
The Effects of Disk-induced Apsidal Precession on Planets Captured into Mean Motion
Resonance

Zachary Murray1 , Sam Hadden1,2 , and Matthew J. Holman1
1 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS 51, Cambridge, MA 02138, USA; zachary.murray@cfa.harvard.edu

2 Canadian Institute for Theoretical Astrophysics, 60 St George St., Toronto, ON M5S 3H8, Canada
Received 2021 December 6; revised 2022 March 23; accepted 2022 April 15; published 2022 May 25

Abstract

The process of migration into resonance capture has been well studied for planetary systems where the
gravitational potential is generated exclusively by the star and planets. However, massive protoplanetary disks add
a significant perturbation to these models. In this paper we consider two limiting cases of disk-induced precession
on migrating planets and find that small amounts of precession significantly affect the equilibrium reached by
migrating planets. We investigate these effects with a combination of semianalytic models of the resonance and
numerical integrations. We also consider the case of the disk’s dispersal, which can excite significant libration
amplitude and can cause ejection from resonance for large enough precession rates. Both of these effects have
implications for interpreting the known exoplanet population and may prove to be important considerations as the
population of well-characterized exoplanet systems continues to grow.

Unified Astronomy Thesaurus concepts: Exoplanet dynamics (490); Protoplanetary disks (1300)

1. Introduction

The capture of migrating bodies around a dominant central
mass into mean motion resonances is a well-studied phenom-
enon. Early studies explored resonance capture among satellites
of the solar system giant planets subject to tidal migration (e.g.,
Goldreich 1965; Yoder 1973; Henrard & Lamaitre 1983;
Tittemore & Wisdom 1988). Since these early studies,
numerous resonant or near-resonant exoplanet systems have
been discovered with both the radial velocity (e.g., Marcy et al.
2001; Johnson et al. 2011; Wright et al. 2011) and transit
method (e.g., MacDonald et al. 2016; Mills et al. 2016; Luger
et al. 2017). These systems have prompted studies of resonance
capture in a planetary context (e.g., Beaugé et al. 2006; Mustill
& Wyatt 2011; Deck & Batygin 2015) where gravitational
interactions with the protoplanetary disk can drive migration
and capture (Goldreich & Tremaine 1980; Kley & Nel-
son 2012). This migration and capture is reproduced in
hydrodynamic simulations (e.g., Masset & Snellgrove 2001;
Laughlin et al. 2002; Kley et al. 2004; Rein et al. 2010), and
models that include migration and eccentricity damping forces
meant to mimic interactions within a protoplanetary disk can
reproduce the orbital configurations of observed systems (e.g.,
Lee & Peale 2002; Delisle 2017; Hadden & Payne 2020).

Resonant exoplanet system’s present-day orbital configura-
tions can serve as indirect probes of the natal disk conditions
under which the planets were captured into resonance. While
recent initiatives like DSHARP have observed the large scale
structures of protoplanetary disks (Andrews et al. 2018), except
for a few of the closest disks (e.g., Andrews et al. 2016), the
properties of the central few astronomical units have not
generally been observationally accessible. Currently, and for
the foreseeable future, only indirect methods can probe the

inner disk. This motivates our investigation, as described
below.
Traditional migration theory posits that the eccentricities of

planets migrating into resonance are set by the ratio of their
convergent migration rate to their eccentricity damping time-
scale. In particular, planets reach eccentricities t t~e e a

where t =- d e dtlne
1 and t =- d a dtlna

1 t= - /
de

dt
e e and

t= - /
da

dt
a a are the rates of eccentricity damping and

semimajor axis migration (e.g., Deck & Batygin 2015). In
general, both planets will become eccentric, and their
individual eccentricities are such that the system resides in an
equilibrium configuration. The equilibrium configuration
depends on the ratio of the two planets’ masses, with the less
massive planet generally being more eccentric. However,
traditional treatments of migration and capture usually neglect
the influence of the disk on the equilibrium configuration
reached by the planets. If the disk is sufficiently massive, its
gravitational potential will induce periapsis precession that, as
we show below, could alter the equilibrium eccentricities
reached by a pair of migrating planets. Previous work by
Marzari (2018) explored how this disk potential shifts the
semimajor ratio at which mean motion resonances occur.
Whereas Marzari (2018) computes disk-induced resonance
shifts by fitting mean period ratios of resonant planet pairs in
ensembles of numerical simulations, we examine in detail how
disk effects influence the dynamics of the resonance capture
process, focusing on how disk-induced apsidal precession
influences the growth of planets’ eccentricities.
This paper is organized as follows. In Section 2, we derive a

