Search for Nearby Earth Analogs. I. 15 Planet Candidates Found in PFS Data*

, , , , , , , , and

Published 2019 June 17 © 2019. The American Astronomical Society. All rights reserved.
, , Citation Fabo Feng et al 2019 ApJS 242 25 DOI 10.3847/1538-4365/ab1b16

Download Article PDF
DownloadArticle ePub

You need an eReader or compatible software to experience the benefits of the ePub3 file format.

0067-0049/242/2/25

Abstract

The radial velocity (RV) method plays a major role in the discovery of nearby exoplanets. To efficiently find planet candidates from the data obtained in high-precision RV surveys, we apply a signal diagnostic framework to detect RV signals that are statistically significant, consistent in time, robust in the choice of noise models, and do not correlated with stellar activity. Based on the application of this approach to the survey data of the Planet Finder Spectrograph, we report 15 planet candidates located in 14 stellar systems. We find that the orbits of the planet candidates around HD 210193, 103949, 8326, and 71135 are consistent with temperate zones around these stars (where liquid water could exist on the surface). With periods of 7.76 and 15.14 days, respectively, the planet candidates around star HIP 54373 form a 1:2 resonance system. These discoveries demonstrate the feasibility of automated detection of exoplanets from large RV surveys, which may provide a complete sample of nearby Earth analogs.

Export citation and abstract BibTeX RIS

1. Introduction

One of the ultimate goals of exoplanet research is to find nearby Earth-like planets. The radial velocity (RV) and transit methods have made the main contributions to exoplanet detections. RV measurements for nearby bright stars can be made relatively efficiently and have enabled planets to be discovered around a significant fraction of them. The transit technique is relatively more sensitive to faint and distant stars. Considering the rare occurrence rate of transit events, the RV method is still of great importance for discovering nearby planets, as evidenced by the detection of Proxima Centauri b (Anglada-Escudé et al. 2016), although the Transiting Exoplanet Survey Satellite is poised to find thousands of nearby transit systems (e.g., Ricker et al. 2014).

Since the Earth is the only planet known to host life, a conservative path to the detection of extraterrestrial biosignatures is to find an Earth-like planet around a Sun-like star (also called an "Earth twin"). To detect such signals, we need to have high-precision RV data that is sensitive to about 0.1 m s−1 RV variations (Mayor et al. 2014). For less massive stars like M dwarfs, the signals corresponding to Earth-sized planets in their temperate zones (where liquid water can exist on the surface; Kopparapu et al. 2014) can be as high as 1 m s−1. To distinguish from the Earth twins, we call these planets "Earth analogs." Thanks to the recent development of high-precision spectrometers, such as Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO; Pepe et al. 2010) and NN-explore Exoplanet Investigations with Doppler spectroscopy (NEID; Schwab et al. 2016), as well as advanced noise modeling and activity mitigating techniques (Feng et al. 2017b; Dumusque 2018), we are moving toward the detection sensitivity of Earth twins, though multiple issues related to stellar activity and instrumental stability (e.g., Fischer et al. 2016) still need to be resolved.

The availability of long-term, high-precision spectroscopic observations is one of the basic requirements in the discoveries of Earth analogs, such as Proxima Centauri b (Anglada-Escudé et al. 2016), GL 667 Cc (Anglada-Escudé et al. 2013), and Luyten b (Astudillo-Defru et al. 2017). To this end, the Carnegie Planet Finder Spectrograph (PFS; Crane et al. 2010) is one of the major instruments dedicated to performing a high-precision spectroscopic survey of nearby stars. Since its commissioning in 2010, it has made important contributions to the discovery (Proxima Centauri b at 1.3 pc, Anglada-Escudé et al. 2016; Barnard's star b at 1.8 pc, Ribas et al. 2018) and characterization (GJ 9827 bcd at 30 pc, Teske et al. 2018) of nearby planets.

In this work, we use PFS survey data presented in Section 2 and describe how it is processed with a signal diagnostic framework in Section 3 and apply it to the PFS survey data, and then we select signals that are statistically significant, consistent in time, uncorrelated with stellar activity indicators, and robust to the choice of noise models. We then identify planet candidates from these signals and discuss 15 of the most significant signals individually in Section 4. Finally, we conclude in Section 5.

2. Data

The PFS measures the Doppler shift of stellar spectral lines through calibration with the spectrum of iodine (e.g., Marcy & Butler 1992). The calibration and the barycentric correction of the spectrum are implemented through the procedures introduced by Butler et al. (1996). The Ca ii HK (converted to the S-index) and the Hα lines are extracted from the spectrum to assess the stellar activity level. The photon noise is calculated through photon counts by assuming a Poisson distribution. We consider this photon noise to be an indicator of instrumental and/or stellar noise because it can modulate the uncertainty of RV measurements and thus change the likelihood of a periodic signal.

For all PFS targets, we find the relevant astrometry, systematic RV, and luminosity from Gaia data release 2 (DR2; Gaia Collaboration et al. 2018) through crossmatching using a search cone of 2'. The Gaia source corresponding to a PFS target is identified by selecting the brightest star among all matched sources. This approach works because most PFS targets are stars that are bright and have an apparent visual magnitude of less than 15. The mass of a star is estimated through the mass–luminosity functions introduced by Malkov (2007), Eker et al. (2015), and Benedict et al. (2016). The stellar type of each star is found by crossmatching the PFS targets with the Simbad database (Wenger et al. 2000).

3. Initial Selection of Planet Candidates

We define a signal diagnostic framework to identify signals in the PFS RV data. The following steps are used to search and constrain signals.

  • 1.  
    We calculate the Bayes factor periodograms (BFPs) for activity indices using Agatha (Feng et al. 2017a) and identify activity signals at periods of Pactivity. In the calculation of BFP, we use the first order moving average model (MA(1); Tuomi et al. 2013) to account for time-correlated noise. Compared with traditional periodograms, such as the Lomb–Scargle periodogram (Lomb 1976; Scargle 1982), the BFP is able to model the excess white noise as well as the red noise in a time series.
  • 2.  
    We calculate the BFPs for the RV data using the white, MA(1), and first auto-regressive (AR(1); Tuomi & Anglada-Escudé 2013) noise models and identify signals for each noise model (called "BFP signals" at periods of PBFP). Although AR(1) might lead to false negatives according to Tuomi & Anglada-Escudé (2013), we use it to test whether an RV signal is noise-model dependent.
  • 3.  
    We use the adaptive Markov Chain Monte Carlo (MCMC) algorithm (called "DRAM") developed by Haario et al. (2006) for model and parameter inferences. Specifically, we launch tempered (hot) chains to find the global maximum of the posterior and use nontempered (cold) chains to constrain the maximum a posterior (MAP) signal. Such a combination of hot and cold chains allows the parameter space to be well explored without getting stuck in the local maxima. This approach incorporates model complexity by considering prior distributions. Our algorithm is similar to the hybrid MCMC algorithm developed by Gregory (2011). Similar to our previous works (Feng et al. 2017b), we adopt a semi-Gaussian prior distribution with a zero mean and a 0.2 standard deviation for eccentricity to account for the eccentricity distribution found in RV planets (Kipping 2013) and in transit systems (Kane et al. 2012; Van Eylen et al. 2019). Such a broad semi-Gaussian distribution allows solutions with relatively high eccentricity but penalizes solutions with extremely high eccentricity. We adopt uniform priors for the logarithmic orbital period and for other orbital parameters.We constrain each RV signal in the data until any additional signal does not increase the likelihood significantly. In other words, a signal is statistically significant only if its inclusion in the RV model leads to a Bayes factor (BF) of larger than 150 or ln(BF) > 5 (Kass & Raftery 1995; Feng et al. 2016). The BF is the ratio of marginalized likelihoods (or evidences) for two models. We derive the BF from the Bayesian information criterion following Kass & Raftery (1995). Thus, the calculation of the BF in this work assumes uniform prior distributions of model parameters. This BF criterion is found to be optimal compared with other information criteria based on analyses of simulated and real RV data sets (Feng et al. 2016). Therefore, we use the BF criterion to assess the significance of signals.The optimal noise model is chosen according to the model comparison scheme in Agatha (Feng et al. 2017a). According to the comparison of various noise models for both synthetic and real RV data sets (Feng et al. 2016), the MA models are optimal for avoiding false positives and negatives. Hence, we compare the lower and higher order MA models by calculating their BFs. We select the most complex model (with the highest order) that passes the criterion of ln(BF) > 5. For example, we calculate the maximum likelihoods for the white noise, MA(1), MA(2), and MA(3) models for an RV data set. The logarithmic BFs for MA(1) and the white noise model and for MA(2) and MA(1) are larger than five, while the logarithmic BF for MA(3) and MA(2) is less than five. The optimal noise model would be MA(2) because it is complex enough to model the time-correlated noise in the data and is simple enough to avoid overfitting.
  • 4.  
    We define a moving time window and calculate the BFP for each step. In other words, we calculate BF(Pi, Wj) (or BFij) for the ith period for the jth time window (Wj) and form a two-dimensional power spectrum. Because the number of RVs in different time windows is different, we normalize BFij for each time window to compare the consistency of signals across time windows. Specifically, we scale the maximum BF for time window Wj to one through $\mathrm{BF}{{\prime} }_{j}={\mathrm{BF}}_{j}/\max ({\mathrm{BF}}_{j})$, where BF = {BF1j, BF2j, BF3j, ...}. To optimize the visualization of the significance of signals as a function of time, the window sizes and steps are chosen according to the sampling and size of the data, as well as the period of target signal. For example, for a set of 100 RVs sampled uniformly over a time span of one year, we can divide the time span into 12 bins and calculate the BFP for the RVs in each bin or time window to investigate the time consistency of signals with orbital periods less than 30 days. For long-period signals, broader time windows should be defined. This example provides a rule of thumb for the choice of window sizes and steps. We call this two-dimensional BFP the "moving periodogram." It is used to check the time consistency of signals identified by MCMC (called "MCMC signals" at periods of PMCMC). We refer the readers to Feng et al. (2017a) for more details.
  • 5.  
    We assess the overall quality of an MCMC signal. A genuine Keplerian (due to a planet) signal should:
    • (a)  
      be robust in the choice of noise models. The difference between the period of the MCMC signal and the corresponding BFP signals is less than 10% (i.e., 0.9PBFP < PMCMC < 1.1PBFP).
    • (b)  
      not be caused by stellar activity. The difference between the period of the MCMC signal and the signals with the two highest BFs for each activity index is less than 10% (i.e., PMCMC < 0.9Pactivity or PMCMC > 1.1Pactivity).
    • (c)  
      be statistically significant. The MCMC signal passes the ln(BF) threshold of 5.
    • (d)  
      be consistent in time. For an MCMC signal at a period of Pi, the standard deviation of $\mathrm{BF}{{\prime} }_{i}=\{\mathrm{BF}{{\prime} }_{i1},\mathrm{BF}{{\prime} }_{i2},\mathrm{BF}{{\prime} }_{i3},\,\ldots \}$ should be less than 0.5.

