S

S
lS

o

SO · ( ) ( )
⎛
⎝⎜

⎞
⎠⎟

where l = ´ ´u r uS OT OS OT( ). Because the lensing effect is
proportional to c−3, the above assumptions would at most have
a fourth-order effect. Equation (66) is the lensing formula used
in most literature. Similarly, the lensing Doppler shift in the
target system is approximately

a ldn
n

= = -
v

z
c

, 67lT
o T

CT C· ( ) ( )
⎛
⎝⎜

⎞
⎠⎟

where vSC and vST are respectively the velocity of the
companion and target star with respect to the SSB and
l = ´ ´u r uC OT OC OT( ). The Sun is the main gravitational
lens in the solar system, which induces a gravitational shift of
about

l
1 au

S
mm s−1 assuming the observer’s tangential velocity

of 30 km s−1. For an impact parameter comparable with the
solar radius, the shift would be about 0.3 m s−1. The angle
between the target source and the light ray from the perspective
of the observer ψ should be less than 7° based on
Equations (66) and (67) in order to induce >1 cm s−1 line
shift. If the target system is like the solar system, this effect
leads to >1 cm s−1 Doppler shift in edge-on systems. Although
the lensing effect is typically ignored in current exoplanet
packages such as EXOFAST (Eastman et al. 2013), it could
become significant in the search for small planetary signals
whose amplitude is comparable with the lensing effect.
Atmospheric refraction not only causes timing delay and

deflects light rays but also leads to Doppler shift. The Doppler

11

The Astrophysical Journal Supplement Series, 244:39 (37pp), 2019 October Feng et al.



shift induced by tropospheric refraction is

= - =
D

» D ¢ Q + D ¢ Q
Q

z
dt

dt

d

dt

m m
d

dt

1

, 68

o

i i

h h
i

tropo
tropo

hydro wz( ( ) ( )) ( )

where ¢ =
Q

mh
dm

d
h and ¢ =

Q
mw

dm

d
w . The differential tropospheric

delay is derived numerically using slaRefro. The rotation of the
Earth leads to a continuous change of the elevation and thus
changes the mapping functions mh and mw. This effect would
induce diurnal radial velocity variation of a few mm s−1 for
elevation angles lower than 30° if only hydrostatic delay was
considered. For elevation angles less than 10°, the refraction
could induce up to a few m s−1 radial velocity variation due to
the exponential variation of refraction near the horizon (see P4
of Figure 15).

By combining all Doppler effects, the Doppler shift is

º =
- -

- -

´
+ -

+ - -
-

v

c
z

z z

z z

z z

z z z

1

1

1

1
1. 69

r
obs

grS srS

grT srS

kT lT

kS lS tropo
( )

Unlike Wright & Eastman (2014) and Butkevich & Lindegren
(2014), we do not explicitly add a term related to the light
travel effect. Rather, we calculate the quantities at the
corresponding retarded time for a given light ray. We calculate
the emitted frequency at the proper emission time according to
the time transformation described in Section 3.2. In
Equation (69), the special and general relativistic Doppler shifts
(zsrS, zgrS, zsrT, and zgrT) are proportional to c−2, and lensing
effects (zlS and zlT) lead to - c 3( ) Doppler shift. The kinematic
Doppler shifts (zkS and zkT) are proportional to c−1 and are thus
significant radial velocity variations. In the case of detection of
small planets like the Earth, zkT corresponds to <1 m s−1 radial
velocity variation, as large as the radial velocity effects caused
by some relativistic effects. Thus, a comprehensive modeling
of these effects is essential for reliable detection of Earth-like
planets.

3.5. Caveats in the Decoupling of the Solar and Target Systems

The so-called “barycentric correction” is typically used to
transform the measured radial velocity into the BCRS radial
velocity. However, it is only possible if we can separate the
local effects and the remote effects caused by the target system.
Specifically, the total Doppler shift is split into local and remote
Doppler shifts:

= + + -z z z1 1 1, 70T S( )( ) ( )

+ =
- -

+ - -
z

z z

z z z
1

1

1
, 71S

grS srS

kS lS tropo
( )

+ =
+ -
- -

z
z z

z z
1

1

1
. 72T

kT lT

grT srT
( )

Although most terms in zS can be precisely determined, uOT is
typically not known a priori. For single stars, the error in proper
motion may bias the barycentric correction for decades-long
radial velocity data. For example, a 10 mas yr−1 uncertainty in

proper motion would lead to 1.5 cm s−1 uncertainty in
barycentric correction over one year.
For stars with massive planet companions, the catalog

astrometry of the barycenter is biased by the typical assumption
of a single star in the data reduction. Because the stellar reflex
motion is coupled with Earth’s motion (see Equation (5)), a
barycentric correction for binaries would not only lead to a
spurious trend but also introduce false periodic signals in the
corrected radial velocity data. For α Centauri, these false
signals lead to sub-m s−1 radial velocity variation, hindering
the detection of Earth-like planets in this system. Thus, precise
barycentric correction is only possible if the stellar reflex orbit
is accurately determined a priori. However, this is rarely the
case even in the Gaia era because the five-parameter astrometry
solution assumes no companions around a target star. Even if
companions are considered in astrometry modeling, potential
uncertainty and bias are expected because of a lack of precise
modeling of instrumental bias, stellar activity, and other noise
terms.
Two types of biases are caused by barycentric correction:

1. A trend bias is caused by using the barycentric velocity of
the target system as the velocity of the target star without
considering the stellar reflex motion. This assumption
would bias the astrometric solution and thus induce a
long-term trend in the radial velocity data. Thus this bias
is related to the velocity of the stellar reflex motion and is
important for long-term observations.

2. A periodic bias is caused by ignoring the position offset
of the target star with respect to the barycenter of the
target system. Because the stellar reflex motion is
periodic, this assumption would cause periodic variation
of the visual direction of the target star, leading to
periodic variation of radial velocity. It is important for
observations with baselines longer than the period of
stellar reflex motion.

Because the Earth’s motion is coupled with the barycentric
and binary motions, the annual and diurnal Earth motions are
manifested in both biases. To estimate the trend bias, we
calculate the average reflex motion of the target star as

=
+

+
v

m

m m

G m m

a
. 73C

C T

C T
reflex¯ ( ) ( )

The corresponding proper motion bias caused by ignoring this
reflex motion is

dm
w

= v
A

. 74
b

reflex¯ ( )

This proper motion offset leads to a positional bias of

d dmd=u t 75( )

over a time span of δt. Assuming that the characteristic radial
velocity caused by the motions of the target star and the Earth
is vtot=50 km s−1, we estimate the radial velocity bias related
to δu as

d d
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The corresponding acceleration of the trend bias is
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The periodic bias is determined by the semimajor axis of the
stellar reflex motion and is

d
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Considering that the barycentric correction is also frequently
used in astrometry and timing, we calculate the time delay
biases corresponding to the trend and periodic radial velocity
biases, which are
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In the above equations, we consider the light travel time from
the Earth to the Sun (about 1 au) as the characteristic Roemer
delay.

Similarly, the astrometric biases corresponding to the trend
and periodic radial velocity biases are
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Therefore, a radial velocity bias of 1 mm s−1 corresponds to a
timing bias of 10 μs and an astrometric bias of about 4 mas.

To investigate the influence of the barycentric correction or
more generally the decoupling of local and remote effects on
the detection of exoplanets, we calculate the boundary of
companion mass and orbital period corresponding to a trend
bias with an acceleration of 1 mm s−1 yr−1 and a periodic bias
of 1 cm s−1 for stars with a heliocentric distance of 1, 10, and
100 pc. We show these boundaries together with the currently
known planets in Figure 3. In this figure, we add circles around
plotted points to denote planets that are subject to trend bias
with an acceleration larger than 1 mm s−1 yr−1 or periodic bias
larger than 1 cm s−1. An acceleration of 1 mm s−1 yr−1

corresponds to a 1 cm s−1trend bias for observations over one

decade. There are only six planets strongly influenced by trend
bias. Five of them are transit planets, while one of them is
detected through astrometry. They are all massive planets with
relatively short orbital periods. The boundaries for trend biases
also suggest that short-period, massive planets such as hot
Jupiters would induce large stellar reflex motions and thus bias
the initial proper motions, leading to a spurious radial velocity
trend. On the other hand, the periodic bias is manifested in stars
with long-period and massive companions, most of which are
detected through direct imaging.
Nevertheless, our estimation of the bias for a given system is

only a lower limit because the bias is determined by the largest
companion in a system, which might not be detected.
Therefore, the boundaries shown in Figure 3 are a better guide
for the estimation of decoupling bias because it is calculated for
the most massive companion in a system.
Because the transit timing is not sensitive to <0.02 s bias

(corresponding to decoupling bias for α Centauri A), a
decoupling in timing modeling is efficient and reliable for
most transit systems. However, the transit system is sensitive to
remote effects such as the transit timing variation (TTV) caused
by binary motions. Relative astrometry is sensitive to the
astrometry and radial velocity of the TSB (see Equation (10)),
which could be biased through decoupling. Absolute astro-
metry is sensitive to decoupling, and this is why the high-
precision astrometry software GREM (Klioner 2003) is used to
model all motions simultaneously for Gaia astrometry,
although its timing model is biased by decoupling effects.
For the radial velocity method, decoupling is unlikely to

achieve 1 cm s−1 radial velocity precision because even distant
close binaries (d>1 kpc) show 1 cm s−1 trend bias for decade-
long observations. On the other hand, wide binaries (with
orbital periods longer than one decade) show strong periodic
bias, which can be approximated as a trend for observations
with a baseline far shorter than the orbital period. Because
nearly half of the solar-type stars are binaries (e.g., Sana &
Evans 2011; Moe et al. 2019), a combined modeling of the
target and local systems is essential to achieve 1 cm s−1

precision over decade-long observations. As illustrated in
Figure 3, for nearby stellar systems, planets with hot and cold
Jupiter companions are sensitive to trend and periodic biases,
respectively. Because most TESS targets are close to the Sun,
the radial velocity follow-up for hot Jupiters detected by TESS
may need to consider the trend bias. Specifically, decoupling
could introduce ∼0.1 m s−1 bias in 10 years of radial velocity
measurements of a nearby star (<10 pc) with hot or cold
Jupiters. It could introduce ∼1 m s−1 bias over one year for a
nearby star hosting stellar-mass companions.
Considering the above difficulties, a separation of local and

remote radial velocity effects through decoupling is unlikely to
achieve 1 cm s−1 precision for decades-long radial velocity
data, especially for nearby stars with massive companions (e.g.,
with a mass >1MJup). Because astrometry data is essential for
a reliable decoupling, a combined modeling of radial velocity
and astrometry is the proper way to avoid bias induced by
decoupling. Another more efficient approach is to use
astrometry offsets or jitter terms to model potential bias and
fit these offsets together with the radial velocity model
parameters to the radial velocity data “corrected” for
barycentric effects.
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3.6. Significance of Relativistic Effects in Extrasolar Systems

In this section, we investigate the sensitivity of currently
confirmed exoplanets to relativistic effects. The main relativis-
tic effect in extrasolar systems is the precession of the longitude
of periastron. According to Misner et al. (1973) and Jordán &
Bakos (2008), it is
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where n≡[G(mT+mC)/a
3]1/2 is the Keplerian mean motion

and P is the orbital period. Assuming mC=mT, we derive the
period–mass boundaries for e=0, 0.5, and 0.9 for w = 10GR˙
per century or 1° per decade and show them in the period–mass
distribution of currently known planets in Figure 4. There are
about 144 transit planets with strong relativistic precession,
although the planetary perturbation and tidal deformations may
also contribute at a level comparable to the relativistic
precession (Jordán & Bakos 2008). However, these nonrela-
tivistic effects only become important when the planet is very
close to the star. According to Jordán & Bakos (2008),

planetary orbits with semimajor axis larger than 0.05 au are
suitable for relativity tests. The precession is detectable in the
variation of primary transit duration (Miralda-Escudé 2002)
and in the changes of longitude of periastron in radial velocity
data (Jordán & Bakos 2008). Although such effects will
probably be detected in the near future, the current radial
velocity and transit timing data are not likely to be precise
enough to put strong constraints on various post-Newtonian
theories and to test GR in particular.
Unlike star–planet systems, binaries have relatively stronger

gravitational fields and thus are more suitable for relativity
testing. Considering that timing data is limited to one-
dimensional information, we investigate the feasibility of using
astrometry and radial velocity data to test relativity. The former
has been studied previously (e.g., Kopeikin & Ozernoy 1999;
Klioner 2003; Kopeikin & Makarov 2007). We will focus on
the latter by assessing the significance of the Doppler shift
induced by special (zsrT) and general (zgrT) relativity. Because
these two Doppler shifts are proportional to c−2, they dominate
the relativistic Doppler shifts in the target system, compared
with the lensing Doppler shifts, which are proportional to c−3.
Because the constant relativistic Doppler shift is not detectable
in radial velocity data, we only estimate the variation of
relativistic Doppler shifts. According to Equations (19) and

