
Physics-informed Machine Learning for Modeling Turbulence in Supernovae

Platon I. Karpov1,2 , Chengkun Huang2 , Iskandar Sitdikov3 , Chris L. Fryer2 , Stan Woosley1 , and Ghanshyam Pilania2
1 Department of Astronomy & Astrophysics, University of California, Santa Cruz, CA 95064, USA

2 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
3 Provectus IT Inc., Palo Alto, CA 94301, USA

Received 2022 June 21; revised 2022 August 8; accepted 2022 August 9; published 2022 November 16

Abstract

Turbulence plays an important role in astrophysical phenomena, including core-collapse supernovae (CCSNe), but
current simulations must rely on subgrid models, since direct numerical simulation is too expensive. Unfortunately,
existing subgrid models are not sufficiently accurate. Recently, machine learning (ML) has shown an impressive
predictive capability for calculating turbulence closure. We have developed a physics-informed convolutional
neural network to preserve the realizability condition of the Reynolds stress that is necessary for accurate turbulent
pressure prediction. The applicability of the ML subgrid model is tested here for magnetohydrodynamic turbulence
in both the stationary and dynamic regimes. Our future goal is to utilize this ML methodology (available on
GitHub) in the CCSN framework to investigate the effects of accurately modeled turbulence on the explosion of
these stars.

Unified Astronomy Thesaurus concepts: Core-collapse supernovae (304); Computational methods (1965);
Computational astronomy (293); Supernovae (1668)

1. Introduction

Turbulence plays a key role in many astrophysical phe-
nomena (Schekochihin & Cowley 2007; Brandenburg &
Lazarian 2013; Beresnyak 2019), a prominent example being a
core-collapse supernova (CCSN): the bright, energetic,
dynamic explosion of a highly evolved massive star of at least
eight times the mass of the Sun. At the end of its life, the iron
core of such a massive star can no longer generate energy by
fusion reactions, and yet it is subject to enormous energy losses
in the form of neutrinos. As the core of about 1.5 solar masses
contracts and heats up, looking for a new source of energy
generation, additional instabilities instead accelerate the col-
lapse until it is in almost freefall. These instabilities include
electron capture and photodisintegration—heavy nuclei split-
ting into lighter elements, due to high-energy photon absorp-
tion. The collapse continues until the density of the inner core
exceeds that of the atomic nucleus (∼2× 1014 g cm−3), and
then it abruptly halts, due to the repulsive component of the
nuclear force. The outer part of the core rains down on the
nearly stationary inner core and bounces, creating a powerful
outward-bound shock wave. It was once thought that this
“prompt shock” might propagate through the entire star,
exploding it as a supernova (Baron et al. 1987). Now we know
that this does not happen. The shock stalls in the face of pro-
digious losses to neutrinos and photodisintegration, and
becomes an accretion shock outside the edge of the original
iron core. All positive radial velocity is gone from the star. The
evolution slows, taking hundreds of milliseconds instead of
milliseconds. At this stage, the core is a hot protoneutron star,
radiating a prodigious flux of neutrinos, surrounded by an
accretion shock through which the rest of the star is falling. The
success or failure of the explosion then depends on the effi-
ciency of the neutrinos in depositing some fraction of their

energy outside the protoneutron star (outside the neutrino-
sphere and inside the accretion shock), and the distribution of
the pressure that energy deposition creates. A failed explosion
will lead to a black hole and no supernova (Woosley & Janka
2005; Burrows & Vartanyan 2021).
Over the past three decades, the community has focused on

the importance of turbulence and convection in improving the
efficiency with which the energy released in the collapse of the
core is converted into explosion energy (Herant et al. 1994;
Blondin et al. 2003; Fryer & Young 2007; Melson et al. 2015;
Burrows et al. 2018). Most of these studies have focused on the
large-scale convective motions that transport both matter and
energy. If the pressure in this convective region, including
turbulence, becomes large, the accretion shock will be pushed
outward, ultimately achieving positive velocity and exploding
the star. A recent study attributes up to ∼30% of the gas
pressure to turbulence aiding the CCSN explosion (Nagakura
et al. 2019). Turbulence in this region has three origins: the
primordial turbulence that is present because the star was
convective in these zones before it collapsed; the turbulence
that is generated by the convective overturn, driven by neutrino
energy deposition beneath the shock; and, if the star is rotating,
by magnetic instabilities in the differentially rotating layers
(especially the “magnetorotational instability,” or MRI). Mul-
tidimensional solutions exist to the CCSN problem, both with
and without rotation and magnetic fields. Some explode, some
do not, and this has been a problem for at least the past 60 years
(Colgate & White 1966). A major difficulty is a physically
correct description of the turbulence and its effective pressure
in a multidimensional code that is unable to resolve the relevant
length scales.
Here, we focus on magnetically generated turbulence. This

introduces additional variables and uncertainties that are not
contained in the non-magnetohydrodynamic (MHD) case, but
has the merit of using conditions that are locally generated and
the existence of a high-resolution training set (Mösta et al.
2015; detailed in Section 3.4). The framework that we derive
can be used for both MHD and field-free turbulence, and it is

The Astrophysical Journal, 940:26 (13pp), 2022 November 20 https://doi.org/10.3847/1538-4357/ac88cc
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0003-4311-8490
https://orcid.org/0000-0003-4311-8490
https://orcid.org/0000-0003-4311-8490
https://orcid.org/0000-0002-3176-8042
https://orcid.org/0000-0002-3176-8042
https://orcid.org/0000-0002-3176-8042
https://orcid.org/0000-0002-6809-8943
https://orcid.org/0000-0002-6809-8943
https://orcid.org/0000-0002-6809-8943
https://orcid.org/0000-0003-2624-0056
https://orcid.org/0000-0003-2624-0056
https://orcid.org/0000-0003-2624-0056
https://orcid.org/0000-0002-3352-7437
https://orcid.org/0000-0002-3352-7437
https://orcid.org/0000-0002-3352-7437
https://orcid.org/0000-0003-4460-1572
https://orcid.org/0000-0003-4460-1572
https://orcid.org/0000-0003-4460-1572
http://astrothesaurus.org/uat/304
http://astrothesaurus.org/uat/1965
http://astrothesaurus.org/uat/293
http://astrothesaurus.org/uat/1668
https://doi.org/10.3847/1538-4357/ac88cc
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac88cc&domain=pdf&date_stamp=2022-11-16
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac88cc&domain=pdf&date_stamp=2022-11-16
http://creativecommons.org/licenses/by/4.0/

our intention to return to the non-MHD case in subsequent
work. In this case, the MRI occurs in a setting of magnetized,
differentially rotating fluid layers, i.e., stellar shells. The
instability exponentially amplifies primordial perturbations,
developing turbulence (Obergaulinger et al. 2009).