The above criteria are aimed at selecting as many candidate signals as possible and at removing obvious false positives. Hence, the signals identified through these criteria will be further studied to investigate their origin. To examine the overlap between two signals, we adopt a 20% period window centered at the period of one of the two signals. This use of a period ratio or percentage rather than a constant period is consistent with our use of the uniform distribution as the prior of the logarithmic period. This period window is narrow for long-period signals that are typically not well constrained but is broad for short-period ones that are well constrained by the data. Because most of our data sets have a short time span and cannot be used to identify long-period signals (e.g., a few years), the period window is broad enough to exclude most false short-period signals, although it might also exclude real long-period signals. On the other hand, RV signals might be the harmonics of activity signals that are outside of the period window and, thus, cannot be rejected through this criterion. However, such a scenario is unlikely because we use two signals in each activity index to identify overlaps, and the harmonics are unlikely to pass all other criteria if it is due to activity.

Although we use a moving periodogram to check the consistency of signals in time, it may not always show consistent power, even if a signal is genuine, because the power in the BFP for a given time window is also determined by the time span of the window, the sampling of the data, and the period of the signal. For example, if the period of a signal is longer than the time span of the whole data set, there would be no time window that can cover one period and, thus, a moving periodogram is not suitable for a consistency test. In this case, our algorithm would still count the signal satisfying the time-consistency criterion, although further analyses are needed to investigate the nature of such signals.

Since many of our PFS data sets contain less than 50 RVs, we are cautious about whether a signal can be reliably detected and whether the instrument is stable enough for the detection of long-period signals. We use two criteria to deal with these problems. First, we use the moving periodogram to check the consistency of signals to diagnose the stability of spectrograph and to check the time consistency of signals. Second, we avoid overfitting by comparing the null hypothesis and the planet hypothesis in the Bayesian framework. We use ln(BF) > 5 (Kass & Raftery 1995; Raftery 1995) to select the best model. Since the null hypothesis is typically favored by BF (Kass & Raftery 1995), we expect few false positives in our automated signal identification. A similar conclusion has been drawn by Feng et al. (2016) based on a comparison of various information criteria in the analyses of simulated and real RV data sets. Considering that most short-period Keplerian orbits are not eccentric (Kipping 2013), there are typically less than five efficient free parameters for a Keplerian orbit, although we calculate the BF using five parameters to penalize complex models. Hence, the BF criterion is conservative enough to avoid overfitting.

The application of the diagnostic procedure to 534 PFS data sets leads to an identification of 480 periodic signals. We assign the quality flag of "A" to a signal if it satisfies all of the four criteria, "B" if it fails to pass one criterion, "C" if it fails to pass two criteria, "D" if it only passes one criterion, and "E" if it satisfies no criterion. By the automated analyses, we find 42, 173, 192, 67, and 5 signals with quality "A," "B," "C," "D," and "E," respectively. We further investigate the "A" and "B" quality signals and select 15 planetary candidates to report. These targets do not have available data from other instruments and, thus, are suitable for our automated algorithm, which is aimed at identifying signals in RVs measured by a single instrument. We will design an updated algorithm for automated analyses of data sets from multiple instruments in upcoming work. The physical and observational properties for the stars in these systems are shown in Table 1.

Table 1.  Physical Parameters and Observation Parameters for PFS Targets Reported in This Paper

Star Type Mass (M) Temperature (K) α (deg) δ (deg) $\tilde{\omega }$ (mas) Time Span (Days) Number of RVsa
HD 210193 G3V 1.04 ± 0.06 ${5790}_{-50}^{+38}$ 332.40 −41.23 23.67 ± 0.04 3161 26
HD 211970 K7V 0.61 ± 0.04 ${4127}_{-94}^{+149}$ 335.57 −54.56 76.15 ± 0.04 3102 52
HD 39855 G8V 0.87 ± 0.05 ${5576}_{-46}^{+50}$ 88.63 −19.70 42.96 ± 0.03 2271 25
HIP 35173 K2V 0.79 ± 0.05 ${4881}_{-81}^{+55}$ 109.04 −3.67 30.13 ± 0.06 3269 39
HD 102843 K0V 0.95 ± 0.05 ${5436}_{-69}^{+144}$ 177.59 −1.25 15.91 ± 0.05 3009 36
HD 103949 K3V 0.77 ± 0.04 ${4792}_{-54}^{+66}$ 179.55 −23.92 37.71 ± 0.08 3064 48
HD 206255 G5IV/V 1.42 ± 0.08 ${5635}_{-99}^{+82}$ 325.59 −50.09 13.26 ± 0.03 3099 34
HD 21411 G8V 0.89 ± 0.05 ${5605}_{-132}^{+247}$ 51.55 −30.62 34.30 ± 0.04 3217 31
HD 64114 G7V 0.95 ± 0.05 ${5676}_{-87}^{+32}$ 117.98 −11.03 31.69 ± 0.04 2633 28
HD 8326 K2V 0.80 ± 0.05 ${4914}_{-32}^{+51}$ 20.53 −26.89 32.56 ± 0.05 3152 16
HD 164604 K3.5V 0.77 ± 0.04 ${4684}_{-37}^{+135}$ 270.78 −28.56 25.38 ± 0.06 3100 19
HIP 54373 K5V 0.57 ± 0.03 ${4021}_{-146}^{+226}$ 166.86 −19.29 53.40 ± 0.05 3064 51
HD 24085 G0V 1.22 ± 0.07 ${6034}_{-53}^{+32}$ 56.26 −70.02 18.19 ± 0.02 3162 25
HIP 71135 M1 0.66 ± 0.04 ${4146}_{-110}^{+107}$ 218.22 −52.65 30.90 ± 0.05 3009 44

Note. The astrometric parameters and the effective temperature are provided by Gaia DR2 (Gaia Collaboration et al. 2018). The stellar mass is derived from the Gaia luminosity using the mass–luminosity relationships in Malkov (2007), Eker et al. (2015), and Benedict et al. (2016). The spectral type is determined through a crossmatch of PFS targets with the Simbad database.

aThese RVs are not binned and multiple RVs may correspond to a single epoch.

Download table as:  ASCIITypeset image

4. Results

The parameters of planet candidates are inferred from the posterior samples drawn by DRAM chains and are shown in Table 2. The phase curves of all planet candidates and activity signals are shown in Figure 1. In the calculation of BFPs for noise models, we do not use the Gaussian process (GP) as many previous studies did (Haywood et al. 2014; Rajpaul et al. 2015) because the GP could lead to false negatives, according to recent studies (Dumusque 2016; Feng et al. 2016; Ribas et al. 2018). Moreover, an appropriate kernel for activity modeling is typically not known if the rotation period and activity life span are not well determined. We perform a uniform analysis of PFS targets in this work and could explore incorporating GPs informed by photometric data available in the future. Hence, we cannot determine the rotation periods of most stars except in the cases that rotation-induced activity signals can be found both in activity indices and in RVs.

Figure 1.

Figure 1. Phase curve and corresponding residuals for all planet candidates. The blue error bars show the error-weighted average RVs in 10 bins. The best orbital solution is determined by the MAP values of orbital parameters. The rms of the residual RVs is shown in each panel.