Figure 3. The plot shows exoplanets downloaded from the NASA Exoplanet Archive and color coded for different detection methods as a function of orbital period
and planetary mass. The lines on the plot indicate potential radial velocity biases caused by barycentric corrections or more generally by decoupling local and remote
effects with the assumption that plotted exoplanets are hosted by single stars. The black lines show the boundaries for the 1 mm s−1 yr−1 trend bias, while the gray
lines show the boundaries for the 1 cm s−1 periodic bias. The top left part of the phase space is particularly susceptible to large trend bias, while the top right part of the
phase space is particularly susceptible to large periodic bias. The solid, dashed, and dotted lines show the biases for stars with distances d=1, 10, and 100 pc,
respectively. The planets denoted by open circles are influenced by at least 1 mm s−1 yr−1 trend bias or 1 cm s−1 periodic bias because of decoupling. The orbital
periods for directly imaged planets are derived from their semimajor axes by assuming a face-on circular orbit.
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(57), the amplitude of the variation of zsrT is

d
d

= =
-v v

z
v

c c2 2
, 84srT

ST
2

2
ST,max
2

ST,min
2

2
( )

where vST,max and vST,min are respectively the maximum and
minimum vST. The variation of + = + +v v v vSB BT

2
SB
2

BT
2( )

v v2 SB BT· depends on the angle between vSB and vBT and thus
depends on the inclination and angular parameters of the binary
orbit. To simplify the problem, we explore the range of dzsrT for
a given eccentricity e and barycentric velocity vSB. The
minimum δzsrT is

d
d

p

= =
-

=
-

+ -

v
z

c

v v

c
e

c e

G

P
m m m

2 2
2

1

2
. 85T C C

srT.min
BT
2

2
BT,max
2

BT,min
2

2

2 2

2 3
4 3 2

( )
( ) ( )

⎡
⎣⎢

⎤
⎦⎥

Then the minimum amplitude of radial velocity variation
induced by special relativity is
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The maximum δzsrT is
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The maximum amplitude of radial velocity variation induced
by special relativity is
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is the relativistic radial velocity related to the coupling of the
heliocentric motion of the TSB and the binary motion. For α
Centauri A, δvsrT,min≈0.08 m s−1 and d »v 0.61srT,max m s−1

over half of the binary orbital period.
According to Equations (55) and (19), the amplitude of the

variation of gravitational Doppler shift for a binary is
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Figure 4. In order to illustrate the detectability of relativistic effects in currently known planetary systems, we select exoplanets with stellar mass larger than 0.1 Me
and orbital period less than 100 days from the known exoplanets selected for Figure 3. All of the exoplanets to the left of the solid, dashed, and dotted lines (for e=0,
0.5, and 0.9) are the exoplanets with a precession larger than 10° per century and are highlighted with open circles.

15

The Astrophysical Journal Supplement Series, 244:39 (37pp), 2019 October Feng et al.



Hence, the corresponding amplitude of radial velocity variation is
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For α Centauri A, δvgrT≈0.16 m s−1 over half of the binary
orbital period.

To investigate the sensitivity of binary orbits to relativistic
effects, we show the relativistic radial velocity variation as a
function of binary mass and orbital period. We show a sample
of 652 binaries with dynamical masses derived by Malkov et al.
(2012) in Figure 5. According to Equations (86), (89), (90), and
(92), the relativistic radial velocity variation is not sensitive to
eccentricity if the binary orbit is not circular (e.g., e>0.1).
Because only 8% of binaries in the binary sample have
e<0.1, we adopt e=0.1 to more easily calculate the
relativistic radial velocity variation. Figure 5 illustrates that
the relativistic radial velocity is relatively sensitive to the mass
of the secondary mC for a low-mass primary compared with a
high-mass primary. Thus the optimal targets for detecting
relativistic effects are the low-mass companions of massive
primaries. While many binaries show a relativistic radial
velocity variation of a few cm s−1 over one orbital period, the

detection of such a variation is at most marginal and thus is not
suitable for relativity tests. To select the optimal targets for
relativity tests, we note that there are 52 binaries with
vgrT>1 m s−1 and orbital period P<10 yr. Based on a PPN
formulation of the gravitational redshift (e.g., Misner et al.
1973; Kopeikin & Ozernoy 1999; Gravity Collaboration et al.
2018), these binaries can be used to constrain the strong
principle of equivalence to a relative precision of 1% if a few
cm s−1 radial velocity precision can be achieved by high-
precision spectrographs. Because the gravitational redshift
caused by a binary companion has a period that differs from the
orbital periods of potential planets around the target star, the
gravitational redshift variation can be detected without
considering planetary perturbations, although a combined
modeling may reduce the residual and improve the significance
of detection.
In summary, the gravitational redshift variation in binary

systems can provide a new method to test GR. To demonstrate
the uniqueness of this method, we show the mass and
dimensionless gravitational potential for various relativity tests
in Figure 6. Although current efforts are focused on strong-field
tests of GR, few tests have been done in the weak-field regime.
It is in the extreme weak-field regime where dark matter needs
to be invoked to explain phenomena such as galactic rotation
and gravitational lensing. However, in the extremely weak

Figure 5. We show the observed binary masses and orbital periods from Malkov et al. (2012) along with period sensitivity for the relativistic radial velocity variation.
The three groups of lines are for different values of the mass of target star mT (0.1, 1, and 10 Me). The upper solid lines are for the minimum amplitude of radial
velocity induced by special relativity (Equation (86)). The dashed lines are for the relativistic radial velocity related to the coupling of the heliocentric motion of the
TSB and the binary motion (Equation (90)). The dotted lines are the amplitude of radial velocity variation due to the gravitational Doppler shift of a binary
(Equation (92)). On the basis that primaries and secondaries have the same mass, the 52 binaries with gravitational radial velocity d >v 1grT m s−1 and orbital period
P<10 yr are denoted by blue circles. We note that in all our predictions we assume general relativity to be true and use e=0.1, although a wide range of eccentricity
values are observed, as denoted by the colored eccentricity legend.
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gravitational field, relativistic effects become weak as well, and
thus it is not clear whether the weak-field anomaly is due to the
breakdown of the classical or relativistic predictions of GR if
the null detection of dark matter over the past two decades
(Cosine-100 Collaboration et al. 2018) indicates alternative
gravity theories. To this end, the binary test of relativity
provides a unique way to probe the weak-field and stellar-mass
regime in order to test GR and alternative theories such as the
modified Newtonian dynamics (MOND; Milgrom 1983).

4. Comparison between PEXO and TEMPO2

To estimate the precision of PEXO, we compare PEXO with
TEMPO2, which is able to model timing to a precision of∼1 ns.
Because radial velocity is simply the time derivative of various
delay terms, we also use TEMPO2 to estimate the radial velocity
model precision of PEXO. However, TEMPO2 does not model
astrometry precisely. Because our astrometry model is similar to
the model used by GREM (Klioner 2003), which is able to
achieve microarcsecond precision, we expect a similar precision
for PEXO. Considering that our radial velocity and astrometry
models are consistent with each other, we also expect 1 μas
precision for the astrometry model if the radial velocity modeling
precision is 1 cm s−1 for most stars over decades.9

4.1. Timing

We use τ Ceti as an example to compare the timing model of
PEXO with the one in TEMPO2 and the one introduced by
Eastman et al. (2010). The position of τ Ceti is characterized by
α=−15°.93955572 (ICRF),δ=26°.02136459 (ICRF), w=
273.96 mas, μα=−1721.05 mas yr−1, μδ= 854.16 mas yr−1,
and radial velocity vr=−16.68 km s−1 (Gaia Collaboration
et al. 2018). We use the online applet developed by E10 to
calculate the BJDTDB from JDUTC. Because this online applet
does not propagate the orbit of the target star, we set μα, μδ,
and vr to be zero in order to compare with PEXO as well as
TEMPO2. We use the GPS position of CTIO determined by
Mamajek (2012) as an example observatory geocentric
coordinate. We calculate BJDTDB for JDUTC over a
10,000 day time span in a step of 10 days and use the
ephemeris of JPL DE405 (Standish 1998) to determine the
motions of the Earth and observatory.10 We use the 2001
version (hereafter FB01) of the analytical method developed by
Fairhead & Bretagnon (1990) and recommended by McCarthy
& Petit (2004) to calculate TDB-TT for PEXO. The 1990
version (hereafter FB90) is used for TEMPO2 because it is the
only available version in TEMPO2. We also use the 2000B
model of Earth rotation (Capitaine et al. 2003; McCarthy &
Luzum 2003) for TEMPO2 and PEXO.

Figure 6. Relativity tests as a function of logarithmic mass and dimensionless gravitational potential, inspired by Psaltis (2004) and Gravity Collaboration et al.
(2018). The blue region represents the gravitational lensing effect at the Einstein radius for a reduced distance =d d d

d
L S

LS
from 1 pc to 1 Gpc, where dL and dS are

respectively the distances to the lens and to the source, and dLS is the distance from the lens to the source. The red region represents the binary test with mass from 0.1
to 150 Me and gravitational radial velocity variation from 1 cm s−1 to 1 km s−1. The gray region represents the galactic rotation where the width of the gray region is
determined by an acceleration ranging from 10−12 to 10−10 m s−2 (Lelli et al. 2017). The black dots show well-established tests (from top to bottom): the imaging of
the M87 black hole horizon by Event Horizon Telescope Collaboration et al. (2019), the relativistic broadening of Fe Kα lines (Tanaka et al. 1995; Fabian et al. 2000),
the LIGO/Virgo detection of gravitational waves (Abbott et al. 2016, 2017), the S2 orbit around the Galactic-center massive black hole (Gravity Collaboration
et al. 2018), the self-gravitational redshift of Sirius B (Greenstein et al. 1971; Barstow et al. 2005), the Hulse–Taylor pulsar (Taylor & Weisberg 1982), the light
deflection and Shapiro delay in the solar system (e.g., Shapiro 1964), the precession of Mercury (Einstein 1916), and the Pound & Rebka (1959) experiment. The red
dot denotes the gravitational redshift in the α Centauri AB binary system. The gray dots represent tests of dark matter and MOND theories and thus also provide tests
of general relativity in a nonrelativistic regime. They are galactic rotation curves represented by the Milky Way and the wide binary acceleration represented by α and
Proxima Centauri (Banik & Zhao 2018).

9 The velocity precision is δv=1 cm s−1= ´ -2.109 10 6 au yr−1. The
corresponding astrometry precision d d= = ´ -u v t d 2.109 10 6 au yr−1 ×
10 yr/10 pc = 2.109 μas, where d=10 pc is the distance of the target star and
δt=10 yr is the time span.

10 Because E10 uses DE405 by default, we use DE405 in PEXO for
comparison, though DE430 is used in other cases.
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We show the difference in BJDTDB between the online
applet and IDL versions of E10 and TEMPO2 in the left panel
of Figure 7. The IDL version gives a few microsecond timing
precision, while the applet gives submicrosecond precision due
to its use of double precision to store the unreduced JD.
However, the original IDL version of E10 has an error in the
calculation of “parallax delay” (Equation (32)). In the E10
paper, they correctly add a positive sign in the parallax delay
shown in Equation (8) by using uOT as the reference direction.
In the E10 IDL code utc2bjd.pro, the input R.A. and decl. are
barycentric, and thus the reference unit vector is uSB.
However, E10 calculates the total Roemer delay by adding
the parallax delay onto rather than subtracting it from the first-
order Roemer delay. The latter is used to calculate the correct
Roemer delay shown in the left and middle panels of Figure 7.