Hamiltonian model for a resonance in the presence of
additional precession and investigate the outcome of resonance
capture under these conditions. Our analytic theory predicts
strong excitation in equilibrium eccentricities for sufficiently
large differential precession rates. We also detail an axisym-
metric model of a massive disk and derive expressions for the
precession rate it induces, and consider the timescales involved
in its dispersal. In Section 3, we examine the outcomes of N-

The Astrophysical Journal, 931:66 (8pp), 2022 May 20 https://doi.org/10.3847/1538-4357/ac68f2
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-8076-3854
https://orcid.org/0000-0002-8076-3854
https://orcid.org/0000-0002-8076-3854
https://orcid.org/0000-0002-1032-0783
https://orcid.org/0000-0002-1032-0783
https://orcid.org/0000-0002-1032-0783
https://orcid.org/0000-0002-1139-4880
https://orcid.org/0000-0002-1139-4880
https://orcid.org/0000-0002-1139-4880
mailto:zachary.murray@cfa.harvard.edu
http://astrothesaurus.org/uat/490
http://astrothesaurus.org/uat/1300
https://doi.org/10.3847/1538-4357/ac68f2
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac68f2&domain=pdf&date_stamp=2022-05-25
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac68f2&domain=pdf&date_stamp=2022-05-25
http://creativecommons.org/licenses/by/4.0/


body simulations of resonant capture with an additional source
of precession. We discuss the implications of these results in
Section 4. We conclude in Section 5 and describe future
research directions.

2. An Analytic Model for Resonance Capture with Apsidal
Precession

In this section, we present Hamiltonian equations of motion
that we use to model the dynamics of planets captured into
resonance in the presence of a massive, precession-inducing
disk. We use this model to derive the equilibrium eccentricities
reached by a pair of planets subject to migration and
eccentricity damping forces. We show that, if a resonant planet
pair’s migration drives the inner planet into a disk cavity so that
it experiences reduced eccentricity damping, its eccentricity can
be significantly excited if the differential precession rate is
large enough. We derive an expression of the critical
precession rate at which significant eccentricity can be excited.
Finally, we discuss the validity and limitations of our simplified
model.

We consider the dynamics of a two planet system, with an
inner planet of mass m1 and outer planet of mass m2 orbiting in
or near a j:j− 1 first-order mean motion resonance around a
central star with mass M* and subject to an additional
axisymmetric external gravitational potential that induces
apsidal precession at a rate vi,add for the ith planet.3 Following
Hadden (2019), we adopt a Hamiltonian formalism and
develop our equations of motion in terms of the canonical
angle variables Q= jλ2− ( j− 1)λ1, where λi denotes the mean
longitude of the ith planet, and γi=−ϖi with i= 1,2 where ϖi

denotes the longitude of periapse of the ith planet, along with
their conjugate action variables P and G¢i. The action variable P
is conjugate to the angle Q and related to the planets period
ratio, P2/P1, according to

( )-
- =

j

j

P

P
AP j

1
1 , 12

1

where ( )º +
b b a

-A j j j3

2

1

2 1
with βi=mi/(m1+m2) and

α= a1/a2. The action variables conjugate to γi are
bG¢ » a ei i i i

2. We assume the planets are nearly coplanar
and possess small eccentricities. Thus, we truncate our
equations of motion at first order in eccentricity and inclination.

Choosing units such that ( )+ =*G M m a 12 2
3 , the Hamil-

tonian of our system is given by
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2

where f and g are order-unity constants, formulas for which are
given in Hadden (2019).