Standard image High-resolution image

Table 2.  Parameters for Planet Candidates

Planet MpsinI (M) a (au) P (days) K (m s−1) e ω (deg) M0 (deg)
HD 210193 b 153.1 ± 23.3 1.487 ± 0.031 649.918 ± 8.599 11.40 ± 1.66 0.24 ± 0.09 168.84 ± 28.69 73.93 ± 32.63
  ${167.39}_{-67.60}^{+41.04}$ ${1.488}_{-0.076}^{+0.071}$ ${650.200}_{-19.962}^{+20.030}$ ${12.55}_{-5.14}^{+2.70}$ ${0.28}_{-0.26}^{+0.16}$ ${171.16}_{-93.97}^{+66.34}$ ${75.84}_{-67.25}^{+104.08}$
HD 211970 b 13.0 ± 2.5 0.143 ± 0.003 25.201 ± 0.025 4.02 ± 0.74 0.15 ± 0.10 97.83 ± 51.73 84.80 ± 48.66
  ${13.28}_{-5.91}^{+5.63}$ ${0.143}_{-0.007}^{+0.006}$ ${25.193}_{-0.051}^{+0.067}$ ${4.04}_{-1.76}^{+1.78}$ ${0.07}_{-0.07}^{+0.35}$ ${78.83}_{-75.35}^{+125.57}$ ${98.86}_{-96.58}^{+89.52}$
HD 39855 b 8.5 ± 1.5 0.041 ± 0.001 3.2498 ± 0.0004 4.08 ± 0.71 0.14 ± 0.11 102.97 ± 79.77 154.27 ± 77.93
  ${8.89}_{-3.90}^{+3.19}$ ${0.041}_{-0.002}^{+0.002}$ ${3.2499}_{-0.0010}^{+0.0007}$ ${4.21}_{-1.76}^{+1.88}$ ${0.06}_{-0.06}^{+0.44}$ ${3.97}_{-2.44}^{+261.97}$ ${258.85}_{-254.96}^{+18.02}$
HIP 35173 b 12.7 ± 2.7 0.217 ± 0.004 41.516 ± 0.077 2.80 ± 0.59 0.16 ± 0.11 10.73 ± 96.40 -7.66 ± 91.92
  ${13.21}_{-6.69}^{+5.94}$ ${0.217}_{-0.010}^{+0.009}$ ${41.475}_{-0.137}^{+0.219}$ ${2.92}_{-1.51}^{+1.27}$ ${0.23}_{-0.22}^{+0.25}$ ${31.91}_{-207.31}^{+143.42}$ $-{0.89}_{-174.01}^{+175.62}$
HD 102843 b 113.9 ± 14.5 4.074 ± 0.270 3090.942 ± 295.049 5.24 ± 0.61 0.11 ± 0.07 108.69 ± 49.38 104.42 ± 54.78
  ${101.23}_{-19.99}^{+48.00}$ ${3.793}_{-0.315}^{+0.950}$ ${2770.962}_{-312.973}^{+1069.329}$ ${4.80}_{-0.93}^{+1.96}$ ${0.09}_{-0.09}^{+0.21}$ ${147.46}_{-141.03}^{+60.47}$ ${42.44}_{-37.78}^{+183.19}$
HD 103949 b 11.2 ± 2.3 0.439 ± 0.009 120.878 ± 0.446 1.77 ± 0.35 0.19 ± 0.12 127.74 ± 68.28 234.49 ± 67.94
  ${11.66}_{-5.69}^{+4.95}$ ${0.439}_{-0.021}^{+0.019}$ ${121.040}_{-1.199}^{+0.876}$ ${1.82}_{-0.89}^{+0.78}$ ${0.17}_{-0.17}^{+0.35}$ ${79.95}_{-67.49}^{+259.71}$ ${287.79}_{-269.95}^{+58.68}$
HD 206255 b 34.2 ± 7.1 0.461 ± 0.009 96.045 ± 0.317 3.92 ± 0.80 0.23 ± 0.11 86.92 ± 44.90 124.46 ± 46.09
  ${37.21}_{-19.35}^{+13.97}$ ${0.461}_{-0.022}^{+0.020}$ ${96.027}_{-0.707}^{+0.760}$ ${4.30}_{-2.32}^{+1.49}$ ${0.29}_{-0.27}^{+0.22}$ ${58.41}_{-50.95}^{+141.93}$ ${149.46}_{-133.56}^{+70.96}$
HD 21411 b 65.9 ± 25.6 0.362 ± 0.007 84.288 ± 0.127 11.47 ± 4.33 0.40 ± 0.15 332.42 ± 17.74 285.65 ± 22.51
  ${75.58}_{-68.06}^{+51.87}$ ${0.362}_{-0.017}^{+0.016}$ ${84.232}_{-0.239}^{+0.351}$ ${13.95}_{-8.55}^{+14.71}$ ${0.52}_{-0.46}^{+0.19}$ ${336.90}_{-60.98}^{+21.88}$ ${275.56}_{-35.60}^{+72.82}$
HD 64114 b 17.8 ± 3.5 0.246 ± 0.005 45.791 ± 0.070 3.33 ± 0.64 0.12 ± 0.08 215.30 ± 85.53 209.15 ± 85.31
  ${17.97}_{-8.33}^{+8.01}$ ${0.246}_{-0.012}^{+0.011}$ ${45.799}_{-0.172}^{+0.156}$ ${3.33}_{-1.57}^{+1.52}$ ${0.00}_{-0.00}^{+0.38}$ ${107.07}_{-89.00}^{+249.84}$ ${342.18}_{-323.83}^{+14.14}$
HD 8326 b 66.6 ± 19.6 0.533 ± 0.011 158.991 ± 1.440 9.36 ± 2.72 0.20 ± 0.11 -44.79 ± 36.46 272.91 ± 39.43
  ${74.20}_{-52.97}^{+38.76}$ ${0.535}_{-0.027}^{+0.023}$ ${159.662}_{-3.970}^{+2.719}$ ${10.35}_{-6.71}^{+6.55}$ ${0.20}_{-0.19}^{+0.31}$ $-{35.07}_{-111.79}^{+35.00}$ ${276.95}_{-113.13}^{+75.77}$
HD 164604 b 635.0 ± 82.3 1.331 ± 0.029 641.472 ± 10.129 60.66 ± 6.97 0.35 ± 0.10 65.40 ± 15.11 40.01 ± 25.82
  ${663.82}_{-213.66}^{+168.84}$ ${1.323}_{-0.061}^{+0.075}$ ${635.218}_{-16.782}^{+30.166}$ ${65.04}_{-21.11}^{+12.46}$ ${0.42}_{-0.33}^{+0.17}$ ${65.35}_{-39.81}^{+35.80}$ ${29.06}_{-26.12}^{+115.92}$
HIP 54373 b 8.62 ± 1.84 0.063 ± 0.001 7.760 ± 0.003 4.19 ± 0.87 0.20 ± 0.11 72.34 ± 44.58 90.73 ± 43.89
  ${8.80}_{-4.37}^{+4.18}$ ${0.063}_{-0.003}^{+0.003}$ ${7.760}_{-0.007}^{+0.006}$ ${4.17}_{-1.96}^{+2.25}$ ${0.10}_{-0.09}^{+0.41}$ ${65.31}_{-63.27}^{+115.57}$ ${103.03}_{-96.47}^{+84.33}$
HIP 54373 c 12.44 ± 2.11 0.099 ± 0.002 15.144 ± 0.008 4.84 ± 0.79 0.20 ± 0.12 122.37 ± 60.04 242.71 ± 57.33
  ${12.87}_{-5.25}^{+4.60}$ ${0.099}_{-0.005}^{+0.004}$ ${15.145}_{-0.020}^{+0.019}$ ${5.00}_{-2.04}^{+1.73}$ ${0.24}_{-0.23}^{+0.26}$ ${91.65}_{-69.59}^{+236.96}$ ${268.06}_{-232.15}^{+70.26}$
HD 24085 b 11.8 ± 3.1 0.034 ± 0.001 2.0455 ± 0.0002 5.40 ± 1.37 0.22 ± 0.12 8.92 ± 54.83 156.74 ± 60.90
  ${14.40}_{-9.56}^{+4.66}$ ${0.034}_{-0.002}^{+0.001}$ ${2.0455}_{-0.0004}^{+0.0005}$ ${6.68}_{-4.36}^{+2.40}$ ${0.31}_{-0.30}^{+0.20}$ ${7.86}_{-166.98}^{+146.67}$ ${149.95}_{-132.94}^{+180.97}$
HIP 71135 b 18.8 ± 4.1 0.335 ± 0.007 87.190 ± 0.381 3.71 ± 0.79 0.21 ± 0.13 115.60 ± 71.72 223.03 ± 73.08
  ${19.51}_{-10.04}^{+9.07}$ ${0.335}_{-0.016}^{+0.015}$ ${87.186}_{-0.875}^{+0.884}$ ${3.79}_{-1.94}^{+1.87}$ ${0.19}_{-0.18}^{+0.38}$ ${82.29}_{-76.63}^{+250.40}$ ${253.41}_{-243.15}^{+87.17}$

Note. The minimum mass, semimajor axis, period, RV semi-amplitude, eccentricity, and mean anomaly at the reference epoch are denoted by MpsinI, a, P, K, e, ω, and M0, respectively. The mean and standard deviation of each parameter are estimated from the posterior samples drawn by MCMC. For each parameter, the value at the MAP and the uncertainty interval defined by the 1% and 99% quantiles of the posterior distribution are shown below the values of the mean and standard deviation. The orbit of HD 164604 b is significantly eccentric because e = 0 is more than 3σ away from the mean. The orbital eccentricities for all other planet candidates are consistent with zero.

Download table as:  ASCIITypeset image

The RV signal corresponding to a candidate is typically consistently found in different data chunks, as shown in the moving periodogram (e.g., see Figure 2 for HD 210193). As mentioned in Section 3, the moving periodogram may not be suitable for all signals, thus, we only show them for the RV signals that need further confirmation. We also calculate the BFPs for activity indices and do not find any overlap between activity signals and the Keplerian signals. We display these in a series of plots from Figure 3 onward where subplots P1 are for Hα etc. The 14 PFS data sets are shown in Table 3.

Figure 2.

Figure 2. Moving periodogram for the PFS data for HD 210193. The top panels show RV data. The bottom right panel is a zoomed-in version of the bottom left panel, which shows the color-coded two-dimensional BFP. The x-axis is the BJD time relative to the first epoch. The periodogram power is normalized for each moving time window so that the BF does not depend on the number of RVs in each window. A global color coding is applied to these normalized BFs. The time span of each time window is 2036 days. The window move to cover the full data set within 20 steps. In the calculation of BFPs, we ignore the eccentricity of signals. This is not likely to change the time consistency of MCMC signals, although such assumption may alternate signal period and amplitude slightly.

Standard image High-resolution image
Figure 3.

Figure 3. BFPs for HD 210193. The BFPs are calculated for the activity indices and for the white noise model, MA(1), and AR(1) for the raw RV data and RVs with sinusoidal signals subtracted. The BFPs for activity indices are calculated using the MA(1) model. The window function is calculated using the Lomb–Scargle periodogram (Lomb 1976; Scargle 1982). The activity indices, window function, noise models, and data sets are shown in the top left corners. Each panel is denoted by "Px" in the top right corner where "x" is a natural number. The RV signal at a period of 650 days is marked by the red vertical lines. The panels denoted by "MCMC" show the BFPs for the raw data subtracted by the best-fit Keplerian signals constrained by MCMC. The gray dashed line denotes the ln(BF) = 5 criterion in each BFP. The elements in this figure are also applicable for the subsequent figures. The signals in the residual BFPs are either noise-model dependent or not identified as significant signals through MCMC sampling.