To compare PEXO, E10, and TEMPO2 on the same footing,
we include all astrometric parameters for τ Ceti and use uOT
calculated by PEXO in the IDL version of E10. We compare
the three packages in the middle and right panels of Figure 7.
We see that the E10 timing precision is about 4 μs, while the
PEXO difference from TEMPO2 is less than 50 ns. In the right
panel, we compare PEXO with its degraded version
(“PEXOt”), which does not include Roemer delay terms higher
than two orders (see Section 2.1). The degraded version differs
from TEMPO2 by less than 8 ns. There is an offset of ∼4 ns
due to the different computation methods of TDB-TT. Instead
of using the FB90 method to derive TDB-TT like TEMPO2,
we use the FB01 method, which is updated and more accurate
(Petit & Luzum 2010). We also use DE430t to derive TDB-TT
and find a similar offset, suggesting a bias of a few
nanoseconds in the FB90 method. The annual variation in
DBJDTDB suggests that the bias caused by FB90 depends on
the barycentric distance of the geocenter. The minimum
difference between PEXO and TEMPO2 occurs at the
reference Hipparcos epoch. Therefore, third-order geometric
terms shown in Section 2.1 are necessary for a timing model
with a precision of ∼1 ns. The failure to consider this in
TEMPO2 might bias its modeling of decade-long pulsar
timing data.

In the Figure 7 comparison of the degraded PEXO (i.e.,
PEXOt) and TEMPO2, we only account for the Shapiro delay
due to the Sun because we find a related bug in TEMPO2. The

term 1−cos(ψ) in Equation (34) is implemented as
y+1 cos( ) in the TEMPO2 routine shapiro_delay.C. This

will lead to considerable bias in Shapiro delay caused by the
solar system planets. We show the Shapiro delays induced by
the Sun, Jupiter, Saturn, and Uranus in Figure 8. The Sun is the
dominant source of Shapiro delay. Jupiter contributes about
30 ns to the total Shapiro delay and thus is the second important
source. Saturn and Uranus contribute about 10 and 1.5 ns,
respectively. The other solar system planets only induce less
than 1 ns Shapiro delay. Therefore, the Shapiro delays due to
the Sun, Jupiter, Saturn, and Uranus are essential components
in the model for ∼1 ns timing. The Shapiro delay and lensing
effects due to Jupiter and Saturn have been detected using very-
long-baseline interferometry (Fomalont & Kopeikin 2003;
Fomalont et al. 2009). In the timing, astrometry, and radial
velocity models of PEXO, Shapiro or lensing effects of the
Sun, Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn,
Uranus, and Neptune are considered as standard.
In the comparison shown in Figure 7, we modify PEXO to

use a relatively outdated ephemeris, DE405. To assess the
significance of ephemeris difference, in Figure 9 we compare
the JPL ephemerides DE405 (Standish 1998), DE414 (Standish
2006), DE421 (Folkner et al. 2008), DE435 (Folkner et al.
2016), DE436, and DE438 with DE430 (Folkner et al. 2014).
From left to right, the plots in Figure 9 indicate that DE405 and
DE414 typically differ from DE 430 and other recent
ephemerides by more than 1000 ns in BJDTDB (ΔBJDTDB),
more than 1 km in barycentric position of the geocenter (rSG),
and more than 0.05 mm s−1 in barycentric velocity of the
geocenter (vSG). DE436 and DE438 differ from DE430 by
ΔBJDTDB∼400 ns, rSG∼200 m, and vSG∼0.02 mm s−1. In
contrast, DE435 and DE436 differ from each other by
ΔBJDTDB∼35 ns, rSG∼20 m, and vSG∼0.0005 mm s−1.
These stated differences are only a guideline as they are based
on average differences and constitute an annual variation
superposed on the trend due to perspective change.
The significant difference between DE405 and other

ephemerides has been studied frequently (e.g., Viswanathan
et al. 2017; Wang et al. 2017). The precision of an ephemeris is
determined by the quality of the solar system model, as well as
the amount of data available when the ephemeris was
computed and fit. Thus we encourage use of the most recent

Figure 7. Comparison of BJDTDB calculated by E10, PEXO, and TEMPO2. Left panel: BJDTDB modeled by the online applet (black) and IDL version (blue) of E10
after subtraction by the TEMPO2 values. Considering that the applet does not propagate the coordinates of targets, zero proper motion of τ Ceti is assumed. Middle
panel: BJDTDB modeled by E10 and PEXO with respect to the TEMPO2 values. In this comparison, proper motion effects are considered. Right panel: BJDTDB

modeled by PEXO with and without third-and higher-order Roemer delay terms. Because the latter is the approach adopted by TEMPO2, we call it “PEXOt.” Proper
motion effects are considered in this comparison.
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ephemeris if high-precision timing data are analyzed. For the
ephemeris DE430 and more recent ones, we expect a timing
precision of about 100 ns, a positional precision of about 100 m
for the geocenter, and a velocity precision of about
0.01 mm s−1. Thus the timing precision of both PEXO and
TEMPO2 is mainly limited by the solar system ephemeris.
Potential signals in precise timing data should be analyzed with
various ephemerides to confirm, as done by the team of the
North American Nanohertz Observatory for Gravitational
Waves (NANOGrav; Arzoumanian et al. 2018) to constrain
the gravitational-wave background.

To explore precision limits of E10 and TEMPO2 relative to
PEXO, we apply them to the nearby star τ Ceti in Figure 10.
Considering the lack of third-order Roemer delays and coding
errors in TEMPO2, we consider PEXO as the package with the
highest precision and compare E10 and TEMPO2 to it in order

to explore the precision limit of these well-known packages.
We use the Earth rotation model recommended by IAU2006
resolutions (Capitaine & Wallace 2006; Wallace & Capitaine
2006) and the DE430 ephemeris of JPL as well as DE430t to
derive TT-TDB. First, we compare the original utc2bjd.pro
routine without correcting the error of “parallax delay” with
PEXO. We show the results in the left panel of Figure 10. As
seen from the left panel, the coding error in E10 leads to about
0.1 ms bias. The ignorance of proper motion leads to about
0.06 s timing bias for τ Ceti over the 30 yr time span (see
middle panel of Figure 10). This timing bias will lead to about
2 mm s−1 radial velocity bias. This bias could be significant for
the analysis of data with high timing resolution, such as fast
radio bursts with millisecond resolution (e.g., CHIME/FRB
Collaboration et al. 2019). Moreover, proper-motion-induced
timing bias is comparable with relativistic precession for some

Figure 8. Shapiro delay induced by the Sun, Jupiter, Saturn, and Uranus.
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systems and thus needs to be modeled in order to detect
relativistic effects in timing data. As seen in the right panel of
Figure 10, TEMPO2 and PEXO with the same Earth rotation
model and with the DE430 ephemeris are similar at the level of
tens of nanoseconds. The original TEMPO2 (with coding error
for planetary Shapiro delays) deviates from PEXO due to
combined effects of third-order Roemer delays (see the right
panel of Figure 7) and planet Shapiro delays (see Figure 8). For
distant pulsars, the third-order Roemer delays are not
significant, although the coding error in the calculation of
planet Shapiro delays still biases TEMPO2 timing by tens of
nanoseconds. Therefore, the original TEMPO2 has a timing
precision of a few tens of nanoseconds for decade-long
observations, and the original E10 has a timing precision of
subseconds.

4.2. Radial Velocity

We compare the precision of radial velocity modeling by
PEXO and TEMPO2 by calculating the so-called barycentric
correction term zS (see Equation (72)). Unlike Wright &
Eastman (2014), we do not compare the Doppler shift of pulse
frequency with zT because pulse frequency is influenced by
aberration delay (E06). We instead calculate Doppler shift

numerically using

dt
dt

+ =z1 , 93a

o
S

SSB

( )

where ta
SSB is BJDTDB and τo is JDUTC. Because the analytical

value of the local Doppler shift zS is not given in TEMPO2,
we calculate it numerically by using zbary=(BJDTDB2−
BJDTDB1)/(JDUTC2−JDUTC1)−1, where UTC2 and UTC1
are separated by 0.02 day and TDB2 and TDB1 are corresp-
onding TDB times. This UTC time step is chosen such that the
rounding error for both PEXO and TEMPO2 can be as small as
possible. However, such a numerical treatment is only used for
comparison. We use the analytical radial velocity model in
Equation (69) for the application of PEXO.
We take τ Ceti as a test case and calculate the local Doppler

shift zS numerically for PEXO and TEMPO2. We show the
difference in the corresponding radial velocities over 5 yr in
Figure 11. We see that the PEXO radial velocities deviate from
the TEMPO2 values with a peak-to-peak difference of
2 μm s−1, indicating a radial velocity precision comparable to
TEMPO2.

Figure 9. Difference in BJDTDB (left), barycentric position (middle), and velocity (right) of the geocenter.

Figure 10. Comparison of the timing precision of E10 and TEMPO2 with PEXO for τ Ceti.
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We also compare the analytical PEXO and TEMPO2 models
of barycentric radial velocity defined in Equation (28) of
Wright & Eastman (2014) and show the results in the right
panel of Figure 11. The main error seems to arise from the
annual motion of the Earth, which is projected onto the source
direction to derive kinematic Doppler shift. Because we use
DE430 both for TEMPO2 and for PEXO, the annual variation
might be caused by uncertainty in the Earth’s rotation model
and in the numerical calculation of TDB-TT. Readers are
referred to Kopeikin & Ozernoy (1999) for a rigorous treatment
of higher-order relativistic Doppler effects.

Therefore, PEXO’s radial velocity precision is comfortably
beyond the specification of the current best radial velocity
instruments such as ESPRESSO (about a few cm s−1).
However, a precision at the mm s−1 level is only achievable
with an ideal treatment of the atmospheric chromatic aberration

(Wright & Eastman 2014). The ESPRESSO instrument’s exposure
meter provides three spectral channels, so in time the identification
of possible chromatic effects on exposure time midpoints for radial
velocity measurements can be evaluated. A precision of 1mm s−1

is also challenged by the acceleration of the barycenters of
the target system and the solar system. The acceleration of the
SSB is about 1mm s−1 yr−1, leading to 1 cm s−1 bias in the radial
velocity model prediction over one decade. This could provide an
opportunity to use radial velocity data to estimate the acceleration
of stars and thus provide measurements relevant to the Galactic
potential analogous to ongoing efforts to quantify cosmological
variations in the fine-structure constant (e.g., Whitmore & Murphy
2014).

5. PEXO Simulation of Relativistic Effects in
Extrasolar Systems

In this section, we assess various relativistic effects in transit
timing, astrometry, and radial velocity models through
comparison of PEXO simulations and real data for example
systems. These tests are aimed at roughly assessing the
precision of PEXO more than detecting relativistic effects in
real data.

5.1. Transit Timing

TTV (Miralda-Escudé 2002; Holman & Murray 2005) is an
efficient method of constraining the mass and orbital
parameters of transiting planets such as the TRAPPIST-1
system (Gillon et al. 2016; Grimm et al. 2018). However,
relativistic effects are typically ignored to simplify the TTV
modeling because of their small effects, such as in EXOFAST
(Eastman et al. 2013), although these effects could be
detectable with decade-long observations of some systems
(Miralda-Escudé 2002; Jordán & Bakos 2008). To assess the
importance of relativistic effects on transit timing, we use XO-3
b (Johns-Krull et al. 2008), a transiting hot Jupiter, as an
example because it is a hot Jupiter on an eccentric orbit and is
also recommended by Jordán & Bakos (2008) for searching for
relativistic precession.
XO-3 b has a mass of 11.79MJup and an orbital period of

3.1915239±0.00023 days (Johns-Krull et al. 2008; Winn
et al. 2008). We simulate the system over 100 orbital periods
using PEXO, calculate the transit epoch for each orbit, and

Figure 11. Difference of barycentric correction radial velocity term calculated by PEXO and TEMPO2. The left panel shows the numerical comparison, while the
right one shows the analytical comparison.

Figure 12. Comparison of the relativistic TTV (DT ;c
GR black solid line) and

observed TTV (red circles with error bars). To visualize the small relativistic
TTV signal, we show the amplified relativistic TTV prediction for DT100 c

GR.
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compare the simulated relativistic TTV with the observed
transit timing data (Winn et al. 2008) in Figure 12. The period
of primary transits is changed by about 0.4 s over 100 orbits (or
about 319 days) due to relativistic precession. This corresponds
to a time derivative of transit period of 7.98×10−5, consistent
with the prediction using Equation (21) of Miralda-Escudé
(2002). Such a signal might be detectable in transit timing
measurements with a precision of about one minute for each
over one decade. Although such a detection of relativistic TTV
is not impossible with current instruments, it is not as efficient
as other methods such as Transit Duration Variation (TDV) and
the variation of time between primary and secondary transit
(PSV). This is because TTV is proportional to wGR

2˙ while TDV
and PSV are proportional to wGR˙ (Miralda-Escudé 2002).