To study the evolution of the system under the effects of
migration and eccentricity damping induced by a disk, we

augment Hamilton’s equations by adding the following
dissipative terms to the equations of motion

( )
t

G
= -

Gd
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2 3i i
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where t= -
de

dt
ei

i e i, and t= -
da

dt
ai

i a i, parameterize eccen-

tricity damping and migration forces. In the absence of
dissipation, the quantity D= Γ1+ Γ2− P is conserved by
Hamiltonian Equation (11). Under the effects of migration and
eccentricity damping forces, the system will reach an
equilibrium configuration that satisfies

⎜ ⎟
⎛
⎝

⎞
⎠

( )
t t t

= -
G

+
G

+ =
a

dD

dt

j

A
2

3

2
0. 5

e edis

1

,1

2

,2

Provided the timescales τα and τe,i are long compared to any
other relevant dynamical timescales, the equilibrium config-
uration reached by the system will be close to an equilibrium
configuration of the conservative dynamics. At such an
equilibrium, Q+ γ1= 0 and Q+ γ2= π, and Hamilton’s
equations imply

⎜ ⎟
⎛

⎝

⎞

⎠
( )

˜ ˜ ( )g g v- = -
G

+
G

+ D =
d

dt

f g
0, 61 2

1 2
add

where   v v vD = -add 2,add 1,add. Equations (5) and (6) provide
two equations for the two unknown values of Γ1 and Γ2 at
equilibrium. Multiplying Equation (5) by a factor of τα and
Equation (6) by a factor of ò−1, it is clear that the equilibrium
eccentricities will depend on migration rates, eccentricity
damping timescales, and apsidal precession rates through the
parameter combinations Ki≡ τα/τe,i and vD add  .
While general solutions of Equations (5) and (6) for Γ1 and

Γ2 involve roots of quartic polynomials, we can gain some
intuition for the effect of the precession term, vD add by
considering the limiting cases  vD add  and  vD add  .
First, when vD = 0add , equilibrium occurs at ˜G = fj

K1,eq0
3

4
2

eff

and ˜G = gj

K2,eq0
3

4
2

eff
where ( ˜ ˜ )= +K A f K g Keff

2
1

2
2 . Rewriting

these equilibrium values in terms of the planets’ eccentricities,

we obtain ∣ ∣=
a

+e fm m

m

j

K1,eq0
3

4
2 1

1 eff
and = +e gm m

m

j

K2,eq0
3

4
2 1

2 eff
.

For a nonzero differential precession rate, the equilibrium Γi

values are shifted by an amount δΓi with respect to the values
Γi,eq0. Equation (5) implies that these shifts are related to one
another by d dG = - Gt

t2 1
e

e

,1

,2
. For  ∣ ∣vD add  , the shifts are

given by ( )dG G = + vG

G

- D1j

K

K
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3
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2 2,eq0

add
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G

- D1j

K

K
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3

1

eff

2 2,eq0

2 1,eq0

add


, to first order in

vD add  . Thus, a positive differential precession rate
( vD > 0add ) causes an increase in e1 and a decrease in e2
relative to the precession-free equilibrium values. When

 vD add  ,
( )˜G = -
vD

gj

AK

K

K1
3

4
2

2

1

2

1 add

 and
( )˜G =
vD

g2
2

2

add



3 In general, an axisymmetric potential will modify the mean motions of
planets in addition to introducing apsidal precession. These modifications will
influence the semimajor axis ratio at which an MMR occurs between planets.
We ignore this effect in the simple Hamiltonian model presented in
Equation (2) because it has little impact on planets’ eccentricities, which is
our main focus in this work.
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and when vD < 0add and  ∣ ∣vD add  , we find

( )˜G =
vD

f1
2 2

add

 and
( )˜G = -
vD

fj

AK

K

K2
3

4
2 2

2

1

2 add

 . These equili-

brium values for  ∣ ∣vD add  can be understood as the result
of the precession terms appearing in Equation (11) splitting the
first-order mean motion resonance (MMR) into two distinct,
well-separated resonances with resonant angles Q+ γ1 and
Q+ γ2 occurring at v» -P Ai,add for i= 1 and 2, respec-
tively. When vD > 0add , the system capture reaches equili-
brium in the Q+ γ1 resonance, the eccentricity of the inner
planet is excited, and the equilibrium value is set principally by
the ratio of τ1,e/τα. Analogously, the dynamics are controlled
by the outer planet’s Q+ γ2 resonance when vD < 0add .