A flow can be considered turbulent if the Reynolds number
(Re) is of order ∼103, which corresponds to what we expect to
see in CCSNe (Fryer & Young 2007). For direct numerical
simulation (DNS), the per-axis 3D resolution scales as

~N 2 Re3 2 (Jiménez 2003), leading to 3D DNS of CCSNe
requiring a grid size of 105 in each direction, which is extre-
mely expensive (if possible) to achieve with today’s high-
performance computing (HPC) resources. Together with the
vast spatial scale range needing to be resolved in CCSNe (a
200 km inner convective region, and out to a 109 km outer
shell), and the complexity of the physical processes ongoing in
CCSNe, DNS calculations are out of reach. Given the com-
putational challenges, subgrid turbulence is often modeled
using the following techniques (in astrophysics, these schemes
are primarily used in 1D simulations):

1. Mixing Length Theory (MLT)—modeling turbulent
eddies that transfer their momentum over some mixing
length via eddy viscosity (Spiegel 1963); akin to mole-
cular motion. MLT is used to study turbulence driven by
convection, thus it is applicable to stellar convection
(including SNe simulations; Couch et al. 2020) in 1D
simulations. MLT performs well for small mixing length
scales, while turbulence in CCSNe evolves over a wide
range of scales, which is deemed problematic for MLT’s
accuracy (Joshi et al. 2019).

2. Reynolds-averaged Navier–Stokes (RANS)—time- (and
ensemble-) averaged treatment of turbulence equations of
motion. RANS is typically used for relatively low-Re,
e.g., stellar evolution and consequently SNe, progenitors
(Arnett et al. 2015), and requires a turbulent closure
model.

3. Large Eddy Simulation (LES)—space-averaged turbu-
lence treatment. Similar to RANS, a subgrid model sub-
stitutes the turbulence effects that are absent from small
spatial scales. For closure, it is common to use Dynamic
Smagorinsky (Lilly 1966) or gradient-type subgrid
models (Miesch et al. 2015; Schmidt 2015) in LES
simulations. Implicit LES (ILES)—similar to LES, but
the small scales are assumed to be approximated by
numerical artifacts (e.g., numerical diffusion and viscos-
ity). ILES is typically employed by large global 3D
simulations of CCSNe and other astrophysical events
(Radice et al. 2015, 2018).

Even though these techniques have achieved some level of
success when predicting HD turbulence, MHD poses a new set
of challenges. With magnetic fields present, the magnetic/
kinetic energy is primarily transferred at small scales through
the dynamo process (Beresnyak & Lazarian 2014). The non-
linear behavior of MHD further exacerbates simulation chal-
lenges, leaving many open questions as to the nature of the
turbulence, despite decades of focused studies (Beresnyak
2019). As an example of the changes due to the introduction of
a magnetic field within a simulation, we present a comparison
of a normalized Re stress tensor component distribution
between HD and MHD simulations, given comparable initial

conditions from the Johns Hopkins Turbulence Database
(JHTDB), in Figure 1.
To tackle the challenges of MHD turbulence in an astro-

physical setting, we turned to machine learning (ML). In HD
simulations, ML has shown promising results in the fields of
applied mathematics, engineering, and industry as a whole.
Over the last few decades, there have been significant tech-
nological and algorithmic advancements that have started a
new era for the study of turbulence through the means of Big
Data. In our context, by Big Data we mean the abundance of
turbulence DNS data that resulted from the Moore’s Law
evolution of HPC. While the Re of those simulations is not to
the natural level of CCSNe, it is still a significant improvement
upon the resolution of the current CCSN models. Furthermore,
DNS data in non-astronomy fields has been used as the ground
truth, along with experimental data, for turbulence subgrid
model optimization in large-scale 3D computational fluid
dynamic simulations. Big Data presents opportunities for ML
to help to augment and improve turbulence modeling. As
shown by industry (e.g., facial recognition and self-driving
cars), ML is highly flexible, and it has already shown its
potential for turbulence modeling—both the direct prediction
of turbulent fluxes and analytical (e.g., RANS-based) model
optimization (King et al. 2016; Wu et al. 2018; Zhu et al. 2019;
Rosofsky & Huerta 2020).
ML has been applied to quasistationary 2D ideal MHD

turbulence in an astrophysical setting with promising results, as
compared to the conventional analytic gradient subgrid turbu-
lence model (Rosofsky & Huerta 2020). In this paper, we
develop an ML model for 3D MHD turbulence for astro-
physical simulations in reduced dimension, as well as perform
a time-dependent prediction analysis. Considering the popu-
larity and success of convolutional neural networks (CNNs) in
the industry (Krizhevsky et al. 2012; He et al. 2016) for spatial
pattern recognition, we seek to relate the large-scale eddy
structure to small-scale turbulence distribution. Thus, we base
our approach on CNNs to develop a physics-informed ML

Figure 1. An example of the difference that a magnetic field can bring to the
turbulence stress distribution. The data have been taken from JHTDB MHD
and HD data sets (Li et al. 2008).

2

The Astrophysical Journal, 940:26 (13pp), 2022 November 20 Karpov et al.

(PIML) turbulence closure model, described in Section 3.3.2. It
is applied to two regimes to test its generalizability: (1) sta-
tistically stationary homogeneous isotropic MHD turbulence
from a general purpose data set and (2) dynamic MHD tur-
bulence from a CCSN simulation. The former can be found in
the interstellar medium, studying the stellar formation, and the
latter is directly applicable to high-energy events, such as
CCSNe. The model predicts the Reynolds stress tensor (τ),
with the turbulent pressure (Pturb) defined as:

() ()t=P tr , 1turb

where tr(x) is a trace of x. Note that we neglect the 1/3 coef-
ficient in our definition of Pturb, which has no effect on the ML
prediction results. We will primarily focus on analyzing the
statistical distributions, i.e., the probability density functions
(PDFs), of time-dependent turbulence. In the case of stationary
turbulence, we will be testing the stability of the ML model,
ensuring that the prediction remains in the physical domain.
For the dynamic case, we will check the model’s ability to
make future predictions within the limits of the available
ground truth data, i.e., the DNS data that we assume to accu-
rately represent the physical state of the system.

In Section 2, we will cover filtering, decomposition, and the
resulting MHD formalism. Section 3 introduces the analytical
subgrid turbulence model that we will be using for comparison,
our ML pipeline, the specifics of the ML and PIML models that
are used to treat various τij components, and the data sets used
for training and testing them. In Section 4, we provide an
analysis of the stationary and dynamic results, with conclusion
following in Section 5. Lastly, the Appendices include further
details of the ML model developed and its training process.

2. Formalism

We begin by presenting the mathematical basis of our work,
covering the fundamentals of MHD LES, including its unfil-
tered and filtered forms.

2.1. Filtering

A filtering operation is defined as an infinitely resolved—i.e.,
continuous—variable that is decomposed into average and
fluctuating parts:

¯ ()= + ¢u u u , 2

where ū (an LES-simulated quantity) is the ensemble average
of u (a DNS quantity), and ¢u are the fluctuations. By cutting
out fluctuations of a specific size, what is left can be thought of
as a filtered quantity. Then, ū is defined by applying a filtering
convolution kernel G:

¯ ()= *u G u. 3

In the context of LES, the simulation resolution is defined as a
spatial filter of size Δ applied to a continuous variable. What
we have done in this study is typical for the LES community:
taking high-resolution DNS data and applying a filter of size
Δf, where Δf>Δ, to decrease (“blur”) the fidelity of the data
to mimic a low-resolution simulation.

We applied a Gaussian filter to all of the data, with a 1D
Gaussian kernel as G:

() ()
ps

= -
sG x e

1

2
, 4

2

x2

2 2

where σ is the standard deviation of the Gaussian, controlling
the amount of “blur,” and x is the data. The filter can be applied
in 3D via the product of 1D Gaussian functions, covering each
direction.

