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Abstract

In unveiling the nature of the first stars, the main astronomical clue is the elemental compositions of the second
generation of stars, observed as extremely metal-poor (EMP) stars, in the Milky Way. However, no observational
constraint was available on their multiplicity, which is crucial for understanding early phases of galaxy formation.
We develop a new data-driven method to classify observed EMP stars into mono- or multi-enriched stars with
support vector machines. We also use our own nucleosynthesis yields of core-collapse supernovae with mixing
fallback that can explain many of the observed EMP stars. Our method predicts, for the first time, that
31.8%± 2.3% of 462 analyzed EMP stars are classified as mono-enriched. This means that the majority of EMP
stars are likely multi-enriched, suggesting that the first stars were born in small clusters. Lower-metallicity stars are
more likely to be enriched by a single supernova, most of which have high carbon enhancement. We also find that
Fe, Mg. Ca, and C are the most informative elements for this classification. In addition, oxygen is very informative
despite its low observability. Our data-driven method sheds a new light on solving the mystery of the first stars
from the complex data set of Galactic archeology surveys.

Unified Astronomy Thesaurus concepts: Population III stars (1285); Population II stars (1284); Milky Way
formation (1053); Support vector machine (1936)

Supporting material: machine-readable table

1. Introduction

Big Bang nucleosynthesis has produced hydrogen, helium,
and trace amounts of lithium in the first minutes of the
Universe. All heavier elements were synthesized and released
by stars and their violent final fates, such as supernova (SN)
explosions. The crucial transition from a primordial Universe to
a Universe enriched with heavier elements (summarized as
“metals” by astronomers) was initiated by the first stars, also
termed Population III stars. These stars formed in pristine
minihalos around redshift 6–30 (Bromm et al. 2002; Yoshida
et al. 2003; Magg et al. 2016; Jaacks et al. 2019; Liu &
Bromm 2020a; Skinner & Wise 2020; Kulkarni et al. 2021;
Schauer et al. 2021; Hartwig et al. 2022). They ended the
cosmic dark ages, they provided the first metals, they
contributed to the reionization of the Universe, they might
have provided the seeds for the first supermassive black holes
(Woods et al. 2019), and they have set the scene for all
subsequent galaxy formation (Taylor & Kobayashi 2014;
Dayal & Ferrara 2018; Chen et al. 2020; Washinoue &
Suzuki 2021). Despite their importance for cosmology and
intensive studies in the last decades (Glover 2005; Greif 2015;
Klessen 2019; Haemmerlé et al. 2020), only a little is known
about the first stars.

Population III stars are believed to be more massive than
present-day stars because primordial gas cools slower than
metal-enriched gas and the resulting scale for fragmentation is
therefore larger (Bromm & Loeb 2003). This theoretical
consideration on the masses of Population III stars is supported
by the lack of observations of surviving metal-free stars. If
Population III stars were less massive than ∼0.8Me, their
lifetime should be longer than the age of the Universe and we
could observe metal-free stars in the Milky Way. Based on
their nondetection, the lower-mass limit of the initial mass
function (IMF) of the first stars is 0.65Me with a confidence
level of 95% (Hartwig et al. 2015; Ishiyama et al. 2016; Magg
et al. 2018, 2019; Rossi et al. 2021). Further observational
constraints based on gravitational waves (Kinugawa et al.
2014; Hartwig et al. 2016; Liu & Bromm 2020b), high-z SN
explosions (Hummel et al. 2012; Hartwig et al. 2018a; Regős
et al. 2020; Rydberg et al. 2020), the chemical composition of
quasar broad line regions (Yoshii et al. 2022), or direct
detection (Schauer et al. 2020; Grisdale et al. 2021; Riaz et al.
2022) may become available in the future.
Numerical simulations of Population III star formation are an

important addition to deepen our understanding of primordial
star formation. All recent simulations that resolve the
protostellar disk show fragmentation of the primordial gas
and predict that the first stars should form in small clusters
(Clark et al. 2011; Greif 2015; Liao & Turk 2019; Sharda et al.
2020; Sugimura et al. 2020; Wollenberg et al. 2020). Susa
(2019) has shown that the number of fragments in a
Population III–forming minihalo increases with time after the
formation of the first protostar, and concluded that we should
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expect 10–50 Population III protostars per minihalo. However,
no numerical approach has simulated the formation process
until radiative feedback halts accretion onto the protostars
(Hosokawa et al. 2016) and the zero age main sequence
(ZAMS) of Population III stars is reached. Therefore, we
cannot make conclusive statements about the final masses and
multiplicity of Population III stars, because the gas accretion,
stellar mergers, and possible ejections out of the minihalo are
not yet fully simulated. In conclusion, all recent simulations
suggest that Population III stars could form in a small cluster,
but we do not yet have an observational confirmation for this
conjectural result of numerical simulations.

The multiplicity of the first stars is not only an academic
curiosity, but has several direct implications. The Population III
multiplicity defines the number of primordial stars per
minihalo, and combined with the characteristic mass of
Population III stars, this quantity allows us to constrain the
star formation efficiency of primordial gas. The resulting
cosmic number density of Population III stars also sets tighter
constraints on their contribution to reionization, to the Lyman–
Werner background, and to the number of available stellar
mass seed black holes. Moreover, stellar multiplicity is a
necessary condition to form stellar binaries. Population III
stellar binaries (Stacy & Bromm 2013; Sugimura et al. 2020;
Liu et al. 2021) might provide binary black holes that can be
observed with gravitational wave detectors, or they might
evolve into X-ray binaries that can provide X-rays at high
redshift or an additional source for cosmic reionization.

Another independent approach to indirectly constrain the
nature of the first stars is stellar archeology (e.g., Frebel &
Norris 2015). The first SNe have released metals into the
previously pristine interstellar medium (ISM). Second-genera-
tion stars can form out of this enriched gas, which still carries
the specific chemical fingerprint of the first SNe. Some of these
second-generation stars have survived until the present day and
we can observe them as old, metal-poor stars in the Milky Way.
If we can determine the chemical composition of such
extremely metal-poor (EMP, [Fe/H]8�−3) stars with high-
resolution spectroscopy, we can infer the nature of the first SNe
and therefore constrain the properties of the first stars (e.g.,
Umeda & Nomoto 2003; Tominaga et al. 2014; Placco et al.
2016; Fraser et al. 2017; Ishigaki et al. 2018; Choplin et al.
2019; Hansen et al. 2020; Placco et al. 2021; Skúladóttir et al.
2021; Hartwig et al. 2022).

Previously, a standard assumption of stellar archeology has
been that EMP stars are mono-enriched, i.e., that one EMP star
contains metals from only one enriching SN (Audouze &
Silk 1995). Based on this assumption, the initial mass function
of the first SNe was observationally estimated (Ishigaki et al.
2018). However, recent numerical simulations and semi-
analytical models (Hartwig et al. 2018b, 2019) suggest that
Population III stars form in small clusters and that there should
be multiple SN explosions in one minihalo. Consequently, we
expect that at least some of the observed EMP stars are multi-
enriched. While it is in principle possible to assume multi-
enrichment in traditional abundance fitting methods, it
increases the number of free parameters to fit the chemical
composition of an EMP star and therefore weakens the
predictive power (Chan & Heger 2017; Salvadori et al. 2019).

In this study, we develop a new method with supervised
machine learning (Section 2) to constrain the number of
enriching Population III SNe, and we apply the method to 462
EMP stars from literature. Our method allows us to constrain
the multiplicity of the first stars, for the first time (Section 3).
Section 4 and Section 5 provide a discussion and our
conclusions.

2. Methodology

This is the first approach to classify a representative set of EMP
stars into mono- and multi-enriched. Therefore, there is no
convenient ground truth for this problem, i.e., a catalog that labels
observed EMP stars with the number of SNe that enriched the gas
out of which they formed. In order to deconvolve the physical
properties of the first stars from complex observational data, we
therefore took the following steps: (i) we carefully selected a
sample of EMP stars; (ii) we then created a realistic subset of
synthetic SN yields, (iii) which we then used to generate
representative mock observations to (iv) train and optimize our
Support Vector Machine (SVM) classifier.