If a pair of resonant planets migrating in a protoplanetary
disk reach a location in the disk where density decreases
rapidly, such as the disk inner edge or dead zone, the outer
planet can push the inner one into the gap (e.g., Ataiee &
Kley 2021). In this scenario, the eccentricity damping effect of
the disk on the inner planet should be greatly reduced. To
determine the planet’s equilibrium eccentricities in this
scenario, we take τe,1→∞ in Equation (5) and find

( )( )( )= + -
a

-
e K j j2 1 m

m2,eq 2

1 2
2

1
and
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where we now include the dependence on the outer planet’s
mean motion, n2, explicitly. Equation (7) predicts that e1,eq
diverges when

 ( )( )( )vD = = + -
a* *

n g e n g K j j2 1m

M

m

M

m

madd 2 2,eq 2 2

1 2
1 1 2

1
.

While this divergence is an artifact of truncating our equations
of motion at first order in eccentricities, numerical simulations
presented below in Section 3 show that a large increase in the
inner planet’s equilibrium eccentricity does in fact occur when
the differential precession approaches this critical rate.
Equipped with our analytic model, we now provide quantitative
estimates of precession rates experienced by exoplanets in the
central cavity of a massive, axisymmetric disk. To compute the
apsidal precession induced by the protoplanetary disk, we
closely follow Petrovich et al. (2019) and model the potential
of the disk with a power-law surface density profile:

⎜ ⎟
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Here, Rin is the radius of the inner edge of the central cavity,
Rout the outer edge, 0< s< 2 is the power-law slope, and Mdisk

the total mass of the disk. The potential generated by such a
disk fdisk at a radial distance r< Rin is given by

⎛
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⎞
⎠
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R
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R
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Provided the timescales τα and τe,i are long compared to any
other relevant dynamical timescales, the equilibrium config-
uration reached by the system will be close to an equilibrium
configuration of the conservative dynamics;
where

( ) ( )
( )

( ) òa
p

q q
a a q

=
+ -p

p

-
b

n d1 cos

1 2 cos
s

n
s2

is a Laplace coefficient (e.g., Murray & Dermott 1999). We
derive an expression for the orbit-averaged precession rate for a
planet subject to the potential given by Equation (10) as
follows: First we substitute ( )= -r a e u1 cos in
Equation (10), where e and u are the eccentricity and the
eccentric anomaly of the planet. Next, we expand to second
order in the planet’s eccentricity. Finally we take the orbit
average of the potential,

( ) ( )òf fá ñ = ´ -
p

p

-
r e u du1 cosdisk disk . Using Lagrange’s

planetary equations (Murray & Dermott 1999), we derive the
disk-induced precession rate
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where = *n GM a3 is the planet’s mean motion and

( (( ) )
h = -

--

s

R R R
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2 is a normalization constant that

depends on the disk size and power-law slope. Figure 1 shows
precession rate versus Rin/a for a few different disk surface

densities. For Rin>> a, ( )( ) »b 3a

R
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R3 2
1 and Equation (11) gives
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However, when Rin∼ a, the induced precession rate
increases steeply as the planet’s orbit approaches the disk’s
inner edge.

Figure 1. Precession rates induced by massive disk computed using
Equation (10) for different values of s and Rout. The disk mass was taken to
be Mdisk = 0.01M* and the planet was taken to have small eccentricity
e = 0.01 and semimajor axis a = 1 au.
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The precession rate predicted by Equation (11) diverges
when a(1+ e)= Rin, i.e., when the apoastron location of the
outer planet is inside the disk. When the planet is inside the
disk, the planet’s gravitational influence on the local mass
distribution in the disk cannot be neglected. Fontana & Marzari
(2016) compute apsidal precession rates of planets embedded
in disks using hydrodynamical simulations and compare them
to several analytic approximations (e.g., Mestel 1963;
Ward 1981; Binney & Tremaine 2008; Silsbee & Rafi-
kov 2015). They found that if the planets embedded in the
disk are very massive, their influence on the disk structure can
result in a negative precession rate. Despite this complication,
the model outlined in Section 2 can treat either case, as it makes
no assumption about the sign of the precession rate.