2.2. MHD Equations—Unfiltered

In order to bridge the gap between filtered and unfiltered
values, i.e., a stress tensor that we will model, let us first
establish the basis of the ideal MHD Navier–Stokes equations.
The evolution equations for continuity, momentum, and
induction follow the notation from Grete (2017)

()
· ()

() · ()

() ()

r r

r r

¶ + =

¶ + Ä - Ä + + =

¶ - ´ ´ =

P

u

u u u B B

B u B

0

0

0 5

t

t
B

t

2

2

where ρ is density, P is pressure, u is velocity, and B is a
magnetic field that incorporates the units of / p1 4 .

2.3. MHD Equations—Filtered

For the filtered LES equations, we need to apply
Equation (4) to Equation (5). As a result, we get:

()
()

· ()

() · () ·

()

r r

r r t

¶ + =

¶ + Ä - Ä + + = -

¶ - ´ ´ = ´

6

P

u

u u u B B

B u B

0t

t
B mom

t

2

2

where ũ=ρ̄ũ/ρ̄, which is the mass-weighted filtering, i.e, Favre
filtering; τmom stands for the momentum subgrid-scale (SGS)
stress and is the turbulent electromotive force. These are
defined as follows:

¯ (¯) ()t rt t
d

= - + -B B
2

7ij
mom

ij
kin

ij
mag ij2 2

¯ () = ´ - ´u B u B 8

where dij is the Kronecker delta, t kin is the stress due to the
turbulent motion, i.e., Reynolds stress, and tmag is the Maxwell
stress:

()t = -
~

 u u u u 9kin
ij i j i j

()t = -B B B B 10ij
mag

i j i j

In this paper, we will focus on t kin, which will be further
referred to as τij, to simplify the notation.

3. Subgrid Modeling

We will be comparing our ML results with a conventional
turbulence subgrid model that is used widely in astronomy—
the gradient model (Liu et al. 1994).

3

The Astrophysical Journal, 940:26 (13pp), 2022 November 20 Karpov et al.

3.1. Gradient Model

The gradient model is defined by the Taylor series expansion
of the filtering operation. The tensor has the form of:

()t =
D

¶ ¶
~

 u u
12

11ij k i k j

2

where D̃ is the filter size and u is velocity.

3.2. ML Pipeline

In its essence, ML is a sophisticated fitting routine of a
multidimensional data set against a target feature. However,
unlike a fitting routine, ML does not require a theoretical
understanding of the underlying statistical form of the data.
Thus, the exact relationship of a feature to the target does not
need to be defined, in contrast to conventional fitting routines.
ML methods are capable of learning the data structure solely
from the input data, with the model tuning being based on a
validation data set (Bishop 2006; LeCun et al. 2015). This
opens up the possibility of learning new links between the input
variables, potentially leading to new physics and functional
forms (Carleo et al. 2019). While we will not delve deeper into
the latter topic in this paper, we will discuss how to use physics
to inform and then further analyze the model training.

Lastly, ML models can learn iteratively, hence they improve
themselves as new data become available. This signals the
potential to achieve accurate interpolation/classification and,
more importantly, extrapolation results (Carleo et al. 2019).
This applies to both spatial and temporal data.

Currently, there are ML models that are based on CNNs.
They are used as generalizable solutions and are standard in the
industry (e.g., AlexNet Krizhevsky et al. 2012, ResNet He et al.
2016). However, those models are not optimized to solve
problems in physical sciences, including astrophysics. Con-
sidering the lack of standardized packages for ML in astro-
physics, we built our own pipeline, Sapsan4 (Karpov et al.
2021). Here is a high-level procedure overview:

1. Data: choose a relevant high-fidelity data set. In our case,
the data come from the DNS simulations that we consider
to be the ground truth.

2. Data augmentation: filter and augment the data to mimic
an LES simulation, in which the ML pipeline would be

used. For example, the turbulent features in the CCSN
LES simulations are severely underresolved. Hence, the
filtering applied to high-resolution DNS simulation data
needs to account for that adequately.

3. Data splitting: split the data into training, validation, and
testing portions.

4. Optimization and training: optimizing the hyperpara-
meters of the ML model via cross-validation and testing
against the unseen data. In this context, unseen data is
defined by the data not used in the training or validation
of the ML model. This procedure strives to achieve the
best efficiency and accuracy of the model.

5. Validation, testing, and analysis: test the trained ML
model to confirm the predictions as being representative
of the relevant physics, as well as estimating the effi-
ciency and uncertainty of the ML scheme.

Next, we will discuss how we adopted and augmented
conventional ML methods for CCSN turbulence prediction,
enforcing physical principles to aid our studies.

3.3. ML Models

We used two ML models to calculate all nine components of
the Reynolds stress τij: a conventional CNN encoder for off-
diagonal terms and a custom, physics-informed (PI) CNN
encoder for diagonal terms. The schematics of the models are
shown in Figures 2(a) and 2(b), with discussions of each in
Sections 3.3.1 and 3.3.2, respectively. Both models have been
trained on a dual-GPU system, equipped with NVIDIA Quadro
RTX 5000 cards.

3.3.1. Off-diagonal Terms (3D CNN)

The idea behind a neural network is illustrated in Figure 2(a)
as a pipeline schematic. We first need to input the data, which
is represented by the input layer. Then the data will need to be
manipulated in some way, as represented by the hidden layer
(s), e.g., the CNN Encoder. At the end, there is an output layer,
predicting our target quantity.
We based our model on the off-diagonal tensor components

of a 3D CNN, with some modifications, while keeping it
conventional. In a CNN, a convolution layer is applied as a
hidden layer. In this case, a given kernel is used to parse
through the data set to identify the spatial patterns needed for

Figure 2. Model schematics to calculate the Reynolds stress (τij) components.

4 https://github.com/pikarpov-LANL/Sapsan

4

The Astrophysical Journal, 940:26 (13pp), 2022 November 20 Karpov et al.

https://github.com/pikarpov-LANL/Sapsan

the given problem. The kernel has the form:

()

(() ()) ()å= +
=

-

out N C

bias C weight C input N k

,

, , 12

i

k

C

i

out

out
0

1

out,k

in

where N is the number of features, i is the feature index, and C
is the number of channels. The input data size is defined by [N,
Cin, D, H,W] and the output is [N, Cout, Dout, Hout,Wout], where
[D, H, W] are the [depth, height, width], i.e., [x,y,z]. The
notation is in agreement with the PyTorch documentation. The
reason for choosing a CNN as our core ML algorithm was the
goal of relating the spatial structure of the turbulent eddies to
the small-scale structure.

We utilized the PyTorch built-in modules, with slight
modifications for our workflow, with the following parameters:

1. Model: a classical approach for CNN architectures, where
the convolution and pooling layers are stacked up, and
consequently followed by fully connected dense layers,
as is shown in Figure 11, based around a 3D CNN.5

2. Optimizer: Adam Optimizer6—an extension of the sto-
chastic gradient descent; it was picked due to its good
performance on sparse gradients.

3. Activation function: LogSigmoig7—a nonlinear activa-
tion function to select the values to pass from layer to
layer. The function is defined by ()

()+ -
log

x

1

1 exp
.