2.1. EMP Star Observations

In this study, we analyzed EMP stars with [Fe/H]�−3. We
base this metallicity threshold on two main criteria: first, this is
the conventional threshold to define EMP stars (Beers &
Christlieb 2005). Second, the metallicity contribution from
Population III SNe dominates the overall metal mass up to [Fe/
H] ∼−3 (Hartwig et al. 2018b; Ishigaki et al. 2021), which
implies that EMP stars are mainly enriched by the first stars.
We selected 432 EMP stars from the SAGA database (Suda
et al. 2008), added 26 stars (Cohen et al. 2013; Yong et al.
2013; Roederer et al. 2014) from the compilation by Ishigaki
et al. (2018) that have not yet been listed in the SAGA
database, and added four recent stars at the lowest metallicities
(Aguado et al. 2018; Nordlander et al. 2019; Placco et al. 2021;
Skúladóttir et al. 2021).
Our analysis is based on abundance ratios of metals with

respect to each other and not with respect to hydrogen. There
are two main reasons for this: First, we want to analyze the
observed stars independently of their absolute metallicity. This
enables us to extend the analysis in the future to stars with [Fe/
H]>−3, where we also expect interesting, multi-enriched stars
with contributions from Population III SNe (Salvadori et al.
2019; Ishigaki et al. 2021; Aguado et al. 2023). Second, we
created mock observations to mimic the observed stars.
Modeling the mixing of metals with pristine gas after
Population III SNe is a stochastic process (Tarumi et al.
2020) that requires high-resolution hydrodynamical simula-
tions (Ritter et al. 2015; Sluder et al. 2016) for every single star,
which is beyond the scope of current computational capacities.
The data quality and availability of various elements differ

among EMP stars, depending on, e.g., the instrument, signal-
to-noise ratio, and covered spectral range. We created the mock
observations to have the same observational properties as the
sample of observed EMP stars that we analyzed. Moreover, we
only included stars with a detected [Fe/H] value (and not upper
limits) to investigate trends with metallicity. For all possible
combinations of abundance ratios with elements between
carbon and zinc, we calculate their observability as a fraction
of the EMP star sample for which this abundance ratio is
measured. For example, the abundance ratio [Ca/Fe] is

8 Defined as = -  N N N NX H log log10 X H 10 X, H,[ ] ( ) ( ) throughout the
paper, where NX is the abundance of metals, NH is the abundance of hydrogen,
and NX,e and NH,e are the solar abundances of these (Asplund et al. 2009).

2

The Astrophysical Journal, 946:20 (18pp), 2023 March 20 Hartwig et al.



available for 452/462 EMP stars in our sample, and [Ca/Mn]
is still available for ∼63% of EMP stars. It should be noted that
upper detection limits were counted as nondetections because
they are not useful for our supervised classification. We include
the following 13 elements, for reasons we will explain below:
C, O, Na, Mg, Al, Si, Ca, Cr, Mn, Fe, Co, Ni, Zn.

These observed abundances reflect the current composition of
the star in the stellar photosphere. However, the surface carbon
abundance of a star can be reduced due to CN processing in the
upper red giant branch. Hence, the observed carbon abundance
can be smaller than the natal carbon abundance, which is relevant
for this study. To correct for this effect, we apply the carbon
corrections based on those of Placco et al. (2014), which take into
account the metallicity and surface gravity.9While this correc-
tion can affect the classification of individual EMP stars, it does
not affect the mean fraction of multi-enriched EMP stars in our
sample. Throughout the paper, we will use the corrected carbon
abundances, and only in Appendix B do we show results
without the carbon corrections.

2.2. Theoretical Supernova Models

We used of a set of Population III SN yields (Ishigaki et al.
2018), which are based on pre-SN and explosive nucleosynth-
esis calculations (Umeda et al. 2000; Umeda & Nomoto 2005;
Tominaga et al. 2007). Both the mass cut and mixing are
treated as free parameters under the framework of the mixing-
fallback model (Umeda & Nomoto 2002, 2005; Tominaga et al.
2007). The mass cut is constrained empirically to include cases
where the explosion is not spherically symmetric, in which case
a single value of the mass cut may not be defined well (Umeda
& Nomoto 2002; Tominaga 2009; Ezzeddine et al. 2019).
These yields have been proven to be successful in reproducing
the chemical composition of individual EMP stars, including
carbon-enhanced metal-poor (CEMP) stars (Tominaga et al.
2007; Ishigaki et al. 2018), as well as to explain the more
complex chemical evolution of the Milky Way (Kobayashi
et al. 2006) and Damped Lyα (DLA) Systems (Kobayashi et al.
2011b).

To ensure that we only took into account yields of realistic
Population III SNe, i.e., SNe that occur in nature, we
determined how successful a particular SN yield model is at
reproducing observed abundance patterns of EMP stars. We did
this by calculating the reduced χ2 between each model and the
selection of EMP stars (Ishigaki et al. 2018) (differences
between the [X/H] i values), taking into account element-
specific observational uncertainties. For every yield model, we
noted the mean χ2 that it can provide, averaged over all
observations.

The goal was to identify a threshold so that all yield models
with χ2 below this value can be considered realistic SN yields.
To find such an an optimal, data-driven threshold, we
compared the distributions of the 78 considered abundance
ratios between the selected subsets (sets of SN yield models
with χ2 below a certain threshold) and our set of 462 observed
EMP stars. We found that the range χ2< 15.1 provides the best
agreement between the abundance ratios of observed EMP stars
and Population III SN yields (see Section 4.4 for more details).
This threshold on χ2 selects 512 different SN yield models.

We also added 27 yield models that were identified as best
fits to individual EMP stars (Ishigaki et al. 2018) and that were

not yet included. While the first subset accounts for yields that
are a good fit, on average, to many EMP stars, the second
subset guarantees that more exotic yields that are a good fit to
only one or few EMP stars are included. These additional 27
yield models include abundances with low [Mg/Fe] and high
[C/Fe].
Although we select a theoretical yield set under the

assumption of mono-enrichment to determine the best fits,
the yield set is representative of both mono- and multi-
enrichment. This is because multi-enriched SN yields usually
form a centrally concentrated subset in the abundance space of
mono-enriched yields. With this approach, we can reject the
null hypothesis that all EMP stars are mono-enriched.
Our subset of theoretical yields comprises 539 SN yield

models, including progenitor stars of masses (13, 15, 25, 40,
and 100)Me and explosion energies of (0.5, 1, 10, 30, and
60)× 1051 erg (Ishigaki et al. 2018). Most of the selected SN
models are normal CCSNe with progenitor masses in the range
13–25Me or hypernovae with 25–40Me, and 24% of our
training set comprises faint SNe with ejected masses of56Ni
10−3Me, which decays to Fe.

2.3. Mock Observations

In this section, we explain the main formalism to
discriminate enrichment by one versus multiple SNe. To create
mock observations of mono-enriched stars, we directly took the
masses of yields from the selected 539 Population III models.
We created mock observations of multi-enriched stars by

adding the yields of multiple randomly selected SN yield
models together. Here, we implicitly assume that the metals
from enriching SNe mix homogeneously. While this assump-
tion may not be valid under all conditions (Ritter et al. 2015;
Sluder et al. 2016), it avoids the inclusion of unconstrained
mixing fractions. We did not take into account the effects of
inhomogeneous mixing between different elements (Chiaki &
Tominaga 2020) or the energy-limited hydrogen dilution mass
(Magg et al. 2020).
Multi-enrichment could result from any combination of �2

SNe. In a pilot study, we attempted to discriminate between
different levels of multi-enrichment from two, three, four, or
five SNe. However, the discrimination of N-fold enrichment is
very degenerate, and it is already challenging to discriminate
enrichment from one and two SNe. Therefore, we only
distinguished between mono- and multi-enrichment in this
study, and we did not aim to quantify the level of multi-
enrichment. First, this makes our prediction more robust
because we mitigate the degeneracy for various levels of multi-
enrichment. Second, we are mainly interested in discriminating
mono- and multi-enrichment, and the exact level of multi-
enrichment is only of secondary importance. Therefore, we
created multi-enriched mock observations by combining two-
fold, three-fold, four-fold, and five-fold enrichment into one set
with the same size as the set of mono-enriched mock
observations. In addition, we verified that the exact number
and combination of SNe that we include in the multi-enriched
set does not affect the final classification of mono- or multi-
enrichment.
We augmented the amount of multi-enriched mock observa-

tions by a factor 16 to include additional possible combinations
of multi-enrichment. With four different levels of multi-
enrichment (enrichment from two to five SNe) and a training
set size of 50%, this provided us with approximately 17,0009 http://vplacco.pythonanywhere.com/

3

The Astrophysical Journal, 946:20 (18pp), 2023 March 20 Hartwig et al.

http://vplacco.pythonanywhere.com/


multi-enriched mock observations for training, and we generate
the same amount of mono-enriched mock observations. In all
our sets for training, cross-validation, and blind testing, the
fraction of mono- and multi-enriched samples is always 50%
each. In other words, our prior assumption is that mono- and
multi-enrichment are equally likely (see Section 4.3 for more
details).