Apsidal precession induced by a disk will modify the
equilibrium eccentricities reached by a pair of planets that
capture into resonance, as demonstrated in Section 2. After the
disk disperses, the equilibrium dynamical configuration will
correspond to the conventional precessionless equilibrium. If
the disk’s dispersal is rapid compared to the secular interaction
timescale of the planets, then planets will no longer be in
equilibrium and instead exhibit oscillations in their eccentri-
cities and resonant angles. If dispersal is driven by photo-
evaporation—a process that removes material from the disk
starting from an inner cavity of the disk and proceeds outwards,
it can disperse on a timescale as short as≈105 yr (Alexander
et al. 2006). The exact timescale of photoevaporative dispersal
is an open problem, but the steep dependence of precession rate
on a/Rin (see Figure 1) implies that the precession induced on
the planets will decrease rapidly as the disk photoevaporates,
since the majority of the precession induced on a planet comes
from the portion of the disk closest to the planet. For example,
for a disk where Rout= 100 au that evaporates from the inside
out in 105 yr, Rout increases by≈ 10−3 au yr−1. If the system
has an outer planet at 1 au and with the disk’s inner edge at a
few hill-radii from the outer planet Rin= 1.1 au initially, the
precession rate will decline by 70% within 100 yr. This rapid
decrease will be even more significant if the planet starts closer
to the disk. In these situations the disk density should be
decreasing over time, however, the resonant capture equili-
brium will be set by the conditions in the disk shortly before its
evaporation. Hence, we do not need to model the history of the
mass of the disk to study the dynamical consequences of its
rapid dispersal. In the case of massive planets that generate
cavities in their disks, the precession rates will be more
complicated than those suggested by Equation (11); however
so long as the mode of dispersal is photoevaporation, the
reduction in the precession rate will still be rapid. Therefore it
is appropriate to consider the limit in which the bulk of disk’s
gravitational influence dissipates rapidly; in this paper we
approximate the disk’s dispersal as instantaneous.

3. Results

In this section, we compare our analytic predictions to N-
body simulations and explore the different properties of the
solutions. All numerical integrations are done with the WHFast
integrator (Rein & Tamayo 2015) based on the symplectic
mapping algorithm of Wisdom & Holman (1991) and
implemented in the REBOUND code (Rein & Liu 2012). In
Section 2, we predict that migrating planets can reach high
eccentricities if there is a large difference in the precession rate
between the planets. We therefore choose an integration time

step set to 1/500 of the inner planet’s orbital period, ensuring
the perihelion passage timescale, ( ) ( )- +P e e1 13 , is
resolved with 16 or more steps for planet eccentricities of
ei< 0.875 (Wisdom 2015). Additional eccentricity damping,
migration, and periapsis precession effects are included in our
simulations using the modify_orbits_direct routine of
the REBOUNDx package (Tamayo et al. 2019). We set

( )t t = -
-a a

m

m

j

j,1 ,2 1

2 3
1

2
in order to limit any bulk migration

of the planet pairs in our simulations and study resonance
capture outcomes at fixed values of v n2,add 2. While our
simulations maintain a constant v ni,add 2 to focus on how
differential precession influences the dynamics of resonant
capture and the resulting post-capture equilibrium resonant
state, the ratio v ni,add 2 might continue to evolve if a planet
pair continues to migrate after capture. Nevertheless, a resonant
pair’s dynamical state will simply track the evolving
equilibrium configuration if the migration is not too rapid.
For all of the simulations in this section, we examine motion

near the 3:2 mean motion resonance, with equal mass planets
taking mi= 5 · 10−4 around a star with M* = 1 Me. We pick
masses in the giant planet regime, similar to many of the
observed resonant- and near-resonant planet pairs (Wright et al.
2011). Equation (7) predicts that the critical differential

precession rate scales linearly with the inner planet’s mass and
we have confirmed this prediction holds with additional
numerical simulations. We generate a differential precession
rate by imposing a nonzero v2,add while keeping v1,add zero.
While in reality, both planets will be subject to apsidal
precession caused by a disk’s gravitational potential, the
modified equilibrium eccentricities reached by the planet pair
depends only on their differential precession,  v v-2,add 1,add.
Figures 2 and 3 show the results of simulations of resonant