4. Loss function: Custom SmoothL1Loss8—an L1 loss that
is smooth if |x− y|< β, where β= 1σ and σ is the
standard deviation. The loss for |x− y|< β was further
increased by a factor of 10, to aid the efficiency of the
training convergence of the model. It can be viewed as a
combination of L1 and L2 losses (i.e., it behaves as L1 if
the absolute value is high or as L2 if the absolute value
is low).

Besides the network itself, the reasons for the choices of the
Optimizer, Activation Function, and the Loss Function were
the broad applicability, availability, and success of these
techniques. In addition, we performed cross-validation over the
available PyTorch functions to solidify our choices. These
parameters were sufficient for off-diagonal terms of τij for 3D
MHD turbulence. However, the physical conditions had to be
enforced in order to model the diagonal terms and ultimately
predict Pturb.

3.3.2. Diagonal Terms (PIML)

If calculated directly, the Reynolds stress is defined by:

˜ ˜ ()t = ¢ ¢ = -~~
u u u u u u , 13ij i j i j i j

where ¢ui is a velocity fluctuation component and x̃ is the
spatial average. Thus, for diagonal terms, a realizability con-
dition is defined as τii> 0 (Schumann 1977), making the dis-
tribution of the diagonal tensor components asymmetric. While
the model in Section 3.3.1 excelled at quasi-symmetric

distribution prediction, it struggled with asymmetric distribu-
tions. Further analysis of this will be covered in Section 4.2.

1. Model: 3D CNN encoder, as described in Section 3.3.1,
with PI layers. The encoder implicitly predicts the velo-
city fluctuations (¢ui), then the PI layers calculate ¢ui

2, to
enforce τii> 0 and filter to find the mean, as per
Equation (12).

2. Optimizer: Adam Optimizer—the same as in
Section 3.3.1.

3. Activation function: LogSigmoid (stationary) and
Tanhshrink9 (dynamic)—the latter showed a faster model
convergence rate for the dynamic turbulence. The func-
tion is defined by

() ()= -f x x tanh x .

4. Loss function: Custom—a dynamic combination of
SmoothL1Loss (point to point) and Kolmogorov–Smir-
nov (KS) statistical (Massey 1951) losses.

The combined loss function was designed to compound the
advantages of the point-to-point and statistical losses. Further
discussion can be found in the discussion of the results in
Section 4.2.
The PyTorch implementation of this PIML model, used for

diagonal terms, along with the 3D CCSN data sampled down to
173, is provided as part of the Sapsan package.10

3.4. Data Sets

In ML, the predictions will only be as good as the training
data. With the goal of testing our algorithm on a broader range
of physical conditions, we diversified by using stationary and
dynamic turbulence data sets. A quick parameter overview of
both data sets can be found in Table 1.

Table 1
Parameters of the Statistically Stationary (JHTDB) and Dynamic CCSN (Mösta

et al. 2015) Turbulence Data Sets

Stationary Dynamic

Resolution 10243 3473

ttot 2.56 10.3 [ms]
δt 2.5 × 10−4 5 × 10−4 [ms]
Δt 2.5 × 10−3 2.4 × 10−2 [ms]
kmax 482 348
KE Etot ∼0.5 ∼0.9
E EB tot ∼0.5 ∼0.1

σ 16 9

Note. The time values for the stationary data set are in normalized numerical
units, amounting to the turnover time of one large eddy. ttot is the
total simulation time, δt is a time step, Δt is the checkpoint time separation,
kmax is the maximum Fourier mode, and KE Etot and E EB tot are the time-
averaged fractions of kinetic and magnetic energy, with respect to the total
energy. σ is the Gaussian filter standard deviation that we applied during the
data preparation. Lastly, the spatial resolution of the dynamic data set is
Δx = 200 m.

5 https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html
6 https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
7 https://pytorch.org/docs/stable/generated/torch.nn.LogSigmoid.html
8 https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html

9 https://pytorch.org/docs/stable/generated/torch.nn.Tanhshrink.html
10 https://sapsan-wiki.github.io/details/estimators/#physics-informed-cnn-
for-turbulence-modeling-pimlturb

5

The Astrophysical Journal, 940:26 (13pp), 2022 November 20 Karpov et al.

https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.nn.LogSigmoid.html
https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
https://pytorch.org/docs/stable/generated/torch.nn.Tanhshrink.html
https://sapsan-wiki.github.io/details/estimators/#physics-informed-cnn-for-turbulence-modeling-pimlturb
https://sapsan-wiki.github.io/details/estimators/#physics-informed-cnn-for-turbulence-modeling-pimlturb

1. Stationary: a high-resolution, statistically stationary, iso-
tropic, forced, incompressible MHD turbulence data set11

from the JHTDB (Li et al. 2008). It has a low Reynolds
number fluctuating around ~Re 186.

2. Dynamic: an evolving, highly magnetized CCSN turbu-
lence data set by Mösta et al. (2015). It is a 3D DNS of an
MHD CCSN. The data set has been developed to study
the effects of MRI in growing the turbulence in a CCSN
scenario to aid the explosion, aiming to prove the plau-
sibility of CCSNe being progenitors of LGRBs and
magnetars (Mösta et al. 2015). The needed resolution is
high, so it is not a global simulation, only tracking the
first ∼10 ms after the core bounce to see the development
of turbulence. In addition, only a quarter of the star close
to the core has been simulated (66.5 km in x and y and
133 km in z), maintaining a 90° rotational symmetry in
the xy plane. To fit our memory constraints, we used the
data set with Δx= 200 m resolution, which exhibits mild
turbulence.

3.4.1. Data Preparation

In order to reflect a realistic low-fidelity environment of the
CCSN simulations, we chose to apply a Gaussian filter (Carati
et al. 2001), as described in Section 2.1. The standard deviation
σ of the filter (Equation (4)) for each data set was chosen, to
provide similar levels of filtering for both the stationary and
dynamic data sets, with the exact σ specified in Table 1. An
example of the filtering used is shown in Figure 3. For both
data sets, derivatives were calculated, and the filter was applied
at the highest resolution available. Then, the data were equi-
distantly sampled down to 1163, to fit the hardware memory
constraints. The exact data preparation procedures are sum-
marized below:

1. Calculate the derivatives of [u, B].
2. Calculate the Reynolds stress tensor τ using Equation (9).

3. Apply a Gaussian filter to the original data, to get
[˜ ˜]~ ~
u du B dB, , , .

4. Sample the data equidistantly down to 1163.
5. Use the sampled quantities of [˜ ˜]~ ~

u du B dB, , , as the model
input.

6. Use each τij component as the model output.

4. Results and Discussion

4.1. Stationary Turbulence

Though the data set is evolving spatially, the statistics
remain stationary in the JHTDB MHD data set that we used.
Our CNN and PIML models for off-diagonal and diagonal
terms, respectively, outperform the traditional gradient subgrid
model. Figure 4 presents predictions of the x components of the
Reynolds stress: [τxx, τxy, τxz] at Δt= 1000, which is near the
end of the simulation. The prediction performance of the y and
z components remained comparable to the x components; hence
those plots were omitted.
For training, we used the first four checkpoints (Δt), sepa-

rated by 10 time steps (δt) each. The exact data preparation was
performed as per Section 3.4.1. Our PIML method especially
excelled at predicting τxx, which is consequently important for
the Pturb calculation, while the gradient model completely
missed the peak and the overall turbulent distribution. Next, τxy
matches the bulk of the data, but overpredicts the outliers. Note
that the y-axis is on a log scale; hence the actual error remains
minimal. As for τxz, the CNN model does not show any part-
icular weaknesses.
The point of this exercise was to test the reliability of the

CNN algorithm when it was applied to a changing spatial
distribution. Since CNNs parse a kernel through the data cube,
it is not trivial to assume statistical consistency in the predic-
tions, based on the evolving spatial distribution. Nonetheless,
the statistically stationary data set did not require significant
tuning to achieve its results, and served more as a consistency
check for our algorithms before moving to the dynamic
data set.