Standard image High-resolution image

Table 3.  PFS Data for the 14 Targets

Star BJD(TDB) RV RV Error S-index Hα Photon Count
  (days) (m s−1) (m s−1)      
HD 210193 2455255.7322 −2.96 1.03 0.2681 0.03949 17240
HD 210193 2455427.74325 10.5 1.19 0.1453 0.0298 20808
HD 210193 2455853.59631 −3.87 1.2 0.1457 0.03015 29319
HD 210193 2456139.71964 6.04 1.26 0.1408 0.03059 34033
HD 210193 2456150.73734 1.68 1.34 0.1459 0.03024 17527
HD 210193 2456507.78955 −8.57 1.22 0.1407 0.03049 33751
HD 210193 2456551.68262 −0.75 1.8 0.1522 −1 23658
HD 210193 2456556.69412 −3.99 1.44 0.1589 0.031 16623
HD 210193 2456867.80008 7.54 1.35 0.153 0.02991 29091
HD 210193 2456883.72837 7.57 1.15 0.1475 0.03002 41296
HD 210193 2457198.88933 −1.32 1.2 0.1479 0.02977 33208
HD 210193 2457205.83287 0.43 1.3 0.1532 0.02989 40291
HD 210193 2457258.62318 3.76 1.32 0.1588 0.03054 27175
HD 210193 2457259.74463 0 1.32 0.1558 0.03054 21843
HD 210193 2457321.59187 14.24 1.2 0.1562 0.02954 24402
HD 210193 2457529.88662 6.59 1.25 0.1457 0.0302 23762
HD 210193 2457554.90868 10.2 1.21 0.1586 0.03064 21573
HD 210193 2457614.76154 −1.31 1.13 0.1468 0.03049 36335
HD 210193 2457620.6494 0.09 1.32 0.1514 −1 20191
HD 210193 2458266.85745 −0.13 1.11 −1 −1 16288
HD 210193 2458270.89806 −4.68 1.14 −1 −1 22104
HD 210193 2458293.82287 −5.82 1.3 −1 −1 18573
HD 210193 2458329.77738 −11.74 1.08 −1 −1 7636
HD 210193 2458329.78116 −12.28 1.24 −1 −1 7132
HD 210193 2458416.55692 −15.24 1.17 −1 −1 7138
HD 210193 2458416.5608 −13.7 1.22 −1 −1 7617
HD 211970 2455255.7322 −2.96 1.03 0.2681 0.03949 17240
HD 211970 2455427.75376 4.39 1.01 1.0036 0.05437 24542
HD 211970 2455439.7522 4.22 1.16 0.9017 0.05306 20281
HD 211970 2455785.66778 −6.38 1.17 0.6735 0.05198 22935
HD 211970 2455787.78384 −5.22 1.11 0.7317 0.05236 25121
HD 211970 2455790.64196 −0.3 1.15 0.7294 0.05265 20023
HD 211970 2455793.66157 −5.06 1.2 0.8489 0.05269 17699
HD 211970 2455795.73434 2 1.11 0.724 0.05198 21689
HD 211970 2455801.6949 2.91 1.24 0.8221 0.05361 12861
HD 211970 2455802.66507 3.1 1.26 0.7252 0.05326 14089
HD 211970 2455843.73573 0.23 1.26 0.4834 0.05189 15628
HD 211970 2455844.62917 −1.09 1.05 0.6433 0.05282 17331
HD 211970 2455845.65818 −3.1 1.07 0.6588 0.05241 16444
HD 211970 2455846.6955 −1.07 1.1 0.6576 0.05249 21090
HD 211970 2455850.66816 3.63 1.2 0.6687 0.0551 13526
HD 211970 2455851.6625 1.67 1.27 0.5961 0.05486 14869
HD 211970 2455852.63469 −0.86 1.29 0.6993 0.05403 13643
HD 211970 2455853.60615 −1.63 1.43 0.5476 0.05468 10524
HD 211970 2456085.91961 −4.78 1.14 0.7777 0.05213 20813
HD 211970 2456086.82561 −3.88 1.02 0.8023 0.05236 25862
HD 211970 2456087.91929 −5.73 1.45 0.9308 0.05402 10622
HD 211970 2456092.87766 0.67 1.07 0.874 0.0524 23615
HD 211970 2456141.7073 0.99 1.12 0.8227 0.05365 23515
HD 211970 2456147.73551 5.39 1.57 0.8008 −1 9014
HD 211970 2456501.7777 6.74 1.24 0.8439 0.05292 18659
HD 211970 2456504.84093 1.5 1.86 0.9769 0.05405 6983
HD 211970 2456504.84951 6 1.71 0.9942 0.05364 7662
HD 211970 2456506.79608 0.47 1.86 0.9598 0.05385 6825
HD 211970 2456506.80612 9.49 3.55 0.9492 0.05433 3374
HD 211970 2456555.60902 3.43 1.15 0.729 0.05246 19106
HD 211970 2456556.72102 −2.35 1.17 0.8122 0.05351 15289
HD 211970 2456603.58858 6.93 1.03 0.576 0.05298 24254
HD 211970 2456610.55366 −13.6 1.03 0.5361 0.05267 22999
HD 211970 2456816.93005 −10.69 1.79 0.881 0.0543 7642
HD 211970 2456818.87738 −4.42 1.08 0.7789 0.05211 25940
HD 211970 2456866.72527 −5.89 1.05 0.7527 0.05193 27615
HD 211970 2456871.73924 −2.41 1.13 0.7926 0.05235 16594
HD 211970 2456876.83292 2.96 1.24 0.8458 0.05245 19119
HD 211970 2456879.717 0.6 1.08 0.8207 0.05307 26605
HD 211970 2457198.89566 −1.7 1.08 0.8817 0.05225 20889
HD 211970 2457203.81436 2.47 1.15 0.9188 0.0538 23365
HD 211970 2457260.7319 0 1.18 0.7327 0.05214 17234
HD 211970 2457321.5985 −5.3 1.07 0.4997 0.05319 19970
HD 211970 2457536.92111 8.42 1.24 0.9646 0.05503 15202
HD 211970 2457555.8774 −2.5 1.05 0.8753 0.05301 24541
HD 211970 2457614.77018 4.04 1.14 0.9375 0.05419 26397
HD 211970 2457621.70646 −0.82 1.05 0.8482 0.05353 20522
HD 211970 2458293.84928 4.73 1.07 −1 −1 8166
HD 211970 2458329.78811 −3.74 0.96 −1 −1 7189
HD 211970 2458355.67643 −5.71 0.87 −1 −1 6828
HD 211970 2458357.60275 −5.85 1.04 −1 −1 4154
HD 211970 2458357.60651 −5.93 0.85 −1 −1 4515
HD 39855 2455255.7322 −2.96 1.03 0.2681 0.03949 17240
HD 39855 2455200.69318 3.74 1.57 0.2162 −1 17422
HD 39855 2455255.58202 −3.12 1.13 0.1975 0.03123 32336
HD 39855 2455587.59977 1.07 1.26 0.1736 0.03222 20347
HD 39855 2455587.60343 1.21 1.21 0.1694 0.033 20166
HD 39855 2455669.49598 2.9 1.09 0.1835 0.03233 46028
HD 39855 2455845.83806 0.78 1.31 0.1667 0.03186 21890
HD 39855 2455852.86337 0 1.42 0.1635 0.03258 19112
HD 39855 2455956.63819 −1.3 1.31 0.159 0.03182 36101
HD 39855 2456281.72155 −2.11 1.37 0.1665 −1 23915
HD 39855 2456284.67998 0.75 1.19 0.1669 0.03205 49974
HD 39855 2456345.5798 8.65 1.22 0.0324 0 24537
HD 39855 2456356.60133 −4.48 1.17 0.166 0.03208 31425
HD 39855 2456358.57618 7.48 1.65 0.2344 0.03372 9358
HD 39855 2456695.62685 −0.22 1.28 0.1807 0.03197 36301
HD 39855 2456703.59108 1.3 1.13 0.1992 0.03261 31290
HD 39855 2457029.69333 −3.62 1.25 0.1645 0.03183 53474
HD 39855 2457053.61031 −0.06 1.3 0.1691 0.0319 40647
HD 39855 2457123.51006 −1.78 1.1 0.1692 0.03184 33114
HD 39855 2457267.88973 1.74 1.23 0.1609 0.03221 36153
HD 39855 2457325.81241 −3.09 1.27 0.1599 0.03185 43264
HD 39855 2457389.6711 −0.3 1.31 0.1606 0.03181 45327
HD 39855 2457395.70227 0.32 1.5 0.1663 0.03228 17590
HD 39855 2457448.5851 −3.36 1.11 0.1677 0.03151 53217
HD 39855 2457471.52459 −2.9 1.31 0.1635 0.03179 30674
HIP 35173 2455255.7322 −2.96 1.03 0.2681 0.03949 17240
HIP 35173 2455200.71753 6.59 1.68 0.3799 −1 7620
HIP 35173 2455252.62714 −5.32 1.19 0.2378 −1 18749
HIP 35173 2455581.64495 −3.75 1.05 0.2705 0.04027 23076
HIP 35173 2455956.68819 −3.17 1.02 0.2119 0.03946 24086
HIP 35173 2455957.64998 −0.34 1.69 0.3684 0.04145 5933
HIP 35173 2456284.73876 2.24 0.99 0.2187 0.03928 25479
HIP 35173 2456291.77672 −4.32 0.91 0.2199 0.03931 21960
HIP 35173 2456343.62157 −2.2 0.99 0.2358 0.03954 21343
HIP 35173 2456354.57027 0.3 0.99 0.2249 0.03952 18295
HIP 35173 2456357.61684 4.18 0.94 0.2159 0.03952 19493
HIP 35173 2456610.82296 1.19 1.01 0.2045 0.03912 21836
HIP 35173 2456692.67294 1.23 1 0.2117 0.03897 25266
HIP 35173 2456696.62238 −0.12 1.06 0.2266 0.03968 19352