Because the duration for each transit of XO-3 b is not
provided in previous studies, we select Kepler-210 c (Ioannidis
et al. 2014) to assess the TDV effect. This planet has an orbital
period of 7.9725 days and an eccentricity of 0.5 and thus has
significant relativistic precession. We use the transit duration
epoch data provided by Holczer et al. (2016) to compare to
PEXO predictions. Treating the planet as the target and the star
as the companion, we simulate the system over 200 orbits and
calculate the velocity vTC. We derive the transit duration

= + -R R bR vTD 2 star pl
2

star
2

TC( ) ( ) , where b is the impact
parameter, and Rstar and Rpl are respectively the radii of Kepler-
210 and Kepler-210 c. Because Holczer et al. (2016) only
provide the epoch data for Transit Duration Fraction
( = -TDF TD TD TD( ) ), we derive TDF from vTC using

= -v v vTDF TC TC TC( ) assuming the impact parameter does
not change over time. We show the TDF data and the PEXO
prediction in Figure 13. To visualize the relativistic TDF
properly, we also show an amplified TDF in the figure. The
relativistic TDF changes by 1.8×10−4 over 1500 days,
equivalent to 1.93 s variation in transit duration. This is
consistent with the prediction using Equation (23) of Miralda-
Escudé (2002) or Equation (15) of Jordán & Bakos (2008).
Considering that the mean uncertainty of transit durations is
about 4 min and the relativistic precession is about
wGR˙ =0°.61/century, the relativistic TDF is not detectable

with the current Kepler data for this system. However, such an
effect becomes detectable if high-precession systems are
observed with high cadence (<10 s) by space- or ground-
based telescopes (e.g., Ivanov et al. 2011).
In summary, the relativistic precession is unlikely to be

detectable in current transit timing data due to the large timing
uncertainty caused by low-cadence observations. For transit
systems such as XO-3, the relativistic precession is larger than
1° per century and is thus detectable with high-cadence
observations with exposure time as small as a few seconds.

5.2. Astrometry

PEXO is similar to the GREM package (Klioner 2003;
Lindegren et al. 2018) used by Gaia to model single stars. For
binaries or stars hosting massive companions, PEXO also
accounts for the gravitational lensing caused by companions in
the target system. Additionally, PEXO models the atmospheric
refraction in order to account for the differential refraction
effects in ground-based direct imaging. For decade-long
astrometry data, the parameter uncertainty in an astrometry
catalog would lead to significant deviation of model prediction
from the real position. For example, a proper motion error of
1 mas yr−1 would result in 100 mas position error over one
century. Hence, the astrometry parameters should be deter-
mined a posteriori in combination with the orbital parameters
of companions through Markov chain Monte Carlo (MCMC)
posterior sampling. This is also an approach adopted by pulsar
timing and is more suitable for precision exoplanet research
than the traditional approach, which separates the barycentric
correction from the motions in the target system.
To compare the various effects on the measured astrometry,

we consider the nearest binary system α Centauri as an
example. We use the CTIO observatory as an example
observatory site. The orbital and astrometry parameters of α
Centauri A and B are determined by Kervella et al. (2016)
through a combined radial velocity and astrometry analysis.
Based on a simulation of the position of α Centauri A over one
orbital period with a time step of 10 days, we compare various

Figure 13. TDF for Kepler-210 over 200 orbits or 1500 days. The blue line denotes the relativistic TDF, while the red line represents the relativistic TDF multiplied by
100. The gray error bars show the raw TDF data, while the black ones are the binned data with a bin width of 100 days.
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astrometric effects in Figure 14. One of the main position
changes is caused by the heliocentric motion of the barycenter
of α Centauri. Because it is linear and easy to comprehend, we
do not show this effect in the figure. For ground-based
observations, the atmospheric refraction (P1 in Figure 14)
induces a few arcminute position offset. Because this effect can
only be modeled to a precision of about 1 arcsec (Mangum &
Wallace 2015), the ground-based astrometry is not able to

achieve 1 arcsec absolute precision. The segments of curves in
P1 are due to the annual variation of the elevation angle. We
use the slaRefro routine to calculate the refraction with an
effective wavelength of about 500 nm, temperature of 278 K,
and relative humidity of 0.1.
The stellar aberration due to the Earth’s location (P2) is

another main factor alternating the observed direction of α
Centauri A. This effect is linearly proportional to the

Figure 14. Various effects on the observed position of α Centauri A over an orbital period. The linear proper motion effect is easy to comprehend and thus is not
shown here. The panels are denoted by “Pn” where n is the panel number. The names of effects are denoted by the panel titles. For P1 to P6, the panels are ordered in
the order of decreasing significance. The plots P7 to P9 in the bottom row show the absolute position of α Centauri A without relativistic and atmospheric refraction
effects, without refraction effect, and with all effects, respectively. The binary orbit in P3 shows the motion of α Centauri B with respect to A. It is scaled to be
comparable with Figure 1 in Pourbaix et al. (1999). The north (N) and east directions are shown by arrows, and epochs are denoted by red crosses. The black cross
represents α Centauri A.
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barycentric velocity of the observatory for ground-based
astrometry. Hence, a precise knowledge of Earth’s ephemeris
and rotation is required to properly model this effect. The third
most significant effect is caused by the binary motion (P3).
Instead of showing the barycentric motion of A in P3 of
Figure 14, we show the orbit of α Centauri B with respect to A
and scale the axes such that the binary orbit is comparable with
the one shown in Figure 1 of Pourbaix et al. (1999). The good
match between P3 and the one in Pourbaix et al. (1999)
demonstrates the consistency of our convention (see
Appendix A.4 for details) with the ones used in previous
studies of visual binaries. Although the binary motion of visual
binaries such as α Centauri A and B is significant, it was
typically ignored in previous radial velocity modeling due to a
decoupling of the solar and target systems. A more rigorous
treatment of the stellar motion around the Galactic center is also
needed to account for the secular aberration (Kopeikin &
Makarov 2006).

The other less significant effects are the gravitational lensing
in the solar and target systems. The gravitational lensing effects
caused by the Sun (P4) and Earth (P5) are detectable in
astrometric data with milliarcsecond and submilliarcsecond
precision. As see in the bottom left panel of Figure 14, the
annual motion of the Earth is superposed on the binary motion
of α Centauri in the solar lensing effect. On the other hand, the
lensing effect in the target system only changes the apparent
position of the target star by less than 1 μas. According to
Kopeikin & Schäfer (1999), the lensing effect due to a
companion in the target system is only significant for nearly
edge-on systems that host massive companions.

In panels P7 to P9, we show the position of α Centauri A
with various combinations of effects. In the geometric position
of α Centauri A (P7), we only combine the proper motion,
parallax, and binary motion. We see that the orbit is dominated
by a linear trend caused by proper motion and a periodic
component due to the binary motion. The annual parallax is
superposed on this long-term trend. If we add stellar aberration
and lensing effects (P8), we find that the aberration adds
another dimension to the trend and forms a “tube.” The
diameter of the tube is determined by the magnitude of stellar
aberration. If we combine all effects (P9), the position offset is
dominated by the refraction effect. If the elevation angle is
large enough, the refraction can be smaller than 1 arcmin,
which is still much more significant than other effects.

To see the influence of various effects on relative astrometry,
we show the position of B with respect to A in Figure 15. The
offset coordinates are defined as

a a a
d d

D = -
+

cos
2

, 942 1
1 2* ( ) ( )

d d dD = - , 952 1 ( )

where (α1, δ1) and (α2, δ2) are the equatorial coordinates of two
points on the celestial sphere that are close to each other. We
explain the various effects shown in Figure 15 as follows:

1. P1: Differential refraction. Because we only consider a
single wavelength in the calculation of refraction, this
refraction effect is achromatic. Chromatic refraction can
be calculated simply by applying the slaRefro routine
to different wavelengths. Despite much scatter and
complexity in the pattern observed in the offsets, the

differential refraction is less than 0.05 arcsec for most
time steps when the elevation angle is higher than 30°.
Without properly modeling this differential effect to a
submilliarcsecond precision, relative astrometry based on
direct imaging would be significantly biased in char-
acterizing exoplanets.

2. P2: Differential refraction. Because we adopt a uniform
time step of 10 days, the modulation of elevation and
refraction over time is due to the Earth’s motion with
respect to the SSB.

3. P3: Differential refraction. This panel shows the differ-
ential refraction as a function of elevation angle. The
upper limit of the differential refraction is determined by
the elevation angle, while the binary motion modulates
the differential refraction at a given elevation angle.

4. P4: Atmospheric refraction. This panel shows the
refraction as a function of elevation. For the atmospheric
parameter adopted in this simulation, the absolute
refraction is less than 1 arcmin, and the relative refraction
is less than 0.05 arcsec if the elevation angle is larger than
30° (see Section 3.4.2). In principle, the current atmo-
spheric model allows a differential refraction model
precision of 10 μas (Gubler & Tytler 1998). Parameters
such as temperature of the star, local pressure and
temperature, and relative humidity may not be well
known. As already routinely practiced by some ground-
based astrometric programs, it is necessary to observe
target systems close to the zenith if submilliarcsecond
relative astrometry is required.

5. P5 and P6: Differential aberration. The aberration is
determined by the component of rSO that is perpendicular
to the target direction. Hence, the aberration is modulated
by the Earth’s rotation and barycentric motion. Although
this effect contributes a few milliarcsecond positional
offset (comparable with the astrometric signal induced by
a Jupiter analog) and shows strong variation in time, it is
rarely considered in analyses of relative astrometry data.

6. P7: Differential solar lensing. This effect is at most a few
microarcseconds and thus is only important for future
space-based astrometry missions such as the SIM
PlanetQuest (Catanzarite et al. 2006; Unwin et al. 2008).

7. P8: Geometric orbit. This is the binary motion projected
onto the plane of the sky and is frequently used by the
community to model relative astrometry.

8. P9: Observed orbit. This is a combination of geometric
and other effects. The atmospheric refraction biases the
binary orbit by at most 2 arcsec, producing about 10% of
the total offsets. If the system is observed with an
elevation angle larger than 30°, we expect <0.05 arcsec
refraction bias, equivalent to a 0.2% uncertainty in the
binary orbital solution. Without properly removing this
bias through modeling, it is unlikely to detect astrometric
signals of exoplanets reliably.

Based on the above analyses of the α Centauri orbit, the
atmospheric and aberration effects are only marginally
important for constraints on its binary orbit based on relative
astrometry. However, these effects are far more significant than
potential planetary signals. For example, an Earth-like planet
around α Centauri B would induce ∼1μas stellar reflex
motion, and a Jupiter-like planet would induce ∼1 mas reflex
motion. Hence, the atmospheric and aberration effects should
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be modeled to a high precision level if solar system analogs are
to be detected through the astrometry method.

To roughly test the precision of PEXO prediction, we
compare the geometric binary orbit (P8 in Figure 15) with the
astrometry data from Kervella et al. (2016). The model and data
for the angular separation and the position angle are shown in
Figure 16. The small residual suggests that PEXO is able to
recover previous results. The observational details for each
astrometry data point are beyond this work, so we have not

considered the aberration and atmospheric effects that could
introduce differential positional offsets.

5.3. Radial Velocity

Adopting the same observatory coordinates and orbital
parameters as in Section 5.2, we now consider the relativistic
and classical effects on the radial velocities of α Centauri
below and show the results in Figure 17:

Figure 15. Various effects on the relative position of α Centauri B with respect to A. The differential refraction is shown in the offset coordinates (P1), as a function of
time (P2), and as a function of elevation angle (P3). The refraction as a function of elevation angle is shown in P4. The horizontal dashed line indicates a refraction of
1 arcmin. The differential aberrations in the offset coordinates and as a function of time are shown in P5 and P6, respectively. P7 shows the differential solar lensing in
offset coordinates. The geometric orbit of B around A without lensing, aberration, and refraction effects is shown in P8. The observed orbit with all effects is shown
in P9.
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1. P1: General relativity in the target system. This GR effect
is caused by the gravitational field of α Centauri B, which
makes the light ray from α Centauri A Doppler shifted.
This leads to a radial velocity variation of 0.17 m s−1,
which is larger than the maximum radial velocity
variation of 0.1 m s−1 that would be caused by the
presence of any Earth-like planets around α Centauri A.
To the best of our knowledge, this effect is not considered
in current radial velocity analysis packages.

2. P2: Special relativity in the target system.This is a special
relativity effect that is due to the motion of α Centauri A
around the barycenter of the binary. This effect
contributes to a radial velocity variation of 0.53 m s−1

over one orbital period and again does not appear to be
included in existing radial velocity packages.

