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Abstract

We analyze the simulation result shown in Hotta & Kusano (2021) in which the solar-like differential rotation is
reproduced. The Sun is rotating differentially with the fast equator and the slow pole. It is widely thought that the
thermal convection maintains the differential rotation, but recent high-resolution simulations tend to fail to
reproduce the fast equator. This fact is an aspect of one of the biggest problems in solar physics called the
convective conundrum. Hotta & Kusano succeed in reproducing the solar-like differential rotation without using
any manipulation with an unprecedentedly high-resolution simulation. In this study, we analyze the simulation data
to understand the maintenance mechanism of the fast equator. Our analyses lead to conclusions that are
summarized as follows. (1) The superequipatition magnetic field is generated by the compression, which can
indirectly convert the massive internal energy to magnetic energy. (2) The efficient small-scale energy transport
suppresses large-scale convection energy. (3) Non-Taylor–Proudman differential rotation is maintained by the
entropy gradient caused by the anisotropic latitudinal energy transport enhanced by the magnetic field. (4) The fast
equator is maintained by the meridional flow mainly caused by the Maxwell stress. The Maxwell stress itself also
has a role in the angular momentum transport for the fast near-surface equator (we call it the Punching ball effect).
The fast equator in the simulation is reproduced not due to the low Rossby number regime but due to the strong
magnetic field. This study newly finds the role of the magnetic field in the maintenance of differential rotation.

Unified Astronomy Thesaurus concepts: Stellar convective zones (301); Solar convective zone (1998)

1. Introduction

The Sun is rotating differentially, i.e., different latitudes have
different rotation rates, which is called differential rotation. The
solar rotation has a long observational history. In 1630,
Christoph Scheiner found the different rotation periods
between latitudes using the trajectory of the sunspots
(Paternò 2010). In modern-day observations, the Doppler
effect is used to measure the rotation rate (e.g., Howard &
Harvey 1970). After the appearance of helioseismology that
uses acoustic waves to detect the internal structure of the Sun,
the internal profile of the differential rotation has been
measured (Schou et al. 1998). Figure 1 shows one of the
helioseismic results of the differential rotation Ω/2π from
Howe et al. (2011), where Ω is the angular velocity. While we
observe interesting features of the shear layers, i.e., tachocline
at the base of the convection zone and the near-surface shear
layer, one of the most prominent features of the solar
differential rotation is the fast equator and slow pole. The
equator and the polar region rotate in 25 and 30 days,
respectively.

It has been thought that thermal convection is a key to
understanding the generation mechanism of the solar differ-
ential rotation. Around the solar center, nuclear fusion
generates thermal energy. The radiation transports the energy
outward in the radiation zone in the inner part of the solar
interior (radiation zone,< 0.71Re, where Re is the solar
radius). In the outer part (>0.71Re, convection zone), opacity
increases, and the radiation energy transport becomes

inefficient. Then, the thermal convection transports the energy.
Because of large Reynolds numbers, the thermal convection is
turbulent. The turbulence is influenced by the Coriolis force
and becomes anisotropic. Angular momentum is transported
by the anisotropic turbulence, and the large-scale flow is
constructed. Because the turbulence in the convection zone is
highly nonlinear and chaotic, scientific research with numerical
simulation is an essential approach to understanding the
differential rotation.
By using the numerical simulations, the generation mech-

anism of the solar differential rotation was thought to be
understood at the beginning of the 2000 s, but recent high-
resolution simulations have crucial problems in reproducing the
rotation observed. As a pioneering work, Gilman (1977)
performed solar global convection simulations while ignoring
the stratification using the Boussinesq approximation. After the
standard model of the solar stratification is established
(Christensen-Dalsgaard et al. 1996), global solar calculations
with realistic stratification and other solar parameters are
widely performed (Miesch et al. 2000; Brun & Toomre 2002;
Miesch et al. 2006; Brun et al. 2011; Käpylä et al. 2014; Hotta
et al. 2015a). In general, convection with a faster (slower)
rotation rate tends to show a fast equator (pole; Gastine et al.
2013). The essential control parameter for the differential
rotation is the Rossby number Ro = v/(2Ω0L) (Miesch 2005;
Featherstone & Miesch 2015), where v, Ω0, and L are the
typical convection velocity, angular velocity of the system, and
typical spatial scale of the convection, respectively. The
Rossby number measures the effect of the rotation on the
convection. A system with a low Rossby number has
rotationally constrained convection, which is essential to
reproduce a fast equator. Low-resolution calculations in the
early years of the global solar convection studies were able to
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reproduce the solar-like differential rotation (fast equator)
because only the large-scale convection is included in their
system. Higher-resolution calculations, in other words high
Rayleigh and Reynolds numbers, however, have difficulties in
reproducing it because small-scale turbulence is introduced,
and the effective convection scale, L, becomes small (see
parameter survey by Hindman et al. 2020). This fact is
problematic because the real Sun must have much smaller
turbulence down to a centimeter scale. Currently, there are
three numerical manipulation methods to produce the solar-like
differential rotation:

1. to increase the rotation rate (Brown et al. 2008; Nelson
et al. 2013; Hotta 2018),

2. to decrease the luminosity (Hotta et al. 2015a),
3. to adopt large viscosity and/or thermal conductivity

(Miesch et al. 2000, 2008; Fan & Fang 2014; Hotta et al.
2016).

These manipulations aim to reduce the Rossby number.
Manipulation (1) increases Ω0 and directly reduces the Rossby
number. In manipulation (2), the convection velocity v is
reduced with smaller luminosity and energy flux. Manipulation
(3) decreases convection velocity v and increases the effective
spatial scale L with the large diffusivities. Early calculations
implicitly adopt manipulation (3) because of their low
resolution. Fan & Fang (2014) find that the magnetic field
may contribute to suppressing the convection velocity and
decreasing the Rossby number. This effect is extensively
investigated by the following researchers. Gastine et al. (2014)
carry out a comprehensive parameter study for the fast equator
and poles. They find that the existence of the magnetic field
relaxes the required rotation rate to the smaller value for the fast
equator. Mabuchi et al. (2015) pointed out that the Rossby
number evaluated with the rms velocity in simulations is a
good measure of this issue since the relaxation found in Gastine

et al. (2014) is caused by the reduction of the convection
velocity by the magnetic field (see also Karak et al. 2015).
While the magnetic field certainly has a role(s) in the
construction of the differential rotation, a large thermal
conductivity (∼3× 1013 cm2 s−1) is still required to maintain
solar-like differential rotation (Fan & Fang 2014). Because the
solar angular velocity Ω0 and the solar luminosity Le are well-
determined values, we should not change these. The viscosity
and the thermal conductivity are extremely small and cannot be
reproduced in modern computers, and we should keep these as
small as possible. We note that there should be larger turbulent
diffusivities, but these should be automatically reproduced in
3D simulations. In summary, we have not reproduced the solar-
like differential rotation without introducing artificial effects
and do not know the valid reason why the fast equator is
produced in the Sun. The problem is that low diffusivities
accomplished with high resolution hinder the reproduction of
the solar-like differential rotation.
This problem is one of the most critical and difficult

problems in solar physics, called the convective conundrum
(O’Mara et al. 2016). An observational estimate using
helioseismology suggests that the convective flow in numerical
simulations is much faster than in reality. Hanasoge et al.
(2012) show the convective energy spectra in large scale
(ℓ< 60, where ℓ is the spherical harmonic degree). The
observational estimate is more than two orders of magnitude
smaller than a simulation (Miesch et al. 2008). We note that the
helioseismic result is still controversial, and another study
shows a consistent result with the simulation (Greer et al.
2015). The overpowering of the large-scale convection also
causes a problem with the supergranulation. The supergranula-
tion is a 30 Mm scale flow pattern observed at the solar surface,
which has a prominent peak in the energy spectrum (e.g.,
Hathaway et al. 2015). On the solar surface, the kinetic energy
larger than supergranulation decreases with an increasing scale.
Lord et al. (2014) carry out realistic convection simulations for
the photosphere and show that a larger calculation box tends to
show a kinetic energy peak at a larger scale. Thus, the large-
scale motion excited in the deep layer should be suppressed to
obtain the supergranulation peak. Featherstone & Hindman
(2016a) suggest that, provided the convective amplitude is
suppressed, the rotational influence can construct the super-
granulation peak (see also Vasil et al. 2021).
The problem of the previously presented differential rotation

is one aspect of the convective conundrum because fast
convection flow leads to a large Rossby number and a resulting
fast pole. Regarding differential rotation, the observational
results confirm the existence of a fast equator; thus, we are
confident in the results obtained, but numerical simulations fail
in reproducing the real solar differential rotation. Consequently,
the numerical simulation has problems.
Hotta & Kusano (2021; hereafter HK21) have suggested a

promising possible solution to the problem in the differential
rotation aspect of the convective conundrum. We carried out
unprecedented high-resolution simulations, and the solar-like
differential rotation, i.e., the fast equator, is reproduced without
using any manipulation. In this study, we analyze the
simulation result to understand the physical mechanism to
maintain the solar-like differential rotation, i.e., the fast
equator.

Figure 1. Inversion of the helioseismic data from Helioseismic and Magnetic
Imager of Solar Dynamics Observatory satellite for the angular velocity (Ω/2π)
in the unit of nHz (Howe et al. 2011). The solid lines show the values from 340
to 460 nHz in 10 nHz increments.
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2. Model

The simulations analyzed in this study are introduced in
HK21.4 We solve 3D magnetohydrodynamic equations in the
spherical geometry (r, θ, f) using the Yin-Yang grid
(Kageyama & Sato 2004). The radial computational domain
extends 0.71Re< r< 0.96Re. The magnetohydrodynamic
equations are
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where ρ, v, B, s, and p are the density, velocity, magnetic field,
specific entropy, and gas pressure, respectively. er is the radial
unit vector. To deal with the small perturbation ρ1/ρ0∼
p1/p0∼ T1/T0∼ 10−6, we separate the quantities to the zeroth
order spherically symmetric values (subscript 0) and the
perturbation from the background (subscript 1). The zeroth
order quantities and the gravitational acceleration g are adopted
from Model S (Christensen-Dalsgaard et al. 1996). The
linearized equation of state is used for the pressure to deal with
the small perturbation. The coefficient p sr¶ ¶( ) and p s¶ ¶ r( )
are calculated with the OPAL repository (Rogers et al. 1996).
We use the system rotation rate Ω0 of the solar value, i.e.,
Ω0= 2.6× 10−6 s−1 with e ecos sinr0 0 q qW = W - q( ), where eθ
is the colatitudinal unit vector.

We use the reduced speed of sound technique (RSST; Hotta
et al. 2012b, 2015a). The effective speed of sound is reduced
by a factor of ξ. We keep the adiabatic reduced speed of sound
to 3 km s−1 throughout the convection zone.