Once we calculated the abundance ratios of our mock
observations, we applied the observational masks to mimic the
observability: for each of our 462 EMP stars, we determined
the observability masks, i.e., an array that contains the
information if a certain abundance ratio is observable. We
then applied these masks to our validation and test data. This
guaranteed that we used the same information content when
analyzing the mock observations, as it is available when we
eventually evaluate the actual EMP stars.

In this approach, we began with 13 elements, namely C, O,
Na, Mg, Al, Si, Ca, Cr, Mn, Fe, Co, Ni, and Zn, which enables
the construction of 78 independent abundance ratios. We
wanted to keep the number of elements small, since the
complexity of the model scales with the number of elements
and more complex models are prone to overfitting. Therefore,
we only used elements for which we have a sufficient number
of observations for EMP stars. We also excluded Sc and Ti
because our theoretical models cannot correctly resolve the
production of these elements (Tominaga 2009; Ishigaki et al.
2018; Kobayashi et al. 2020).

While N can also provide constraints on Population III SNe,
theoretical uncertainties of N yields are large due to the
potential presence of stellar rotation (Meynet & Maeder 2002;
Hirschi 2007; Choplin 2019). Since the number of N
measurements is also small, we do not use N in this work.

Finally, to account for theoretical uncertainties, we added
random scatter to the mock observations. We introduce a
matrix of error bars for specific combinations of abundance
ratios because some of the elements share the same physical or
observational reasons for uncertainties (see Appendix A). It
should also be noted that we include observational uncertainties
at classification stage with bootstrap sampling (see below).

2.4. Ground Truth Sample

Figure 1 presents the distribution of mock observations
enriched by one (orange circles) or multiple (blue triangles)
SNe. In this example, we used [C/Mg] and [Ca/Fe] as the two
dimensions, because we show below that these are the most
informative elements for this classification purpose. In general,
mono-enriched stars span a larger area in this abundance space,
whereas multi-enriched stars are more clustered toward the
center. This makes sense because the abundance ratio of a
multi-enriched star is the weighted mean of the individual
abundance ratios of the individual SNe that contributed to the
enrichment. In other words, by combining two SN yields, the
resulting abundance ratios will never be more extreme than the
abundance ratios of any of the individual contributing SNe.
This figure also illustrates a degeneracy where the abundance
ranges are largely overlapping if only a small number of
elements are used. As a consequence of this degeneracy, mono-
enriched stars can be classified more reliably because there are
regions of the parameter space that can only be reached by the
yields of single SNe. Hence, we mostly focus on the
probabilities and fractions for mono-enrichment, as they are
more reliable.

2.5. Supervised Classification with Support Vector Machines

The basis of this approach are SVMs, a supervised machine-
learning technique that iteratively finds a hyperplane in the
feature space that optimally discriminates two classes (Cortes
& Vapnik 1995). SVMs have been applied successfully to
various astrophysical tasks (Wadadekar 2005; Huertas-Com-
pany et al. 2008; Małek et al. 2013; Marton et al. 2016). If the
data are not linearly separable (like in our case), the SVM
attempts to find an optimum by minimizing the number of
misclassifications and their distance to the decision boundary.
We show below that four dimensions are optimal for the

SVMs in this problem. Hence, the training data are points
Îxi

4 with their associated classes yi ä {−1, 1}. The
learning goal for the linear SVM is to find optimal values for w,
b, and ζ that minimize

å z+w w C
1

2
1T

i
i ( )


under the constraint

 z+ -y w x b 1 , 2i
T

i i( ) ( )


with ζi > 0 and the index i running over all training examples
(Chang & Lin 2011). The second equation guarantees that
every point is on the correct side of the decision boundary, or at
most ζi away from their correct margin boundary. The first
equation aims at maximizing the margin between the two
classes by minimizing ||w||. The second term minimizes the
allowed tolerance ζi with the regularization parameter, for
which we find C= 1 to be an optimal choice. The final
classification of the SVM for a new observation xi is obtained
by evaluating the sign of wTxi + b.
Instead of using the points xi directly in the linear SVM, one

can also augment the data or replace the xi with a kernel
function f(xi ). This kernel trick might enable the transforma-
tion of training data that are not linearly separable in 4D into
linearly separable data in higher dimensions. We found that
radial basis functions with a kernel width of γ= 1 are an ideal
choice for our specific classification problem.
For the training, we assumed that all abundance ratios are

observable. For the cross-validation and blind test data, we

Figure 1. Ground truth training data for EMP stars enriched by one (orange
circles) or multiple (blue triangles) SNe. Multi-enriched EMP stars are more
centrally concentrated because their yields are a weighted average of individual
SNe. Exceptions to this trend can result from theoretical uncertainties that are
added as scatter.
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accounted for the fact that certain abundances and combina-
tions of abundance ratios are not always observable in all EMP
stars.

2.6. Ensemble Learning

A single supervised classifier is susceptible to overfitting.
Consequently, a single SVM has a higher generalization error
and might perform poorly on new, unseen data. To overcome
this problem, we employed ensemble learning and combined
multiple SVMs into one final prediction. One additional
advantage of ensemble learning for our approach is that we
can fully exploit the available abundance ratios.

The optimal dimension for the SVM is a balance between
two factors: a higher dimension provides better classification
accuracy because it is based on more information and the SVM
has more flexibility to identify an optimal decision boundary.
On the other hand, each dimension introduces one new
abundance ratio, which might not be observable for EMP
stars. If only one element is not available, this SVM cannot be
used for such an observation. Thus, we find that 4D is a good
compromise.

We combined multiple SVMs to avoid overfitting and
mitigate missing data. The strategy was that we trained several
independent SVMs and let them vote on the final classification.
In addition, we performed bootstrap sampling to mimic
observational uncertainties. The final classification for one star
is an average of up to NB× NSVM individual classifications,
where NB= 49 is the number of bootstrap samples and
NSVM� 10 is the number of SVMs used in this paper.

We first resample the observed abundance ratios 49 times,
based on the uncertainty matrix (see Appendix A). For the
number of resamplings, we have chosen an odd number in
order to break ties. The results do not change with a larger
number of resamplings. For each sample, we obtain a
classification result (pmono,i ä [0, 1], i.e., 0 for mono-enriched
and 1 for multi-enriched in our case). For an individual EMP
star, we obtain its mean value and uncertainty over the
bootstrap samples in the form s= p x xmono ¯ . For the entire
sample of EMP stars, we first calculate the mean fraction of
mono-enriched EMP stars as fmono,i for one bootstrap sample.
Then, we calculate the mean value and uncertainty of the
mono-enriched fraction for the entire sample, based on the NB

bootstrap samples. Throughout the paper, we use this latter
approach (resampling the ensemble of EMP stars) as our
fiducial model and report the uncertainty of individual EMP
stars wherever appropriate.

If the abundance ratios for some SVMs are not available,
they cannot provide a prediction, and we take the average only
from SVMs that can be used for that specific observation.
Therefore, it is essential to select an optimal configuration of
SVMs that fully exploits the available abundance ratios. With
78 different abundance ratios, there are over one million
possible combinations to choose the four dimensions of an
SVM. To find the optimal combination, we proceeded in the
following manner: we created all possible quadruples of
abundance ratios and sorted them by observability. Then, we
selected the top 10 most observable abundance ratio quadruples
and augmented them with 6 additional quadruples so that each
of the 13 considered elements is included at least once in a
quadruple. Next, we trained 16 SVMs with these most
promising quadruples of abundance ratios as dimensions. This
provided us with 16 different 4D SVMs that are trained on

different abundance ratios. Then, we used the cross-validation
set to test how all possible combinations of these 16 SVMs
would perform.
We selected our optimal model based on the validation

accuracy and several other constraints: we aimed for a
maximum fraction of (mock) observations to be classified.
Hence, we prefer combinations of abundance ratios with high
observability. Moreover, we required a symmetric confusion
matrix and a large dynamical range of possible predictions. Our
optimal fiducial model is based on 10 different 4D SVMs that
use 24 different abundance ratios. The two elements Mn and Ni
are not included in the final set of 10 SVMs. This selection is
data-driven, based on the input yields and our optimization
goals.
We also considered other classification algorithms, such as

deep neural networks, decision trees, and a regressive
approach. Since we created our own mock observations for
the training, our problem is not limited by data. In such a case,
most classification algorithms show a similar marginal
performance because, with sufficient training data and a
consequently dense training set, every classification problem
becomes a nearest-neighbor search. We verified this in the
initial phase of the project, and similar behavior was shown by
independent studies on astrophysical and generic data (Bazell
& Aha 2001; Lan et al. 2020). Moreover, SVMs produce
inspectable models and therefore provide a certain intuition
regarding how the decision boundary is derived. This is very
important for the physical interpretation of the results and
therefore provides an additional validation.