Figure 3. A box filter with a Gaussian kernel (σ = 9) was used to filter the data. The figure shows a slice of sampled ux, down to (116,116,116); the filter was applied
prior to sampling. Left: original; right: filtered.

11 https://turbulence.pha.jhu.edu/Forced_MHD_turbulence.aspx

6

The Astrophysical Journal, 940:26 (13pp), 2022 November 20 Karpov et al.

https://turbulence.pha.jhu.edu/Forced_MHD_turbulence.aspx

4.2. Dynamic Turbulence

The ultimate goal of our study was to test the models on a
more realistic astrophysical data set. While the DNS CCSN
simulation from Mösta et al. (2015) has its limitations, it is the
best-resolved turbulence data set investigating CCSNe. Figure
6 presents predictions of τx components in the second half of
the simulation, t= [5.62, 7.55, 9.48]ms. The results remain
consistent with the statistically stationary JHTDB predictions.
The gradient model continuously underpredicts the Reynolds
stress distribution, performing especially poorly at capturing
the outliers. The predictions of the τy and τz components are
comparable in accuracy across all time steps, hence they were
omitted from the plot. Figure 5 presents an example of a spatial
distribution prediction, i.e., a slice of the data cube at
t= 7.55 ms.

The key to capturing the dynamics was to train across a wide
range of checkpoints covering the first half of the simulation,
t< 5 ms. We were able to optimize the results using nine

equally distant checkpoints; the evolution of the normalized
PDFs of τxy from the exact checkpoints used in training can be
seen in Figure 9. Such a diversified training data set helped to
prevent overfitting, while maintaining the flexibility of the
model in predicting future time steps (t> 5 ms).
Thus far, the CNN methods have worked well for off-diag-

onal terms, and our PIML has enforced the realizability con-
dition (τii> 0) for the diagonal terms. However, the diagonal
terms of the dynamic turbulence data set presented another
challenge—asymmetric statistical distributions. A CNN with a
point-to-point loss such as SmoothL1Loss has shown its robust
performance in predicting quasi-symmetric distributions. This
includes predictions of the diagonal terms in the JHTDB sta-
tionary data (τxx in Figure 4), where, due to the shift of the
peak, the distribution can be classified as quasi-symmetric.
However, in the dynamic data set, the peak is near the origin,
making the distribution acutely asymmetric. As a result, while
accurately capturing the outliers, the previous approach failed

Figure 4. Prediction of x components of τ at t = 1000 of the JHTDB MHD data set in normalized numerical units. Blue shows the original target data, orange shows
the predictions of the CNN or PIML models, for off-diagonal and diagonal terms, respectively, and gray shows the result of the gradient subgrid model, as per
Section 3.1.

Figure 5. Slices presenting the spatial distribution of the 3D stress tensor component at t = 7.55 ms, sampled down to 1163. Left: target τxx; right: PIML prediction of
τxx. The statistical distribution of the above slices can be found in Figure 6 (first row, second column).

7

The Astrophysical Journal, 940:26 (13pp), 2022 November 20 Karpov et al.

to predict the correct peak position, i.e., the bulk of the data. To
remedy this behavior, we developed a custom loss function,
combining a point-to-point SmoothL1Loss with a loss based on
the KS statistic (KSstat). The latter metric is the maximum
distance between the two cumulative distribution functions
(CDFs), i.e., how far apart the two distributions are from one
another.

SmoothL1Loss excelled at predicting the distribution out-
liers, while it struggled to determine the peak position. On the

other hand, the KS loss excelled at predicting the bulk of the
data, including the peak position, by minimizing the distance
between the input and target distributions, but it struggled with
the outliers. As a result, the two losses were combined in a
dynamic fashion. The model first minimized SmoothL1Loss, to
get the overall distribution shape, particularly the outlier por-
tion, and then it minimized the KS loss, to shift the peak into
the right position. The results can be seen in the top row of
Figure 6, with the detailed peaks presented in a separate box

Figure 6. Statistical distributions of the stress tensor component, where the values are in units of u2. Rows: [τxx, τxy, τxz] components; columns: simulation times at
[5.62, 7.55, 9.48] ms. Blue lines: target τ distribution; orange lines: CNN prediction; gray dotted lines: gradient turbulence subgrid model of the form τij = 1/
12Δ2δuikδujk, using the Einstein notation, where Δ is the filter width and u is the velocity.

8

The Astrophysical Journal, 940:26 (13pp), 2022 November 20 Karpov et al.

within each plot. Further details of the training loss behavior
are provided in Appendix B. While we primarily stressed an
accurate prediction of the statistical distribution, another benefit
of not using an exclusively statistical loss is a sound spatial
prediction, as shown in Figure 5.

The leading deliverable of the τij predictions is the ability to
calculate the turbulence pressure via Equation (1). Thus, any
deviation in the peak of τii is further exacerbated when com-
puting Pturb. As an example of our PIML model’s performance,
we present the Pturb prediction calculations at t= [5.62, 7.55,
9.48]ms, as shown in Figure 7. There, the trace was taken from
the sorted τii components. During this operation, the spatial
distribution of Pturb is lost, though it is not required for our
main goal: an accurate prediction of the total pressure due to
turbulence in the region and its statistical distribution. This is
due to the convection region being extremely underresolved,
while it is responsible for supplying Pturb to the stalled shock
for the potential explosion in the global CCSN simulations.
Thus, the astrophysical question is reduced to a binary one: will
the stalled shock move outward (explosion) or inward (black
hole)? Consequently, the accuracy of the total Pturb in the
convection region becomes the most significant, while alle-
viating the need for an accurate prediction of the spatial
distribution.

The performance of the PIML method shows significant
advantages over the gradient model in predicting the distribu-
tion, the outliers, and the peak position. Its performance does
deteriorate with time, as can be seen by the slight peak shift in
the right plot of Figure 7, at t= 9.48 ms. Quantitatively, the
performance metrics for comparing PIML and the gradient
model predictions are summarized in Figure 8. The top panel
shows that the total Pturb calculated from the PIML predictions
overpredicts the target ground truth (the dynamic 3D DNS
CCSN data) by ∼5%–35%, depending on the future prediction
time, resulting in a ∼19% deviation on average. This is a
significant advantage over the ∼63% underprediction error of
the gradient model, which will fail to supply sufficient Pturb to

reenergize the stalled shock to explode the star. This means that
by using the PIML method, Pturb could reach on average ∼36%
of the gas pressure, instead of the estimated ∼30% in Nagakura
et al. (2019), making it easier for the star to explode.
The middle panel of Figure 8 shows the KSstat for the PIML

method to degrade to the level of the gradient model at
checkpoints far in the future. This large discrepancy in the
target and PIML CDFs is due to the slight peak shift of the
prior PIML prediction. While KSstat is an important metric used

Figure 7. The plot presents an unnormalized distribution of Pturb as time evolves. Pturb is in units of u2. We compare the performance of our PIML model with the
gradient turbulence subgrid model.