HIP 35173 2456698.67353 1.45 0.85 0.2184 0.03961 22937
HIP 35173 2456729.6363 3.45 0.96 0.1861 0.03963 25493
HIP 35173 2456730.59016 3.84 1.04 0.2392 0.03957 19102
HIP 35173 2456733.59673 3.92 0.93 0.2016 0.03951 23207
HIP 35173 2457020.72449 5.8 0.93 0.2355 0.03905 25335
HIP 35173 2457022.71547 5.23 0.88 0.2298 0.03988 26572
HIP 35173 2457030.75951 0.67 0.99 0.2397 0.04002 23900
HIP 35173 2457050.6369 −0.88 0.93 0.2361 0.03982 25437
HIP 35173 2457053.622 −2.14 1.05 0.2335 0.04009 16408
HIP 35173 2457060.6255 0.71 0.99 0.2171 0.03874 21750
HIP 35173 2457069.61469 1.56 1.07 0.2294 0.03968 16376
HIP 35173 2457118.54054 −0.58 0.93 0.2351 0.03967 26280
HIP 35173 2457122.53949 −0.06 0.89 0.2355 0.03954 23231
HIP 35173 2457324.87053 −3.88 1.42 0.3246 0.04145 9338
HIP 35173 2457327.85226 1.26 1.13 0.2742 0.04025 14149
HIP 35173 2457387.66829 −3.02 0.88 0.2645 0.04026 24824
HIP 35173 2457396.65701 −0.68 1.04 0.2645 0.03957 19286
HIP 35173 2457448.62086 −2.62 1.05 0.2613 0.04009 25338
HIP 35173 2457471.54655 2.21 1.07 0.2645 0.04011 15211
HIP 35173 2457499.53549 −2.28 0.87 0.2483 0.03952 30511
HIP 35173 2457737.74108 −3.26 1.08 0.2444 0.039 26502
HIP 35173 2457758.74084 1.8 0.9 0.2517 0.04008 22330
HIP 35173 2457762.65955 0 1.07 0.2701 0.03987 23516
HIP 35173 2457824.59241 −0.76 0.99 0.2622 0.03915 18743
HIP 35173 2458469.83192 −0.13 1 −1 −1 4885
HD 102843 2455255.7322 −2.96 1.03 0.2681 0.03949 17240
HD 102843 2455200.83576 0 2.43 0.2557 −1 5708
HD 102843 2455252.79165 −1.84 1.26 0.1589 −1 14798
HD 102843 2455342.58244 −0.1 1.26 0.1976 0.03497 14379
HD 102843 2455585.824 2.86 1.31 0.1616 0.03431 15311
HD 102843 2455664.67782 −1.93 1.32 0.21 0.0337 15991
HD 102843 2456093.53284 7.9 1.06 0.3384 0.03394 13810
HD 102843 2456288.8541 4.36 1.15 0.1613 0.0343 19078
HD 102843 2456345.79961 7.62 1.18 0.1877 0.03412 17302
HD 102843 2456435.55492 4.65 1.22 0.1722 0.03345 19933
HD 102843 2456694.81016 7.42 1.13 0.1816 0.03405 20088
HD 102843 2456698.78069 5.44 1.17 0.1787 0.03419 18673
HD 102843 2456701.73522 5.79 1.21 0.173 0.03419 17658
HD 102843 2456730.72343 3.96 1.22 0.1926 0.03423 15830
HD 102843 2456817.53906 6.99 1.37 0.2421 0.03412 14105
HD 102843 2457023.84581 4.55 1.1 0.1748 0.03459 17749
HD 102843 2457029.83073 3.92 1.08 0.1635 0.0334 20407
HD 102843 2457065.81831 6.29 1.25 0.1613 0.03409 14638
HD 102843 2457069.72688 4.24 1.22 0.1656 0.03448 14364
HD 102843 2457119.70904 0.6 1.22 0.1677 0.03355 17706
HD 102843 2457203.49054 −0.26 1.17 0.158 0.03388 18199
HD 102843 2457206.51837 −0.76 1.1 0.1546 0.03372 20241
HD 102843 2457390.84293 3.21 1.14 0.1521 0.03421 17726
HD 102843 2457397.84159 −1.19 1.22 0.1608 0.03427 12809
HD 102843 2457448.79186 −0.79 1.23 0.1565 0.03404 22385
HD 102843 2457472.68105 −4.12 1.3 0.1531 0.03406 19522
HD 102843 2457505.60482 −2.59 1.29 0.1656 0.03407 15096
HD 102843 2457760.85002 −5.58 1.14 0.1479 0.0342 21243
HD 102843 2457829.80843 −3.93 1.6 0.2068 0.0341 11045
HD 102843 2458204.66791 −3.35 0.93 −1 −1 14073
HD 102843 2458204.71316 −4.14 1 −1 −1 13154
HD 102843 2458205.72943 −3.62 1.03 −1 −1 13330
HD 102843 2458206.68341 −3.11 1.05 −1 −1 12668
HD 102843 2458207.70655 −2.38 0.98 −1 −1 14300
HD 102843 2458208.63571 −2.28 0.94 −1 −1 19760
HD 102843 2458209.65381 −3.39 0.93 −1 −1 20254
HD 103949 2455255.7322 −2.96 1.03 0.2681 0.03949 17240
HD 103949 2455200.85365 1.87 1.57 0.2838 −1 7861
HD 103949 2455252.80669 −4.49 1.19 0.2311 −1 18529
HD 103949 2455342.59972 1.02 1.05 0.1979 0.04018 29944
HD 103949 2455584.81107 1.87 1.03 0.2294 0.04103 23085
HD 103949 2455664.70212 −1.29 1.1 0.2303 0.04016 24463
HD 103949 2456093.54236 −0.55 0.99 0.2439 0.04117 16120
HD 103949 2456284.85339 3.57 1 0.2749 0.0407 24711
HD 103949 2456345.81626 −3.56 1.03 0.2768 0.0409 26003
HD 103949 2456356.81978 −2.33 1.12 0.2896 0.04172 20181
HD 103949 2456431.59876 −0.01 1.59 0.2572 0.04084 21637
HD 103949 2456434.58574 −1.51 1.05 0.2804 0.04086 21799
HD 103949 2456438.57712 0.27 1.13 0.2702 0.04101 19845
HD 103949 2456501.4829 −2.1 1.24 0.2944 0.04111 14991
HD 103949 2456693.77863 −4.52 0.98 0.2627 0.04093 33792
HD 103949 2456696.74631 −2.93 1.04 0.2767 0.0402 22235
HD 103949 2456700.78295 0.22 0.96 0.2344 0.04033 23764
HD 103949 2456702.70173 −0.47 1.05 0.2669 0.04105 22201
HD 103949 2456729.7549 −1.08 0.94 0.2666 0.03986 41798
HD 103949 2456730.73207 0.41 1.02 0.2827 0.04008 24473
HD 103949 2456816.56657 −1.35 1.28 0.2531 0.04054 23830
HD 103949 2457022.81444 2.14 0.9 0.2581 0.04022 25317
HD 103949 2457026.8595 −0.68 0.96 0.2575 0.04001 19568
HD 103949 2457051.86844 −1.99 1 0.2518 0.0401 24487
HD 103949 2457064.70854 −1.16 1.03 0.2449 0.04014 21884
HD 103949 2457118.69169 −2.56 1.05 0.2416 0.04088 26524
HD 103949 2457123.69519 0.34 1.05 0.2494 0.0411 21538
HD 103949 2457200.48178 −1 1.09 0.2458 0.04072 23451
HD 103949 2457389.80697 0.96 1.04 0.2319 0.04031 18497
HD 103949 2457396.86666 2.12 0.97 0.2184 0.04079 21717
HD 103949 2457450.78222 −0.99 1.1 0.2338 0.03996 23609
HD 103949 2457472.71043 −1 1.04 0.2142 0.04002 23336
HD 103949 2457478.70621 −0.58 0.99 0.2063 0.03953 37022
HD 103949 2457505.62043 2.32 1.06 0.2133 0.03972 23868
HD 103949 2457555.52785 −0.85 1.13 0.2765 0.04002 22711
HD 103949 2457760.859 1.99 0.92 0.2064 0.04058 36733
HD 103949 2457761.81112 3.34 0.91 0.2053 −1 36580
HD 103949 2457765.79163 0 1.08 0.2084 0.04087 21426
HD 103949 2457825.75799 1.52 0.95 0.2212 0.04043 26191
HD 103949 2457862.66605 0.07 1.11 0.2366 0.03969 16008
HD 103949 2458203.69321 1.08 0.87 −1 −1 21612
HD 103949 2458204.75568 2.05 0.88 −1 −1 15853
HD 103949 2458205.74082 2.23 0.88 −1 −1 22214
HD 103949 2458206.67226 1.42 0.83 −1 −1 19816
HD 103949 2458207.71827 1.48 0.81 −1 −1 21013
HD 103949 2458208.62537 0.8 0.83 −1 −1 22948
HD 103949 2458209.64388 0.82 0.79 −1 −1 20962
HD 103949 2458264.57394 −0.63 0.91 −1 −1 19389
HD 206255 2455255.7322 −2.96 1.03 0.2681 0.03949 17240
HD 206255 2455427.71742 −2.66 1.3 0.1349 0.02973 21832
HD 206255 2455439.73885 −4.03 1.32 0.1355 0.03028 18934
HD 206255 2455796.7401 2.49 1.4 0.1427 0.03018 19100
HD 206255 2455850.65044 2.32 1.26 0.1429 0.02996 19692
HD 206255 2455850.65416 2.34 1.4 0.1444 0.02997 19669
HD 206255 2456086.81919 −1.77 1.18 0.1315 0.02905 39826
HD 206255 2456092.85872 −1.16 1.23 0.1297 0.03006 25348
HD 206255 2456139.70543 1.73 1.27 0.1338 0.02995 23160
HD 206255 2456144.7747 2.14 1.65 0.1404 0.03056 13672
HD 206255 2456150.7277 −0.11 1.44 0.131 0.02972 18626