2.7. Are the Mock Data Realistic?

The first important question is if our training data are
representative of the actual data (Acquaviva et al. 2020). For
example, if we train a supervised classifier to discriminate cats
and dogs, but then use it to distinguish elephants and penguins,
the final classification will not be accurate, even if the test
accuracy on a set of cats and dogs is good.
In Figure 2, we compare the abundance distributions from

the mock observations and the EMP stars for three representa-
tive abundance ratios. In an appendix, we show the remaining
21 histograms for all abundance ratios used. By construction,
our subset of Population III SN yields minimizes the mean KS
distance between mock observations and real EMP stars.
Phrased differently, it is the best subset that we could select for
this purpose. Here, we check if the best is good enough.
For most of the abundance ratios, the distributions of mock

and actual observations are similar. However, there are
discrepancies in the distributions for a few abundance ratios,
which may introduce a bias in our conclusions. There is no
independent method to confirm if our mock observations are
realistic. However, three factors support our approach to
constructing the mock observations.
First: We verified that our final conclusion is not affected

when we modify the subset of Population III SNe that we use
as training set (see Section 4.4). In summary, we increased and
decreased the number of included Population III SN yields by a
factor of two, which did not significantly change the final
results. Moreover, we shifted and scaled the values of the 10
most informative abundance ratios so that the means and
standard deviations of their distributions match exactly with
those of the distribution of the EMP stars. This did also not
significantly affect the final classification. Therefore, our
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training data might not be perfect, but we are confident that the
final conclusion of this study is not affected by the exact
selection of training data.

Second: The final decision of the SVMs is based on a
majority vote. If the combined classifications of the indepen-
dent SVMs is within 1σ of the decision boundary, we can
consider the sample as not being classified. This makes the
decision process more robust toward new, unseen observations.
Thus, even if the ranges of mock and actual observations are
not precisely overlapping, our classification process is
sufficiently robust to handle outliers.

Third: If all these histograms for all abundance ratios
matched exactly, we would not need this study. It would imply
that we understand the enrichment and formation history of
EMP stars sufficiently well. Unfortunately, this is not the case.
The mock observations are constructed based on our current
understanding of EMP enrichment. Therefore, the mismatch

between actual observations and mock observations highlights
that our current understanding is not sufficient. Instead, based
on our current state-of-the-art assumptions regarding
Population III SNe and EMP stars, we construct our mock
observations and thereby contribute to iteratively improving
our understanding of the physics involved.

2.8. Accuracy of SVMs

We measured the prediction accuracy on the training set and
on a second validation set that was not used in the training. We
defined the accuracy as the fraction of correctly classified mock
observations. The accuracy for the individual SVMs and for the
combined prediction is presented in Figure 3. The validation
accuracy provides an independent estimate on unseen data. The
validation accuracy of the ensemble learning model is higher
than most individual accuracies. This demonstrates the
advantage of a weighted vote between the 10 SVMs compared
to the prediction of a single SVM.
To further understand the predictions, errors, and associated

biases, we illustrate the confusion matrix in Figure 4. Overall,
the confusion matrix is symmetric: the misclassifications are
almost equally distributed with ∼13.8% and ∼15.6%, and the
correctly classified cases are also almost equal with ∼34.2%
and ∼36.0%. Our prediction pipeline predicts mono-enrich-
ment for ∼48.0% and multi-enrichment for ∼51.6% of the
classified cases.
To further quantify the Bayes error and degeneracy of this

problem, we repeated the training of our model, excluding
theoretical or observational uncertainty. Under these optimal
conditions, we found 79% of mock observations are correctly
classified (compared to 70% with realistic uncertainties).
Phrased differently, the intrinsic degeneracy of this classifica-
tion task is a major challenge, and improved observational data

Figure 2. Comparison of the abundance distribution for the three most
informative abundance ratios. While the distributions look qualitatively similar,
the distribution of [O/Fe] is shifted by >0.5 dex, which might introduce a bias
in the final classification.

Figure 3. Prediction accuracy on the training set (triangles) and validation set
(dots) for the individual SVMs. The dashed line shows the validation accuracy
of the ensemble, i.e., the combined prediction of the 10 SVMs. Individual
SVMs can achieve a higher accuracy than the ensemble method. However,
such SVMs need specific elements (O, Na), which are not observable for all
stars. The ensemble validation accuracy is valid for all classifications,
irrespective of the number of observed elements. This high ensemble validation
accuracy demonstrates the advantage of an ensemble learning approach. The
order of the 10 SVMs from left to right is sorted by accuracy as a visual aid.
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can increase the accuracy, but will not be able to solve this
underlying degeneracy completely.

3. Results

In this paper, we analyze whether EMP stars are likely to be
enriched by a single SN or by multiple SNe, in order to explain
the observed elemental abundances. For this purpose, we
calculated nucleosynthesis yields of over 13,000 SNe covering
all possible parameters for the first stars. Then, we trained an
ensemble of SVMs on mock observations to classify high-
resolution spectroscopic data of EMP stars ([Fe/H]�−3),
using detailed chemical compositions from carbon to zinc
assuming an equal contribution of mono- and multi-enrichment
in our training sample. The possibility of mono-enrichment,
which is determined by 10 SVMs and 49 bootstrap samplings,
is shown in Figure 5(a). From the original 462 EMP stars, we
exclude 35 stars because they have only three elements
observed, which is not enough for a reliable classification.
Moreover, three EMP stars have a predicted pmono= 0.5 and
can therefore not be assigned to any category. From the
remaining 424 EMP stars, we find the average fraction of
mono-enriched stars to be 31.8%± 2.3%, where the standard
deviation reflects observational uncertainties.

As the number of stars sharply decrease toward lower
metallicities, both numbers of mono- and multi-enriched stars
in our sample decrease at lower metallicities in panel (b). Panel
(c) indicates a clear metallicity dependence of the ratio between
them; stars at the lowest metallicities are likely to be mono-
enriched, which has been assumed in numerous previous
studies (Umeda & Nomoto 2003; Placco et al. 2015; Ishigaki
et al. 2018) but has never been tested. At higher metallicities,
stars tend to be multi-enriched. Our observation-based
confirmation of this trend is remarkable because we do not
use [Fe/H] values to train our SVMs but instead use solely
relative abundance ratios of various metals, excluding hydro-
gen. What is surprising is that the mono-enriched fraction is not
100% at [Fe/H] ∼−4.5, which means that some second-
generation stars were already enriched by multiple SN
explosions.

3.1. CEMP Stars

For EMP stars, the most notable feature is their carbon
enhancement; a large fraction of EMP stars show a large carbon
enhancement relative to iron (Beers & Christlieb 2005; Placco
et al. 2014; Zepeda et al. 2022), and multiple populations have
been identified in the diagram of [C/H]–[Fe/H] (Bonifacio
et al. 2015; Yoon et al. 2016). In Figure 6, we depict the carbon
versus iron abundance of EMP stars, color-coded by the
probability for mono-enrichment. We find a positive correlation

between pmono and [C/Fe]. EMP stars with high [C/Fe] are less
likely to be multi-enriched. Specifically, 75 of 125 carbon-
enhanced metal-poor stars (CEMP; [C/Fe]> 0.7; Aoki et al.
2007; Arentsen et al. 2022) are mono-enriched, and all 49 stars
with [C/Fe]> 1.5 are mono-enriched. In the terms used in
previous works (Rossi et al. 2005; Spite et al. 2013; Bonifacio
et al. 2015; Yoon et al. 2016), all Group III stars are mono-
enriched. The origin of this bi- or multimodality can be
explained as follows: Multi-enrichment tends to average yields
and makes them more centrally concentrated in the abundance
space. Faint SNe, which are known to be important in the early
Universe (Umeda & Nomoto 2003; Kobayashi et al. 2011b),
produce only small amounts of iron due to their larger black
hole than for normal SNe; mixing their yields with normal
CCSNe attenuates the initially high [C/Fe] from the faint SN to
a smaller value. Therefore, it becomes more difficult for CEMP
stars to form after multiple SNe have exploded in one minihalo
(Jeon et al. 2021). On the other hand, for C-normal stars, once
they are enriched by a normal SN, it becomes impossible to
eliminate the possibility of additional enrichment from faint
SNe in our analysis; hence our estimated number of SNe is a
lower limit.
One could speculate if mono-enrichment and carbon

enhancement are synonymous or one is a subset of the other.
To allow readers their own conclusion based on the preferred
threshold of carbon enhancement, we provide the quantitative
classification data in the carbon-enhanced regime in Table 1.
The fraction of mono-enriched stars increases with [C/Fe].