Figure 8. Performance metrics of the PIML vs. gradient subgrid models. The
top panel shows the ratio of the total turbulent pressure calculated from the
model prediction to the target dynamic 3D DNS CCSN data; the middle panel
shows the KS statistic; and the bottom panel shows the variance. In total,
metrics at 10 checkpoints equally separated in time are presented in the plots.

9

The Astrophysical Journal, 940:26 (13pp), 2022 November 20 Karpov et al.

in our custom loss function, it does not disqualify PIML’s
advantages over the conventional gradient turbulence model.

Last, the bottom panel presents consistent variance between
the target and PIML results. The predicted distribution stays
consistent in its dispersion, i.e., its bulk and outlier distribution,
which cannot be said for the gradient model results. Thus, the
PIML approach has an advantage in modeling the small-scale
eddies that, in turn, can grow to larger scales, to provide the
dominant fraction of the Pturb to reenergize the stalled shock as
the simulation evolves.

5. Conclusion

The study of CCSNe requires an accurate treatment of tur-
bulence, yet conventional subgrid turbulence approaches are
unreliable. A DNS treatment of the turbulence in global 3D
CCSN simulations is not achievable with current computational
resources, thus the calculations are typically done via ILES.
Although they can capture the effects of large-scale flows with
relative accuracy, these simulations neglect the turbulent
pressure (Pturb) entirely, relying on numerical artifacts to
represent its effect. Building upon prominent ML techniques
used in industry, we have developed PIML networks to
increase the predictive accuracy of the Reynolds stress (τij), the
trace of which is Pturb. Pturb is thus the main deliverable of this
paper, which can be used in a CCSN simulation in aid of
reenergizing the stalled shock and exploding the star.

Our PIML approach has consistently outperformed a con-
ventional gradient subgrid model for both stationary and
dynamic turbulence data sets. It resulted in a ∼19% PIML
average error of the total Pturb, in comparison to ∼63% of the
gradient model. In addition, our method has excelled at pre-
dicting the outliers of both τij and Pturb, which are important for
dynamic simulations, to investigate the turbulent growth. Given
the flexibility of the ML algorithms used, these results should
be reproducible across HD and MHD CCSN simulations,
which we are currently investigating for our next publication.
That being said, the performance of the ML models deteriorates
the further in time that the predictions are made, which is to be
expected with a CNN-based approach. While, at its worst, it
continued to take the lead over the gradient model, the temporal
and overall performance can be further improved in our future
work, with the inclusion of recurrent neural network layers in
the models or by utilizing PI neural operators (PINOs; Li et al.
2021; Rosofsky & Huerta 2022).

Furthermore, the broader application of the ML model could
suffer from data–model inconsistencies when integrating a

trained model within CCSN codes. The distribution dis-
crepancies between the training data set and the newly simu-
lated grids, as well as the numerical errors, could lead to an
exponential error growth in the predictions (Beck & Kurz
2021). Regularization of the model predictions can improve its
stability. Our future work will investigate the approaches to
tackling this potential issue.
This paper has been our first attempt at studying the gen-

eralizability of ML methods for studying turbulence over dif-
ferent physical regimes. In the future, we would like to delve
deeper into this topic, employing other 3D MHD CCSN data
sets. Specifically, we here used a DNS MHD CCSN data set of
a single star, while we would like to expand the study to both
HD and MHD models over a wide range of CCSN progenitor
masses (from 8Me to 25Me), which exhibit great variation in
their physical engines. In our next paper, we will present our
current implementation of the evolving turbulent pressure term,
trained on 3D simulation data, into 1D CCSN models, to study
a large parameter space of progenitors and understand its
impact on CCSN explosion rates.

The research presented in this paper was supported by the
Laboratory Directed Research and Development program of
Los Alamos National Laboratory (LANL), a LANL Center of
Space and Earth Science student fellowship, and the DOE
ASCR SciDAC program. This research has used resources
provided by the LANL Institutional Computing Program,
which is supported by the U.S. Department of Energy National
Nuclear Security Administration, under Contract No.
89233218CNA000001. We would also like to thank Philipp
Mösta for providing the 3D MHD CCSN data set used
throughout this paper, and Jonah Miller for insightful discus-
sions that helped develop the ML methods.

Appendix A
Training Features

The ML models were trained on u, du, B, and dB as the input
features, and τij as the target feature: a model per tensor
component. Figure 9 presents an example of how τxy evolves at
t< 0.5 ms, following the exact checkpoints used for training.
The other τij components follow a similar level of dynamics.
This provided a sufficient level of diversity in the training data
set to prevent model overfitting and aid the flexibility of the
model.

10

The Astrophysical Journal, 940:26 (13pp), 2022 November 20 Karpov et al.

Appendix B
Training Loss

We developed a custom loss function (l) that combines a
point-to-point loss (SmoothL1Loss, i.e., L1) with a statistical
loss (the KS statistic, i.e., KSstat) in a dynamic fashion. The
goal was to force the model to minimize the L1 loss first, to get
the overall distribution shape. Then, the model was to prioritize
minimizing KSstat, to shift the peak into its correct position.

The two losses operated on different scales during training:
the L1 loss can span a range of ∼104 (from 10−4 down to

10−8), while KSstat ranges ∼101 (from 100 down to 10−1),
before overfitting. To account for such differences, we first
normalized the losses and then applied a scaling factor α, to
prioritize L1 until the general PDF shape had been learned.
Given our training data, at L1 loss< 10−6 this condition was
satisfied, making a = 106. Thus, L1 loss is heavily prioritized
for the first several orders of magnitude, decreasing the com-
bined loss (l), then sharing an equal weight with KSstat. This
results in l following L1 loss’s training dynamic, as shown by
the top and middle plots of Figure 10. In summary, the two

Figure 9. Evolution of the statistical distribution of the stress tensor component (τxy) in the first half of the simulation (t < 5 ms). These exact checkpoints, nine in
total, were used as a target for training the CNN network.

11

The Astrophysical Journal, 940:26 (13pp), 2022 November 20 Karpov et al.

losses are combined as follows:

() ()a= +
~ ~

l L KS0.5 1 0.5 B1stat

where
~
X is a spatial average of X.

Once KSstat becomes important, the peak is being shifted,
and we introduce an early stopping condition to prevent
overfitting. The bottom plot of Figure 10 presents the training
evolution of the KSstat loss component of l. After the training
loss (blue) and the validation loss (red) cross at ∼4× 10−2, the
training loss decreases exponentially, while the validation loss
increases exponentially. This indicates that the model is

overfitting. Thus, the early stopping condition was set to
∼4× 10−2, based on the crossing value of the training and
validation losses.
More details of the application and reasoning behind the

combined loss can be found in Section 4.2.

Appendix C
CNN Encoder

We present a graph of the CNN encoder that we used in
Figure 11. The data shape is noted at each arrow, akin to what
was used to produce our results throughout this paper. For the

Figure 10. Training loss evolution: the top panel shows the actual loss of the model consisting of combined L1 and KS loss components; the middle panel shows the
L1 loss component, and the bottom panel shows the KSstat loss component.