The heating term Qs at the entropy equation (Equation (4)) is
expressed with two radial flux densities as
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where Frad and Fart are the radiative flux and the artificial
energy flux. For the radiative energy flux Frad, we use the
diffusion approximation, and the radiative diffusion coefficient
is adopted from Model S. Because we do not include the
photosphere where the radiation extracts the energy, in this

calculation, we need an artificial energy flux around the top
boundary. We extract the solar luminosity Le from the top
boundary r r R0.96max= = . The depth of the cooling layer is
defined as d H r2 part max= ( ), where H r 9.46 Mmp max =( ) is the
pressure scale height at r= 0.96 Re.
The magnetohydrodynamic equations are solved with R2D2

(Radiation and RSST for Deep Dynamics) code (Hotta et al.
2019; Hotta & Iijima 2020; HK21) with the fourth-order space-
centered difference and the four-step Runge–Kutta time
integration. To maintain the numerical stability, we use the
slope-limited artificial diffusivity suggested by Rempel (2014)
for all variables. We use h= 2 for the parameter for the
artificial diffusivity shown in Equation (10) of Rempel (2014).
Because the whole sphere is covered with the Yin-Yang grid,

we only need the radial boundary condition. We adopt the
stress-free and impenetrable boundary condition both at the top
and bottom boundaries for the flow. The magnetic field is radial
and horizontal at the top and the bottom boundaries,
respectively. The density and entropy perturbations are
symmetric about the radial boundaries.
We perform four cases, Low, Middle, High, and High-HD.

The basic parameters are summarized in Table 1. Information
on nondimensional parameters is provided in Section 3.5. The
High and High-HD cases have the same number of grid points.
The High-HD case does not include the magnetic field. The
magnetic field is included in the other cases. The calculations
continue for 4000 days. The convection timescale in the deep
convection zone is 20 days, and 4000 days corresponds to 200
turnover time. The diffusion timescale for the High case is
around 500 yr. Our calculation is much shorter than that.
Around 2700 days, however, the flow and the differential
rotation reach a statistically steady state (see Supplementary
Figure 1 of HK21). We cannot rule out the further evolution in
the longer study, but as shown in the result section, the large-
scale flows (differential rotation and meridional flow) are
mainly determined by the convection and magnetic field. The
contributions from the diffusivities are tiny. It seems that we do
not have to extend our calculation to the diffusion timescale to
discuss the maintenance mechanism of the large-scale flows.
The period between 3600 and 4000 days is used in the
following analysis unless otherwise noted. The typical time
spacing Δt= 100 s and 3 million time steps are integrated for
the High case.

3. Result

3.1. Overall Structure

In this subsection, the overall convection and magnetic field
are discussed. Figures 2–7 show the overall structure of the
radial velocity and the radial magnetic field. Figures 2, 4, and 6
show the radial velocity vr at r= 0.95, 0.9, and 0.85Re,
respectively. Figures 3, 5, and 7 show the radial magnetic field
Br at r= 0.95, 0.9, and 0.85Re, respectively. The results from
Low (panels (a), (d)), Middle (panels (b), (e)), and High (panels
(c), (f)) cases are shown in these figures. The panels (d), (e),
and (f) show zoomed views indicated by a white dashed box in
panel (a). The radial velocity at r= 0.95Re (Figure 2) shows a
typical convection pattern, i.e., thin concentrated downflows
surrounded by broad upflows. Two effects cause this pattern.
The first effect is stratification. Because the solar convection
zone is gravitationally stratified, the upper layer has a lower
gas pressure. A rising fluid parcel expands because of the4 Statistical data are available at https://doi.org/10.5281/zenodo.5919257.
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stratification, while the descending parcel contracts. This
asymmetry of the upflows and downflows causes the typical
convection pattern. In addition, we should see a boundary
effect at this depth. A wall exists at r= 0.96Re where the radial
motion stops. This process leads to diverging and converging
motions in the upflows and downflows, respectively. The
convection patterns in the Low case (Figure 2(a) and (d)) are
similar to previous calculations (Miesch et al. 2008), i.e., the
smallest scale is the downflow lane. In the High case, we can

see smaller-scale structures even in the downflow lanes
(Figure 2(f)). The banana-cell, the north–south aligned
convection cell, cannot be seen in all the cases at this depth.
Figure 3 shows the radial magnetic field Br at r= 0.95Re. The

magnetic field strength increases from the Low case to the High
case. This tendency is also seen in the other depth (see Figures 5
and 7). In all the cases, the radial magnetic field is swept up to
the downflow region. This concentration is also seen in the
previous calculation in the deep interior (Brun et al. 2004) and

Table 1
Summary of Calculations

Case Low Middle High High-HD

No. of grids
Nr × Nθ × Nf × 2 96 × 384 × 1152 192 × 768 × 2304 384 × 1536 × 4608 384 × 1536 × 4608
Magnetic field Yes Yes Yes No
νeff, ηeff, κeff [cm

2 s−1] 2.41 × 1011 8.44 × 1010 2.64 × 1010 2.55 × 1010

v m sRMS
1-[ ] 142 127 108 163

Reynolds number Re( ) 1.02 × 103 2.62 × 103 7.11 × 103 1.11 × 104

Rayleigh number (Ra) 1.68 × 107 1.35 × 108 1.38 × 109 1.7 × 109

flux Rayleigh number (RaF) 3.09 × 1010 7.24 × 1011 2.36 × 1011 2.62 × 1013

Ekman number (Ek) 3.1 × 10−4 1.1 × 10−4 3.3 × 10−5 3.2 × 10−5

Convective Rossby number
(Roc) 1.26 1.25 1.25 1.32
Rossby number (Ro) 0.157 0.141 0.120 0.181
Mean spherical harmonic degree
ℓũ 62.5 104.6 201.8 177.0
Local Rossby number (Roℓ) 6.26 9.36 15.36 20.34
Ek,turb [erg] 2.78 × 1039 2.11 × 1039 1.50 × 1039 4.30 × 1039

Ek,mean [erg] 4.71 × 1038 5.25 × 1038 1.01 × 1039 2.09 × 1040

Em,turb [erg] 1.23 × 1039 2.03 × 1039 2.68 × 1039 N/A
Em,mean [erg] 4.55 × 1036 1.83 × 1036 2.56 × 1036 N/A

Note. We convert the Yin-Yang grid to the spherical geometry for analyses. In the spherical geometry, the number of grids is Nr × 2Nθ × 4Nf/3.

Figure 2. Radial velocity vr at r = 0.95Re in Low (panels (a), (d)), Middle (panels (b), (e)), and High (panels (c), (f)) cases are shown. The lower panels ((d), (e), (f))
show the subset of the calculation domain indicated by the white dashed box in panel (a). Movie is available at https://youtu.be/GXwnIIOJxvY. Movie continues
4 minutes 27 s and covers whole evolution of the calculation period, i.e., 4000 days.
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the photosphere (Vögler et al. 2005). While the previous
simulations and the Low case in this study typically show a
sheet-like magnetic flux aligned to the downflow lane, we can
occasionally observe a blob-shaped magnetic flux (a notable one
is indicated by the dashed orange circle in Figure 3(f)). This
structure shows significantly superequipartition magnetic field
strength and low gas pressure. The convection is suppressed in

this region. This structure is important for magnetic field
generation (see discussion at Section 3.6). At r= 0.9Re, the
convection shows a larger-scale pattern. The small-scale
convection around the top boundary is merged to construct the
larger scale while increasing the pressure/density scale height in
the deep region (see Stein & Nordlund 1998; Lord et al. 2014).
The banana-cell-like feature begins to appear in this depth. In the

Figure 3. The radial magnetic field Br at r = 0.95Re is shown. The format is the same as Figure 2. Movie is available at https://youtu.be/ULPPKKGwJNw.

Figure 4. The radial velocity vr at r = 0.9Re is shown. The format is the same as Figure 2. Movie is available at https://youtu.be/Ne0jsSCTXX4.
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deeper layer (r= 0.85 Re, middle of the convection zone), the
flow pattern shows the banana-cell-like features more clearly
than the upper layers (Figure 6). In the mixing length theory, the
convection velocity vc scales as v L r40 c

3 2r p~  (Bier-
mann 1948), where Le is the solar luminosity. This dependence
indicates that the convection velocity decreases in the deeper
layers with the larger density ρ0. The convection timescale is

τ∼Hp/vc. These relations mean that the convection timescale
increases in the deeper layers by increasing the pressure scale
height and decreasing the convection velocity. As a result, the
convection tends to obey the rotation influence (Coriolis force)
and shows the banana-cell in the deep layers. The magnetic field
distribution is chaotic at this depth. The strong magnetic field
tends to be located at the downflow plume, but the coincidence

Figure 5. The radial magnetic field Br at r = 0.9Re is shown. The format is the same as Figure 2. Movie is available at https://youtu.be/cYZqLUHNMt4.

Figure 6. The radial velocity vr at r = 0.85Re is shown. The format is the same as Figure 2. Movie is available at https://youtu.be/8zZW8OP9i7Y.
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between the downflow and the strong magnetic field is worse
than the upper layers.

3.2. Statistical Properties of Convection and Magnetic Field

In this subsection, we discuss statistical properties of the
convection and magnetic fields. Here, we define the statistical
values of a quantity Q, the longitudinal average 〈Q〉, the
longitudinal rms Q RMS¢( ) , and the latitudinally averaged long-
itudinal rms Q(RMS) as follows.
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We note that we define spherical average Q
~

and spherical
rms Q(rms) in Section 3.7 differently from the current definition.

Figure 8 shows the longitudinal rms velocity (panel (a)) and
the ratio of the magnetic energy Emag(RMS) to the kinetic energy
Ekin(RMS), where the energies are defined as follows:
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Figure 8(a) shows that the convection velocity is suppressed
in the higher resolution. This is a general tendency of the high-
resolution simulations (e.g., Hotta et al. 2015b). The horizontal
velocity (dashed lines) is more suppressed than the radial
velocity (solid lines). A key to understanding convection
suppression is the magnetic field. Figure 8(b) shows the ratio of

the magnetic energy to the kinetic energy. While in the Low
case (blue line), the magnetic energy is smaller than the kinetic
energy throughout the convection zone, and we observe a
superequipartition magnetic field in the High case (green line).
The ratio exceeds 2.5 at maximum. This result indicates the
strong influence of the magnetic field on the convective flow.
The reason why the High case has such a strong magnetic field
is discussed in Section 3.6, and the suppression mechanism of
the convection velocity by the magnetic field is shown in
Section 3.7.