3. P3: Motion of the target with respect to the TSB. This
radial velocity variation is due to the motion of α
Centauri A around the binary barycenter. This motion is
typically ignored for the barycentric correction, although
it can be determined a priori if the Keplerian parameters
of the binary motion are known to a high precision.

4. P4: Motion of the TSB with respect to the SSB. This is a
kinematic effect due to the relative motion of the TSB
with respect to the SSB. This motion would change the
viewing perspective and lead to the so-called “perspective
acceleration” in radial velocity. This perspective accel-
eration is coupled with the binary motion and the
observer’s motion in the solar system. This is evident
in the corresponding radial velocity acceleration shown in
Figure 18. The mean acceleration is the perspective
acceleration, the short periodic variation is due to the
Earth’s annual motion around the Sun, and the long
periodic variation is caused by the binary motion of α
Centauri A and B. This time-varying acceleration casts
doubt on the reliability of subtracting a linear trend with a

constant perspective acceleration from the radial velocity
data (e.g., Zechmeister et al. 2013).

5. P5: Lensing in the target system. This effect corresponds
to the gravitational lensing of the companion, which is α
Centauri B in this case. This effect contributes at most a
0.1 mm s−1 radial velocity variation. Considering that this
effect is proportional to the inclination and the semimajor
axis, it might be detectable with radial velocity instru-
ments such as ESPRESSO in a nearly edge-on binary
system, in short-period binaries, and in transiting systems
hosting massive, short-period planets.

6. P6: Lensing in the solar system. This effect is due to the
gravitational lensing of the Sun and the Earth, contribut-
ing to a 0.1 mm s−1 radial velocity variation. This effect
is proportional to cot ψ/2 (Klioner 2003), where ψ is the
angular distance between the Sun and the target star.
Considering that the minimum ψ is 40° for the α Centauri
example, the lensing effect would contribute to 1 cm s−1

if the target star is less than 1° from the Sun.
7. P7: Relativistic effects in the solar system. These effects

are due to the gravitational field in the solar system and
the barycentric motion of the observer. These effects also
cause the Einstein delay, which transforms TT to TCB.
The ratio of the increments of TT and TCB is simply the
relativistic Doppler shift. Because the motion of the
observatory in the solar system is derived from the JPL
ephemeris, we can subtract this type of radial velocity
variation directly from the measured radial velocity to
remove these local effects. However, in the cases that the
observatory site or the ephemeris is not well determined,
the Earth’s motion as well as the motions of the target star
should be determined a posteriori.

8. P8: Motion of geocenter with respect to the solar system
barycenter. This effect is due to the barycentric motion of
the geocenter and contributes about a 20 km s−1 radial

Figure 16. Predicted and observed angular separation (left) and position angle (right) of α Centauri B with respect to A. The red lines denote the best-fit orbital
solution given by Kervella et al. (2016). The black error bars denote the astrometry data that the solution is based on and can be visualized in the lower observed–
calculated plot.
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velocity variation. Such significant kinematic effects are
not completely local because the corresponding radial
velocity variation depends on the direction of the target,
which changes over time due to the motion of the
target star.

9. P9: Earth rotation. This effect is due to the Earth’s
rotation and contributes to a 200 m s−1 variation. Hence,
the radial velocity data precision highly depends on the
Earth rotation model. Specifically, a radial velocity
precision of 1 cm s−1 requires 1 cm s−1 modeling preci-
sion of the Earth rotation. Alternatively, the Earth’s
rotation can be determined a posterori through a fit of the
combined model to the data.

10. P10: Motion of observer with respect to the SSB. It is a
combination of the P9 and P10 effects.

11. P11: Troposphere refraction. In this panel, we show
refraction-induced radial velocity variation for elevation
angles larger than 10° to be representative of most
ground-based observations. This indicates at most a few
mm s−1 variation in radial velocity, and thus refraction-
induced effects are negligible for the current radial
velocity observations.

12. P12: All effects. This is the observed radial velocity,
which is a combination of all effects.

Figure 17. Relativistic and classical effects on the measured radial velocity of α Centauri A over an orbital period.

Figure 18. Radial velocity acceleration induced by the motion of the
barycenter of α Centauri relative to the SSB.
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We further assess the performance of PEXO by comparing the
PEXO model prediction of radial velocity with the radial
velocity data in the literature in Figure 19. For data sets with
relative radial velocities, we add an offset so that the mean
predicted and observed radial velocities are equal. It is obvious
that the PEXO prediction well fits the combined data, leading
to 4.7 and 4.2 m s−1 standard deviations of residual radial
velocities for α Centauri A and B, respectively. Nevertheless,
we still see significant variations in the CHIRON and HARPS
data sets, indicating potential bias in the Kervella et al. (2016)
solution and in the barycentric correction. To mitigate such
biases, a comprehensive modeling of the α Centauri system is
needed and is beyond the scope of this work.

5.4. Comparison of Relativistic Effects on Timing, Astrometry,
and Radial Velocities between Different Packages

We apply PEXO to simulate the timing, astrometry, and
radial velocity of τ Ceti, α Centauri A, and XO-3 over one
decade to assess the significance of various effects. In the XO-3
system, we treat XO-3 b as the primary and XO-3 as the
secondary so that the timing model can be used to predict
transit timing, the astrometry model is applicable to the relative
astrometry of directly imaged planets, and the radial velocity
model can be used in studies of systems such as the S2-Sgr A*

system (Gravity Collaboration et al. 2018). Additionally, we
compare the functions in PEXO with those in TEMPO2,
EXOFAST+,11 and GREM12 and show the results in Table 1.

Although TEMPO2 is able to model radial velocity by
differentiating the timing function over time, such a numerical
treatment is likely to result in significant rounding errors due to
the huge scale difference between various quantities. The pulse

frequency in TEMPO2 is not the same as the light frequency;
for example, the light from a star can be gravitationally
redshifted while the rotation frequency of a pulsar cannot.
Thus, TEMPO2 is not optimal for radial velocity modeling,
especially in the case of exoplanet detections.
As seen in Table 1, TEMPO2 provides a precise timing

model by including many high-order effects, EXOFAST+
includes some relativistic effects in timing and radial velocity,
and GREM is able to model astrometry to a high precision. In
comparison with these packages, PEXO aims to include most
high-order effects while also providing a combined modeling
of timing, astrometry, and radial velocity. As shown in the
table, the significant time delay not included in EXOFAST+
and GREM is the Einstein delay in the target system, which is
about 0.01 s for α Centauri A and XO-3 b. The Einstein delay
in α Centauri over one binary orbit is as large as 0.1 s. This
delay variation actually measures the difference between
periastron and apastron for a given Keplerian orbit. Thus it is
significant for an eccentric orbit and can be measured by the
timing difference between the primary and secondary transits
for a long-period transit planet.
Without considering proper motion effects, EXOFAST+

introduces subsecond timing bias for τ Ceti and α Centauri A.
This bias increases with the time difference between the
reference epoch of the astrometry catalog and the mean epoch
of the data. On the other hand, the decoupling approach
adopted by EXOFAST+ and GREM would introduce 0.02 s
bias in their timing model for α Centauri. Because TEMPO2
does not consider the third-order Roemer delay, there would be
timing biases of 200 and 900 ns for τ Ceti and α Centauri for
one decade, respectively. Because the third-order Roemer delay
is determined by the time difference between simulated epochs
and the reference epoch, the corresponding 200 ns timing bias
for the simulated epochs starting from the Gaia reference epoch
for τ Ceti (shown in Table 1) is much higher than that for
earlier epochs shown in the right panel of Figure 7.
The atmospheric effects contribute a few arcminute position

offset and are not modeled by GREM, which is aimed at space-
based astrometry. The second-most significant astrometric

Figure 19. Comparison of the radial velocity model prediction and the radial velocity data sets from various sources. The red line shows the model prediction based on
the solution given by Kervella et al. (2016). Left panel: model prediction and observed radial velocities of α Centauri A and B; middle panel: radial velocity residual
for α Centauri A; right panel: radial velocity residual for α Centauri B. In each panel, the top axis shows the modified Julian date (MJD=JD-2,400,000.5). The
HARPS data is from Lisogorskyi et al. (2019), the CHIRON and ES data sets are from Zhao et al. (2018), the UVES data is obtained by Kjeldsen et al. (2005), the
AAT and CORALIE data are from Pourbaix et al. (2002), and the LC and VLC data are from Endl et al. (2001).

11 EXOFAST+ represents a combination of the timing routines such as
utc2bjd.pro developed by E10, EXOFAST developed by Eastman et al. (2013),
and zbarycorr.pro developed by Wright & Eastman (2014). The Roemer delay
in TS applies to EXOFAST, the radial velocity functionalities apply to
zbarycorr.pro, and the other timing functionalities apply to utc2bjd.pro.
12 Because we do not have access to the software, information about the
functions implemented comes from Klioner & Kopeikin (1992) and
Klioner (2003).
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effect is the stellar aberration. Because the first-order aberration
is considered in most packages, we only show the second- and
third-order aberration values in Table 1. The second-order
aberration contributes at most 1 mas position offset and is not

sensitive to stellar distance. Thus it is important for
milliarcsecond-precision astrometry for all stars. Another
significant effect is gravitational lensing by the Sun, which
could contribute more than 10 mas position offset. The Earth

Table 1
Comparison of Various Packages and Amplitudes of High-order Classical and Relativistic Effects in Timing, Astrometry, and Radial Velocity

Model Function Equations Unit τ Ceti α Centauri A XO-3 b PEXO TEMPO2a EXOFAST+ GREM

Timing Second-order Roemer
delay in SS

(32) s ´ -3 10 4 ´ -5 10 4 ´ -4 10 6 ✓ ✓ ⨯⨯ ✓

Timing Third-order Roemer
delay in SS

(8) s 6×10−5 9×10−7 ´ -3 10 12 ✓ ⨯ ⨯ ⨯

Timing Einstein delay in SS (30) s 20 20 20 ✓ ✓ ✓ ✓

Timing Shapiro delay due to
the Sun

(34) s ´ -3 10 5 ´ -2 10 5 ´ -2 10 5 ✓ ✓ ✓ ✓

Timing Shapiro delay due to SS
planets

(34) s ´ -4 10 8 ´ -2 10 8 ´ -3 10 8 ✓ ⨯⨯ ⨯ ⨯

Timing Proper motion of TS (32) s 0.2 0.6 1×10−4 ✓ ✓ ⨯ ✓

Timing Roemer delay in TS (39) s 0 3×103 40 ✓ ✓ ✓ ✓

Timing Einstein delay in TS (40) s 0 0.01 0.01 ✓ ✓ ⨯ ⨯
Timing Shapiro delay in TS (41) s 0 4×10−6 2×10−7 ✓ ✓ ⨯ ⨯
Timing Atmospheric effects (27) s 8×10−8 3×10−8 3×10−8 ✓ ✓ ⨯ ⨯
Timing Trend decoupling effects (79) s 0 0.02 4×10−3 ✓ ✓ ⨯ ⨯
Timing Period decoupling effects (80) s 0 0.02 5×10−7 ✓ ✓ ⨯ ⨯

Astrometry Second-order stellar
aberration

(42) as 6×10−4 7×10−4 7×10−6 ✓ ⨯ ⨯ ✓

Astrometry Third-order stellar
aberration

(42) as 2×10−7 1×10−7 1×10−7 ✓ ⨯ ⨯ ✓

Astrometry Lensing by the Sun (50) as 0.02 0.009 0.01 ✓ ⨯ ⨯ ✓

Astrometry Lensing by SS planets (50) as 6×10−4 ´ -2 10 4 9×10−4 ✓ ⨯ ⨯ ✓

Astrometry Gravitational lensing
in TS

(49) as 0 ´ -3 10 9 ´ -1 10 9 ✓ ⨯ ⨯ ⨯

Astrometry Second-order geometric
effects

(8) as 0.2 4 2×10−3 ✓ ⨯ ⨯ ✓

Astrometry Third-order geometric
effects

(8) as 2×10−6 ´ -3 10 5 2×10−14 ✓ ⨯ ⨯ ⨯

Astrometry Atmospheric effects (47) as 4×103 1×103 3×103 ✓ ⨯ ⨯ ⨯
Astrometry Trend decoupling effects (81) as 0 9 2 ✓ ⨯ ⨯ ✓