The last column shows the fraction of all EMP stars for which
carbon enhancement is a consequence of being mono-enriched
and mono-enrichment is a consequence of being carbon
enhanced. That is, the missing stars to 100% are those that
are either mono-enriched but not carbon enhanced, or that are
carbon enhanced but not mono-enriched. This fraction is
highest around [C/Fe] ∼1.1. It declines at higher [C/Fe]
because there are too many mono-enriched stars, which are not
classified as carbon enhanced anymore due to the higher
threshold. Phrased differently, if we want to define a physics-
informed threshold for CEMP stars based on the ability to
discriminate mono- from multi-enriched EMP stars, the best
threshold would be around [C/Fe] ∼1.1.
The classification of EMP stars and their distribution on the

[C/H]–[Fe/H] plane is affected by the carbon corrections.
Therefore, we also provide a version of this figure without the
carbon corrections in Appendix B.

3.2. Most Metal-poor Stars

In Table 2, we show the classification of the most iron-poor
stars in our sample. It will be interesting to model their exact
formation scenarios based on the number of enriching SNe in
future works. However, one has to be cautious with the direct
interpretation of the provided face values. About 70% of
samples in the blind test set have been classified correctly
(80% if we only take into account EMP stars for which the
predicted pmono is more than one standard deviation away
from the decision boundary). Therefore, while the average
fraction of mono-enriched stars is reliable, individual
values for the number of enriching SNe should not be
overinterpreted.

Figure 4. Confusion matrix of our ensemble classifier. The confusion matrix is
balanced and symmetric.
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3.3. Most Informative Elements

Finally, to understand what elements are most informative in
the decision process, we calculate the permutation feature
importance (Breiman 2001) of the classification pipeline. The
feature importance for element X is defined as the decrease in
cross-validation accuracy if we randomly shuffle the values of
all abundances that include element X in the cross-validation
data. This score indicates how much the model depends on a
specific element. In our case, the maximum cross-validation
accuracy is 70%, and the accuracy for random guessing is 50%.
So possible values for the feature importance are in the range
0%–20%. We show the feature importance for the 11 used
elements in Figure 7, where the most informative elements are
Fe, Mg, Ca, and C. These are the elements that are most
valuable to discriminate mono- from multi-enriched EMP stars
in our analysis and are usually included in observational
surveys.

Two main effects dominate the feature importance of an
abundance ratio: first, if an abundance ratio spans a large range
in [X/Y], finding a meaningful decision boundary is easier.
The training data contain scatter to mimic theoretical

uncertainty. If the range over which abundance ratios in the
training set are distributed is of the same order as the scatter, it
is difficult to draw a reasonable decision boundary through this
data. However, if the abundance ratios span a range that is
significantly larger than the uncertainties, the SVM has more
flexibility to identify an informative decision boundary to
divide the data. The second effect is the observability. If an
element is available for most EMP stars, the SVMs likely rely
on it for the classification. To differentiate the feature
importance from the observability, we divided the feature
importance of an element by its respective observability.
Although the order of most informative elements barely
changes, we identify oxygen as very informative, relative to
its low observability. Therefore, future observations of oxygen
will be useful to distinguish between mono- and multi-enriched
EMP stars.

4. Discussion

Our findings strongly indicate that a significant number of
Population III–forming minihalos experience multiple SNe
prior to EMP star formation, which suggests that most first stars
formed in small clusters that contained multiple massive stars
(Peebles & Dicke 1968) rather than as isolated massive stars
(Doroshkevich et al. 1967). However, it is not easy to estimate
the exact multiplicity of the first stars, because our result was
obtained under the prior assumption that mono- and multi-
enrichment are equally likely. Also, based on EMP star
observations, the nature of the first stars can be investigated
only for those exploded as SNe (Ishigaki et al. 2018).
Our finding of the need for multiplicity is consistent with

recent hydrodynamical simulations of Population III star
formation, which show fragmentation of the primordial gas
cloud and predict that the first stars could form in small clusters
(Clark et al. 2011; Hirano & Bromm 2017), resulting in
multiple Population III SNe per minihalo. The number of
fragments in a minihalo increases with time after the formation
of the first protostar, and the number of Population III
protostars per minihalo is expected to be 10–50 (Susa 2019).
However, no numerical approach has simulated the formation
process until the main-sequence stage of Population III stars,
and hence it has not been possible to draw conclusions
regarding the final masses and multiplicity of Population III
stars.
Our result that Population III stars form in clusters is also

supported by observations in the present-day Universe. At solar
metallicity, we see that the binary frequency increases with
stellar mass (Lada 2006; Duchêne & Kraus 2013; Janson et al.
2013) and that most massive stars form in binaries or higher-
order systems systems (Zinnecker & Yorke 2007; Lee et al.
2020). Moreover, the close binary fraction seems to be
anticorrelated with metallicity (Moe et al. 2019). Because we
also expect metal-free stars to be massive, we can therefore
expect that also they form in binaries, which requires more than
one Population III star per minihalo.

4.1. Understanding the Decision Process

We use the abundance ratios [C/Mg] and [Ca/Fe] to
illustrate the final classification in Figure 8, because these
dimensions provide a high permutation importance. The
general trend is that mono-enriched stars are located in the
outskirts of the sampled region and multi-enriched stars are

Figure 5. All panels show the results as a function of metallicity. Panel (a)
shows the probability of mono-enrichment, pmono, for individual EMP stars.
Panel (b) shows a histogram with the absolute number of classified mono-
enriched (orange) and multi-enriched (blue) EMP stars in each bin (bins are
slightly offset for clarity). Panel (c) shows the fraction of mono-enriched EMP
stars, and the gray contour illustrates scatter due to the bootstrap resampling of
observational uncertainties.
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more centrally concentrated. This trend is expected because
multi-enrichment results in a weighted average of abundance
ratios. Therefore, only mono-enriched stars can be found at
extreme abundance ratios.
This figure also illustrates that two abundance ratios are not

sufficient to confidently classify EMP stars. In these 2D
projections, there are degenerate regions in which we find both
mono- and multi-enriched EMP stars, e.g., around [Ca/Fe]
∼0.4 and [C/Mg] ∼0.5. However, these illustrations enable us
to identify general trends, e.g., all EMP stars at [Ca/Fe] <0 are

Figure 6. Carbon vs. iron abundance of EMP stars. The color bar shows the probability for mono-enrichment. The dashed line at [C/Fe] = 0.7 should guide the eye to
highlight the range of CEMP stars. There is a trend that most CEMP stars are mono-enriched.

Table 1
Classification Results in the Carbon-enhanced Regime as a Function of the [C/

Fe] Threshold

[C/Fe]corr Nmono Nmulti CEMP ⇔ mono-enriched

>0.7 75 50 74.1%
>0.8 73 35 77.6%
>0.9 74 24 80.0%
>1.0 70 16 80.9%
>1.1 66 9 81.6%
>1.2 61 6 81.1%
>1.3 56 5 80.2%
>1.4 52 2 80.0%
>1.5 49 0 79.9%

Notes. The last column shows the fraction of all EMP stars for which mono-
enrichment and carbon enhancement (based on the variable threshold in the
first column) are synonymous. At [C/Fe] > 1.5, all CEMP stars are mono-
enriched.

Table 2
List of the 10 Most Iron-poor Stars in Our Sample

Name [Fe/H] [C/Fe]corr Navail pmono [%]

SMSS J160540.18–144323.1 −6.20 3.95 15 100
HE 1327–2326 −5.76 4.26 15 -

+97 8
3

HE 0107–5240 −5.54 3.87 10 84 ± 16
SDSS J081554.26+472947.5 −5.49 4.49 15 100
SDSS J131326.89-001941.4 −5.00 2.98 21 54 ± 9
SDSS J092912.33+023817.0 −4.97 4.03 6 100
HE 0557–4840 −4.81 1.66 28 62 ± 14
SDSS J174259.67+253135.8 −4.79 3.62 3 100
SDSS J102915.14+172927.9 −4.71 L 10 -

+69 46
31

HE 0233–0343 −4.68 3.48 10 79 ± 9

Notes. The columns show the name, iron abundance, carbon-to-iron ratio,
number of available abundance ratios, and pmono as result of our supervised
classification. The full table is available online.

(This table is available in its entirety in machine-readable form.)