3.3. Energy Spectra

Figure 9 shows the kinetic and magnetic energy spectra. We
show the results at the layers at r= 0.73 (panel (a)), 0.85 (panel
(b)), and 0.9Re (panel (c)). The definition of the spherical
harmonic expansion for an arbitrary quantity Q(θ, f) is
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where * denotes the complex conjugate. The kinetic E ℓkin ( ) and
magnetic E ℓmag( ) energy spectra are calculated as
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Figure 7. The radial magnetic field Br at r = 0.85Re is shown. The format is the same as Figure 2. Movie is available at https://youtu.be/0C6XFdYDkKk.
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The tendency of the kinetic energy spectra is almost the same
among the different layers. While the large-scale (ℓ< 10)
energy does not change from the Low to Middle cases (blue
and green lines, respectively), the energy is significantly
reduced in the High case (green line). This reduction is one of
the main topics in this paper. The relation between the kinetic
and magnetic energies depends on the resolution. When the
magnetic energy surpasses the kinetic energy, we expect an
efficient small-scale dynamo (e.g., Rempel 2014). In the Low
case, while the magnetic energy exceeds the kinetic energy in
the deep layer (r= 0.73Re, panel (a)) in the small scale
(ℓ∼ 40), this clear excess cannot be seen at the shallower layer
(r= 0.9Re, panel (c)). The inefficient small-scale dynamo in a
shallower layer is a common feature in the global dynamo
calculation (e.g., Hotta et al. 2014). Because the shallower
layer has a smaller energy injection scale of the convection
because of a small pressure/density scale height and a short

timescale for downward magnetic energy transport, we need a
high resolution to resolve the small-scale dynamo (see
discussion by Stein & Nordlund 2002; Vögler & Schüss-
ler 2007). This difficulty of the small-scale dynamo is solved in
the Middle case (orange line). While the turnover scale depends
on the layer depth, the excess of the magnetic field in the small
scales is achieved in all the layers in the Middle case. The
situation drastically changes in the High case (green line). The
kinetic energy is reduced in all the scales but especially in the
large scale (ℓ< 30). This significant suppression is seen at all
depths. As a result, the magnetic energy exceeds or is
comparable to the kinetic energy in all scales.

Figure 8. (a) Longitudinal rms velocity (see Equation (11)) and (b) the ratios of
the magnetic energy to the kinetic energy are shown. The blue, orange, and
green colors show the results in Low, Middle, High cases. The same color
format is used in the following figures unless otherwise noted. The solid and
dashed lines in panel (a) are radial vr(RMS), and horizontal vh(RMS) longitudinal

rms velocities, where the horizontal velocity is defined as v v vh
2 2= +q f . The

black dashed line in panel (b) indicates the equiparition level, i.e., Emag(RMS)/
Ekin(RMS) = 1. The results show that increasing the resolution decreases the
convection velocity while increasing the magnetic field strength.

Figure 9. The energy spectra at r = 0.73Re (panel (a)), r = 0.85Re (panel (b)),
and r = 0.9Re (panel (c)) are shown. The solid and dotted lines show the
kinetic Ek and magnetic Em energies, respectively. In this plot, only the m ≠ 0
mode is shown to exclude contributions from the differential rotation. The
large-scale kinetic energy is significantly suppressed in the High case (green
line) compared with the other cases.
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3.4. Mean Flows

Figure 10 shows the differential rotation 〈Ω〉/2π and the
meridional flow 〈vm〉= 〈vr〉er+ 〈vθ〉eθ. The angular velocity is
defined as Ω=Ω0+Ω1 and v r sin1 qW = f ( ). While the Low
case shows the fast pole (panel (a)), we reproduce the fast
equator in the High case as shown in HK21. The reason why
we have the fast equator in the high-resolution calculation is
discussed in Section 3.9. Also, the differential rotation succeeds
in avoiding the Taylor–Proudman constraint, i.e., ∂Ω/∂z≠ 0,
where z is the direction of the rotational axis. This topic is
discussed in Section 3.8. The meridional flow structure also
depends on the resolution (Figure 10(d), (e), (f)). In the Low
case, an anticlockwise flow is dominant, and we can see a clear
poleward flow around the surface. We can observe a tiny
clockwise cell around the base of the convection zone. In the
Middle case, the meridional flow is separated around the
tangential cylinder of the base of the convection zone.
Anticlockwise and clockwise flow cells are seen in low and
high latitudes, respectively. In the High case, a clockwise
meridional flow is dominant throughout the convection zone.
The poleward flow around the base of the convection zone is an
essential feature for the fast equator (see Section 3.9). The
poleward meridional flow around the surface becomes weak in
Middle and High cases. Note that we can recover clear
poleward meridional flow when the top boundary is closer to
the real solar surface (Hotta et al. 2015a). In a high-resolution
calculation, we have already checked this tendency and will
introduce it in a future publication (H. Hotta, K. Kusano &
T. Sekii, 2022, in preparation).

3.5. Nondimensional Parameters

In this subsection, we evaluate several nondimensional
parameters for comparisons with the previous studies. Since we
do not use any explicit diffusivities (viscosity ν, magnetic
diffusivity η, and thermal conductivity κ), the effective
diffusivities, νeff, ηeff, and κeff need to be evaluated. The
evaluation procedure is shown in Appendix E. We evaluate the
effective viscosity from the kinetic energy spectra. Since we
use the same numerical scheme for the magnetic field and the
entropy as the velocity, the Prandtl number Pr= νeff/κeff, and
the magnetic Prandtl number Pm= νeff/ηeff are assumed to be
unity. The mean rms velocity vRMS is defined as

v v r dr r dr. 18
r

r

r

r

RMS RMS
2 2

min

max

min

max

ò ò= ( )( )

The nondimensional numbers are defined as follows:

1. Reynolds number Re( ) (Featherstone & Miesch 2015).

v d
Re 19RMS

effn
= ( )

where d r rmax min= - is the radial extent of the
computational domain.

2. Rayleigh number (Ra) (Gastine et al. 2014).

g d s

c
Ra 200

3

p0 eff effn k
=

D
( )

where g0 and cp0 are the gravitational acceleration and the
heat capacity at constant pressure at the outer boundary

Figure 10. Differential rotation 〈Ω〉/2π (panels (a), (b), (c)) and meridional flow 〈vθ〉 (panels (d), (e), and (f)) in Low (panels (a), (d)), Middle (panels (b), (e)), and
High (panels (c), (f)) are shown. The black lines in the lower panels are stream lines of the mass flux ρ0vm, (see Appendix A). The solid and dashed lines indicate the
clockwise and the counterclockwise flows, respectively. The solar-like differential rotation, i.e., the fast equator is reproduced in the High case (panel (c)).
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r rmax= . s s smax min1 1D = -( ˜ ) ( ˜ ), where s1̃ is the
horizontally averaged entropy perturbation.

3. Flux Rayleigh number (RaF) (Featherstone & Hind-
man2016b).

g F d

c T
Ra 21F

0 0
4

p0 t t eff effr n k
= ( )

where F0, ρt, and Tt are the energy flux density, the
background density ρ0, and the background temperature
T0 at r rmax= , respectively.

4. Ekman number (Ek) (Gastine et al. 2014).

d
Ek 22eff

0
2

n
=

W
( )

5. Convective Rossby number (Roc) (Gastine et al. 2014).

Ro
RaEk

Pr
23c

2
= ( )

6. Rossby number (Ro) (Featherstone & Miesch 2015).
v

d
Ro

2
24RMS

0
=

W
( )

7. Local Rossby number (Roℓ) (Christensen & Aubert 2006).

ℓ v

d
Ro , 25ℓ

u RMS

0p
=

W
( )

where ℓu is the mean spherical harmonic degree defined
as

ℓ ℓE ℓ dℓ E ℓ dℓ. 26
ℓ ℓ

u
0

h
0

h
max max

ò ò= ( ) ( ) ( ) /

Eh
 is the kinetic energy spectra of the horizontal velocity.
We evaluate it at r= 0.83Re.

All these values are summarized in Table 1. Thanks to a large
number of grid points and the slope-limited artificial viscosity,
the effective diffusivities are significantly reduced, and the
Reynolds and Rayleigh numbers reach huge values. Con-
vective and ordinary Rossby numbers Roc and Ro are typical
values for the solar simulations (Featherstone & Miesch 2015;
Mabuchi et al. 2015). These are values for the transition
between the fast equator and the fast pole. In these values, the
effect of small-scale turbulence realized by the high resolution
is not considered. The local Rossby number using the kinetic

energy spectra is a way to consider the small-scale turbulence
(Christensen & Aubert 2006). Gastine et al. (2014) suggest that
the transition between the fast equator and the fast pole occurs
around Roℓ∼ 1. Our local Rossby numbers are much larger
than the critical value due to the small-scale turbulence. This
result indicates that only with the angular momentum transport
by the Reynolds stress, i.e., the turbulence, we cannot maintain
the solar-like differential rotation. This issue is again discussed
in Section 4.

3.6. Magnetic Field Generation

In this subsection, we discuss the generation mechanism of
the magnetic field, especially the superequiparition magnetic
field achieved in the High case (Figure 8), i.e., the magnetic
energy is larger than the kinetic energy. We analyze the
magnetic energy equation to investigate the mechanism. The
equation is as follows.

B
v B

B
B v

v

t

B

B

8 4

4

8
27

T

T

T

2

2

m ADV

m STR

m CMP

⎜ ⎟
⎛
⎝

⎞
⎠p p

p

p

¶
¶

= - 

+ 

- 

· [( · ) ]

· [( · ) ]

( · ) ( )

( )

( )

( )

  

  

  

There are three contributions to change the magnetic energy,
which are advection Tm(ADV), stretching Tm STR( ), and compres-
sion Tm(CMP). Figure 11(a) shows the spherically averaged
terms in Equation (27). The solid lines indicate the contribution
from the advection Tm(ADV). Around the top boundary, the
strong magnetic field is concentrated in the downflow region,
and the magnetic energy is transported downward. As a result,
the advection contribution is negative and positive in the near-
surface layer and the deep convection zone, respectively.
Because the higher resolution shows a stronger magnetic field,
this effect increases with increased resolution. Next, the dashed
lines are the contribution by the stretching term Tm STR( ). In most
of the convection zone, the amplitude decreases in the higher