12

The Astrophysical Journal, 940:26 (13pp), 2022 November 20 Karpov et al.

input and output, the shape is formatted as [N, C, D, H, W],
where N is the number of batches, C represents the channels,
i.e., features, and [D,H,W] stand for the depth, height, and
width of the data. The notation is in agreement with the

PyTorch documentation. The graph was produced with
Sapsan.12

ORCID iDs

Platon I. Karpov https://orcid.org/0000-0003-4311-8490
Chengkun Huang https://orcid.org/0000-0002-3176-8042
Iskandar Sitdikov https://orcid.org/0000-0002-6809-8943
Chris L. Fryer https://orcid.org/0000-0003-2624-0056
Stan Woosley https://orcid.org/0000-0002-3352-7437
Ghanshyam Pilania https://orcid.org/0000-0003-4460-1572

References

Arnett, W. D., Meakin, C., Viallet, M., et al. 2015, ApJ, 809, 30
Baron, E., Bethe, H. A., Brown, G. E., Cooperstein, J., & Kahana, S. 1987,

PhRvL, 59, 736
Beck, A., & Kurz, M. 2021, GAMM-Mitteilungen, 44, e202100002
Beresnyak, A. 2019, LRCA, 5, 2
Beresnyak, A., & Lazarian, A. 2014, Magnetic Fields in Diffuse Media (Berlin:

Springer), 163
Bishop, C. M. 2006, Pattern Recognition and Machine Learning (Information

Science and Statistics) (Berlin: Springer)
Blondin, J. M., Mezzacappa, A., & DeMarino, C. 2003, ApJ, 584, 971
Brandenburg, A., & Lazarian, A. 2013, SSRv, 178, 163
Burrows, A., & Vartanyan, D. 2021, Natur, 589, 29
Burrows, A., Vartanyan, D., Dolence, J. C., Skinner, M. A., & Radice, D.

2018, SSRv, 214, 33
Carati, D., Winckelmans, G. S., & Jeanmart, H. 2001, JFM, 441, 119
Carleo, G., Cirac, I., Cranmer, K., et al. 2019, RvMP, 91, 045002
Colgate, S. A., & White, R. H. 1966, ApJ, 143, 626
Couch, S. M., Warren, M. L., & O’Connor, E. P. 2020, ApJ, 890, 127
Fryer, C. L., & Young, P. A. 2007, ApJ, 659, 1438
Grete, P. 2017, PhD thesis, Max-Planck-Institute for Solar System Research,

Lindau
He, K., Zhang, X., Ren, S., & Sun, J. 2016, in 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) (Piscataway, NJ: IEEE), 770
Herant, M., Benz, W., Hix, W. R., Fryer, C. L., & Colgate, S. A. 1994, ApJ,

435, 339
Jiménez, J. 2003, JTurb, 4, 22
Joshi, J. B., Nandakumar, K., Patwardhan, A. W., et al. 2019, in Advances of

Computational Fluid Dynamics in Nuclear Reactor Design and Safety
Assessment, ed. J. B. Joshi & A. K. Nayak (Sawston, UK: Woodhead
Publishing), 21

Karpov, P. I., Sitdikov, I., Huang, C., & Fryer, C. L. 2021, JOSS, 6, 3199
King, R. N., Hamlington, P. E., & Dahm, W. J. A. 2016, PhRvE, 93, 031301
Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2012, in Advances in Neural

Information Processing Systems, Vol. 25, ed. F. Pereira et al. (Curran
Associates Inc.), https://proceedings.neurips.cc/paper/2012/file/c3998
62d3b9d6b76c8436e924a68c45b-Paper.pdf

LeCun, Y., Bengio, Y., & Hinton, G. 2015, Natur, 521, 436
Li, Y., Perlman, E., Wan, M., et al. 2008, JTurb, 9, N31
Li, Z., Zheng, H., Kovachki, N., et al. 2021, arXiv:2111.03794
Lilly, D. K. 1966, On the Application of the Eddy Viscosity Concept in the

Inertial Sub-range of Turbulence (Vol. 231), 123 (Boulder, CO: NCAR), 1
Liu, S., Meneveau, C., & Katz, J. 1994, JFM, 275, 83
Massey, F. J. 1951, J. Am. Stat. Assoc., 46, 68
Melson, T., Janka, H.-T., Bollig, R., et al. 2015, ApJL, 808, L42
Miesch, M., Matthaeus, W., Brandenburg, A., et al. 2015, SSRv, 194, 97
Mösta, P., Ott, C. D., Radice, D., et al. 2015, Natur, 528, 376
Nagakura, H., Burrows, A., Radice, D., & Vartanyan, D. 2019, MNRAS,

490, 4622
Obergaulinger, M., Cerdá-Durán, P., Müller, E., & Aloy, M. A. 2009, A&A,

498, 241
Radice, D., Abdikamalov, E., Ott, C. D., et al. 2018, JPhG, 45, 053003
Radice, D., Couch, S. M., & Ott, C. D. 2015, ComAC, 2, 7
Rosofsky, S. G., & Huerta, E. A. 2020, PhRvD, 101, 084024
Rosofsky, S. G., & Huerta, E. A. 2022, arXiv:2203.12634
Schekochihin, A. A., & Cowley, S. C. 2007, Turbulence and Magnetic Fields

in Astrophysical Plasmas (Dordrecht: Springer), 85
Schmidt, W. 2015, LRCA, 1, 1
Schumann, U. 1977, PhFl, 20, 721
Spiegel, E. A. 1963, ApJ, 138, 216
Woosley, S., & Janka, T. 2005, NatPh, 1, 147
Wu, J.-L., Xiao, H., & Paterson, E. 2018, PhRvF, 3, 074602
Zhu, L., Zhang, W., Kou, J., & Liu, Y. 2019, PhFl, 31, 015105

Figure 11. Graph of the CNN encoder used in all models for tensor component
prediction. The activation function is either LogSigmoid or ShrinkTanh,
depending on the tensor component type. Further information can be found in
Section 3.3.1

12 https://sapsan-wiki.github.io/tutorials/model_graph

13

The Astrophysical Journal, 940:26 (13pp), 2022 November 20 Karpov et al.