capture with K= 280 for two different v2,add values. Figure 2
shows the capture and evolution of two planets with a
differential precession rate less than the critical value. The
planets capture in resonance slightly away from the precession-
free equilibrium, at relatively low eccentricities. Figure 3 shows
the capture and evolution of the same system but with a
differential precession rate greater than the critical value. The
planets capture far away from the precession-free equilibrium
and the inner body reaches high eccentricity. There is also a
qualitative change in the behavior resonant angles, and the
equilibrium condition θ2− θ1≈ π is violated for captures with
large differential precession.
After capture is complete, we turn off migration, eccentricity

damping, and precession forces to mimic the rapid dispersal of
the protoplanetary disk. When precession effects are turned off,
the migrating planets’ eccentricities are no longer in equili-
brium and begin to oscillate about new, precession-free
equilibria. The resonant angles also begin to show oscillations
after precession effects are turned off. When the capture occurs
with low differential precession, these oscillations are small,
and the system retains its stability. When the forces are
removed from a system with large differential precession, the
resulting oscillations result in close encounters between the
planets and loss of stability.
Figure 4 shows simulation results for a range of v2,add

values assuming all of the damping in eccentricity was on the
outer planet. The results illustrate e1 can become large once a
critical differential precession rate of the order

( )~ ´*m M Kp is reached, as predicted by the analytic
model presented in Section 2. In contrast to the analytic

4

The Astrophysical Journal, 931:66 (8pp), 2022 May 20 Murray, Hadden, & Holman



model’s prediction, our numerical simulations do not show that
the equilibrium eccentricity decreases once this differential
precession rate is passed. Instead, we find a sharp transition
between solutions with low and high inner planet equilibrium
eccentricities as a function of precession rate, and that systems
with higher precession rates capture at increasingly higher
eccentricities. This trend continues until a critical precession
rate is achieved, above which all systems begin to capture at
much higher eccentricities. Note that not all planets in this
second regime capture stably at high eccentricities, sufficiently
large precession rates can result in instability in the resulting
resonance, as can be seen in Figure 4. Additionally, the
timescale associated with low and high eccentricity capture
differ significantly; capture at low eccentricity occurs within
timescales ≈10−1 τP, whereas captures at high eccentricity take
significantly longer. It may be possible—especially in the case
of very gradual migration (and correspondingly large τP)—that
disk dispersal may occur in some systems before these
equilibria are reached.

Up to this point we have ignored any eccentricity damping
experienced by the inner planet. We relax this assumption in
Figure 5, where we show simulation outcomes over a range of
precession rates for different inner planet eccentricity damping
strengths. Such a situation might occur if the inner planet is
also embedded in the disk or could be due to tidal
circularization from the host star. Both of these effects will
also cause migration of the inner planet, but so long as the
migration rate is smaller than that of the outer planet, resonant
capture will still occur and the outcome of resonant capture will
depend on migration rates only via the combination

( )t t t= -a
-1 1a a,2 ,1

1. Figure 5 shows the equilibrium
eccentricity, e1,eq, reached by the inner body as a function of
ϖ2,add for various values of K and t

t
e

e

1

2
; the ratio of the

eccentricity damping timescales between the two planets. We
find a sharp transition between the low eccentricity and high
eccentricity equilibria continues to exist over a wide variety of
K even when the damping on the inner planet is nonzero. It

captures the » K scaling of the critical precession rate at
K> 50 and provides an order of magnitude approximation at
smaller K. We find that as the eccentricity damping on the inner
body becomes larger, the transition between the two regimes
becomes smoother.
The deviations in eccentricity from the precession-free case

could be used to explain the structures of exoplanet systems.
Resonant capture without precession, as described in Deck &
Batygin (2015), predicts a characteristic eccentricity ratio
related to the mass of the planets and the captured resonance.
As shown in Figure 6 including an additional source of
precession allows planets to capture far from the predicted
eccentricity ratio, which will induce a significant libration
amplitude after disk dispersal. This mechanism could be used
to explain the origins of planetary systems that are found in
resonance, but with significant libration amplitudes. Conver-
sely, as demonstrated by Figures 2 and 3, the dynamics of
resonant capture with an external source of precession predict a
critical rate above which stability is lost upon disk dispersal.
Since surviving planets must have survived disk dispersal, the
presence of the upper branch amounts to a constraint on the
conditions in the planetary system at the time of capture and
could be used to rule out sufficiently massive disks (or any
other condition that imposes apsidal precession on the planets).