HD 206255 2456504.83089 −3.38 1.32 0.1362 0.03007 20147
HD 206255 2456506.78512 1.91 1.32 0.142 0.02958 20609
HD 206255 2456550.62471 7.66 1.43 0.3088 0.02968 32231
HD 206255 2456553.6186 4.55 1.47 0.1388 0.02961 21158
HD 206255 2456604.54902 −4.1 1.23 0.1347 0.02951 26861
HD 206255 2456817.86837 0.09 1.23 0.1319 0.02993 31069
HD 206255 2456866.69534 −3.18 1.31 0.1284 0.02972 39119
HD 206255 2456876.68366 −9.05 1.29 0.1275 0.02919 39943
HD 206255 2457198.86731 −1.8 1.34 0.1267 0.02996 27749
HD 206255 2457206.83583 −2.37 1.43 0.1242 0.02971 38134
HD 206255 2457258.61859 −2.48 1.31 0.1298 0.02977 30047
HD 206255 2457321.57596 5.79 1.37 0.1304 0.0296 26552
HD 206255 2457327.61917 3.74 1.3 0.129 0.02982 24059
HD 206255 2457536.90929 −5.04 1.31 0.1341 0.0296 23177
HD 206255 2457555.86064 −5.31 1.21 0.1229 0.02888 43387
HD 206255 2457614.71064 0 1.2 0.1293 0.02955 38830
HD 206255 2457620.63101 −4.69 1.37 0.1404 −1 20427
HD 206255 2458271.77631 2.13 1.19 −1 −1 17530
HD 206255 2458293.81535 1.92 1.21 −1 −1 20410
HD 206255 2458334.76763 −1.66 1.18 −1 −1 6918
HD 206255 2458334.77142 0.67 1.21 −1 −1 7649
HD 206255 2458354.67918 −2.19 1.44 −1 −1 4487
HD 206255 2458354.68676 0 1.41 −1 −1 4517
HD 21411 2455255.7322 −2.96 1.03 0.2681 0.03949 17240
HD 21411 2455200.62078 5.04 1.34 0.2286 −1 13359
HD 21411 2455430.89198 −0.25 1.36 0.2078 0.03409 20044
HD 21411 2455584.57744 2.11 1.18 0.2027 0.03301 21664
HD 21411 2455852.79817 −6.04 1.46 0.1842 0.03321 19016
HD 21411 2456143.9235 19.35 1.93 0.1895 −1 12955
HD 21411 2456281.63855 −2.43 1.33 0.2106 −1 25027
HD 21411 2456290.59309 −3.22 0.92 0.1861 0.03291 39304
HD 21411 2456343.53765 −1.08 1.04 0.1941 0.03295 24919
HD 21411 2456358.52243 4.55 2.91 0.3238 0.03612 3820
HD 21411 2456551.8202 −0.56 1.97 0.2034 −1 23523
HD 21411 2456605.70767 −6.31 1.41 0.2024 0.03334 22103
HD 21411 2456612.67223 3.34 1.25 0.1946 0.03323 30911
HD 21411 2456697.5676 −4.21 1.04 0.1869 0.03265 32159
HD 21411 2456866.90825 −2.66 1.32 0.1951 0.03274 26895
HD 21411 2456882.92219 −1.71 1.34 0.1947 0.03284 36006
HD 21411 2457022.63789 −3.14 1.01 0.196 0.03318 36914
HD 21411 2457029.63113 3 0.96 0.1996 0.0331 30569
HD 21411 2457053.52375 −1.31 1.2 0.1995 0.03282 21376
HD 21411 2457061.56943 −1.68 1.05 0.1944 0.03258 23471
HD 21411 2457260.8869 1.71 1.46 0.1854 0.03264 21551
HD 21411 2457320.75509 −0.14 1.28 0.1889 0.0329 22339
HD 21411 2457389.61809 0 0.98 0.1808 0.03256 35380
HD 21411 2457622.92626 −0.93 1.29 0.1882 0.03299 25644
HD 21411 2457741.62792 11.4 1.28 0.2188 0.03356 37117
HD 21411 2457759.59214 12.12 0.98 0.4113 0.03345 26847
HD 21411 2457765.62903 8.83 1.27 0.2267 0.03378 18377
HD 21411 2458410.70071 0.12 1.15 −1 −1 6032
HD 21411 2458410.70461 2.18 1.15 −1 −1 5966
HD 21411 2458417.74652 17.64 1.39 −1 −1 3519
HD 21411 2458417.75021 17.21 1.36 −1 −1 4550
HD 64114 2455255.7322 −2.96 1.03 0.2681 0.03949 17240
HD 64114 2455200.75154 −0.15 1.31 0.2264 −1 13346
HD 64114 2455255.63455 −1.84 1.31 0.2038 0.03093 39062
HD 64114 2455586.77045 −2.2 1.24 0.1658 0.03165 20608
HD 64114 2455588.6773 −0.93 1.05 0.1662 0.03134 32884
HD 64114 2455671.55327 −3.56 1.12 0.2606 0.03134 45495
HD 64114 2456288.7264 6.35 1.06 0.1931 0.03201 41494
HD 64114 2456290.78816 6.76 1.02 0.1901 0.03203 46531
HD 64114 2456345.63885 −1.92 1.34 0.0318 0 27065
HD 64114 2456695.68081 2.47 1.22 0.1977 0.03172 24676
HD 64114 2456702.66536 −0.27 1.03 0.174 0.03123 42052
HD 64114 2456733.60378 0.43 1.09 0.1725 0.0309 37678
HD 64114 2456734.61888 0.66 1.03 0.1925 0.03118 41885
HD 64114 2457021.71572 4.38 1 0.1766 0.03171 37198
HD 64114 2457024.75524 4.53 1.05 0.1732 0.03228 42179
HD 64114 2457053.66366 −1.5 1.38 0.179 0.03179 23599
HD 64114 2457061.63104 0.62 1.12 0.1723 0.03153 23509
HD 64114 2457066.61776 3.57 1.29 0.1754 0.03175 19556
HD 64114 2457117.56268 1.4 1.12 0.257 0.03123 43344
HD 64114 2457122.55954 1.09 1.14 0.1829 0.0312 43004
HD 64114 2457387.7083 0.06 0.89 0.1676 −1 44362
HD 64114 2457395.66312 −1.26 1.32 0.1695 0.03179 20384
HD 64114 2457468.59249 −1.25 1.09 0.1994 0.03131 44770
HD 64114 2457499.55607 −4.62 1.13 0.1788 0.03112 45070
HD 64114 2457740.73137 0 1.2 0.1793 0.0316 34668
HD 64114 2457761.70022 1.89 1.18 0.1765 −1 36217
HD 64114 2457769.75899 −0.32 1.26 0.1745 0.03163 25866
HD 64114 2457833.59771 −0.31 1.02 0.2028 0.03161 25333
HD 8326 2455255.7322 −2.96 1.03 0.2681 0.03949 17240
HD 8326 2455585.54494 1.02 0.93 0.2795 0.03895 23077
HD 8326 2456141.9085 1.63 0.93 0.2996 0.03954 21201
HD 8326 2456173.80187 −2.34 1.18 0.3144 0.03946 19470
HD 8326 2456612.6198 7.2 1.15 0.2793 0.03956 20615
HD 8326 2456866.87142 −3.69 0.97 0.3533 0.03979 24202
HD 8326 2456877.86915 8.75 1.19 0.3872 0.03964 21502
HD 8326 2457022.60447 2.08 0.78 0.3289 0.03911 24195
HD 8326 2457261.87244 0 1.14 0.3374 0.04018 18113
HD 8326 2457324.71174 −7.66 1.05 0.2769 0.03915 21787
HD 8326 2457389.55141 12.24 0.85 0.3446 0.03958 22770
HD 8326 2457617.86045 −2.06 0.95 0.2911 0.03929 22645
HD 8326 2457739.57509 1.28 0.91 0.2429 0.03867 24241
HD 8326 2457762.5492 −7.57 1.01 0.2622 0.0384 18459
HD 8326 2457767.5642 −6.47 0.94 0.2491 0.03803 23125
HD 8326 2458407.70844 −2.62 0.97 −1 −1 7325
HIP 31609 2455255.7322 −2.96 1.03 0.2681 0.03949 17240
HIP 31609 2458407.8526 −10.6 1.38 −1 −1 1890
HIP 31609 2458408.85256 0.43 1.44 −1 −1 2290
HIP 31609 2458409.84653 −0.03 1.61 −1 −1 1786
HIP 31609 2458410.84883 5.98 1.39 −1 −1 1854
HIP 31609 2458411.85426 6.32 1.21 −1 −1 2563
HIP 31609 2458412.85539 7.35 1.37 −1 −1 2603
HIP 31609 2458414.85554 6.52 1.68 −1 −1 1516
HIP 31609 2458415.80466 0.65 1.52 −1 −1 2027
HIP 31609 2458416.84913 −5.34 1.36 −1 −1 2229
HIP 31609 2458417.78781 −4.53 1.8 −1 −1 1330
HIP 31609 2458418.84782 3.99 1.37 −1 −1 2197
HIP 31609 2458467.77358 −6.71 1.19 −1 −1 2795
HIP 31609 2458467.8106 −4.61 1.51 −1 −1 2272
HIP 31609 2458468.75877 −9.98 1.27 −1 −1 2637
HIP 31609 2458468.81937 −12.14 1.21 −1 −1 2516
HIP 31609 2458469.76285 −7.79 1.35 −1 −1 1833
HIP 31609 2458469.82074 −10.52 1.54 −1 −1 1670
HIP 31609 2458471.76184 −7.42 1.41 −1 −1 2250
HIP 31609 2458471.83237 −12.98 1.43 −1 −1 1684
HIP 31609 2458473.76748 −5.48 1.13 −1 −1 2773
HIP 31609 2458473.83554 0 1.34 −1 −1 1845
HIP 31609 2458474.71356 0.35 1.26 −1 −1 2174
HIP 31609 2458474.82237 0.53 1.57 −1 −1 1908
HIP 31609 2458475.73745 6.98 1.38 −1 −1 2239
HIP 31609 2458475.83545 10.06 1.28 −1 −1 2198
HIP 31609 2458476.76185 11.97 1.45 −1 −1 2264
HIP 31609 2458476.84509 9.29 1.28 −1 −1 2364