Figure 11. Magnetic field generation process is discussed. (a) Horizontally (spherically) averaged magnetic energy production rate is shown. The solid, dashed, and
dotted lines indicate the magnetic energy production by the advection Tm(ADV), stretching Tm STR( ), and compression Tm(CMP), respectively. The definition of each term
is shown in Equation (27). Panels (b) and (c) show PDFs for vr vs. Tm STR( ) and vr and Tm(CMP) at r = 0.9Re, respectively. The results for panels (b) and (c) are obtained
from the High case. Panel (a) shows that the magnetic energy production by the stretching Tm STR( ) is mostly reduced by increasing the resolution, while the
compression Tm(CMP) increases. Large fraction of the stretching Tm STR( ) is negative in the downflow region vr < 0 (panel (b)), while the compression is mostly positive
there (panel (c)).
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resolutions. Because the magnetic field increases, the Lorentz
feedback is amplified, and the production rate of the magnetic
field decreases. Figure 11(b) shows the probability density
function (PDF) between the radial velocity vr and the stretching
term Tm STR( ). The result indicates that the main contribution of
the stretching occurs at the downflows (vr< 0). While the net
contribution of the stretching is positive, we can see a
significant negative contribution (energy transfer from magn-
etic to kinetic energies) in the downflow region. The
dependence of the stretching Tm STR( ) on the resolution
(Figure 11(a)) indicates that the stretching is not responsible
for the superequipartition magnetic fields in the High case.
Finally, we discuss the compression term Tm(CMP) shown with
the dotted lines in Figure 11(a). The amplitude of the
compression term monotonically increases with increased
resolution. Also, Figure 11(c) shows the PDF between the
radial velocity vr and the compression term Tm(CMP). Similar to
the stretching, the important compression occurs at the
downflow region, but the negative contribution of Tm(CMP) is
not significant. The reason why the fluid can overcome and
compress the strong magnetic field to amplify the field strength
is shown in Figure 12. PDFs between the magnetic pressure
(energy) and perturbation gas pressure are shown. The
perturbation gas pressure is defined as

p p p , 281 1 1¢ = - á ñ ( )

and is the deviation from the longitudinal average. We define
the gas pressure inside and outside the strong magnetic field as
pi and pe, respectively. The perturbation gas pressure defined
here is approximated as p p p1 i e¢ ~ - . The black dashed line in
Figure 12 indicates p B 81

2 p¢ = - , i.e., the magnetic pressure
is balanced with the gas pressure. In the Low case
(Figure 12(a)), the PDF distributes rather uniformly. Even the
small magnetic energy (∼108 dyn cm−2) has large perturbation
gas pressure (<−4× 107 dyn cm−2). In the High case
(Figure 12), the magnetic field strength is amplified, and most
of the strong magnetic field distributes on the p B 81

2 p¢ = -
line. Also, the region with a weak magnetic field and the low
gas pressure disappears. These results indicate that the gas
pressure maintains the superequipartition magnetic field
realized in the High case. Because the solar interior is in a
low Mach number situation, the internal energy is huge
compared with the kinetic and magnetic energies. If the

magnetic field is balanced with the gas pressure (internal
energy), the magnetic field strength can be a superequipartition
to the kinetic energy. The region with the weak magnetic field
and the low gas pressure disappears in the High case, indicating
that the dynamo is efficient enough to amplify all the small-
scale fields once the magnetic field enters the low gas pressure
region. This process where the internal energy amplifies the
magnetic field is similar to the explosion process (Moreno-
Insertis et al. 1995; Rempel & Schüssler 2001; Hotta et al.
2012a). In the explosion process, the rising motion in the

Figure 12. Probability density functions (PDFs) for p′1 vs. B
2/8π at r = 0.9Re are shown. Panels (a), (b), and (c) are results from the Low, Middle, and High cases,

respectively. The black dashed lines indicate p B 81
2 p¢ = - . The strong magnetic field achieved in the High cases is primarily located on the dashed line. This result

indicates that the strong magnetic field is maintained by the gas pressure.

Figure 13. PDFs for 1r¢ vs. B2/8π (panel (a)) and s′1 vs. B
2/8π (panel (b)) at

r = 0.9Re from the High case, respectively. The density fluctuation well
correlates with the magnetic field strength (panel (a)), while the entropy
fluctuation does not (panel (b)).

11

The Astrophysical Journal, 933:199 (30pp), 2022 July 10 Hotta, Kusano, & Shimada



superadiabatic stratification leads to an entropy difference
between the inside and outside of the flux tube. Figure 13
shows the PDFs between (a) the perturbation density and
magnetic pressure and (b) the perturbation entropy and the
magnetic pressure. While the density well correlates with the
magnetic pressure, the entropy does not. This result indicates
that the entropy does not contribute to the amplification and
that the process achieved in this study is different from the
explosion process.

Also, as shown in Hotta et al. (2015b), the absolute
amplitude of entropy perturbation increases with increased
resolution. This increase also occurs in this study (see
Section 3.7), and this tends to lower the gas pressure in the
downflow region (s1< 0) because the linearized equation of
state is expressed as

p

p

s

c
. 291

0

1

0

1

v
g
r
r

= + ( )

Again, Figure 13(b) shows that the correlation between the
entropy perturbation and the magnetic pressure is not good, and
this fact indicates that the increase of the entropy perturbation
does not contribute to amplifying the magnetic field.

We also investigate the location of the strong magnetic field
amplification. Figure 14 shows the PDF between the gas
pressure perturbation p′1 and the radial velocity vr. When we
compare the Low (panel (a)) and High (panel (c)) cases, the
low gas pressure region appears, especially at the downflow
region. Considering the result shown, we can draw an overall
picture of the amplification process of the superequipartition
magnetic field. A schematic picture is shown in Figure 15. In a
hydrodynamic case without the magnetic field (left panel),
when a fluid parcel in the upper layer descends, the parcel has a
low pressure compared with the external fluid in the lower layer
because of the stratification. This pressure imbalance is
instantaneously relaxed by the sound wave. In a magnetic
case, especially with an efficient small-scale dynamo like the
High case, the situation changes. When a fluid parcel goes
down to the lower layer, the small-scale magnetic field is
involved. The low gas pressure inside the magnetic field pi and
the magnetic pressure B2/8π are balanced with the external gas
pressure pe, i.e., pi+ B2/8π= pe. Thus, the magnetic energy is
amplified by the compression, i.e., maintained by the internal
energy.

We also discuss the spatial scale of magnetic field
amplification. The spectral magnetic energy is expressed by

*B BE ℓ ℓ ℓ
1

8
, 30mag

p
=( ) ( ) · ( ) ( )  

where^ and * denote the spherical harmonic transform and the
complex conjugate, respectively. Then, the time evolution of
E ℓmag( ) can be written as (see details in Pietarila Graham et al.
2010; Rempel 2014)

t
E ℓ T T T , 31mag m STR m ADV m CMP

¶
¶

= + +( ) ( )( ) ( ) ( )  

where

*B B vT c c
1

8
. ., 32m STR

p
=  +· ( · ) ( )( )  

*B v BT c c
1

8
. ., 33m ADV

p
= -  +· ( · ) ( )( )  

*B B vT c c
1

8
. ., 34m CMP

p
= -  +· ( · ) ( )( )  

where c. c. indicates the complex conjugate expression. Each
term in the spectral magnetic energy evolution at r= 0.9Re is
shown in Figure 16. The magnetic energy transfer by the
advection Tm ADV( ) does not depend on the resolution in a
middle (ℓ∼ 102) to large scale (ℓ∼ 1). The advection term
contribution Tm ADV( ) is typically negative because the down-
ward magnetic energy transport is dominant at this height.
Around the smallest scale in each resolution, Tm ADV( ) is
positive. The dominant magnetic energy production source is
the stretching Tm STR( ) , but the production rate decreases with
increased resolution, especially at the small scale because the
magnetic field strength and the resulting Lorentz feedback
increase. Meanwhile, the compression contribution Tm CMP( )
increases with the resolution at a middle scale (ℓ∼ 100). The
peak scale of the compression does not depend on the
resolution. This result also supports our presented explanation
of the amplification mechanism of the strong magnetic field. A
complex small-scale magnetic field is concentrated at the
downflow region. The field is strong enough to suppress the
turbulent stretching, but the compression can still work.

Figure 14. PDFs for vr vs. p1
¢ at r = 0.9Re. Panels (a), (b), and (c) show the results from the Low, Middle, and High cases. The large gas pressure perturbation p1

¢ in
the High case is observed in downflow regions vr < 0.
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3.7. Convection Driving

In this subsection, we discuss the driving mechanism of the
thermal convection. In particular, the mechanism in which the
large-scale convection is suppressed in the High case is
discussed.

For the discussion in this subsection, we additionally define
statistical values, spherical average Q̃, spherical rms Q(rms),
spherical correlation [Q1Q2], and normalized spherical correla-
tion Q Q1 1 as follows.

Q r QdS
1

4
35

Sòp
=

~( ) ( )

Q r Q Q dS
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4
36

S
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2òp
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We note that the spherical rms Q(rms) defined in Equation (36)
is different from the longitudinal rms Q(RMS) defined in
Equation (11). Figure 17 shows the superadiabaticity δ in
different cases. The superadiabaticity is defined as follows:

H

c

ds

dr
. 39

p

p
d = -

˜ ( )

We observe a thermal convectively stable region (δ< 0) in
all cases. This layer is common in an effectively high Prandtl
number convection (Bekki et al. 2017; Hotta 2017;
Käpylä 2019). The effective high Prandtl number is achieved
with the strong small-scale magnetic field. In a high Prandtl
number regime, the thermal structure does not diffuse, and low
entropy material is accumulated at the base of the convection
zone. Brandenburg (2016) also shows that a nonlocal
convection can cause this type of subadiabatic layer in his
analytical model. This process results in the convectively stable
region (δ< 0). Bekki et al. (2017) show that when the stable
region is achieved around the base of the convection zone, the
large-scale flow is suppressed, because the convection driving
scale in the deeper layer is larger because of the large pressure/
density scale height. Because the stable region expands and the
absolute value of superadiabaticity |δ| increases with the
resolution, this effect should contribute to suppressing the
large-scale convection. The difference of the superadiabaticity,
however, between the Low and Middle cases is larger than that
between the Middle and High cases, while the large-scale flow
is significantly suppressed only in the High case. This indicates
that the main reason for the large-scale suppression is not the
change of the superadiabaticity.
The basic value that determines the convection velocity is

the energy flux. In the solar convection zone, the energy flux is
fixed by the efficiency of the nuclear fusion. Figure 18 shows
different types of fluxes. Definitions of the enthalpy Fe, kinetic
Fk, Poynting Fm, radiative Fr, and total Ft flux densities are (see
Hotta et al. 2014)

F e
p p

v , 40re 1
1

0

0

0
2 1

⎛

⎝
⎜

⎞

⎠
⎟r r

r r= + - ( )

F v v
1

2
, 41rk

2r= ( )

F B B v v B v B B
1

4
, 42r rm

2 2

p
= + - +q f q q f f[( ) ( ) ] ( )

F F F , 43r rad art= + ( )
F F F F F , 44t e k m r= + + + ( )

where e is the internal energy calculated with the OPAL
repository. Frad and Fart are defined at Equations (7) and (8),
respectively. For convenience, the sum of the physics-based
radiation flux density Frad and an artificial energy flux density
Fart is called the radiative flux density Fr in this study.
In Figure 18, we integrate the flux densities over the full

sphere and evaluate each corresponding luminosity (flux). The
enthalpy flux Le (magenta) slightly decreases with increased
resolution. The decrease is more moderate than expected from
the convection velocity suppression (Figure 8). In the mixing
length theory, the enthalpy flux scales as L ve c

3µ , and the

Figure 15. Explanation of compression mechanism to generate the strong
magnetic field in thermal convection. The left panel shows the process in a
hydrodynamic case without the magnetic field. The right panel shows a case
with the magnetic field. The circle indicates the fluid parcel. The gray line in
the right panel is a magnetic field line. The gray arrow indicates the gas
pressure from an external fluid. When the magnetic field is absent, the gas
pressure inside the downflow fluid parcel pi is finally balanced with the external
gas pressure pe. When the magnetic field exists, the external gas pressure is
balanced with the internal gas pressure and the magnetic pressure, i.e.,
pi + B2/8π = pe.