Figure 7. Panel (a): permutation feature importance for used elements. Panel
(b): the feature importance divided by observability demonstrates that oxygen
is informative despite its low observability.
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mono-enriched and most EMP stars around [Ca/Fe] ∼0.4 can
be multi-enriched. Moreover, we recover the trend found earlier
(Hartwig et al. 2018b) that EMP stars with [C/Mg] 1 are
mostly mono-enriched.

4.2. Comparison to Previous Works

Kobayashi et al. (2011b) used the elemental abundance
patterns of only a few DLAs to find that faint SNe seem to be
the main enrichment source rather than pair-instability SNe.
Welsh et al. (2019) have analyzed the chemical composition of
the 11 most metal-poor DLA systems known at redshift z< 5.
They use a stochastic model to infer the number of SNe that
have contributed to the chemical enrichment of these systems.
In contrast to EMP stars, DLAs provide a more direct way to
study the chemical composition of gas in the early Universe
(Zou et al. 2020). Welsh et al. (2019) find that these near-
pristine gas clouds are enriched by 72 SNe from massive
stars. While the redshift of these DLAs (2.6� z� 5.0) may be
too low and their metallicity (−3.5� [Fe/H]�−2.0) may be
too high to favor enrichment by only Population III SNe, their
analysis shows that metal-poor gas at high redshift is enriched
by multiple SNe. In a similar analysis, Welsh et al. (2021)

analyze the stochastic enrichment of metal-poor stars in the
MW halo with metallicities of [Fe/H]�−2.5. This metallicity
range might include enrichment from Pop II SNe (Ji et al. 2015;
Ishigaki et al. 2021), to which their model is also sensitive.
They find that these stars are enriched by -

+5 3
13 SNe, which

supports the notion that early star formation occurs in clusters.
However, because of the metallicity range, their results do not
allow a clear conclusion about the Population III multiplicity.
In our study, we therefore focus on EMP stars with metallicities
of [Fe/H]�−3.0, as we motivated above.
Compared to previous studies, our method and results are

new in several regards. Previous attempts at classifying mono-
and multi-enriched EMP stars used only few abundance ratios
(Hartwig et al. 2018b, 2019; Welsh et al. 2021). In contrast, our
new method is data-driven and maximizes the information gain
from all observed abundances. Previous studies used a small,
biased subset of metal-poor stars or included stars at [Fe/
H]>−3 (Placco et al. 2018; Hansen et al. 2020; Rasmussen
et al. 2020; Purandardas & Goswami 2021). Therefore, these
studies are not representative of enrichment by Population III
SNe. In summary, our method is the first data-driven analysis
of a representative sample of EMP stars for which the
enrichment was dominated by Population III SNe.

4.3. Prior Dependence

To develop our fiducial model, we have to assume an initial
distribution of mono- and multi-enriched stars. Supervised
classification algorithms are most robust when trained on
balanced data sets, and thus we assume an equal distribution,
i.e., 50% each, for our training set. This could affect pmulti, and
we estimate the dependence as follows. First, we use our
fiducial classification pipeline for stars that are at least one
standard deviation away from the decision boundary, and apply
it to validation data with different fractions of mono- and multi-
enriched mock observations. We then check which fraction of
validation samples was classified as multi-enriched as a
function of the multi-enriched fraction in the validation data.
The results can be seen in Figure 9.
Our fiducial model, which was trained under the assumption

of 50% multi-enrichment, can predict a wide range of multi-
enriched fractions from 20%–80%, once confronted with the

Figure 8. Illustration of the final classification in different 2D projections. The
top panel uses the four most informative elements, and the right panel uses
oxygen, which is more challenging to observe for EMP stars. These are 2D
projections of a higher-dimensional ensemble learning classification. There-
fore, the decision boundary does not appear as a smooth line in these
representations.

Figure 9. Predicted fraction of multi-enrichment as a function of multi-
enrichment in the validation data. All these results were obtained with our
fiducial model that was trained on a data set that contains equal amounts of
mono- and multi-enriched stars. The black dotted line shows the diagonal, to
guide the eye.
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data. Our model can also consistently reproduce the tendency,
showing a linear trend in this figure. However, up to 20% of
multi-enriched stars are misclassified. In an extreme case, even
if all validation data come from one class, about 20% of
samples can be misclassified. This result is related to the overall
accuracy of our model of ∼80%. If all EMP stars in nature
were mono-enriched, our model would still predict a multi-
enriched fraction of 20%. Instead, we find a fraction of multi-
enriched EMP stars of about 70%, which indicates that most
EMP stars are multi-enriched.

Let us now calculate how reliably we can classify an EMP
star to be multi-enriched as a function of the prior assumption.
The unknown fraction of multi-enriched EMP stars is P(multi).
We denote the probability that an EMP star classified as multi-
enriched (+) is actually multi-enriched as P(multi|+ ). More-
over, the probability that we classify a multi-enriched star as
multi-enriched is P(+ |multi). The probability that we classify
any star as multi-enriched is P(+ ). Using Bayesʼ theorem, we
can calculate the reliability of our multi-enriched predictions as

+ =
+

+

=
+

+ + +

P
P P

P
P P

P P P P

multi
multi multi

multi multi

multi multi mono mono
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All components of the right side of this equation are known
from the confusion matrix (see Figure 4), except for P(multi)
and P(mono)= 1− P(multi). Following Bottrell et al. (2022),
we plot this function in Figure 10 as a function of the unknown
P(multi). It is convex and always above the diagonal. If we
were to relax our prior assumption of P(multi)= 0.5 and allow
0.16� P(multi)�0.84 (central 64%), then the possible range of
P(multi|+) would be 0.41–0.95. This means that the prob-
ability for a star that is classified as multi-enriched to be
actually multi-enriched is >41%, even if we allow variations in
the prior assumption.

While our supervised machine-learning model depends on
the prior assumption P(multi), this analysis can help to
understand its quantitative influence and to correct the
classification results in light of better prior assumptions in the

future. For example, if a better estimate for a prior of this
classification problem is available in the future, one can use
these calculation to update our results.
If we start with the fair prior assumption of P(multi)= 0.5

for the ensemble and assume that, for each individual star, the
prior probability for multi-enrichment is flat between 0%–

100%, then the marginalized distribution of P(multi|+)
corresponds to the posterior distribution for the probability
that an EMP star is multi-enriched, given that we classify it as
multi-enriched. This posterior is skewed toward multi-enrich-
ment, which supports the conclusion that the majority of EMP
stars are multi-enriched.

4.4. Variations of the Input Yields

We generate our training and test data based on theoretical
Population III SN yields. There is no independent method to
confirm whether the distribution of SN yields is realistic. To
verify if our assumptions and training data are reasonable, we
confirm that the final results of our study are sufficiently robust
with respect to the exact choice of Population III SN yields.
The first test is unphysical, but provides intuition with regard

to how the prediction might change with different distributions
of input yields. As we saw previously, the distributions of
abundances are not identical between the observed EMP stars
and the mock data that we use for training. In an attempt to
equalize these distributions, we perform two transformations to
minimize this discrepancy. First, we shift the distributions of
mock observations so that their mean value is identical to the
mean value of EMP stars. Second, in addition to the shift, we
also scale the mock observations so that they have the same
standard deviation as the observed abundance ratios of EMP
stars. As mentioned above, the shift and scaling are not
physical and should only demonstrate how robust the model is
with with respect to changes in the input data.
For the second test, we increase and decrease the number of

Population III yields that we include to generate the mock data.
In the fiducial model, we select theoretical yields that have
χ2< 15.1, where χ2 quantifies how well these yields fit
individual EMP stars (Ishigaki et al. 2018). We ran one more
restrictive case with yields that fulfill χ2< 13 and one less
restrictive case with χ2< 17. These two cases roughly halved
and doubled the number of included Population III yields.
The results of these tests can be seen in Figure 11. We

compare the predicted pmono for all EMP stars between the
fiducial model and the two variations. In most cases, the
predictions for an EMP star from the fiducial model and from
one of the variations are very similar, i.e., most points are close
to the diagonal. Most importantly, there are no catastrophic
failures with classifications far from the diagonal.

4.5. Enrichment with Neutron-capture Elements

The SVMs were trained to classify EMP stars based on how
many Population III CCSNe have enriched the gas out of which
they formed. The classification is based on elemental
abundances up to Zn. However, there are other channels for
chemical enrichment that we did not consider explicitly and
that may produce elements heavier than Zn. As two
representative abundance ratios, we analyze [Ba/Fe] and
[Eu/Fe] as typical tracers for the s-process and r-process,
respectively. While our model does not use these abundance
ratios for the classification, this information is available for

Figure 10. Probability that an EMP star that is classified as multi-enriched is
actually multi-enriched, as a function of the assumed multi-enriched fraction.
The dashed diagonal line is intended to guide the eye and emphasize the
convex shape of the blue line.
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some observed EMP stars, which allows us to compare our
predictions to the abundances of neutron-capture elements.