HIP 54373 2455255.7322 −2.96 1.03 0.2681 0.03949 17240
HIP 54373 2455200.81388 −0.01 3.3 1.1365 −1 3251
HIP 54373 2455254.65524 −5.75 1.38 1.2993 −1 9665
HIP 54373 2455341.55657 −1 1.44 1.0644 0.06204 8371
HIP 54373 2455582.82444 −1.95 1.35 1.4122 0.0628 8352
HIP 54373 2455668.64626 3.41 1.53 1.1943 0.06075 6572
HIP 54373 2455672.54785 11.35 1.81 1.1771 0.0637 5709
HIP 54373 2455954.79749 3.3 1.45 1.5138 0.06136 7566
HIP 54373 2455955.79678 4.54 1.53 1.4293 0.06109 6743
HIP 54373 2455957.82077 9.43 3.81 1.3056 0.06466 2210
HIP 54373 2455958.80249 4.63 1.7 1.4975 0.06263 5216
HIP 54373 2455959.80289 3.33 1.51 1.5661 0.06282 6459
HIP 54373 2455960.80708 −0.08 1.57 1.4675 0.06325 5887
HIP 54373 2456086.51118 −0.64 1.48 0.9156 0.05982 8747
HIP 54373 2456088.528 3.92 1.79 0.876 0.06047 5976
HIP 54373 2456092.50926 2.43 2.68 1.0897 0.06162 3342
HIP 54373 2456093.49839 0.85 1.5 0.8899 0.06177 4120
HIP 54373 2456282.84604 −5.35 1.51 1.4307 0.06256 7443
HIP 54373 2456288.83793 −1.11 1.3 1.5356 0.06108 7256
HIP 54373 2456292.84185 7.97 1.32 1.4246 0.06095 7182
HIP 54373 2456344.72208 −3.99 1.68 1.4487 0.06154 6179
HIP 54373 2456353.74857 14.91 1.58 1.0695 0.06313 6197
HIP 54373 2456356.78344 −11.1 1.66 1.4895 0.06219 5956
HIP 54373 2456428.55774 8.18 1.86 1.0544 0.06211 5817
HIP 54373 2456433.55267 −13.61 1.77 1.0966 0.0624 6182
HIP 54373 2456434.5606 −12.48 3.04 1.1327 0.06307 2929
HIP 54373 2456438.56787 7.56 2.2 1.0119 0.06025 4376
HIP 54373 2456693.75493 −4.85 1.33 1.4456 0.06084 8806
HIP 54373 2456696.73138 3.04 1.41 1.5517 0.06225 7912
HIP 54373 2456698.75589 −2.94 1.43 1.4152 0.06235 7353
HIP 54373 2456701.71882 4.8 1.51 1.4904 0.06203 6851
HIP 54373 2456734.73037 −0.39 1.36 1.3109 0.06347 8708
HIP 54373 2456735.71095 −1.82 1.42 1.421 0.06248 6898
HIP 54373 2456818.49057 4.89 1.67 0.8612 0.0608 5877
HIP 54373 2457021.84001 1.8 1.15 1.6562 0.06457 10807
HIP 54373 2457026.82576 −0.99 1.28 1.6873 0.06407 11485
HIP 54373 2457051.75433 6.1 1.32 1.6401 0.06481 8960
HIP 54373 2457062.72414 0 1.48 1.4429 0.0605 7730
HIP 54373 2457120.68354 0 1.43 1.2376 0.06137 9716
HIP 54373 2457203.47387 −1.62 1.5 1.1355 0.06207 6658
HIP 54373 2457387.8144 −4.92 1.26 1.7353 0.06515 8091
HIP 54373 2457397.80848 0.66 1.5 1.7506 0.06575 6829
HIP 54373 2457448.74521 −1.84 1.5 1.5171 0.06162 8295
HIP 54373 2457473.66083 1.81 1.52 1.4173 0.06234 8871
HIP 54373 2457478.66936 5.97 1.3 1.2089 0.06035 9693
HIP 54373 2457499.6386 −3.47 1.49 1.0454 0.06117 9651
HIP 54373 2457559.48686 −0.38 1.26 1.0418 0.06163 11132
HIP 54373 2457759.83236 4.75 1.32 1.4273 0.06249 10217
HIP 54373 2457824.71916 −2.79 1.74 1.4785 0.06239 7142
HIP 54373 2457848.57423 2.37 1.43 1.4862 0.0641 9027
HIP 54373 2458264.55224 −5 1.08 −1 −1 6014
HD 24085 2455255.7322 −2.96 1.03 0.2681 0.03949 17240
HD 24085 2455582.60234 −1.46 1.08 0.1352 0.02901 23031
HD 24085 2455582.60495 5.07 1.2 0.1546 0.02952 15946
HD 24085 2456145.91788 0.84 1.9 0.1528 0.0293 16842
HD 24085 2456290.6024 0 1.09 0.1333 0.02865 44667
HD 24085 2456551.82884 8.13 2.39 0.1996 −1 23351
HD 24085 2456606.70671 6.58 1.52 0.1481 −1 18894
HD 24085 2456698.55207 3.42 1.24 0.1376 0.02833 31582
HD 24085 2456871.92807 −0.14 1.72 0.1322 0.0281 34132
HD 24085 2457022.6474 −0.19 1.11 0.1333 0.02843 46090
HD 24085 2457029.63619 −1.5 1.01 0.4486 0.02856 34399
HD 24085 2457053.53884 −1.5 1.2 0.1425 0.02804 21504
HD 24085 2457066.53534 −1.9 1.32 0.1423 0.02915 18847
HD 24085 2457262.87843 −0.19 1.31 0.1383 0.02889 25690
HD 24085 2457319.79348 −6.56 1.31 0.1408 0.02874 23074
HD 24085 2457389.61345 −2.7 1.07 0.1307 0.0284 40886
HD 24085 2457450.51648 −3.32 1.54 0.2745 0.02785 36913
HD 24085 2457621.92363 1.77 1.46 0.1484 0.02901 19681
HD 24085 2457741.63286 1.73 1.24 0.1384 0.02812 39691
HD 24085 2457761.60444 0.11 0.99 0.1469 −1 36598
HD 24085 2457766.5965 10.82 1.15 0.1383 0.02767 31505
HD 24085 2458354.90321 0.8 1.44 −1 −1 5261
HD 24085 2458410.70939 2.52 1.36 −1 −1 6274
HD 24085 2458410.71321 0.55 1.36 −1 −1 5865
HD 24085 2458417.75784 −1.6 1.22 −1 −1 9685
HIP 71135 2455255.7322 −2.96 1.03 0.2681 0.03949 17240
HIP 71135 2455342.66134 −0.84 1.81 0.6097 0.05082 6564
HIP 71135 2455423.50522 2.75 1.56 0.4679 0.05022 6871
HIP 71135 2455437.47257 5.23 1.44 0.4713 0.04998 7527
HIP 71135 2455785.52424 5.55 1.71 0.6408 0.05044 5343
HIP 71135 2455787.50123 4.29 1.58 0.5024 0.05042 6782
HIP 71135 2455793.49665 0 2.74 0.9498 0.05275 3198
HIP 71135 2455796.52697 1.33 2.21 0.6912 0.05062 3804
HIP 71135 2455801.50064 −0.41 2.6 0.6665 0.05317 3256
HIP 71135 2455802.48336 −1.87 2.52 0.8015 0.05235 3236
HIP 71135 2455802.49089 2.99 4.08 0.6045 0.05228 2347
HIP 71135 2455803.49751 5.78 2.06 0.6305 0.05074 4124
HIP 71135 2455804.51336 6.2 2.46 0.8024 0.05122 3173
HIP 71135 2455958.86941 7.28 1.7 0.4351 0.04957 5545
HIP 71135 2456085.68322 0.21 1.99 0.5965 0.05015 5509
HIP 71135 2456094.5975 0.37 2.22 0.6373 0.05039 4013
HIP 71135 2456344.81656 −6.35 1.6 0.6323 0.04945 7260
HIP 71135 2456347.86443 −4.46 1.47 0.5509 0.04972 6454
HIP 71135 2456352.84684 −3.15 1.56 0.4161 0.04915 7537
HIP 71135 2456355.82826 −1.64 1.62 0.473 0.04994 5795
HIP 71135 2456357.83352 0.88 2.26 0.7276 0.05083 3488
HIP 71135 2456433.68066 −9.55 1.96 0.5104 0.0495 5171
HIP 71135 2456435.64872 −3.37 1.79 0.502 0.04961 7090
HIP 71135 2456505.53671 −1.55 1.89 0.5166 0.05004 5215
HIP 71135 2456505.54627 −2.26 1.8 0.5029 0.05041 4960
HIP 71135 2456693.83985 −3.02 1.65 0.6546 0.04985 7995
HIP 71135 2456696.85337 −4.25 1.66 0.4446 0.04991 7582
HIP 71135 2456698.88682 1.17 2.02 0.5201 0.05064 4152
HIP 71135 2456729.81559 −1.66 1.47 0.4786 0.04997 7362
HIP 71135 2456733.82888 3.99 1.76 0.4666 0.04992 6573
HIP 71135 2456734.82708 −2.76 1.64 0.5633 0.05004 6805
HIP 71135 2456817.66181 −3.13 2.28 0.7852 0.05095 4477
HIP 71135 2457067.85988 1.33 1.67 0.482 0.04926 6457
HIP 71135 2457120.74646 −3.59 1.71 0.5834 0.04968 8725
HIP 71135 2457204.58631 2.37 1.65 0.4521 0.05029 7820
HIP 71135 2457265.48913 1.58 1.5 0.5086 0.05034 7955
HIP 71135 2457449.88976 1.41 1.51 0.4015 0.04978 11195
HIP 71135 2457500.82204 −6.79 1.69 0.5521 0.04979 8611
HIP 71135 2457534.66035 4.6 1.92 0.7042 0.05033 5762
HIP 71135 2457557.60976 −9.73 1.77 0.452 0.04921 8042
HIP 71135 2457626.49196 4 1.52 0.5047 0.04976 7897
HIP 71135 2457825.8283 −5.28 1.76 0.5633 0.04923 8850
HIP 71135 2457850.80439 −4.94 1.82 0.4754 0.05018 6916
HIP 71135 2458264.68979 −3.07 1.46 −1 −1 4145