Figure 16. Spectra of the magnetic energy production rate at r = 0.9Re are
shown. The stretching Tm STR( ) in the small scale is reduced in High case, while
the compression Tm CMP( ) increases.
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suppression of the convection velocity vc should have a strong
influence on the enthalpy flux. This deviation from the mixing
length theory is essential to investigate the suppression
mechanism of the convection velocity. The slight decrease of
the enthalpy flux can be compensated for by the kinetic flux. As
is usual, the kinetic flux is negative because the downflow has
larger kinetic energy. This is reduced because of the convection
velocity suppression. The Poynting flux has minor contribu-
tions, but the flux has a negative value. This downward
Poynting flux is also caused because the downflow region has
larger magnetic energy. Figure 19 shows the 2D energy flux
density distribution in the High case. The enthalpy flux density
does not show a significant dependence on the latitude
(Figure 19(a)). 〈Fk〉 is always negative in all latitudes. The
inward kinetic energy flux is most effective at the equator and
the poles (Figure 19(b)). Latitudinal variation is most
prominent in the Poynting flux (Figure 19(c)). 〈Fm〉 is positive
and negative at the low and high latitudes, respectively.

In this paragraph, we discuss why the energy flux (especially
the enthalpy flux) is maintained even with the suppressed
convection velocity. With the equation of state for the perfect
gas, the enthalpy flux density can be expressed as

F c v T . 45p re 0 1r~ [ ] ( )

Because the background density, ρ0, and heat capacity at
constant pressure, cp, do not change in a low Mach number

situation, the correlation between the radial velocity, vr, and the
temperature perturbation, T1, determines the enthalpy flux.
Figure 20 shows analysis to this end. Figure 20(a) shows the
spherical rms for the radial velocity vr(rms). As discussed, the
convection velocity is suppressed. Figure 20(b) shows the
spherical rms for the temperature perturbation T1(rms). T1(rms)

increases with increased resolution. The magnetic field is
amplified in the higher-resolution simulations that suppress the
mixing between the upflow and downflow. This process
increases the temperature perturbation (see also Hotta et al.
2015b). In addition, the latitudinal temperature difference
increases because of the presented process (see Section 3.8).
The increased latitudinal temperature difference also contri-
butes to increasing the spherical rms for the temperature T1(rms).
Figure 20(c) shows the normalized spherical correlation
between the radial velocity vr and the temperature perturbation
T1. The correlation decreases with the increase in the
resolution. This correlation should be good when the flow
obeys the thermal convection. In the high-resolution simula-
tions, small-scale turbulence, which does not behave as the
thermal convection, increases, and the correlation decreases. As
a result, the dimensional correlation [vrT1], which directly
determines the energy flux, stays the same among different
resolutions (Figure 20). As a summary, the suppressed
convection velocity and the worse normalized correlation are
compensated by the increase in temperature perturbation to
maintain the energy flux.
We also discuss the energy flux from the viewpoint of the

spatial scale. Figure 21(a), (b), and (c) show the spectra of the
radial velocity, the temperature perturbation, and these
correlations, respectively. As discussed already, the radial
velocity is suppressed in all the scales (Figure 21(a)). The
increase of the temperature perturbation in the High case is
mainly seen in the small scales (ℓ> 40, Figure 21(b)). These
results support our interpretation of the increase of the
temperature perturbation in the High case. We expect the
suppression of the mixing by the magnetic field to increase the
temperature perturbation effectively. This process is most
effective on a small scale. The combination of the decrease of
the radial velocity and the increase of the temperature
perturbation in the small scales leads to a situation where the
correlation v Tr 1

 in the small scale (ℓ> 40) stays the same
(Figure 21(c)). In addition, the higher-resolution calculation
has a long tail of the correlation on a smaller scale. This result
indicates that a significant fraction of the energy is transported
by the small-scale turbulence in the High case. To evaluate the
importance of the small scale in energy transport, we calculate
a value Sℓ defined as follows.

S
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Sℓ shows the fraction of the correlation from ℓ to ℓmax to the
total correlation. Figure 21(d) shows the dependence of Sℓ on
the resolution. Sℓ reaches unity around ℓ∼ 5 in the Low and
Middle cases, while ℓ∼ 20 is enough for Sℓ to reach unity in the
High case. This indicates that, in the High case, a significant
fraction of the energy is transported by the middle to small
scales (ℓ> 20), and the large scale cannot transport the energy.

Figure 17. Superadiabaticity |δ| is shown. The solid and dashed lines indicate
the positive and negative values of δ, respectively. Subadiabatic layer (δ < 0) is
extended by increasing the resolution.

Figure 18. The enthalpy (magenta), radiative (orange), kinetic (green), and
Poynting (blue) fluxes are shown. The solid, dashed, and dotted lines are the
results from High, Middle, and Low cases, respectively.

14

The Astrophysical Journal, 933:199 (30pp), 2022 July 10 Hotta, Kusano, & Shimada



We conclude that this is the main reason why the large-scale
convection is suppressed in the High case.
We also investigate the convection driving mechanism in the

viewpoint of the scale. In the analyses, we assume the
background density is constant in time. Similar to the spectral
magnetic energy Emag

 discussed in Section 3.6, the spectral

kinetic energy Ekin
 evolution equation can be written as

follows:

t
E T T T , 47kin k ADV k BUO k LOR

¶
¶

= + + ( )( ) ( ) ( )  

where

*v v vT c c
1

2
. ., 48k ADV 0r= -  +· · ( )( )  

*v gT p c c
1

2
. ., 49k BUO 0 1r r= - - +  +· ( )( )  

*v B BT c c
1

8
. . 50k LOR

p
=  ´ ´ +· ( ) ( )( )  

The result at r= 0.9Re is shown in Figure 22. We note that
while the Coriolis force should affect the spectral analysis, the
amplitude is 1–2 orders of magnitude smaller than the other
values, and we do not include it in our discussion. The general
tendency is that the buoyancy drives the thermal convection
and the advection, and the Lorentz force reduces the kinetic
energy in almost all the scales. Also, both the energy
production and the suppression on the large scale are small
in the High case. For all the contributions to the kinetic energy
transfer, the velocity is multiplied. In the High case, the kinetic
energy in the large scale is reduced, and the reduction of the
energy transfer seems an obvious result. To investigate the
effective importance of the large-scale suppression, we
normalize the kinetic energy transfer by *vv r
(Figure 22(b)). The normalized kinetic energy transfer by the
buoyancy Tk BUO( ) is reduced only in the High case. We also
observe the suppression of the Lorentz force contribution.
These results indicate that the suppression of the large-scale
kinetic energy is caused by the suppression of the buoyancy.
The magnetic field on a large scale does not directly contribute
to the large-scale suppression.

3.8. Meridional Force Balance

In this subsection, we discuss the force balance on the
meridional plane, especially about the Taylor–Proudman
constraint. The differential rotation in the High case does not
obey the Taylor–Proudman constraints, i.e., ∂Ω/∂z≠ 0, where
z indicates the direction of the rotational axis. To address this
aspect, we need to analyze the vorticity equation (e.g., Miesch
& Hindman 2011). The longitudinal component of the vorticity
equation in a steady state, ∂/∂t= 0, is written as (see also
Balbus et al. 2009, for more detailed discussions about the

Figure 19. Latitudinal dependence of the energy fluxes in the High case is shown.
Note that we adjust the color bar to emphasize the latitudinal dependence.
Panels (a), (b), and (c) show the range of 5 × 1010 < 〈Fe〉<1.5× 1011, −1.5×
1010 < 〈Fk〉 < −2 × 109, and −8 × 109 < 〈Fm〉 <8 × 109 erg cm−2 s−1, respec-
tively. Panels (a), (b), and (c) show the enthalpy, kinetic, and Poynting fluxes,
respectively.
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We show each term in the equation in Figure 23. To suppress
realization noise, especially in PADV ad PMAG, we use a
Gaussian filter with a width of 5× 5 grid points. We also show
the spherically averaged 1D profile of each term in Figure 24.
We use a Gaussian filter with a width of five grid points also for
the 1D profile. The raw data are shown with transparent lines.
The results clearly show that the deviation from the Taylor–
Proudman theorem (PCOR) is mainly balanced by the baroclinic
term (PBAR). We see a significant deviation from the Taylor–
Proudman theorem around the top boundary. This is main-
tained both by the advection (PADV) and the magnetic field
(PMAG). While this tendency is important to discuss the near-
surface shear layer, we leave this for our future publication for
the near-surface layer (H. Hotta, K. Kusano & T. Sekii 2022, in
preparation). In this paper, we focus on the discussion about the

Taylor–Proudman theorem in the middle of the convection
zone. The result shows that the Coriolis force is balanced with
the baroclinic term, i.e., the latitudinal entropy gradient. Hotta
(2018) argues that the efficient small-scale dynamo and
generated magnetic field help construct the entropy gradient.
As shown in Section 3.7, the temperature perturbation
increases with increased resolution. In addition, the convec-
tion velocity is reduced in the higher resolutions (Figure 8).
The Coriolis force bends a warm upflow (cold downflow)
poleward (equatorward). Both the high-resolution effects
(increasing the temperature perturbation and reducing the
convection velocity) enhance this process. Figure 25 shows
the entropy and the temperature distributions in the High case.
We succeed in reproducing the negative entropy and
temperature gradient in the whole convection zone. Miesch
et al. (2006) enforce the entropy gradient at the bottom
boundary to avoid the Taylor–Proudman constraint (see also
Miesch et al. 2008; Fan & Fang 2014). Also, Brun et al.
(2011) maintains the entropy gradient by a dynamical
coupling of the convection and radiation zones (see also
Rempel 2005). In their studies, maintaining the negative
entropy gradient in the near-surface equator is difficult, and
the differential rotation tends to be the Taylor–Proudman type
topology in the near-surface equator region (for examples, see
Figures 10 and 13 of Brun et al. 2011). In our simulations, the

Figure 20. Each panel shows (a) rms radial velocity, (b) rms temperature perturbation, (c) correlation between vr and T1 (see Equation (38)), and (d) normalized
correlation between vr and T1 (see Equation (37)). The convection velocity and the vr vs. T1 normalized correlation decreases, while the temperature perturbation
increases. This balance maintains almost the same enthalpy flux between cases.
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entropy gradient is generated by the turbulent process
throughout the convection zone, and the differential rotation
can avoid the Taylor–Proudman constraint, which is con-
sistent with the observations (e.g., Schou et al. 1998).
Figure 26 shows the resolution dependence of the entropy
and the temperature gradient. It is clearly shown that the
entropy and the temperature gradient increase with resolution.
This result also indicates that the magnetic field maintains the
entropy and temperature gradients because the magnetic
strength increases with the resolution. The temperature
difference between the equator and the pole at the base of
the convection zone is 8 K in the High case. This value
corresponds to the AB3 case in Miesch et al. (2006) with
which they argue their most solar-like profile.