Astrometry Period decoupling effects (82) as 0 0.7 ´ -5 10 3 ✓ ⨯ ⨯ ✓

Radial velocity Relativistic effects in
the SS

(58) m s−1 0.2 0.2 0.2 ✓ L ✓ ⨯

Radial velocity Lensing by the Sun (64) m s−1 2×10−3 1×10−3 ´ -1 10 3 ✓ L ✓ ⨯
Radial velocity Lensing by SS planets (64) m s−1 5×10−6 ´ -2 10 6 ´ -2 10 6 ✓ L ✓ ⨯
Radial velocity Special relativity in TS (57) m s−1 0 0.2 40 ✓ L ⨯ ⨯
Radial velocity General relativity in TS (55) m s−1 0 0.04 50 ✓ L ⨯ ⨯
Radial velocity Lensing Doppler shift

in TS
(66) m s−1 0 2×10−5 2 ✓ L ⨯ ⨯

Radial velocity Second-order geometric
effects

(8) m s−1 0.07 0.9 8×10−3 ✓ L ✓ ⨯

Radial velocity Third-order geometric
effects

(8) m s−1 6×10−7 ´ -1 10 5 ´ -2 10 14 ✓ L ⨯ ⨯

Radial velocity Atmospheric effects (68) m s−1 ´ -8 10 3 ´ -3 10 3 ´ -4 10 3 ✓ L ⨯ ⨯
Radial velocity Trend decoupling effects (76) m s−1 0 2 0.4 ✓ L ⨯ ⨯
Radial velocity Period decoupling effects (78) m s−1 0 2 5×10−5 ✓ L ⨯ ⨯

Notes. The amplitudes are determined based on simulations over 10 years starting from the Gaia DR2 epoch. The solar system is denoted by SS while the target
system is denoted by TS. We do not show constant effects such as the frame transformation between TSB and SSB. Because TEMPO2 is not optimal and is not aimed
at radial velocity modeling, but in principle might offer the feature, we assign a dash mark to each radial velocity effect for TEMPO2. Because the wet component of
tropospheric delay is not well modeled, we follow TEMPO2 to only model the hydrostatic component. The delay values are for elevation angle larger than 10° and
thus are representative for most astronomical observations. Like TEMPO2, PEXO only models the well-understood components such as hydrostatic delay in the
troposphere in these effects and models the other components as fittable parameters. The trend decoupling bias is calculated for a 10 year time span, while the period
decoupling bias is for an orbital period of a given target system. The decoupling effects are recorded as a function of a package if all motions are modeled
simultaneously to avoid decoupling bias, and the decoupling effects can be separated as a data product (or “barycentric correction”). If a function is included in a
package, a tick is assigned. Otherwise, a cross is assigned. If there is a coding error for a function, we use two crosses to mark it.
a TEMPO2 is not designed primarily for radial velocity modeling, although the pulse frequency variation can be converted into Doppler shift.
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lensing dominates the planetary lensing effects and contributes
a submilliarcsecond position offset. The third-order geometric
effect contributes to a 30 μas astrometric bias for α Centauri A
and is not included in GREM. Such an effect could be
significant for some nearby binary systems and needs to be
properly modeled if microarcsecond precision is required. The
decoupling effect contributes a few arcsecond offset.

For the comparison of radial velocity models, the total
decoupling bias is about 4 m s−1 for α Centauri over one
decade and thus significantly higher than potential signals in
the radial velocity data (Zhao et al. 2018). The time-varying
special relativity effect in the α Centauri system is as much as
0.3 m s−1 and is not included in current radial velocity
packages. The relativistic effects are even more significant in
nearly edge-on systems such as XO-3. In such cases, even the
lensing Doppler effect in the target system contributes up to
2 m s−1 and is measurable with current radial velocity
instruments.

It is evident in Table 1 that no current packages are able to
precisely model different types of data consistently. In contrast,
PEXO stands out as a package for modeling multiple types of
data in a precise and consistent fashion. This makes it a suitable
package for synthesizing data from high-precision ground-
based or space-based facilities.

6. Conclusion

In this work, we introduce relativistic models of timing,
astrometry, and radial velocity in the PEXO package, which is
mainly aimed at data analysis for exoplanets as well as tests of
GR. PEXO includes the general and special relativistic effects
both in the solar system and in the target system. These
relativistic effects lead to Einstein delays in timing, stellar
aberration in astrometry, and gravitational Doppler shift in
radial velocity. PEXO also models the gravitational lensing and
high-order geometric effects in both systems. The lensing
effects lead to the Shapiro delay in timing, light deflection in
astrometry, and Doppler shift in radial velocity. Based on our
comparison of PEXO with TEMPO2, PEXO is able to achieve
a timing precision of ∼1 ns, an astrometry precision of ∼1 μas,
and a radial velocity precision of ∼1 μm s−1.

These figures are comfortably better than what were
expected to be achieved by current facilities. To test the
precision of PEXO, we compare it with TEMPO2 and the
package developed by E10. The timing precision of PEXO is at
least comparable with TEMPO2 at the level of a few
nanoseconds. It is better than TEMPO2 for decade-long timing
data for nearby targets due to its consideration of the third-
order terms of Roemer delay. We find an error in the routine
shapiro_delay.C of TEMPO2 that could induce tens of
nanoseconds timing bias in the calculation of Shapiro delay.
Considering the popularity of TEMPO2 and the potential for
coding errors in complex packages, we strongly recommend
the application of independent packages for important
discoveries in pulsar timing and exoplanetology as well as in
other astrophysical applications. We also compare the IDL
routine utc2bjd.pro developed by E10 and its corresponding
applet with TEMPO2. We find that the applet is able to provide
a timing precision of a few milliseconds if ignoring the proper
motion effects. However, we notice an error in the calculation
of parallax delay in utc2bjd.pro, leading to a timing error of
about 0.3 ms for τ Ceti. Although such a bug is not significant
for current exoplanet science, it could become significant for

high-precision applications. The corrected IDL version of E10
is able to model timing to a precision of a few microseconds if
the propagation of TSB is provided externally. The errors in
high-precision packages such as TEMPO2 and utc2bjd.pro
demonstrate the utility of new packages in minimizing coding
errors and their potential spread in other applications.
The numerical implementations of barycentric correction of

radial velocity for PEXO and TEMPO2 differ a few μm s−1.
Considering the timing error in radial velocity data, PEXO is
able to provide a practical radial velocity precision of 1 cm s−1.
The main limitation of radial velocity precision comes from the
bias in the determination of the appropriate midpoint of an
exposure caused by effects such as the atmospheric chromatic
aberration. We do not compare PEXO with the known high-
precision astrometry package GREM because it is not publicly
available. Considering the consistency between astrometry and
radial velocity modeling, we expect the astrometry precision to
be microarcseconds.
We test various effects in transit timing by applying PEXO

to XO-3 b and Kepler-210 c. The relativistic effects are not
significant enough to be detectable in these two cases. High-
cadence and long-term observations are needed to reliably
detect relativistic precession in short-period and eccentric-
transit systems where planet-induced precession is minimized.
Follow-up work on how transit timing is sensitive to various
relativistic effects is needed for the potential application of
transit timing in the test of GR, as done in pulsar timing. The
Einstein delay in the target system contributes to a 0.2 s timing
variation for α Centauri over one decade but is not included in
many previous packages such as EXOFAST and GREM. The
Einstein delay in some high-eccentricity transit systems might
be detectable in the timing difference between the primary and
secondary transits. We further investigate the feasibility of
using PEXO for relativity tests in binaries. The gravitational
redshift variation caused by the companion of the target star is
as large as a few m s−1 for 52 binaries with orbital periods less
than 10 yr. Such tests are able to examine GR and MOND
theories in a new regime of stellar mass and weak
gravitational field.
Using α Centauri as an example, we assess relativistic

effects in the modeling of astrometry. We find that the lensing
effect in the solar system contributes to 9 mas position
variation, while the lensing effect in α Centauri only
contributes to 0.003 μas position variation over one decade.
The barycentric motion of the binary, the stellar aberration due
to the Earth’s motion, and atmospheric refraction are the major
effects changing the observed direction of photons. For ground-
based astrometric observations, the atmospheric modeling
uncertainty limits the absolute positional precision to 1 arcsec
and the relative positional precision to tens of microarcseconds.
For space-based observations, an astrometry precision
of microarcseconds requires a telescope ephemeris with
1 cm s−1 velocity precision. An alternative approach is to
determine the Earth’s motion a posteriori through a combined
fit to the data. The third-order geometric effect contributes to a
few microarcsecond position bias and is not included in the
GREM package, which is used by Gaia for relativistic
astrometric solutions (Lindegren et al. 2018).
We assess various effects in the radial velocity model using

the example of α Centauri A. The general and special
relativistic effects in the α Centauri system affect the radial
velocity of α Centauri A by 0.04 and 0.2 m s−1 over one
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decade, respectively. Although these effects are essential for
sub-m s−1 radial velocity modeling of binary systems, they are
not accounted for in radial velocity packages. The special
relativity effect due to α Centauri B changes the radial velocity
by nearly 1 m s−1 over one orbital period. The binary motion of
the target star would change the viewing perspective, leading to
a change in the projection of various motions onto the radial
velocity direction. Furthermore, errors in astrometry data would
lead to considerable radial velocity variation for nearby stars.
We find that decoupling could introduce ∼0.1 m s−1 bias in
one decade of radial velocity observations of a nearby star
(<10 pc) with hot or cold Jupiters and could introduce
∼1 m s−1 bias over one year for nearby stars with stellar-mass
companions. Therefore, a barycentric correction of the
measured radial velocity is not appropriate to achieve
1 cm s−1. We suggest a combined modeling of stellar reflex
motion, stellar proper motion, and the Earth’s motion for high-
precision radial velocity modeling.

The ∼1 ns timing precision of PEXO and TEMPO2 can be
achieved if the uncertainty in the ephemeris of solar system
bodies is less than 1 m and the effect of interstellar scattering is
well understood (E06). On the other hand, the radial velocity
precision of 1 μm is the software precision that is achievable
only if we could model the observational effects to a high
precision. For example, to achieve a precision of 1 mm s−1 in
radial velocity modeling, we need to determine the midpoint of
exposures in spectroscopic observations to a precision of a few
milliseconds by properly modeling the atmospheric chromatic
aberration of incoming photons. For future space-based
spectrographs such as EarthFinder (Plavchan et al. 2018), the
exposure time might be better determined and telluric effects
would disappear, enabling <1 cm s−1 radial velocity precision
if combined with PEXO’s precise modeling of astrophysical
effects. PEXO’s precision can be further improved by the
appropriate modeling of the Galactic acceleration of stars and
the dispersion of photons in the interplanetary and interstellar
medium. The extra packages envisaged for PEXO are (1) the
Galactic acceleration of stars and the corresponding secular
aberration as well as cosmological effects (e.g., Klioner 2003
and Lindegren & Dravins 2003) and (2) the inclusion of
gravitational wave effects to provide an independent package
for the detection of gravitational waves using pulsar timing
arrays such as NANOGrav (e.g., Arzoumanian et al. 2018).

Based on our investigation of various relativistic effects and
comparison of various packages, we summarize the main
results of this paper and give relevant recommendations as
follows:

1. By accounting for relativistic and high-order geometric
effects, PEXO is able to model timing to a precision of
1 ns, astrometry to 1 μas, and radial velocity to 1 μm s−1.
PEXO is able to model multiple types of data precisely
and consistently.

2. Decoupling of the target system and the solar system
introduces considerable bias in the modeling of timing,
astrometry, and radial velocity. For stars with stellar-mass
companions and for nearby stars with Jupiter-mass
companions, we recommend a combined modeling of
binary motion, binary barycentric motion, and telescope
ephemeris. An alternative, efficient approach is to model
the decoupling trend bias using astrometric offsets and fit
all motions to the data corrected for barycentric effects.

3. A detectable relativistic effect in extrasolar systems is the
gravitational redshift of the light from a target star caused
by its companion star. This test is feasible for a few
binaries with long-term and high-precision radial velocity
data (∼1 m s−1 uncertainty), such as α Centauri A and B.

4. Atmospheric effects limit absolute astrometry to a
precision of 1 arcsec and relative astrometry to a precision
of tens of microarcseconds. Such precisions are only
achievable if various atmospheric parameters are well
measured at the observation site and the refraction effects
are correctly modeled through reliable packages. To
avoid high model uncertainty, we recommend an
elevation angle of at least 30° for direct imaging of
planets (see Section 5.2).

5. Second-order stellar aberration is needed to model space-
based astrometric observations correctly. The third-order
geometric effects become significant for decade-long
observations of nearby stars. Because GREM is the core
package used for Gaia’s astrometry solution (Lindegren
et al. 2018), we recommend a more comprehensive
analysis of astrometric epoch data for nearby stars to
reveal potential planetary signals.