Note. The nonvalid values in the tables are denoted by −1.

Download table as:  ASCIITypeset images: 1 2 3 4 5 6 7 8

We discuss the results for individual cases as follows.

  • 1.  
    HD 210193 is a G star with a mass of 1.04 M and a distance of 42.25 pc. The planet candidate has a minimum mass of 153 M and an orbital period of about 650 days. It is a warm giant planet located in the temperate zone with the inner and outer boundaries corresponding to orbital periods of 256 and 926 days, respectively, according to Kopparapu et al. (2014).We also calculate the BFPs for activity indices and do not find any overlap between activity signals and the Keplerian signal, as shown in Figure 3. The phase curve in Figure 1 shows a good fit of the one-planet model to the RV data in terms of phase coverage and high statistical significance (i.e., ln(BF) = 10.9). The corresponding RV signal is consistently found in different data chunks, as shown in the moving periodogram (see Figure 2).There are also other short-period signals shown in the BFPs for residual RVs (P6, P8, P10, and P12 in Figure 3), but they are either not significant or depend on the choice of noise models.
  • 2.  
    HD 211970 (GJ 1267) is a K star with a mass of 0.61 M. It is about 13 pc away from the Sun and is the nearest star in this reported sample. The planet candidate is consistent with a Neptune with a minimum mass of 13.92 M and an orbital period of 25.2 days.We also identify an activity signal at a period of 64.0 days. This activity signal shows strong power in the BFPs for RVs and the S-index (Figure 4). A Keplerian fit of the activity signal to the RV data shows nonzero eccentricity and large residuals with a rms of 4.2 m s−1 (see Figure 1), suggesting an origin caused by the quasi-periodic differential rotation of the star that cannot be properly modeled by deterministic periodic functions. Thus, the rotation period of this star is probably 64 days. Because the true model of activity signal is not known, we report the orbital parameters for the planet candidate based on the MCMC posterior sampling for a one-planet model.
  • 3.  
    HD 39855 is a G star with a mass of 0.87 M and a distance of 23.28 pc. The planet candidate is consistent with a hot super-Earth with a minimum mass of 8.5 M and an orbital period of 3.25 days. The corresponding RV signal is not evident in the BFPs for the S-index and Hα shown in Figure 5.
  • 4.  
    HIP 35173 is a K star with a mass of 0.79 M and a distance of 33.19 pc. The planet candidate is consistent with a Neptune with a minimum mass of 12.7 M and an orbital period of 41.5 days. The corresponding RV signal is not evident in the BFPs for the activity indices of the S-index and Hα shown in Figure 6. This signal is also consistently strong in various data chunks, as seen from the moving periodogram in Figure 7.
  • 5.  
    HD 102843 is a K star with a mass of 0.95 M and a distance of 62.87 pc. The planet candidate is consistent with a cool Saturn with a minimum mass of 114 M and an orbital period of 3090 days. Due to its long orbital period, the time span of the data is not long enough to cover multiple orbital periods and, thus, the moving periodogram is not appropriate for a test of time consistency. This signal is statistically significant (ln(BF) = 7.7; also see Figure 1) and is unique in the BFPs for various noise models (see Figure 8). On the other hand, the BFP for Hα shows a signal with a period much longer than the RV signal, probably arising from the magnetic cycle.
  • 6.  
    HD 103949 is a K star with a mass of 0.77 M and a distance of 26.52 pc. The planet candidate has a minimum mass of 11.2 M and an orbital period of 121 days. It is a warm Neptune located in the temperate zone. The corresponding RV signal is not evident in the BFPs for the activity indices of the S-index and Hα shown in Figure 9.
  • 7.  
    HD 206255 is a G star with a mass of 1.42 M and a distance of 75.40 pc. The planet candidate is consistent with a Neptune with a minimum mass of 34.2 M and an orbital period of 96.0 days.The corresponding RV signal is unique and has an eccentricity consistent with zero, as indicated by the posterior distribution. Thus, the extra number of free parameters of the one-planet model with respect to the zero-planet model is better when set to three instead of five in the calculation of BF. The former leads to ln(BF) = 8.1, while the latter to ln(BF) = 4.6. Although the latter does not pass the ln(BF) > 5 criterion, we count it as a valid planet candidate due to the above considerations in the calculation of ln(BF) and also because it satisfies all other criteria (see Figure 10).
  • 8.  
    HD 21411 is a G star with a mass of 0.89 M and a distance of 29.16 pc. The planet candidate is consistent with a Neptune with a minimum mass of 65.8 M and an orbital period of 84.3 days.However, the corresponding signal is not as strong as the 18.8 days signal in the BFP (see Figure 11), probably due to its high eccentricity (e = 0.4) and the assumption of circular orbit in the calculation of BFP. To confirm the signal, we launch multiple MCMC chains and find the same significant 18.8 days signal, leading to ln(BF) = 13.2. We also constrain the 84.3 and 18.8 days signals simultaneously and find that the two-planet model has a logarithmic BF of 2.8 with respect to the one-planet model. Thus, we conclude that the 84.3 days signal is significant, while the 18.8 days signal is not significant enough to report. The 18.8 days signal is not see in the BFPs for the S-index and Hα; further follow-up observations are needed to investigate the nature of this signal.
  • 9.  
    HD 64114 is a G star with a mass of 0.95 M and a distance of 31.55 pc. The planet candidate is consistent with a Neptune with a minimum mass of 17.8 M and an orbital period of 45.8 days. The corresponding RV signal is not evident in the BFPs for the activity indices of S-index and Hα shown in Figure 12.
  • 10.  
    HD 8326 is a K star with a mass of 0.8 M and a distance of 30.71 pc. The candidate is consistent with a planet with a minimum mass of 66.4 M and an orbital period of 159 days, which is consistent with the temperate zone around this star. The corresponding RV signal is not evident in the BFPs for the activity indices of the S-index and Hα shown in Figure 13.
  • 11.  
    HD 164604 is a K star with a mass of 0.77 M and a distance of 39.41 pc. The candidate is consistent with a Jupiter with a minimum mass of 635 M and an orbital period of 641 days. The corresponding RV signal is not evident in the BFPs for the activity indices of the S-index and Hα shown in Figure 14.
  • 12.  
    HIP 54373 is a K star with a mass of 0.57 M and a distance of 18.73 pc. There are two-planet candidates corresponding to (1) a hot super-Earth with a minimum mass of 8.6 M and an orbital period of 7.76 days and (2) a hot Neptune with a minimum mass of 12.4 M and an orbital period of 15.1 days. The orbits of these two planets form a 1:2 resonance. The eccentricities of these two candidate planets are consistent with zero since e = 0 is less than 2σ away from the means. The corresponding two RV signals are consistently identified in the BFPs for various noise models (see P5, P6, P8, P9, P11, and P12 in Figure 15) and do not show significant power excess in the BFPs for the S-index and Hα. They are also consistent in time, as seen from the moving periodograms shown in Figures 16 and 17. The two-planet solution is favored over the one-planet solution because ln(BF) = 5.2. The MAP value of the eccentricity for the 15.1 days signal decreases from 0.30 for the one-planet model to 0.24 for the two-planet model. Thus, the 7.76 days signal is favored by the data in terms of increasing the goodness of fit and reducing the eccentricity of the 15.1 days signal to a lower and, thus, more reasonable value (Kipping 2013). According to our analysis of the RV data, there are potentially additional signals, which warrants further observations and analyses.
  • 13.  
    HD 24085 is a G star with a mass of 1.22 M and a distance of 54.99 pc. The planet candidate is consistent with a hot Neptune with a minimum mass of 11.8 M and an orbital period of 2.04 days. The corresponding RV signal is not evident in the BFPs for the activity indices of the S-index and Hα shown in Figure 18.
  • 14.  
    HIP 71135 is an M star with a mass of 0.66 M and a distance of 32.36 pc. The planet candidate is consistent with a Neptune with a minimum mass of 18.8 M and an orbital period of 87.2 days, which is consistent with the temperate zone around this star. The corresponding RV signal is not evident in the BFPs for the activity indices of the S-index and Hα shown in Figure 19. The signal is consistent in time, as seen from the moving periodogram shown in Figure 20.

Figure 4.

Figure 4. BFPs for HD 211970. The red line shows the Keplerian signal at a period of 25.2 days, while the green line shows the 64.0-day activity signal.

Standard image High-resolution image
Figure 5.

Figure 5. BFPs for HD 39855. The red line shows the signal at a period of 3.25 days.

Standard image High-resolution image
Figure 6.

Figure 6. BFPs for HIP 35173. The red line shows the signal at a period of 41.5 days.

Standard image High-resolution image
Figure 7.

Figure 7. Moving periodogram for HIP 35173 b. The window size is 2000 days and the number of steps is 10. The other signals in the bottom right panel are the annual aliases of the 41.5-day signal.

Standard image High-resolution image
Figure 8.

Figure 8. BFPs for HD 102843. The red line shows the signal at a period of about 3000 days.

Standard image High-resolution image
Figure 9.

Figure 9. BFPs for HD 103949. The red line shows the signal at a period of 121 days.

Standard image High-resolution image
Figure 10.

Figure 10. BFPs for HD 206255. The red line shows the signal at a period of 96.0 days.

Standard image High-resolution image
Figure 11.

Figure 11. BFPs for HD 21411. The red line shows the signal at a period of 84.3 days.

Standard image High-resolution image
Figure 12.

Figure 12. BFPs for HD 64114. The red line shows the signal at a period of 45.8 days.

Standard image High-resolution image
Figure 13.

Figure 13. BFPs for HD 8326. The red line shows the signal at a period of 159 days.

Standard image High-resolution image
Figure 14.

Figure 14. BFPs for HD 164604. The red line shows the signal at a period of 635 days.

Standard image High-resolution image
Figure 15.

Figure 15. BFPs for HIP 54373. The red lines show the signals at periods of 15.1 and 7.76 days.

Standard image High-resolution image
Figure 16.

Figure 16. Moving periodogram for HIP 54373 b. The window size is 2000 days and the number of steps is 10. The signal near the 7.76-day signal is its annual alias.

Standard image High-resolution image
Figure 17.

Figure 17. Moving periodogram for HIP 54373c. The window size is 2000 days and the number of steps is 10. The signal near the 15.1-day signal is its annual alias.

Standard image High-resolution image
Figure 18.

Figure 18. BFPs for HD 24085. The red line shows the signal at a period of 2.05 days.

Standard image High-resolution image
Figure 19.

Figure 19. BFPs for HIP 71135. The red line shows the signal at a period of 87.2 days.

Standard image High-resolution image
Figure 20.

Figure 20. Moving periodogram for HIP 71135 b. The window size is 2000 days and the number of steps is 10. The annual alias of 87.5-day signal also shows excess power in the bottom right panel.

Standard image High-resolution image

5. Conclusion

We introduce a procedure to diagnose the nature of signals in RV data. In this diagnosis framework, we confirm a signal as Keplerian if it is statistically significant, consistent in time, robust in the choice of noise models, and not correlated with stellar activity. We develop an automated algorithm to implement this procedure. The application of this algorithm to the PFS data leads to an initial identification of about 200 primordial signals of high quality.

We report 15 planet candidates from these primordial signals based on analyses of 14 PFS RV data sets that are obtained for six G stars, seven K stars, and one M star. The masses of planets vary from 8 M to 153 M, and the RV semi-amplitudes vary from 1.7 to 12 m s−1. The detections of these signals demonstrate the ability of PFS to discover small planets around nearby stars.

In particular, we report candidates HD 210193 b, HD 103949 b, HD 8326 b, and HIP 71135 b, which are located in the temperate zones of their stellar hosts and could potentially host temperate moons. We also report candidates HIP 54373 b and c, which form a 1:2 resonance. Such a resonance can stabilize a multiple-planet system for a long period of time, as was discovered in the TRAPPIST-1 system (Gillon et al. 2016; Luger et al. 2017).

Because our algorithm only automatically identifies signals in RV data obtained by a single instrument, we choose to report the signals for targets without other RV data sets available. Thus, we do not check the consistency between PFS and other instruments. An updated algorithm will be developed to automatically analyze multiple RV data sets and to identify potential signals efficiently. Such an algorithm is suitable for modern RV surveys, such as PFS, the High Accuracy Radial Velocity Planet Searcher (HARPS; Pepe et al. 2002), and the Automated Planet Finder (APF; Vogt et al. 2014). Our algorithm also provides a diagnostic framework for reliable detections of exoplanets using the RV method.

This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. Support for this work was provided by NASA through Hubble Fellowship grant HST-HF2-51399.001 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. The authors acknowledge the years of technical support from LCO staff in the successful operation of PFS, enabling the collection of the data presented in this paper.

Software: R package magicaxis (Robotham 2016), fields (Nychka et al. 2018), minpack.lm (Elzhov et al. 2016).

Footnotes

  • This paper includes data gathered with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile.

Please wait… references are loading.
10.3847/1538-4365/ab1b16