Recently Matilsky et al. (2020) show that the fixed flux
boundary condition, which is similar to that in this study, is
easier to generate the non-Taylor–Proudman differential
rotation than the fixed entropy boundary condition. They show
that the entropy gradient is generated by the anisotropic
enthalpy flux caused by the Busse column in the low latitude.
Since we use the fixed flux boundary condition, our calculation
should also be benefited by the numerical setting.

3.9. Angular Momentum Transport

This subsection discusses the angular momentum transport,
and we explain why the equator is rotating faster than the polar
region. To discuss the angular momentum transport, we should
start from the angular momentum conservation law that is

approximated as

t
G G G , 520 REY MER MAGr

¶
¶

á ñ = + +( ) ( )
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and r sinl q= . u v 2
0l l l= = + Wf f is the specific angular

momentum. GREY, GMER, and GMAG are the angular momentum
by the turbulence, mean flow (meridional flow), and magnetic
field. We define Bm= Brer+Bθeθ. Because the large-scale
magnetic field 〈B〉 is weak in this study (see Table 1), we do
not divide the magnetic contribution GMAG to turbulent
component B¢ and large-scale component 〈B〉.
At first, we discuss how to transport the angular momentum

equatorward in the High (and Middle) cases. To this end, we
evaluate the temporal evolution of the latitudinal angular
momentum flux density at θ= π/4. The latitudinal angular
momentum flux densities are as follows:

F v v , 56tur 0r l= á ¢ ¢ñq f ( )

F v , 57mer 0r= á ñá ñq ( )

F
B B

4
, 58mag l

p
= -
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Figure 21. Panels show the spectra of (a) radial velocity, (b) temperature perturbation, (c) correlation between radial velocity vr and temperature T1. Panel (d) shows
normalized, summed correlation Sℓ defined at Equation (46). All the data are calculated at r = 0.9Re. The dashed lines indicate spectra including m = 0 mode. Large
fraction of the energy is transported in the small scale in the High case.
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F F F F . 59tot tur mer mag= + + ( )

These fluxes are radially averaged at θ= π/4 in Figure 27.
Although the turbulent angular momentum transport (orange
line, Ftur) is positive (equatorward) in all cases, the resulting
differential rotation is different in all cases. This indicates that
the equatorward angular momentum transport cannot be the
reason why we have the fast equator in the High case. A
prominent difference can be seen in the angular momentum
transport by the meridional flow (blue line, Fmer). Fmer is
negative (poleward) in the initial phase (<600 days) in all
cases. This poleward angular momentum transport leads to the
fast pole in the initial phase (see Figure 35 in Appendix C).
While Fmer stays almost negative in the Low case, the other
cases clearly show positive Fmer in the latter phase. This is
the reason why we have a fast equator in the Middle and
High cases. Because of the low Mach number situation,

v 00 mr =· ( ) is approximately satisfied. This leads to
∫ρ0vθrdr∼ 0 at an arbitrary latitude with the closed boundary
condition for the radial velocity. Because the specific angular

momentum is

r sin , 602 2
1 0qá ñ = áW ñ + W( ) ( )

the deeper layers (small r) tend to have smaller angular
momentum than near-surface layers (large r). The equatorward
meridional flow in the middle of the convection zone is the
direct reason for accelerating the equator. Due to the mass
conservation, the fast meridional flow, which overcomes the
poleward angular momentum transport near the surface,
requires the poleward meridional flow around the base of the
convection zone. The poleward meridional flow around the
base of the convection zone is the primary key to why we have
the fast equator in the High case.
Gyroscopic pumping is useful in understanding the main-

tenance mechanism of the meridional flow. Gyroscopic
pumping is the angular momentum conservation law in a
steady state.

v v
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In this study and the solar case, the differential rotation is weak,
i.e., Ω1/Ω0∼ 0.1, and the angular momentum á ñ does not
change significantly even after the differential rotation is
constructed. Thus, the gyroscopic pumping indicates that the
angular momentum transport by the Reynolds stress and the
magnetic field determines the topology of the meridional flow.
Figure 28 shows each term in Equation (52). From this figure,
we can discuss two topics: one is the generation mechanism of
the poleward meridional flow around the base of the convection
zone, and the other is the acceleration mechanism of the near-
surface equator.
At first, we discuss the generation mechanism of the

meridional flow. Because of the poleward meridional flow
around the base of the convection zone, the angular momentum
increases (Figure 28(e) and (f)). This is compensated for by the
magnetic angular momentum transport (GMAG, Figure 28(h)
and (i)). In other words, the poleward meridional flow around
the base of the convection zone is maintained by the magnetic
angular momentum transport. The magnetic angular momen-
tum transport decreases the angular momentum around the base
of the convection zone, and the poleward meridional flow
increases it as compensation. While the turbulent angular
momentum transport tends to increase the angular momentum
around the base of the convection zone (Figure 28(a), (b), and
(c)), this is not enough to compensate for the decrease by the
magnetic angular momentum transport (see also Figure 34 for
the sum of GREY and GMER).
As for the increase of the angular velocity in the near-surface

equator, the magnetic angular momentum has the main
contribution. The major difference in the differential rotation
between the Middle and High cases is the angular velocity in
the near-surface equator (Figure 10). The High case has a large
angular velocity there, which is more consistent with the solar
observation. It is apparent that this increase in the angular
velocity in the High case is caused by the magnetic angular
momentum transport (GMAG, Figure 28(i)). In all cases, the
near-surface equator is accelerated by GMAG, but the amplitude

Figure 22. Spectra of the kinetic energy production rate at r = 0.9Re are
shown. Panel (b) shows the values shown in panel (a) normalized with

*v v rr r . The large-scale buoyancy Tk BUO( ) and the Lorentz force Tk LOR( ) are
reduced in the High case. This result indicates that the suppression of the
kinetic energy on the large scale in the High case is not directly caused by the
Lorentz force.
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of GMAG increases in the High case because the magnetic field
strength increases with the resolution (see Section 3.6).

In summary, the equatorward latitudinal angular momentum
transport is done by the meridional flow constructed by the
magnetic angular momentum transport. To have the large
angular velocity in the near-surface equator, we need additional

contributions by the magnetic field, which is stronger in the
higher resolutions. For the angular momentum transport, both
the strength and correlation are important. We analyze the
result in this regard in the following paragraph.
Figure 29 shows the correlation between the velocities and

the magnetic fields. For both the Reynolds stress v vi já ¢ ¢ñ and the
Maxwell stress 〈BiBj〉, the main contribution is the radial
transport. The distributions of GREY and GMAG are roughly
explained by the radial angular momentum transport. The
Reynolds stress transports the angular momentum radially
inward, while the Maxwell stress transports it in the opposite
direction. The radially inward angular momentum transport is a
usual result with a high Rossby number (weak rotational
influence) situation (see Gastine et al. 2013; Hotta et al. 2015a;
Featherstone & Miesch 2015; Karak et al. 2015). While the
Rossby number (Ro) decreases from the Low to High cases
(see Table 1), the radially inward angular momentum transport
does not change much or even increase (see also normalized
correlation in Figure 36). This result indicates the weak
influence of rotation on the small-scale flow in all the cases.
The local Rossby number (Roℓ), which increases from the Low
to High cases, measuring the rotational influence, is not small
enough to maintain the solar-like differential rotation by the
Reynolds stress. As explained in the previous paragraph, the
essential reason for the poleward meridional flow around the
base of the convection zone and the large angular velocity
around the near-surface equator is the magnetic angular
momentum transport. Figure 29 shows that the negative
correlation 〈BrBf〉, i.e., the radially outward, magnetic angular
momentum transport, is responsible for both of these. The

Figure 23. Each term in the vorticity equation is shown. The non-Taylor–Proudman state ∂Ω/∂z ≠ 0 is mainly maintained by the baroclinic term PBAR in the deep
convection zone.

Figure 24. The blue (PCOR), green (PBAR), magenta (PMAG), and orange
(PADV) lines show the spherically averaged terms in the vorticity equation. The
transparent lines indicate the raw data without radial filtering.
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radially outward transport decreases and increases the angular
momentum at the base and the top of the convection zone,
respectively.

The main possible reasons for the magnetic field correlation
are the shear and the alignment to the flow. The shear term of
the induction equation is written as

B
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Thus, the shear of the flow can correlate the magnetic field
components. In addition, the magnetic induction equation in
the high conductivity limit is
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This means that, when the magnetic field is parallel to the
velocity, v×B= 0, the magnetic field does not evolve more.
Conversely, the magnetic field tends to be parallel to the velocity.
To understand the origin of the negative correlation of 〈BrBf〉,
Figure 30 shows the PDF of (a) BrBf versus v r sinr f q¶ ¶ , (b)
BrBf versus ∂vθ/∂r, and (c) BrBf versus v vr¢ ¢f at r= 0.9Re in the
High case. While we do not see clear correlation between BrBf
and shears (Figure 30(a) and (b)), BrBf and v vr¢ ¢f correlate well.
This indicates that the origin of the negative 〈BrBf〉 is not the
flow shear but the negative correlation of velocities v vrá ¢ ¢ñf .

Figure 29(a), (b), and (c) shows that v vrá ¢ ¢ñf is negative at all
latitudes. This is caused by the Coriolis force. The Coriolis force
in the longitudinal equation of motion is

v

t
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Figure 25. (a) s s1 1á - ñ and (b) T T1 1á - ñ
~

in the High case are shown. 〈〉 and ˜
indicate the longitudinal average and the spherical average, respectively (see
Equations (9) and (35)).

Figure 26. Latitudinal dependence of (a) entropy and (b) temperature. The
deviation from the spherical averaged longitudinally.
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Figure 27. Radially averaged latitudinal angular momentum flux at θ = π/4 is shown. Panels (a), (b), and (c) show the results from Low, Middle, and High cases,
respectively. The orange, blue, green, and black lines show the turbulent Ftur, meridional flow Fmer, magnetic Fmag, and total Ftot angular momentum fluxes,
respectively. For the definition of the angular momentum of transport, see Equations (56) to (59). We use a Gaussian filter with 60 day width to reduce the realization
noise. The result shows that the sign of the transport by the meridional flow Fmer changed the sign from Low to Middle cases. This is the main reason for the fast
equator.