6. The consideration of relativistic effects in the target
system is the missing piece in previous exoplanet
packages. The Einstein delay and gravitational Doppler
shift are significant in some binary systems and are
detectable with current technology.

7. The coding error in the calculation of planetary Shapiro
delay would bias TEMPO2 timing modeling by at least
tens of nanoseconds over one decade. The bug in the
calculation of parallax delay in utc2bjd.pro would bias its
timing precision by ∼1 ms for nearby stars.

8. PEXO is tested by comparison with TEMPO2 and by
recovering previous fitting results for the astrometric and
radial velocity data for α Centauri.

In summary, PEXO provides a high-precision combined
model for timing, radial velocity, and astrometry data. PEXO is
versatile enough to take binary motions into account and
precise enough to consider high-order classical and relativistic
effects. By applying PEXO to the analysis of high-precision
data provided by the state-of-the-art facilities such as TESS,
ESPRESSO, and Gaia, we expect to have the ability to make a
reliable detection of an Earth twin as well as a test of GR in
extrasolar systems in the near future.

We are indebted to the anonymous referee of this paper for
their inspiring and insightful comments that led to very
substantial improvements in the content and clarity of this
manuscript and PEXO. M.L. is supported by a University of
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support from the UK Science and Technology Facilities
Council [ST/M001008/1]. This work has made use of data
from the European Space Agency (ESA) mission Gaia
(https://www.cosmos.esa.int/gaia), processed by the Gaia
Data Processing and Analysis Consortium (DPAC,https://
www.cosmos.esa.int/web/gaia/dpac/consortium). Funding
for the DPAC has been provided by national institutions, in
particular the institutions participating in the Gaia Multilateral
Agreement. We adapt various SOFA routines (http://www.
iausofa.org/) to R functions in PEXO.

31

The Astrophysical Journal Supplement Series, 244:39 (37pp), 2019 October Feng et al.

https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium
https://www.cosmos.esa.int/web/gaia/dpac/consortium
http://www.iausofa.org
http://www.iausofa.org


Appendix A
Conventions in Binary Studies

The angular parameters for a binary orbit depend on the
coordinate system where it is defined. We introduce three
coordinate systems and corresponding orbital parameters in
order to clarify the previous conventions and to assist the
community in using data consistently.

Before defining the coordinate system, we need to be clear
what we mean by rotation matrix, which is essential to
transforming between different coordinate systems. We define
a rotation matrix R as an operation to rotate vector ra to rb. For
example, in a 2D Cartesian system, we use the following
matrix to rotate ra counterclockwise by θ to get rb:
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For a 3D rotation matrix in a Cartesian coordinate system,
we define a counterclockwise rotation around the x axis by θ as
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a counterclockwise rotation around the y axis by θ as
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and a counterclockwise rotation around the z axis by θ as
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For example, if the rotation sequence is to rotate vector ra
around the x axis by θ1, y axis by θ2, and z axis by θ3, the new
vector rb should be

q q q=r rR R R . 100b ax y z1 2 3( ) ( ) ( ) ( )

If ra is one of the axes of a coordinate system, the above
operation would lead to a new coordinate system defined by rb.
In other words, two coordinate systems are related to each
other by
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where ¢ex, ¢ey, and ¢ez are axes of the new coordinate system, ex,
ey, and ez are axes of the old coordinate system, and [x′, y′, z′]
and [x, y, z] are respectively the new and old coordinates of a
vector. If the new coordinate system is transformed from the
old one by rotation matrix R, which is orthogonal, the new
coordinates would be
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For the rotation operations in Equation (100), the coordinate
transformation would be
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We will apply the definition and conclusion in the above
analysis to the following subsections. We will introduce three
conventions and label the corresponding coordinates by
subscripts 1, 2, and 3. In the following conventions, we model
the motion of the target object with respect to the binary
barycenter. It is also known as stellar reflex motion if the star is
the target.

A.1. Definition of Orbital Elements

Before introducing coordinate systems, we define the orbital
elements independent of the chosen coordinate system. By
doing this, we emphasize that conventions for orbital elements
and coordinate systems are independent. To distinguish these
two conventions, we use “definition” to name the former and
“convention” to name the latter. The orbit of the target is in the
“orbit plane,” while the plane perpendicular to rSB is called the
“sky plane.” To focus on the study of stellar reflex motion, we
assume that the observer is located at the SSB and the proper
motion of TSB is zero. According to Equation (8), the offsets are
x a wº D » p r t Ab

b
BT* · ( ) ˜ and h d wº D » q r t Ab

b
BT· ( ) ˜ .

This assumption is only used for a convenient definition of
orbital elements and is not used in PEXO modeling. Because the
semimajor axis and eccentricity do not depend on the viewing
geometry, we focus on the definition of angular orbital elements.
The inclination I is defined as the angle between the target-

to-observer direction (i.e., -ub) and the angular momentum.
Thus, for an orbit with 0°<I<90°, the motion of the target
with respect to the binary barycenter is counterclockwise if
viewed by the observer. The line of nodes is at the intersection
between the orbit plane and the sky plane. The ascending node
is the node at which the target crosses the sky plane and moves
away from the observer. The longitude of ascending node Ω is
the counterclockwise angle in the sky plane from the north to
the ascending node viewed from the observer. For the motion
of the target with respect to the system barycenter or to the
companion, we use the argument of periastron ωT, which is
the angle in the orbit plane from the ascending node to the
periastron along the motion of the target. For the orbit of a
companion with respect to the barycenter or to the target, the
argument of periastron is ωC=ωT+π. We will use the
barycentric motion of the target as an example for the following
introduction and discussions.
It is important to note that astrometry data alone cannot

distinguish between the ascending and descending nodes
because we do not know whether the star is moving away
from or toward the observer. Thus we recommend restricting
the range of ω and Ω to be [0, π] for astrometry-only analyses.
This restriction should not be used for combined analyses of
astrometry and radial velocity data. We also recommend
reporting ω+π and Ω+π as an alternative solution. These
are practical suggestions for fitting that do not change the
definitions of the ascending node. If only one set of ω and Ω
values is reported based on an astrometry-only analysis, ω+π
and Ω+π should be considered as an alternative solution
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during a combined analysis of astrometry and radial velo-
city data.

The orbital elements are illustrated in Figure 2. In principle,
coordinate systems are not needed because the orbital elements
are defined independently of the coordinate system. We can
transform the target motion from the orbit-plane frame to the
sky-plane frame, which is formed by the north (increase of
decl.), the east (increase of R.A.), and the direction from the
target to the observer. However, for the convenience of
formulization, we can randomly assign these three axes or their
opposite directions as X, Y, and Z axes to form a left-handed or
right-handed coordinate system for the sky-plane frame. We
will introduce three of them as follows.

A.2. Convention I: Right-handed Coordinate System

We use a right-handed convention where the +X direction is
along the north (or increasing decl.), the +Y direction is along
the east (or increasing R.A.), and the +Z axis is from the target
to the observer (or decreasing distance). In the orbit plane, the
+x axis is the direction of periastron, the +z axis is along the
direction of orbital angular momentum of a binary, and the +y
axis is in the orbit plane and is chosen such that x, y, and z axes
form a right-handed Cartesian coordinate system. The rotation
matrix transforming the orbital-plane frame to the sky-plane
frame is Rz(−ω)Rx(I)Rz(−Ω). Thus the coordinate transforma-
tion matrix13 would be its inverse or transpose, which is
Rz(Ω)Rx(−I)Rz(ω).

The orbital-plane coordinates are transformed into the sky-
plane coordinates following
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The expansion of the above rotation matrices leads to

Ignoring the scaling between the orbital ellipse in the orbital
plane and that in the sky plane, the elements of the matrix in the
above equation are also known as Thiele–Innes constants
(Thiele 1883):
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A.3. Convention II: Left-handed Coordinate System

In the study of binaries, another convention closely related to
convention I is also frequently used. In this convention, the +Z
axis is along the increasing distance, leading to a left-handed
Cartesian coordinate system. To keep the convention that a
counterclockwise orbit on the sky plane viewed from the
observer corresponds to an inclination of 0°–90°, we keep the
definition of inclination as well as other orbital elements in
convention I. Thus the new coordinates in this convention are
related to the coordinates in convention I by
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A.4. Convention III: Astrometric and Precession-compatible
Convention

In this study, we used the right-handed coordinate system
formed by the triad p q u, ,[ ]. Here, p is in the direction of
increasing R.A., q is in the direction of increasing decl., and u
is in the direction of increasing distance. Thus, p and q axes in
this convention correspond to the Y and X axes in convention
II, respectively. Because this p q u, ,[ ] triad is used in the
astrometry models of Hipparcos and Gaia (ESA 1997;
Lindegren et al. 2012), we call the corresponding convention
of binary motion the “astrometric convention.” By using the
same definition of orbital elements to avoid unnecessary

confusion, we get the new coordinates in this convention by
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From the above transformation, we derive the position of the
target relative to TSB as
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This convention is also used in TEMPO2 (E06), although they set
the +x direction in the orbital plane as the ascending node
considering the precession of periastron. We call this convention
the “precession-compatible convention” due to its consideration of
precession of periastron. Thus the rotation matrix in Equation (21)
is the same as the one in Equation (108) and in Equation (54)
of E06 if setting ω=0 and swapping the first and second rows.

w w w w
w w w w

w w
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W + W - W + W W

- -
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I I I
I I I

I I I

x
y

cos cos sin sin cos cos sin sin cos cos sin sin
sin cos cos sin cos sin sin cos cos cos cos sin

sin sin cos sin cos 0
. 105
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T T T T
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⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

13 The rotation matrices defined in this work are the transposes of the
corresponding ones defined in Catanzarite (2010).
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We emphasize that the conventions for coordinate systems
are used for transformation from the orbit-plane to the sky-
plane frames. Like the choice of TDB and TCB time standards,
the choice of coordinate system does not matter as long as the
stellar reflex motion is correctly modeled in offset coordinates
(i.e., Δα∗and Δδ). Considering the variety of conventions
used in binary studies, we recommend a consistent definition
and introduction of conventions including orbital elements and
coordinate systems in the studies of binaries and exoplanets.

A.5. Comments on Previous Conventions

The conventions for binaries and exoplanets are not always
clearly presented and consistently used in the literature. To help
the community use conventions consistently, we comment on
some of the previous conventions that are not consistently
defined or presented.

Although we have used the definition of orbital elements in
Catanzarite (2010) for all three conventions of coordinate
systems, Catanzarite (2010) did not present his convention
consistently in his Figure 1. He used an image from Wikipedia
(https://en.wikipedia.org/wiki/Longitude_of_the_ascending_
node#/media/File:Orbit1.svg) to illustrate his convention,
although this image is more suitable for studies of the solar
system. In his Figure 1, the observer views the planetary system
from above the reference plane. The target moves toward the
observer after crossing the ascending node. Thus the ascending
node should be the descending node in the figure according to
the definition used by Catanzarite (2010). Although the
ascending node would be correct if the observer views the
system from the south (or −Z direction), the inclination would
be incorrect because the orbit would be retrograde, and thus the
inclination should be larger than 90° (i.e., 180° minus the
inclination presented in Figure 1).

In solar system studies, the ascending node is a point in the
orbit and sky planes where an object moves from the south to
the north (or +Z direction) of the reference plane. Because the
observer is absent in the definition, we call this definition
“observer-independent ascending node.” Nevertheless, the
ascending node defined in binary studies is the point both in
the orbit plane and in the sky plane where the target moves
away from the observer. Because it depends on the direction of
the observer, we call this definition the “observer-dependent
ascending node.” The observer-dependent ascending node is
consistent with the convention that the radial velocity of a
target is positive if it is moving away from us. Therefore, the
observer-dependent ascending node is correctly defined by
Catanzarite (2010) but is presented as the observer-independent
ascending node. The differences between observer-dependent
and observer-independent ascending nodes are intrinsic and do
not depend on the choice of coordinate systems.