4. Discussion

In Section 3, we showed that including additional precession
results in capture at different equilibrium eccentricities from
those where precession is neglected. The subsequent dispersal
of the disk induces significant libration amplitudes in the
captured planets. These libration amplitudes may be detectable
in well-characterized systems. Should measurements be
sufficiently accurate to rule out large libration amplitudes,
their absence can constrain disk-induced precession rates
during resonant capture.
When considering observability, it is important to take into

account the possibility that these amplitudes might be damped

Figure 2. Results of a numerical simulation with migration timescale τa,2 = 1.6 × 105P2, K = 60, and v = ´ - n9 102,add
3

2. The upper left panel shows the
evolution of the inner (red) and outer (blue) planets’ eccentricities while the lower left portion shows the time evolution resonant angles, θi = 3λ2 − 2λ1 − ϖi. The
right panel shows the evolution of the system after the additional migration, eccentricity damping, and precession forces are suddenly removed. The resulting
mismatch between the perturbed and unperturbed equilibria result in an induced libration amplitude.

5

The Astrophysical Journal, 931:66 (8pp), 2022 May 20 Murray, Hadden, & Holman



over Gyr timescales. Two potential pathways for damping
libration amplitudes are tidal interactions and the ejection of
smaller bodies. First, stellar tides are expected to be effective in
damping eccentricities of planets in older systems, but their
strength falls off quickly with distance. In many exoplanet
systems (e.g., for near-resonant Kepler planets; Lee et al. 2013)
tidal dissipation is too weak to change the eccentricities over
Gyr timescales.

Second, and more uncertainly, damping might occur by
ejecting smaller objects. This mechanism must assume a
population of such objects of sufficient mass and proximity to
the planets to damp the libration amplitudes. Given the above
considerations, we argue that it is possible that induced

Figure 3. The effect of disk dispersal is illustrated here for a fiducial precession rate greater than the critical rate. The left panel shows the evolution of the planets’
eccentricities (red and blue) and corresponding resonant angles of the two planets over time. The simulation runs for 0.3τa,2 with τa,2 = 106 yr and K = 280. The right
panel shows the resulting libration from disk dispersal on the much shorter timescale of a few thousand years. The vertical dashed line corresponds to the time at which
the disk disperses, which we have taken to be an instantaneous process. This example shows a change in the behavior of the resonant angles during capture
(θ2 − θ1 ≠ π). Due to the planets reaching equilibrium at much higher eccentricity, the mismatch between the captured equilibrium is so large that stability is lost upon
disk dispersal.

Figure 4. Time evolution of the inner planet’s eccentricity, e1 for a range of
v2,add values. All simulations were run for t10 a2 where τa2 = 106

yr = 1.6 · 105P2. Planet masses were both set to mi = 3 · 10−5 and eccentricity
damping chosen so that K = 280, which yields a critical precession rate of
  ·v v- » -3 102,add 1,add

3. We can see that the eccentricity of a system where
resonance capture takes place with differential precession behaves in one of
two main ways. The first exists at low induced precession rates, which results
in the eccentricity of the inner body having asymptotically low eccentricities.
As the precession rate increases, the solutions quickly transition to saturating at
high eccentricities and do so above a critical precession rate.

Figure 5. The equilibrium eccentricities of the inner body as a function of
v2,add for several different K and t

t
e

e

1

2
on the two planets. Equilibrium

eccentricities are computed via numerical simulations that include extra
migration, eccentricity damping, and precession forces as described in the main
text. To determine the equilibrium eccentricities, numerical simulations were
run for 10 migration timescales, which were taken to be τa,2 = 1.6 · 105 orbits
of the outer planet. The dashed lines are the equilibria predicted by Equation (7)
with v = 0i,add .
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libration amplitudes will survive undamped for Gyr timescales
and will therefore be observable.