Figure 28. Each term in gyroscopic pumping is shown. The left, middle, and right columns show the results from Low, Middle, and High cases, respectively. The top,
middle, and low rows show GREY, GMER, and GMAG, respectively.
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Thus, the radial velocity, which is the source of the thermal
convection, is bent by the Coriolis force, and the negative v vrá ¢ ¢ñf
is caused. Because the magnetic induction equation only
suggests that the magnetic field tends to be parallel to the

velocity, it is possible that 〈BrBf〉 is the origin of the v vrá ¢ ¢ñf . To

confirm the origin of v vrá ¢ ¢ñf , we compare the hydro case (High-
HD) and the magnetic case (High) in Figure 31 with PDFs.
Figure 31 shows PDFs of (a) vr¢ versus v¢f; (b) Br and Bf from

Figure 29. Correlations for the angular momentum transport are shown. The left, middle, and right columns show the results from Low, Middle, and High cases,
respectively. The first, second, third, and fourth rows show v vr0r á ¢ ¢ñf , v v0r á ¢ ¢ñq f , −〈BrBf〉/4π, and −〈BθBf〉/4π, respectively.
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the High case are shown. Figure 31(c) shows the correlation of
vr¢ versus v¢f from the High-HD case. Even in the hydro case, we

see a similar correlation between vr¢ and v¢f (Figure 31(c)) to the
magnetic case (Figure 31(a)). This result shows that the
magnetic field is not the main origin of v vrá ¢ ¢ñf , but the velocity
is the origin of 〈BrBf〉.

We decompose the Reynolds stress to radial r and
colatitudinal θ components. We note that the decomposition
of parallel and perpendicular to the rotational axis directions,
i.e., z and λ directions, are also useful. Since the constant surface
of the specific angular momentum is parallel to the cylindrical
surface (constant λ) in the leading order, it is difficult for the
meridional flow to transport the angular momentum through the
constant λ surface, i.e., v dz 00ò r á ñá ñ ~l  due to the anelastic

approximation ∫ρ0〈vλ〉dz∼ 0. Thus the meridional flow mainly
transports the angular momentum in the z direction. This
tendency indicates that v vzá ¢ ¢ñf and v vá ¢ ñl f are responsible for the
generation of the meridional flow and the differential rotation,
respectively.

In this study, we analyze the Reynolds stress just as the
velocity correlation v vi já ¢ ¢ñ. The stress includes the diffusive
part, i.e., so-called turbulent viscosity and nondiffusive part, so-
called Λ effect (Ruediger 1980). If we can distinguish these two
from the Reynolds stress, we can directly evaluate the
anisotropy.

4. Summary and Discussion

We analyze the simulation data of Hotta & Kusano (2021) in
which the solar-like differential rotation, i.e., the fast equator
and the slow pole, is presented. Figure 32 summarizes our
revealed processes for the fast equator. (a) The high resolution
suppresses the numerical diffusion and enhances the amplifica-
tion of the magnetic field. The compression is the main
mechanism to generate the superequipartition magnetic field.
Because the strong magnetic field is balanced with the gas
pressure, the internal energy is available for amplification. (b)
The Coriolis force causes the negative correlation of velocities
v vrá ¢ ¢ñf , which is typical in the large Rossby number regime. (c)
The magnetic field tends to be parallel to the flow and also has

Figure 30. 2D PDFs of (a) BrBf vs. v r sinr f q¶ ¶ , (b) BrBf vs. ∂vθ/∂r, and (c) BrBf vs. v vr¢ ¢f at r = 0.9Re in the High case, are shown. BrBf well correlates with
v vr¢ ¢f, while the others do not. This indicates that BrBf correlation is possibly originated from v vr¢ ¢f.

Figure 31. Correlations of (a) vr¢ vs. v¢f; (b) Br and Bf from the High case are shown. Panel (c) shows the correlation of vr¢ vs. v¢f from the High-HD case. All the data are
at r = 0.9Re.
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a negative correlation 〈BrBf〉< 0. This transports the angular
momentum radially outward. We can simply think that the
radially outward, magnetic angular momentum transport is the
back reaction to the Coriolis force. We call it the Punching ball
effect because the magnetic field behaves as if it is being
punched by the Coriolis force. The Punching ball, which is the
radially outward, magnetic angular momentum transport, is the
essential process and our new finding for the fast equator. (d)
Because of the radially outward angular momentum transport,
the angular momentum around the base of the convection zone
decreases. To compensate for the decrease, the meridional flow
becomes poleward around the base of the convection zone. To
satisfy the mass conservation, an equatorward meridional flow
in the middle of the convection zone is caused. Because the
specific angular momentum is larger in the middle of the
convection zone than at the base with the same latitude, the
equatorward flow leads to the net equatorward angular
momentum transport by the meridional flow. (e) Both the
Maxwell stress (panel (c)) and the meridional flow (panel (d))
are essential to the fast equator in the near-surface layer. A
prominent difference between the Middle and High cases is the
angular velocity at the near-surface equator (see Figure 10(b)
and (c)). This difference is caused by the magnetic field
strength in these two cases. In conclusion, we suggest that the
magnetic field has two roles in the construction of differential

rotation. One is the maintenance of the meridional flow; the
other is the angular momentum transport to maintain the fast
near-surface equator.
Brun et al. (2004) have already shown that the Maxwell

stress tends to be opposite to the Reynolds stress. In their study,
the radial Reynolds stress is positive, i.e., the radially outward
angular momentum transport, and the radial Maxwell stress is
negative. This indicates that the differential rotation is
maintained by the Reynolds stress in Brun et al. (2004), and
the Maxwell stress suppresses it. In this study, we find that the
radial Maxwell stress is positive and is the main driver through
the Punching ball effect. This is qualitatively different from the
previous models.
Many studies have already suggested that the magnetic field

can relax the criterion of the rotation rate for the fast equator
(Fan & Fang 2014; Gastine et al. 2014; Karak et al. 2015;
Mabuchi et al. 2015) since the magnetic field suppresses the
convection velocity. The new role found in this study is
qualitatively different from these studies. While the convection
velocity is also suppressed in this study, it looks like only the
suppression is not enough for the fast equator since increasing
the resolution leads to a larger inward angular momentum
transport by turbulence (Figure 29), which is a negative factor
for the fast equator (see also Figure 36 for normalized
correlations). The magnetic angular momentum transport has

Figure 32. Summary explanation of the process for the fast equator.
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an essential role in the fast equator. The negative correlation of
B Brá ¢ ¢ñf is also found by Karak et al. (2015), but the amplitude is
more than two orders of magnitude smaller than the Reynolds
stress (see their Figure 18).

In the following subsections, we discuss the remaining issues
and our future perspective in several aspects.

4.1. Magnetic Field Intensification

In this study, compression is an important process to amplify
the magnetic field. In the process, we can use the internal
energy, which is about 106 times larger than the kinetic energy
in the deep convection zone. We have not reached numerical
convergence, i.e., the higher resolutions show a stronger
magnetic field (see Figure 8(b)). Featherstone & Hindman
(2016b) show that the kinetic energy can converge to a specific
value by increasing the Rayleigh number in their hydrody-
namic run around Ra∼ 105. Hindman et al. (2020) carry out a
similar survey with the rotation and find the saturation around
Ra∼ 107 with the solar rotation case. Our Rayleigh number is
larger than these critical Rayleigh numbers. These results
indicate that when we carry out a hydrodynamic run, the kinetic
energy is expected to be converged. In addition, our result
shows that the magnetic field generation requires further
resolution to be numerically converged than the hydrodynamic
models. Currently, we cannot conclude the magnetic field
strength in the real Sun, but it is most probably stronger than
our simulation result. The strength may be determined by a
balance between the generation of compression and the
destruction by the small-scale turbulence. At the same time,
provided our suggested mechanism of the magnetic angular
momentum transport is correct, we do not expect that the
magnetic field strength in the real Sun is much stronger than
our simulation because our differential rotation is similar to the
observational results. In our simulation, the magnetic field
directly determines the differential rotation topology. If our
magnetic field strength is completely different from reality, the
differential rotation is also away from reality. This is not the
case in the simulation. Of course, there is a possibility that our
suggested mechanism is incorrect. We need to perform higher-
resolution simulations to reach numerical convergence and to

understand magnetic field strength in reality and the validity of
the mechanism.
We note that we use the RSST in our calculation. When the

Alfvén velocity exceeds the reduced speed of sound, the
amplification efficiency should be decreased. In this study, the
maximum magnetic pressure is B2/(8π)∼ 1× 108dyncm−2

(see Figure 12), and the effective gas pressure evaluated
with the reduced speed of sound at r= 0.9Re is c0 s

2r
2.4 10 dyn cm2 9 2x ~ ´ - . These values indicate that we can

ignore the influence of the RSST on the compression in this
study. We also emphasize that, even if the RSST influenced the
result, it would weaken the magnetic field strength. Our
conclusion, i.e., a strong magnetic field constructs the
differential rotation, should be robust.

4.2. Convection Suppression

Figure 33 shows a comparison of kinetic energy spectra of
the longitudinal velocity Ef between the simulations and an
observation. We follow the definition of the spectra of Gizon &
Birch (2012), where

v dV

dV

E

r

2
. 66V

V ℓ

2

0
å

ò

ò
=

f f

>

( )

To exclude the contribution of the differential rotation, we
exclude m= 0 mode, where m is the azimuthal wavenumber.
The integration is carried out in the whole computational
domain. The magenta line shows the result from the High case
in this study. The blue line shows the result from Hotta et al.
(2019). In the calculation, the horizontal extent is restricted to
200Mm, but it covers the whole convection zone vertically
from the base to the photosphere. As suggested by Hotta et al.
(2019), the existence of the photosphere does not change the
energy spectra in the deeper layers, and the magenta and blue
lines are consistent. The black line shows the result from
another global calculation (Miesch et al. 2008) at r= 0.98Re.
The orange line indicates the upper limit suggested by the local
helioseismology (Hanasoge et al. 2012). While we still have a
large discrepancy between the simulation and the observation,
the difference is relaxed. In our simulation, the large-scale
convection is suppressed because the small-scale turbulence
can efficiently transport the energy. Also, in this regard, the
higher resolution possibly changes the result more. Meanwhile,
recently, the helioseismology results have been revised
(Proxauf 2021). Our simulation results in the High case are
highly consistent with the revised result of Greer et al. (2015).
Currently, we cannot conclude if our convective velocity is
correct or not. A more detailed comparison between the
simulations and observation is needed.
Miesch et al. (2012) evaluate the lower limit of the

convective velocity from the dynamical balance for the
differential rotation. The evaluated value is not consistent with
the local helioseismology (Hanasoge et al. 2012). In their
study, they do not consider the magnetic contribution for the
construction of the differential rotation. In this study, we find
that the magnetic field is a dominant contribution. This means
that the convection velocity has large freedom. The Rossby
number does not solely determine the differential rotation. One
remaining restriction on the convection velocity is the energy
flux. The solar luminosity Le is determined; thus, there should

Figure 33. Comparison of kinetic energy spectra Ef of longitudinal solar
velocities in simulations and an observation. We show data from the local
helioseismology (Hanasoge et al. 2012; orange), ASH simulation as
r = 0.98Re (Miesch et al. 2008; black), a local calculation (Hotta
et al. 2019; blue), and the High case in this study (magenta). Except for the
ASH simulation, we show the energy spectra at r = 0.96Re.
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be a lower limit on the convection velocity to transport the
required energy. Our simulation also shows that the temper-
ature perturbation increases with the resolution. If the
temperature perturbation increases, the lower limit on the
convective velocity should be relaxed. At the same time, a
significantly large temperature perturbation should be detected
by the local helioseismology with a mean travel time. Future
observations for the convection velocity as well as the
temperature perturbation will contribute to solving the problem.