If these alternative enrichment channels, which we do not
explicitly account for, do not provide significant amounts of
elements lighter than Zn, our approach is robust (but see Yong
et al. (2021) for the co-production), because then we account
for all enrichment channels (specifically Population III CCSNe)
that should dominate the chemical composition of EMP stars.
However, we need to be careful regarding binary mass transfer
from a companion star (Suda et al. 2004; Arentsen et al. 2019).
This mass transfer can add s-process elements (such as Ba) but
also carbon to the EMP stars of interest. For an EMP star that
was enriched in carbon via binary mass transfer, our training
set, which includes carbon only from Population III CCSNe,
would not not be representative anymore.

One could try to exclude EMP stars from the analysis if they
are highly enriched in neutron-capture elements or are in close
binaries. However, there is no physically motivated boundary
to define such a cut, and it is certainly not one threshold value
of, e.g., [Ba/Fe], below which only Population III SNe
contribute to the chemical enrichment of EMP stars. Moreover,
excluding s- or r-process-enriched EMP stars from this analysis
could bias the result if their enrichment is dominated by
Population III SNe. Therefore, we decided to keep EMP stars in
our sample even if they are enriched in neutron-capture
elements.

In Figure 12, we show pmono as a function of [Ba/Fe], [Eu/
Fe], and [Ba/Eu]. Most stars for which [Eu/Fe] is available
(orange points) are multi-enriched, but there is one CEMP-r
star ([Eu/Fe] 1; Beers & Christlieb 2005), which could be
enriched by a single enrichment source such as magneto-
rotational hypernovae (Yong et al. 2021).

A larger variation of pmono is seen for the stars for which
[Ba/Fe] is available (cyan squares); out of 12 s-process-
enriched EMP stars with [Ba/Fe]> 1, only one is multi-
enriched. For the stars with both Ba and Eu abundance
measurements (magenta crosses in Figure 12), three stars show
[Ba/Eu]> 0.5, which suggests the s-process origin of neutron-
capture elements in these stars (e.g., Arlandini et al. 1999). All
s-process-enriched EMP stars with [Ba/Fe]> 0.5 and
pmono> 0.5 are also carbon enhanced with [C/Fe]> 0.7, i.e.,

CEMP-s stars. Based on our results, these stars are likely to be
enriched by one Population III CCSN. However, they might
also have received heavy elements via binary mass transfer,
which might attenuate their nomenclature as strictly mono-
enriched.
Figure 12 also shows that the majority of stars with available

[Ba/Eu] are compatible with the r-process origin of neutron-
capture elements in these stars (e.g., Arlandini et al. 1999). The
origin of r-process elements is debated, with various proposed
enrichment channels (Metzger et al. 2008; Tanaka & Li 2014;
Haynes & Kobayashi 2019; Ji et al. 2019; Brauer et al. 2021;
Matsuno et al. 2021; Tarumi et al. 2021). In our data, we do not
see any trend of pmulti with [Eu/Fe], which implies that our
classification is agnostic with respect to the Eu abundance,
which could mean that the dominant channel for the production
of Eu does not produce significant amounts of elements
between C and Zn.
Barium and carbon might have a similar origin, and many s-

process-enriched stars are also C-enriched. If other enrichment
channels (such as binary mass transfer) contribute to the
enrichment, our SVM, which was only trained on CCSNe,
might not be able to classify such unfamiliar abundances
correctly. Such unfamiliar yields are instead classified as mono-
enriched. Moreover, most Ba-enhanced stars are also CEMP
stars, which makes them more likely to be mono-enriched (see
Figure 6). Therefore, s-enriched stars might appear as mono-
enriched.
In summary, EMP stars that are enriched in neutron-capture

elements might bias our classification. However, of the 12 stars
with [Ba/Fe]> 1.0, only one is classified as multi-enriched. So
if we were to exclude these stars from the classification, the
fraction of multi-enriched stars would increase, which strength-
ens our final conclusion that most EMP stars are multi-
enriched.

5. Conclusions

We have used supervised machine learning trained on a set
of nucleosynthesis yields from Ishigaki et al. (2018) to classify
a representative set of 462 EMP stars from the literature
according to the number of SNe that have enriched the gas out
of which they formed. Under the prior assumption that mono-
and multi-enrichment are equally likely, we find that

Figure 12. pmono as a function of [Ba/Fe] (cyan squares), [Eu/Fe] (orange
circles), and [Ba/Eu] (magenta crosses).

Figure 11. Predicted pmono for all EMP stars. The vertical axis shows the value
of four variations, and the horizontal axis shows the value in the fiducial model.
Most points are close to the diagonal line, which illustrates that the final
prediction for EMP stars is robust with respect to the exact selection of input
yields. The vertical histograms on the right show the marginal distributions of
the four variations.
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31.8%± 2.3% of EMP stars are classified as mono-enriched.
Our study is the first attempt to constrain the number of
enriching SNe for EMP stars. Throughout the training,
validation, and blind test process, we followed best practices
for supervised machine learning and verified that the distribu-
tion of our mock observations are robust.

Our model develops a physical intuition without being
explicitly trained to do so, e.g., discerning the dependence of
multiplicity on metallicity (Figure 5) and carbon enhancement
(Figure 6). Specifically, we find the the fraction of mono-
enrichment increases from about 30% at [Fe/H] ∼−3 to 100%
at [Fe/H]−5. Moreover, our model offers a physical
explanation of the origin of the carbon abundance bimodality
in EMP stars (Bonifacio et al. 2015; Yoon et al. 2016); we find
that most CEMP stars at [Fe/H]�−3 are mono-enriched,
which is consistent with the theory that these form out of gas
that was enriched by a faint SN, and all EMP stars with [C/
Fe]> 1.5 are mono-enriched.

It may be possible to derive the exact number of SNe with a
larger number of stars and elements (with error bars) in
ongoing and future spectroscopic surveys, which is the most
informative observational approach to unveil the episode of the
first star formation in the early Universe. We have also
identified Fe, Mg, Ca, C, and O as very informative elements
for this classification. Future observations of such elements and
smaller uncertainties of the measured abundances will improve
our predictions in the future. By training our classifier on
independent SN yields from other models (e.g., Heger &
Woosley 2010; Limongi & Chieffi 2012), we can also test if
our results are independent of the assumed yields.

We thank Ralf Klessen, Louise Welsh, Naoki Yoshida,
Mattis Magg, and the anonymous referee for discussions and
valuable feedback on the paper draft. We are also grateful to
Vinicius Placco for providing the tabulated carbon correc-
tions. This work was supported by the World Premier
International Research Center Initiative (WPI), MEXT, Japan,
and JSPS KAKENHI grant No. JP17K05382, JP20K04024,
JP17K14249, JP19K23437, JP20K14464, JP20H05855,
and JP21H04499. C.K. acknowledges funding from the UK
Science and Technology Facility Council (STFC) through
grant ST/R000905/1 and ST/V000632/1. The work was also
partly funded by a Leverhulme Trust Research Project Grant
on “Birth of Elements.”

Software: The source code was written in Python, is based
on Scikit Learn, and is available online.10Furthermore, we
used Python (Van Rossum & Drake 2009), numpy (Harris et al.
2020), scipy (Virtanen et al. 2020), matplotlib (Hunter 2007),
and scikit-learn (Pedregosa et al. 2011).