We can use our expression in Section 2 to derive an
approximate criterion to estimate how close a given system will
be to the critical differential rate. We consider the case of a disk
with power-law slope s= 1 and Rout>> Rin. We approximate
the precession due to the disk as a power law, which is only a
good approximation when Rin/a> 2, and derive the following
approximation
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If the disk is closer than this to the planet, our approximation
will significantly underestimate the differential precession rate,
and Equation (11) must be used to obtain the true differential
rate. Finally, we wish to briefly consider sources of precession
other than massive protoplanetary disks. Our Hamiltonian
model shown in Section 2 is agnostic to the source of
precession; therefore it is straightforward to consider other
sources. A number of studies have considered the role of the
time-varying quadrupole moment from rapidly spinning young
stars on systems’ secular dynamics (e.g., Veras 2007; Spalding
& Batygin 2017; Schultz et al. 2021).

Here we consider the influence of a stellar J2 moment on the
resonant dynamic pair of planets. For low eccentricity planets

the precession rate is related to the J2 by


⎜ ⎟
⎛

⎝

⎞

⎠
( )v

= *
n

J
R

a

3

2
, 14

p p
2

2

where R* is the radius of the star, ap the semimajor axis of
the planet, and np the mean motion of the planet (e.g.,
Greenberg 1981). Studies of young, quickly rotating stars
suggest these values of J2 could rise as high as 10−2 in some
systems (Zahn et al. 2010). Equation (14) implies that short
period planets may have large precession rates v » -n 10p

3,
which are comparable to those generated from massive
protoplanetary disks. Since the dependence of the precession
rate on the distance is steep, the differential precession rate
between two planets orbiting around such a star is large. This
implies that the innermost planets in such a system will have a
much higher precession rate than the outer, resulting in a large
differential precession rate.
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A quadrupole potential felt by a planet around a circumbin-
ary system can also be approximated with Equation (14), in this
case ( )

( )
= -

-
J q q1

e2
1

2 1 B
3 2 where q=M2/(M1+M2) and eB

is the binary eccentricity, and the stellar radius is set equal to
the semimajor axis of the binary aB. In practice, studies of
circumbinary planets (e.g., Leung & Lee 2013) find precession
timescales as low as 50 yr, with corresponding precession rates
as high as v » -n 10p

2. Since the precession rate has a steep
radial dependence, large differential precession rates will also
occur in these systems. The differential precession rates in both
these types of systems are comparable to the rates in Figure 1
and may be large enough to cause changes in equilibrium
eccentricity of any orbiting resonant planets.
Future areas of study might include efforts to generalize our

model to planets with higher eccentricities or to include the
change in mean motion induced by a massive disk. Both of
these efforts would help to better understand the effect of disk
precession on resonant capture. Additionally, it may be fruitful
to attempt detailed, hydrodynamical modeling of planets
embedded in their disks. Such efforts could help to better
characterize the precession rates of embedded planets and
could shed light on how far from equilibrium such systems will
capture.

5. Summary

In this paper, we show how differential precession between
the two planets can cause deviations in the captured
equilibrium eccentricities away from their precession-free
values. We show that resonance capture can excite extreme
eccentricities when differential precession is sufficiently strong
and when the eccentricity damping felt by the more slowly
precessing body is small. We argued that this situation could
arise when a resonant planet pair migrates into the inner cavity
of a protoplanetary disk through planet–disk interactions. We
show these bodies exhibit two main types of behaviors
depending on whether the differential precession is above or
below a critical value.

Figure 6. In the e1–e2 plane resonant capture with additional precession results
in deviation from the precession-less prediction (shown here as a dashed line).
The two planets start with nearly circular orbits and capture before migrating
into resonance (red points) with K = 60. After the disk disperses, the planets
are left librating about the unperturbed equilibrium (blue points) with
amplitude proportional to the distance from equilibrium. The libration occurs
about a line of approximately constant angular momenta (gray semicircle). This
line is set by what would be expected of two noninteracting Keplerian orbits,
interactions between the planets cause them to deviate from this line.
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More generally, for planets captured in a protoplanetary disk,
rapid dispersal of the disk will strand planets away from their
precession-free equilibria. This will induce large oscillations in
eccentricity if the differential precession rate is smaller than the
critical value. For systems where the differential precession rate
is larger than the critical value, the rapid decrease in differential
precession can destabilize the planets.

This work demonstrates that differential precession has a
significant impact on resonance capture. This more detailed
understanding of resonance capture including the differential
precession induced by the natal disk may prove necessary for
interpreting the growing population of well-characterized
exoplanet systems.
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