Similarly, Figures 4 and 7 in Murray & Correia (2010) and
Figure 31 in Binnendijk (1960) show that they use the
observer-independent ascending node to study binaries and
exoplanets. Although the ascending node is not consistently
defined in Murray & Correia (2010) and Binnendijk (1960),
they transform the binary motion from the orbit plane to the sky
plane (or reference plane) correctly. Their use of the observer-
independent ascending node would lead to a sign flip in the
value of radial velocity (i.e., −Z1; see Equation (105)). This
sign flip would be absorbed through the fit of ωT to the radial
velocity data, leading to a value of ωT inconsistent with their

definition of ascending node. In particular, it would become
problematic for astrometry modeling where the proper motion
of the barycenter and the stellar reflex motion need to be
combined.
Compared with previous illustrations of binary motion,

Figure 2 consistently visualizes the observer-dependent
ascending node. The star is moving away from the observer
after crossing the ascending node. The longitude of the
ascending node Ω is measured counterclockwise from the
north to the ascending node from the observer’s perspective.
The inclination is the angle between the angular momentum
and the –ub direction so that the orbit is prograde for
0°<I<90° and retrograde for I>90° viewed by the
observer. The requirement of consistency makes Figure 2
different from the equivalent ones frequently used in the
literature.

Appendix B
Acronyms and Symbols

We show the meaning of the acronyms and symbols, as well
as the section where they first appear, in Table 2.

Table 2
Meanings Of Acronyms and the Sections Where They First Appear

Acronym or
Symbol Meaning Sections

BCRS Barycentric Celestial Reference System 2
BIPM International Bureau of Weights and Measures 3.2.2
BIPMXY BIPM realization of TT in year 19XY if

XY>20 or 20XY if XY<20
3.2.2

BJD Barycentric Julian date 3.2.2
C Companion in the target system 2
DD Post-Newtonian binary model proposed by

Damour & Deruelle (1986)
3.1

DDGR General relativity binary model proposed by
Damour & Deruelle (1986)

3.1

GR General relativity 1
JD Julian date 3.2.2
MJD Modified Julian date 5.3
NCP North Celestial Pole 2.3
PEXO Precision Exoplanetology 1
PPN Parameterized Post-Newtonian formalism 3.3.1
O Observatory site 2.1
RV Radial velocity 1
SS Solar system 2.1
SSB or S Solar system barycenter 2
T Target star 2
TAI International Atomic Time 3.2.2
TCB Barycentric Coordinate Time 3.2.2
TCG Geocentric Coordinate Time 3.2.2
TDB Barycentric Dynamical Time 3.2.2
TDF Transit Duration Fraction 5.1
TDV Transit Duration Variation 5.1
TS Target System 2.1
TSB or B Target System Barycenter 2.1
TT Terrestrial Time or proper time at the geoid 3.2.2
TTV Transit Timing Variation 5.1
UTC Coordinated Universal Time 3.2.2

A 1 au 2.1
a Semimajor axis of the target star with respect

to the companion
2.3

aC Semimajor axis of the barycentric orbit of the
companion

2.3
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Table 2
(Continued)

Acronym or
Symbol Meaning Sections

ar Counterpart of aT in the DD model
aT Semimajor axis of the barycentric orbit of the

target star
2.3

c Speed of light 3.1
ė Time derivative e in DD model 3.1
e0 Eccentricity at a reference time in post-New-

tonian models
2.3

E Eccentric anomaly of the barycentric orbit of
the target star

2.3

f True anomaly of the barycentric orbit of the
target star

2.3

G Gravitational constant 3.1
g Timing model parameter in the DD model 3.1
hO Altitude of the observer 3.2.1
I Orbital inclination of the target star with

respect to the TSB
2.3

le Light ray direction at the emission time 3.3.1
li Incident light ray before entering atmosphere 3.3.3
ll Light ray direction after lensing by the

companion
3.3.1

lo Light ray direction at the observation time 3.3.1
LB Scaling factor for the transformation between

TCB and TDB
3.2.2

LG Scaling factor for the transformation between
TT and TCG

3.2.2

 Light ray path in the atmosphere 3.2.1
mC Mass of the companion 2.3
mh Mapping function for hydrostatic delay 2.3
mT Mass of the target star 2.3
mw Mapping function for wet delay 2.3
me Mass of the Sun 2.3
n Mean motion of the target binary orbit 2.3
nO Refraction index at the telescope 3.3.2
Nwet Refractivity of wet component 3.2.1
Nhydro Refractivity of hydrostatic component 3.2.1
P Orbital period of the target system 3.6
P0 Orbital period at a reference time in post-

Newtonian models
2.3

Ṗ Time derivative of P in the DD model 2.3
pO Air pressure at the observation site 3.2.1
pb Unit vector in the directions of increasing R.A.

α at the reference time t0

2.1

qb Unit vector in the directions of increasing decl.
δ at the reference time t0

2.1

rs Range parameter of Shapiro delay 2.1
rs
GR Range parameter of Shapiro delay assuming

general relativity
2.1

rBT Vector from B to T 2.1
rCT Vector from C to T 3.4.2
rOB Vector from O to B 2.1
rOC Vector from O to C 3.4.2
rorb Barycentric position of the target in the orbital

plane
2.3

rOS Vector from O to S 2.1
rOT Vector from O to T 2.1
rSB Vector from S to B 2.1
rST Vector from S to T 3.2.2

År Barycentric position of the geocenter 3.2.2
R w-r rt t Ab

BT SO[ ( ) ( )] 2.1
 Refraction vector 2.1
s Position of observatory with respect to the

geocenter
2.1

Table 2
(Continued)

Acronym or
Symbol Meaning Sections

ss Shape parameter of Shapiro delay 2.1
ss

GR Shape parameter of Shapiro delay assuming
general relativity

2.1

t Arbitrary coordinate time 2.1
t0 Arbitrary reference coordinate time, t0=tpos

by default
2.1

ta
SSB Light arrival time at SSB 2.1

ta
TSB Light arrival time at TSB 2.1

te Coordinate time of light emission 2.1
ti Arrival time of incident light ray without

atmospheric refraction
3.4.2

t Vacuum light propagation time for straight
light ray

3.2.1

t Vacuum light propagation time for deflected
light ray

3.2.1

to Coordinate time of light arrival at the
observatory

2.1

tpos Reference epoch when the position or astro-
metry of the target star is measured

3

T0 Proper time of periastron in post-Newtonian
models

2.3

Tc Midtransit time 5.1
Te Gme/c

3; Half the light travel time across the
solar Schwarzschild radius

2.3

U Relativistic eccentric anomaly 2.3
U⊕ Gravitational potential of all solar system

objects apart from the Earth at the
observatory

3.2.2

ub Unit vector from S to B at the reference time t0 2.1
uo Observed direction of arriving light ray 3.3.1
uoˆ Model prediction of the observed direction of

arriving light ray
3.3.1

uOT Unit vector from O to T 4.2
uSB Unit vector from S to B 3.2.2
uST Unit vector from S to T 2.1
uZ Unit vector in the zenith direction 2.1
ve Escape velocity 3.4.1
vBT Velocity of T with respect to B 3.2.4
vCT Velocity of T with respect to C 3.4.2
vOS Velocity of S with respect to O 4.2
vOT Velocity of T with respect to O 4.2
vreflex¯ Average reflex motion of the target star 3.5
vr

b vOT at the reference epoch t0 2.1
vr

obs Observed absolute radial velocity 2.1
vSB Velocity of B with respect to S 4.2
vST Velocity of T with respect to S 3.4.1
vTC Velocity of C with respect to T 5.1
vtot Characteristic radial velocity of a star with

respect to the observer
3.5

v⊕ Barycentric velocity of the geocenter 3.2.2
W0 Gravitational and spin potential of the Earth at

the geoid
3.2.2

x x Coordinate in the orbital plane 2.3
y y Coordinate in the orbital plane 2.3
xa asinI/c; Light travel time across the projected

semimajor axis
3.1

xa˙ Time derivative of xa in the DD model 2.3
Zi Zenith angle of incident light ray 3.3.2
Zo Observed zenith angle 3.3.2
zkS Doppler shift due to kinematic effects in the

solar system
3.4.1
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Table 2
(Continued)

Acronym or
Symbol Meaning Sections

zkT Doppler shift due to kinematic effects in the
target system

3.4.1

zlS Doppler shift due to kinematic effects in the
solar system

3.4.1

zlT Doppler shift due to kinematic effects in the
target system

3.4.1

zgrS Doppler shift due to general relativity effects in
the solar system

3.4.1

zgrT Doppler shift due to general relativity effects in
the target system

3.4.1

zsrS Doppler shift due to special relativity effects in
the solar system

3.4.1

zsrT Doppler shift due to special relativity effects in
the target system

3.4.1

zS Doppler shift due to all effects in the solar
system

3.4.1

zT Doppler shift due to all effects in the target
system

3.4.1

α b BCRS R.A. of the TSB at the reference time t0 2.1
γ One PPN parameter 3.3.1
fO Latitude of the observer 3.2.1
ΦT Gravitational potential at the target star center 3.6
δ b BCRS decl. of the TSB at the reference time t0 2.1
δt Arbitrary time span 3.5
δT Difference between the BIPM and TAI reali-

zations of TT
3.2.2

δvr
grT Radial velocity variation due to general rela-

tivity in TS
3.4.1

dvr
srT Radial velocity variation due to special rela-

tivity in TS
3.4.1

dvr
trend Trend decoupling bias in radial velocity 3.5

dvr
period Periodic decoupling bias in radial velocity 3.5

δu Positional bias 3.5
δutrend Trend decoupling bias in target position 3.5
δuperiod Periodic decoupling bias in target position 3.5
δΔtrend Trend decoupling bias in timing 3.5
δΔperiod Periodic decoupling bias in timing 3.5
δzgrT Doppler shift variation due to general relativity

in TS
3.4.1

δzsrT Doppler shift variation due to special relativity
in TS

3.4.1

δμ Proper motion bias caused by ignoring the
target reflex motion

3.5

Δα∗ Offset in the R.A. direction 5.2
Δδ Offset in the decl. direction 5.2
Δξ ξ of the secondary with respect to the primary 2.1
Δη η of the secondary 1 with respect to the

primary
2.1

Dr -r rt t ;BT2 BT1( ) ( ) Position of the secondary
with respect to the primary

2.1

ΔTc
GR Transit timing variation due to general

relativity
5.1

Δvr Relative radial velocity 4.2
Dvr̂ Model estimation of relative radial velocity 4.2
Δv0 Radial velocity offset 4.2
Δei Einstein delay due to the relative velocity

between the SSB to the TSB
3.2

ΔeS Einstein delay in the solar system 3.2
ΔeT Einstein delay in the target system 3.2
Δgeo Time delay due to geometric effects 3.2
Δhydro Hydrostatic component in tropospheric delay 3.2
Δis Time delay in interstellar medium 3.2

Table 2
(Continued)

Acronym or
Symbol Meaning Sections

ΔpS Parallax delay in the solar system 3.2
ΔpT Parallax delay in the target system 3.2
ΔsS Shapiro delay in the solar system 3.2
ΔsT Shapiro delay in the target system 3.2
ΔrS Roemer delay in the solar system 3.2
ΔrT Roemer delay in the target system 3.2
ΔS Time delay in the solar system 3.2
ΔT Time delay in the target system 3.2
Δtropo Tropospheric delay 3.2
Δvp Vacuum propagation delay due to the light

travel between TSB and SSB
3.2

Δwet Wet component in tropospheric delay 3.2
λe Wavelength of light when emitted 3.4.1
λo Wavelength of light when observed 3.4.1
η Projection of rOT on qb 2.1

Θ Elevation angle 3.2.1
m m m+a dp q ;b

b
b

b Total proper motion of the TSB

at the reference time t0

2.1

μα
b Proper motion in R.A. of the TSB at the

reference time t0

2.1

μδ
b Proper motion in decl. of the TSB at the

reference time t0

2.1

μr
b vr

b wb /A; Proper motion equivalent of radial
velocity at the reference time t0

2.1

νe Frequency of light when emitted 3.4.1
νo Frequency of light when observed 3.4.1
ξ Projection of rOT on pb 2.1

τe Proper time of light emission 3.2
τo Proper time of light arrival at the observatory 3.2
τp Proper time of periastron 3.2
ω Argument of periastron of the target star with

respect to the TSB
2.3

ω0 Argument of periastron at a reference time in
post-Newtonian models

2.3

wb˜ Annual parallax of the TSB at the reference
time t0

2.1

ωC Argument of periastron of the barycentric orbit
of the companion star

2.3

ωT Argument of periastron of the barycentric orbit
of the target star

2.3

ẇ Time derivative of ω in the DD model 2.3
Ω Longitude of ascending node of the barycentric

orbit of the target star
2.3

Note. For vectors with opposite signs, only one of them is shown here. The
magnitude or length of a vector is denoted by the same symbol but without
boldfaced font. Many secondary variables derived from other variables are not
shown. Acronyms are shown first and are followed by English and Greek
mathematical symbols. For each category, the acronyms or symbols are listed
in alphabetic order.
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