Appendix A
Observational and Theoretical Uncertainties

Observational errors that we can obtain from observational
papers often do not include the major error source, which is the
NLTE effect (Andrievsky et al. 2007; Lind et al. 2011; Zhao
et al. 2016; Mashonkina et al. 2017; Nordlander & Lind 2017),
and the prediction from stellar atmosphere modeling is
confirmed by a galactic chemical evolution (GCE) model for

Na and Al (also for K; not confirmed for Mn and Cu). The GCE
model also predicts a strong NLTE effect for Cr I observations
(Kobayashi et al. 2006; Sneden et al. 2016). In addition, the 3D
effect should also be included, in particular for C, N, and O
abundances (Amarsi et al. 2019), and possibly for Mg
(Bergemann et al. 2017) and Mn (Bergemann et al. 2019).
These effects depend on the masses, metallicities, and
evolutionary stages of the observed stars. The corrections for
different elements may be correlated, but we do not have a
good understanding of the correlation of the corrections among
various elements. Therefore, we assume a single matrix for all
of our sample (mostly taken from the SAGA database),
including all of these possible effects. The errors of abundance
ratios relative to Fe are set based on previous results
(Kobayashi et al. 2020), and we calculate the errors of the
other combination of elements as the squared sum:

/s s s= +X Y X Fe Y Fe . A1obs obs
2

obs
2([ ]) ([ ]) ([ ]) ( )

 For theoretical models, a few factors should be taken into
account (see Section 3.6 of Kobayashi et al. (2020) for detailed
discussion). The main error sources can be summarized as (1)
nuclear reactions including neutrino processes, (2) stellar
rotation and any mixing during hydrostatic burning, (3) mixing
during SN explosion, and (4) fallback. Apart from the effect
(1), these effects are not independent, and thus the errors should
not be treated as the squared sum. As a result, there are multiple
elements that are similarly affected mainly by one effect, and in
that case, the errors of these elemental abundance ratios are
small. Therefore, we provide a matrix of theoretical errors of all
used combinations of elemental abundances in Table 3. These
values are estimated by comparing our stellar evolution
calculations with/without mixing, and our 1D and 2D
nucleosynthesis calculations with different mixing and fallback
(Umeda et al. 2000; Kobayashi et al. 2006; Tominaga et al.
2007; Tominaga 2009; Kobayashi et al. 2011a; Nomoto et al.
2013; Kobayashi et al. 2020).
The largest error can be seen for Na and Al, due to effect (2).

Among α elements (O, Mg, Si, and Ca), the error of [(O, Ca)/
Fe] is set to be smaller than that of [(Mg, Si)/Fe]; this is
suggested by the GCE model, and the reason is likely to be
effect (1). Iron peak elements (including Ti) can be affected by
all of these effects, and the impact of each effect can be
evaluated at each nucleosynthetic region (a layer in 1D) inside
the SN ejecta. Namely, Cr, Mn are mainly produced in the
incomplete Si-burning region, while Fe, Ni, Co, and Zn are
produced in the complete Si-burning region (Kobayashi et al.
2006), which results in the smaller errors for Cr/Mn, Ni/Fe,
and Co/Zn. The errors for Co and Zn are larger due to the
effects (3 and 4, possibly 2 and 1 as well) of aspherical
explosions, which are included in our 1D mixing-fallback
model but may not be fully understood (C. Kobayashi & N.
Tominaga 2023, in preparation). These dependencies are
confirmed by comparison of the GCE model to the NLTE
abundances of high-resolution observations (Kobayashi et al.
2020). We obtain the matrix in Table 3, taking into account all
of these nonlinear effects in nuclear astrophysics, and this
matrix can in principle be used for other nucleosynthesis
yield sets.

10 https://gitlab.com/thartwig/emu-c
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Appendix B
Carbon Corrections

While the carbon corrections do not affect the mean
ensemble classification, they do slightly affect the distribution

in the [C/H] versus [Fe/H] plane. To allow readers a
transparent comparison, we also present the results without
carbon correction in Figure 13. In this representation, the
fiducial CEMP boundary at [C/Fe]= 0.7 (dotted line) seems to
better discriminate between mono- and multi-enrichment.

Table 3
Observational (Top Right Triangle, [X(row)/Y(column)]) and Theoretical (Bottom Left Triangle, [X(column)/Y(row)]) Uncertainties

C O Na Mg Al Si Ca Cr Mn Fe Co Ni Zn

C L ±0.28 -
+

0.56
0.28

-
+

0.28
0.36

-
+

0.28
0.54 ±0.28 ±0.28 -

+
0.28
0.45

-
+

0.28
0.36 ±0.20 ±0.28 ±0.28 ±0.28

O ±0.10 L -
+

0.54
0.28

-
+

0.28
0.36

-
+

0.28
0.54 ±0.28 ±0.28 -

+
0.28
0.45

-
+

0.28
0.36 ±0.20 ±0.28 ±0.28 ±0.28

Na -
+

0.50
0.10

-
+

0.50
0.10 L -

+
0.28
0.58

-
+

0.28
0.71

-
+

0.28
0.54

-
+

0.28
0.54

-
+

0.28
0.64

-
+

0.28
0.58

-
+

0.20
0.50

-
+

0.28
0.54

-
+

0.28
0.54

-
+

0.28
0.54

Mg ±0.10 ±0.10 -
+

0.10
0.50 L -

+
0.36
0.54

-
+

0.36
0.28

-
+

0.36
0.28

-
+

0.36
0.45 ±0.36 -

+
0.30
0.20

-
+

0.36
0.28

-
+

0.36
0.28

-
+

0.36
0.28

Al -
+

0.50
0.10

-
+

0.50
0.10 ±0.20 -

+
0.50
0.10 L -

+
0.54
0.28

-
+

0.54
0.28

-
+

0.54
0.45

-
+

0.54
0.36

-
+

0.50
0.20

-
+

0.54
0.28

-
+

0.54
0.28

-
+

0.54
0.28

Si -
+

0.20
0.10

-
+

0.20
0.10

-
+

0.20
0.50

-
+

0.20
0.10

-
+

0.20
0.50 L ±0.28 -

+
0.28
0.45

-
+

0.28
0.36 ±0.20 ±0.28 ±0.28 ±0.28

Ca -
+

0.20
0.10

-
+

0.20
0.10

-
+

0.20
0.50

-
+

0.20
0.10

-
+

0.20
0.50 ±0.20 L -

+
0.28
0.45

-
+

0.28
0.36 ±0.20 ±0.28 ±0.28 ±0.28

Cr -
+

0.15
0.10

-
+

0.15
0.10

-
+

0.15
0.50

-
+

0.15
0.10

-
+

0.15
0.50

-
+

0.15
0.20

-
+

0.15
0.20 L -

+
0.45
0.36

-
+

0.40
0.20

-
+

0.45
0.28

-
+

0.45
0.28

-
+

0.45
0.28

Mn -
+

0.20
0.10

-
+

0.20
0.10

-
+

0.20
0.50

-
+

0.20
0.10

-
+

0.20
0.50 ±0.20 ±0.20 ±0.10 L -

+
0.30
0.20

-
+

0.36
0.28

-
+

0.36
0.28

-
+

0.36
0.28

Fe ±0.10 ±0.10 -
+

0.10
0.50 ±0.10 -

+
0.10
0.50

-
+

0.10
0.20

-
+

0.10
0.20

-
+

0.10
0.15

-
+

0.10
0.20 L ±0.20 ±0.20 ±0.20

Co -
+

0.30
0.10

-
+

0.30
0.10

-
+

0.30
0.50

-
+

0.30
0.10

-
+

0.30
0.50

-
+

0.30
0.20

-
+

0.30
0.20

-
+

0.30
0.15

-
+

0.30
0.20

-
+

0.25
0.05 L ±0.28 ±0.28

Ni -
+

0.15
0.10

-
+

0.15
0.10

-
+

0.15
0.50

-
+

0.15
0.10

-
+

0.15
0.50

-
+

0.15
0.20

-
+

0.15
0.20 ±0.15 -

+
0.15
0.20

-
+

0.10
0.05

-
+

0.10
0.25 L ±0.28

Zn -
+

0.30
0.10

-
+

0.30
0.10

-
+

0.30
0.50

-
+

0.30
0.10

-
+

0.30
0.50

-
+

0.30
0.20

-
+

0.30
0.20

-
+

0.30
0.15

-
+

0.30
0.20

-
+

0.25
0.05 ±0.20 -

+
0.25
0.10 L

Notes. For example, the theoretical uncertainty of [C/O] is 0.10 dex and the observational uncertainty of [C/O] is 0.28 dex. The observational uncertainties are based
on iron. For some abundance ratios, we provide the asymmetric errors. These values should be subtracted for correcting observed/modeled values, i.e., [Na/
Fe] --

+
obs 0.2

0.5 and [Fe/Na] --
+

model 0.1
0.5.

Figure 13. Same as Figure 6, but without carbon corrections. This means that we did not use the carbon corrections for the classification, nor for the vertical axis.
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Appendix C
Decision Maps

To make our results available for the community, we made
the source code public.11For a direct, qualitative comparison to

our model, we provide additional classification maps in
Figure 14. These maps show 2D projections of the final
classification (same structure as Figure 8).

Figure 14. Two-dimensional classification maps for all EMP stars for which these abundances are available.

Appendix D
Mock Histograms

In addition to the three distributions in Figure 2, we provide
the remaining histograms of abundances that are used in the
classification in Figure 15.

11 https://gitlab.com/thartwig/emu-c
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Figure 15. Same as Figure 2, but for the remaining 21 abundance ratios that were used.
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