https://orcid.org/0000-0003-4311-8490
https://orcid.org/0000-0003-4311-8490
https://orcid.org/0000-0003-4311-8490
https://orcid.org/0000-0003-4311-8490
https://orcid.org/0000-0003-4311-8490
https://orcid.org/0000-0003-4311-8490
https://orcid.org/0000-0003-4311-8490
https://orcid.org/0000-0003-4311-8490
https://orcid.org/0000-0002-3176-8042
https://orcid.org/0000-0002-3176-8042
https://orcid.org/0000-0002-3176-8042
https://orcid.org/0000-0002-3176-8042
https://orcid.org/0000-0002-3176-8042
https://orcid.org/0000-0002-3176-8042
https://orcid.org/0000-0002-3176-8042
https://orcid.org/0000-0002-3176-8042
https://orcid.org/0000-0002-6809-8943
https://orcid.org/0000-0002-6809-8943
https://orcid.org/0000-0002-6809-8943
https://orcid.org/0000-0002-6809-8943
https://orcid.org/0000-0002-6809-8943
https://orcid.org/0000-0002-6809-8943
https://orcid.org/0000-0002-6809-8943
https://orcid.org/0000-0002-6809-8943
https://orcid.org/0000-0003-2624-0056
https://orcid.org/0000-0003-2624-0056
https://orcid.org/0000-0003-2624-0056
https://orcid.org/0000-0003-2624-0056
https://orcid.org/0000-0003-2624-0056
https://orcid.org/0000-0003-2624-0056
https://orcid.org/0000-0003-2624-0056
https://orcid.org/0000-0003-2624-0056
https://orcid.org/0000-0002-3352-7437
https://orcid.org/0000-0002-3352-7437
https://orcid.org/0000-0002-3352-7437
https://orcid.org/0000-0002-3352-7437
https://orcid.org/0000-0002-3352-7437
https://orcid.org/0000-0002-3352-7437
https://orcid.org/0000-0002-3352-7437
https://orcid.org/0000-0002-3352-7437
https://orcid.org/0000-0003-4460-1572
https://orcid.org/0000-0003-4460-1572
https://orcid.org/0000-0003-4460-1572
https://orcid.org/0000-0003-4460-1572
https://orcid.org/0000-0003-4460-1572
https://orcid.org/0000-0003-4460-1572
https://orcid.org/0000-0003-4460-1572
https://orcid.org/0000-0003-4460-1572
https://doi.org/10.1088/0004-637X/809/1/30
https://ui.adsabs.harvard.edu/abs/2015ApJ...809...30A/abstract
https://doi.org/10.1103/PhysRevLett.59.736
https://ui.adsabs.harvard.edu/abs/1987PhRvL..59..736B/abstract
https://doi.org/10.1002/gamm.202100002
https://doi.org/10.1007/s41115-019-0005-8
https://ui.adsabs.harvard.edu/abs/2019LRCA....5....2B/abstract
https://ui.adsabs.harvard.edu/abs/2015ASSL..407..163B/abstract
https://doi.org/10.1086/345812
https://ui.adsabs.harvard.edu/abs/2003ApJ...584..971B/abstract
https://doi.org/10.1007/s11214-013-0009-3
https://ui.adsabs.harvard.edu/abs/2013SSRv..178..163B/abstract
https://doi.org/10.1038/s41586-020-03059-w
https://ui.adsabs.harvard.edu/abs/2021Natur.589...29B/abstract
https://doi.org/10.1007/s11214-017-0450-9
https://ui.adsabs.harvard.edu/abs/2018SSRv..214...33B/abstract
https://doi.org/10.1017/S0022112001004773
https://ui.adsabs.harvard.edu/abs/2001JFM...441..119C/abstract
https://doi.org/10.1103/RevModPhys.91.045002
https://ui.adsabs.harvard.edu/abs/2019RvMP...91d5002C/abstract
https://doi.org/10.1086/148549
https://ui.adsabs.harvard.edu/abs/1966ApJ...143..626C/abstract
https://doi.org/10.3847/1538-4357/ab609e
https://ui.adsabs.harvard.edu/abs/2020ApJ...890..127C/abstract
https://doi.org/10.1086/513003
https://ui.adsabs.harvard.edu/abs/2007ApJ...659.1438F/abstract
https://doi.org/10.1086/174817
https://ui.adsabs.harvard.edu/abs/1994ApJ...435..339H/abstract
https://ui.adsabs.harvard.edu/abs/1994ApJ...435..339H/abstract
https://doi.org/10.1088/1468-5248/4/1/022
https://ui.adsabs.harvard.edu/abs/2003JTurb...4...22J/abstract
https://doi.org/10.21105/joss.03199
https://ui.adsabs.harvard.edu/abs/2021JOSS....6.3199K/abstract
https://doi.org/10.1103/PhysRevE.93.031301
https://ui.adsabs.harvard.edu/abs/2016PhRvE..93c1301K/abstract
https://proceedings.neurips.cc/paper/2012/file/c3998 62d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c3998 62d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1038/nature14539
https://ui.adsabs.harvard.edu/abs/2015Natur.521..436L/abstract
https://doi.org/10.1080/14685240802376389
https://ui.adsabs.harvard.edu/abs/2008JTurb...9...31L/abstract
http://arxiv.org/abs/2111.03794
https://doi.org/10.1017/S0022112094002296
https://ui.adsabs.harvard.edu/abs/1994JFM...275...83L/abstract
https://doi.org/10.1080/01621459.1951.10500769
https://doi.org/10.1088/2041-8205/808/2/L42
https://ui.adsabs.harvard.edu/abs/2015ApJ...808L..42M/abstract
https://doi.org/10.1007/s11214-015-0190-7
https://ui.adsabs.harvard.edu/abs/2015SSRv..194...97M/abstract
https://doi.org/10.1038/nature15755
https://ui.adsabs.harvard.edu/abs/2015Natur.528..376M/abstract
https://doi.org/10.1093/mnras/stz2730
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.4622N/abstract
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.4622N/abstract
https://doi.org/10.1051/0004-6361/200811323
https://ui.adsabs.harvard.edu/abs/2009A&A...498..241O/abstract
https://ui.adsabs.harvard.edu/abs/2009A&A...498..241O/abstract
https://doi.org/10.1088/1361-6471/aab872
https://ui.adsabs.harvard.edu/abs/2018JPhG...45e3003R/abstract
https://doi.org/10.1186/s40668-015-0011-0
https://ui.adsabs.harvard.edu/abs/2015ComAC...2....7R/abstract
https://doi.org/10.1103/physrevd.101.084024
https://ui.adsabs.harvard.edu/abs/2020PhRvD.101h4024R/abstract
http://arxiv.org/abs/2203.12634
https://doi.org/10.1007/lrca-2015-2
https://ui.adsabs.harvard.edu/abs/2015LRCA....1....2S/abstract
https://doi.org/10.1063/1.861942
https://ui.adsabs.harvard.edu/abs/1977PhFl...20..721S/abstract
https://doi.org/10.1086/147628
https://ui.adsabs.harvard.edu/abs/1963ApJ...138..216S/abstract
https://doi.org/10.1038/nphys172
https://ui.adsabs.harvard.edu/abs/2005NatPh...1..147W/abstract
https://doi.org/10.1103/PhysRevFluids.3.074602
https://ui.adsabs.harvard.edu/abs/2018PhRvF...3g4602W/abstract
https://doi.org/10.1063/1.5061693
https://ui.adsabs.harvard.edu/abs/2019PhFl...31a5105Z/abstract
https://sapsan-wiki.github.io/tutorials/model_graph

	1. Introduction
	2. Formalism
	2.1. Filtering
	2.2. MHD Equations—Unfiltered
	2.3. MHD Equations—Filtered

	3. Subgrid Modeling
	3.1. Gradient Model
	3.2. ML Pipeline
	3.3. ML Models
	3.3.1. Off-diagonal Terms (3D CNN)
	3.3.2. Diagonal Terms (PIML)

	3.4. Data Sets
	3.4.1. Data Preparation

	4. Results and Discussion
	4.1. Stationary Turbulence
	4.2. Dynamic Turbulence

	5. Conclusion
	Appendix ATraining Features
	Appendix BTraining Loss
	Appendix CCNN Encoder
	References