4.3. Meridional Flow

Currently, the local helioseismology for the meridional flow
is still controversial. Zhao et al. (2013) indicate the double cell
flow with the poleward meridional flow around the base of the
convection zone. On the other hand, Gizon et al. (2020) show
the equatorward meridional flow around the base. In this
regard, our result is more consistent with Zhao et al. (2013)ʼs
result. This discrepancy is caused by the difference in
observations. Zhao et al. (2013) adopt Solar Dynamics
Observatory (SDO) data, and Gizon et al. (2020) use both
Solar and Heliospheric Observatory (SoHO) and Global
Oscillation Network Group (GONG) data. Gizon et al. (2020)
find that SoHO and GONG data are consistent, but SDO data
show a systematic difference from these two data. We should
also note that the observations still have a tiny sensitivity in the
deep convection zone because it requires long enough,
separated two endpoints of Δ∼ 45° for evaluating the travel
time (Giles 2000). The observation has not accomplished
enough precise observations for these separated two endpoints.
For example, Gizon et al. (2020) show meridional flow results
with and without the data with Δ> 30°, but the result does not
change. This indicates that the data with Δ> 30° are not used
for their inversion because of the large error, and the
equatorward meridional flow is caused by the constraint of
the mass conservation. This result indicates that we cannot
conclude that our meridional flow is inconsistent with Gizon
et al. (2020)ʼs result. In order to check whether our meridional
flow model is compatible with the helioseismic observations, it
is needed to compute the seismic travel times based on this
solution and to compare them with the observations. Observa-
tions from different viewing angles, such as the Solar Orbiter
(Müller et al. 2013), also enable us to understand the whole
topology of the meridional flow, which should be of significant
impact on the understanding of the convection and magnetic
fields in the solar convection zone.

We thank the anonymous referee for helpful comments,
especially for the nondimensional numbers. The authors thank L.
Gizon, M. Rempel, Y. Bekki, and K. Mori for their comments on
the manuscript. H.H. is supported by JSPS KAKENHI grant Nos.
JP20K14510, JP21H04492, JP21H01124, JP21H04497, and
MEXT as a Program for Promoting Researches on the Super-
computer Fugaku (“Toward a unified view of the universe: from
large-scale structures to planets,” grant No. 20351188). The

results were obtained using the Supercomputer Fugaku provided
by the RIKEN Center for Computational Science. The authors
are grateful to Rachel Howe for giving us the Helioseismic and
Magnetic Imager inversion data for the solar differential rotation,
S. Hanasoge, and M. Miesch for providing the spectral data.
Software: R2D2 (Hotta et al. 2019; Hotta & Iijima 2020;

Hotta & Kusano 2021).

Appendix A
Stream Function

In this appendix, we explain our method to calculate the
stream function. Because a low Mach number situation is kept
in our calculation, the meridional flow 〈vm〉= 〈vr〉er+ 〈vθ〉eθ
should obey the anelastic approximation v 00 mr á ñ ~· ( ) .
This indicates that the meridional flow can be written as a
stream function Ψ(r, θ) as follows.

v e A10 mr á ñ =  ´ Y f( ) ( )

Taking the rotation of Equation (A1) leads to

v e , A20 m
2r ´ á ñ = - Y f( ) ( ) ( )

because er, 0q Y =f· ( ( ) ) . Thus, we need to solve the
Poisson equation of

v
r sin

. A30 m
2

2 2
r

q
 ´ á ñ = - Y +

Y
f[ ( )] ( )

The solution of the Poission equation is a steady state
(∂/∂t= 0), and the solution of the diffusion equation with a
source term is as follows:

v
t r sin

. A42
2 2 0 m

q
r

¶Y
¶

=  Y -
Y

-  ´ á ñ f[ ( )] ( )

We simply integrate Equation (A1) for the initial condition of
Equation (A4). Then, we evolve Equation (A4) for several time
steps, and the solution reaches a steady state. We use the
obtained value for the stream function used in Figures 10
and 35.

Appendix B
Gyroscopic Pumping

Figure 34 shows− (GREY+GMAG) (see Equations (53) and
(55) for the definitions). While these values fluctuate much
because of the nature of turbulent flow and the magnetic field,
we certainly confirm that GREY+GMAG is balanced with
GMER (Figure 28(g), (h), and (i)). Figure 34 indicates that the
gyroscopic pumping including the magnetic field (Equation (61))
is at least roughly accomplished in our analyzed period in all
cases.
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Appendix C
Mean Flows in an Initial Phase

Figure 35 shows the differential rotation and the meridional
flow in an initial phase (200–600 days). While we can
reproduce the fast equator in the High case in the latter phase

(Figure 10), all cases show the fast pole in the initial phase.
During the long calculation, the magnetic field evolves and is
amplified, and then the fast equator is constructed in the final
steady phase in the High case.

Figure 35. Format is the same as Figure 10, but the time average is between t = 200 and 600 days.

Figure 34.
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Appendix D
Normalized Velocity Correlations

Figure 29 shows the velocity correlations. Since the velocity
amplitude changes in the cases, we cannot directly evaluate the
anisotropy of the turbulence from Figure 29. In this appendix,
we additionally show a normalized correlation between
velocities v v v vi i RMS RMSá ¢ ¢ñ ¢ ¢f f( )( ) ( ) , with which the variation of
the velocity amplitude is removed. Figure 36 shows the result.
It is clear that the anticorrelation between vr¢ and v¢f increases
with the resolution. This is a tendency of the high Rossby
number regime (e.g., Karak et al. 2015). The result supports our
idea that the High case stays in the high Rossby number regime
even though the fast equator is reproduced.

Appendix E
Evaluation of Viscosity

Since we use numerical diffusion for all the variables,
evaluating the effective diffusivity is not a simple task. At the
same time, it is good to show a rough estimate of these for
comparison purposes with previous and future research. To this
end, we adopt a similar way to Hotta et al. (2016). The
spherical harmonic degree for the Taylor microscale ℓT is
evaluated as (Pietarila Graham et al. 2010)

ℓ ℓ E ℓ dℓ E ℓ dℓ. E1
ℓ

ℓ

ℓ

ℓ

T
2 2

h h
min

max

min

max

ò ò= ~ ( ) ˜ ( ) ( )/

Batchelor & Press (1953) and Weygand et al. (2007) suggest
that the effective Reynolds number is determined by the Taylor
microscale λT= 2πr/ℓT and the integral scale for the turbulent
motions L0 as

L
Re . E2eff

0

T

2

⎜ ⎟
⎛
⎝

⎞
⎠l

µ ( )

In this study, the large-scale convection is significantly
influenced by the magnetic field and the situation makes it
difficult to evaluate L0 from the spectra data. Thus we assume
the Taylor microscale is determined by the diffusivity
(viscosity). In order to investigate the dependence of the

Taylor microscale on the viscosity, we carry out five additional
simulations. We adopt the explicit viscosity ν, magnetic
diffusivity η, and thermal conductivity on the entropy κ as

v D
t

... E3r
¶
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= - ( ) [ ] · ( )
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t
... , E4h

¶
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Figure 36. Normalized correlations between velocities v v v vi i RMS RMSá ¢ ¢ñ ¢ ¢f f( )( ) ( ) are shown. The upper and lower panels show the radial and colatitudinal component,
respectively. The left, middle, and right columns show the results from Low, Middle, and High cases, respectively. The radial component of the normalized correlation
v v v vr r RMS RMSá ¢ ¢ñ ¢ ¢f f( )( ) ( ) clearly increases with the negative sign, with an indication of the higher effective Rossby number in the High case.
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where the viscous stress tensor is

vD e2
1

3
, E6ij ij ij⎡

⎣
⎤
⎦

rn d= - - ( · ) ( )

and eij and δij are the deformation tensor and the Kronecker
delta, respectively. We adopt the same grid points as the Low
case, (Nr, Nθ, Nf, NYY)= (96, 384, 1152, 2). We adopt five
values of diffusivities as ν= η= κ= 5× 1011, 7.1× 1011,
1× 1012, 1.4× 1012, and 2× 1012 cm2 s−1. These are constant
in space. The rotation is not included in the simulations. The
other settings are identical to the simulations in the main text.
We evaluate the Taylor microscale for these calculations at
r= 0.83Re. We set ℓ 10min = in Equation (E1) to exclude the
global scale convection. Figure 37 shows the dependence of ℓT
on the diffusivities. The results show a power-law relation, and
the result with ν= 5× 1011 cm2 s−1 is slightly deviated from
the relation. We carry out a fitting for the data between
7.1×1011 cm2 s−1� ν� 2× 1012 cm2 s−1. The result with ν=
5×1011 cm2 s−1 seems affected by the numerical diffusivity,
and the data is excluded from the fitting. The fitting result is
ℓT 0n n= a( ) with ν0= 2.43× 1015 cm2 s−1 and α=− 0.51.
The result is consistent with the theoretical expectation
ℓT∝ ν−1/2. We use the fitting result to evaluate the effective
diffusivities for the simulation result in the main text. ℓT for the
Low, Middle, High, and High-HD cases are 110, 188, 340, and
346, respectively. These lead to the effective viscosity of
2.41× 1011, 8.44× 1010, 2.64× 1010, and 2.55× 1010 cm2 s−1

for the Low, Middle, High, and High-HD cases, respectively.
Since the parameter runs in this appendix should have the same
numerical diffusivity as the Low case, i.e., 2.4× 1011 cm2 s−1,
it is reasonable that the run with ν= 5× 1011 cm2 s−1 is
affected by the numerical diffusivity. Since we use the same
numerical scheme for the velocity, the magnetic field, and the
entropy, we can assume that the effective diffusivities η and κ

have the same values as ν. We emphasize that the small-scale

features are significantly influenced by the magnetic field in the
simulations. The Taylor microscale must be altered. Thus, the
evaluated value is just a reference for comparisons with
different calculations.
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