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Abstract

The matter in an accretion disk must lose angular momentum when moving radially inwards but how this works
has long been a mystery. By calculating the trajectories of individual colliding neutrals, ions, and electrons in a
weakly ionized 2D plasma containing gravitational and magnetic fields, we numerically simulate accretion disk
dynamics at the particle level. As predicted by Lagrangian mechanics, the fundamental conserved global
quantity is the total canonical angular momentum, not the ordinary angular momentum. When the Kepler
angular velocity and the magnetic field have opposite polarity, collisions between neutrals and charged particles
cause: (i) ions to move radially inwards, (ii) electrons to move radially outwards, (iii) neutrals to lose ordinary
angular momentum, and (iv) charged particles to gain canonical angular momentum. Neutrals thus spiral inward
due to their decrease of ordinary angular momentum while the accumulation of ions at small radius and
accumulation of electrons at large radius produces a radially outward electric field. In 3D, this radial electric
field would drive an out-of-plane poloidal current that produces the magnetic forces that drive bidirectional
astrophysical jets. Because this neutral angular momentum loss depends only on neutrals colliding with charged
particles, it should be ubiquitous. Quantitative scaling of the model using plausible disk density, temperature,
and magnetic field strength gives an accretion rate of 3× 10−8 solar mass per year, which is in good agreement
with observed accretion rates.

Unified Astronomy Thesaurus concepts: Accretion (14); Stellar accretion (1578); Jets (870); Plasma jets (1263);
Protoplanetary disks (1300); Circumstellar disks (235); Plasma astrophysics (1261)

Supporting material: animations

1. Introduction

Protoplanetary disks (PPDs) are thin, weakly ionized, cold
accretion disks existing during the early life of a star and
typically have associated poloidal magnetic fields and bidirec-
tional astrophysical jets. PPDs have inner radii of a few
astronomical units, outer radii of 10–100 au, accretion rates of
10−9 to 10−7 Me yr−1 (Gullbring et al. 1998), and poloidal
magnetic fields >1 mG (Harrison et al. 2021). Because
accreting particles must shed angular momentum to satisfy
energy constraints, accretion must involve outward transport of
angular momentum (Balbus 2003), but how this works has
been a long-standing mystery. Classical viscosity is insufficient
to provide the required angular momentum transport, so efforts
have been directed toward finding stronger transport mechan-
isms. Shakura & Sunyaev (1973) proposed turbulence but did
not suggest a source for the postulated turbulence. Balbus &
Hawley (1991) derived the magnetorotational instability (MRI)
and proposed the MRI as the source of turbulence enhancing
angular momentum transport. However, Flaherty et al. (2017)
measured actual turbulent levels in a PPD, and found “there is
little turbulence throughout the vertical extent of the disk,
contrary to theoretical predictions based on the magnetorota-
tional instability.” Ji et al. (2006) constructed a laboratory
device designed to demonstrate the MRI, but MRI has not been
detected so far; Ji & Balbus (2013) stated, “To date, however,

the MRI has been difficult to identify unambiguously, even
though the required threshold conditions have been exceeded.”
As an alternate to turbulence and MRI, Bellan (2016) argued

that because the accretion disk is an axisymmetric electro-
magnetic-gravitational system, the fundamental conserved
quantity is not the ordinary angular momentum (OAM) mrvθ
but rather the canonical angular momentum (CAM) mrvθ+
qψ/2π where q is the charge, and ψ is the poloidal
magnetic flux.
We report here particle simulations of a weakly ionized,

collisional accretion disk. The simulated accretion disk is
composed of “hard-disk” neutrals, ions, and electrons (because
the simulation is in 2D, the particles are “hard disks” rather than
“hard spheres”; note that the word “disk” is being used in two
different contexts—accretion disk and particle disk—which
should not be confused). It is found that in the presence of
collisions, the total accretion disk CAM is conserved but the total
OAM is not. The numerical simulation shows that collisions
cause the charged particle CAM to increase with a corresponding
reduction of the neutral OAM so that total CAM is conserved. In
accordance with their decreased OAM, neutrals spiral inwards,
i.e., accrete. The microscopic details of the OAM and CAM
transfer are explained by direct calculation of the average radial
velocity of a charged particle as a result of collisions with Kepler-
orbiting neutrals. A radially outward electric field develops as a
result of the radial inward/outward motion of the ions/electrons,
and this electric field is just what is required to drive the
bidirectional out-of-plane electric currents flowing along bidirec-
tional astrophysical jets. The simulations and their interpretation
provide a ubiquitous, straightforward model of angular momen-
tum shedding and jet drive mechanism (Bellan 2016).
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2. Simulation Method

The simulation has a central body with massM* at the origin
of a cylindrical coordinate system {r, θ, z} and a uniform
magnetic field B Bz= ˆ so the poloidal flux is ψ= Bπr2.
Surrounding the central body are a large number of particles
represented by hard disks restricted to the z= 0 plane. When
not colliding, the equation of motion for a particle with mass m
and charge q is

*v
v Bm

d

dt
q

GM m

r
r. 1

2
= ´ - ˆ ( )

Using reference parameters r0= 1 au, */v GM rK0 0= , K0w =

*/GM r0
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The hard-disk particle model means that particles do not
interact except when colliding. Particles are assumed to be
disks having radius a and center at riwhere i= 1 to N and N is
the number of particles. A collision occurs between particle i
and particle j when r r a2i j- <∣ ∣ . The velocity change of
particle i after a collision is
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On defining ui as the mean velocity of species i, the frictional
drag frequency νij of species j on species i is defined by
dui/dt=− νij(ui− uj); integrating this over a short time T
gives
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where the angle brackets denote averaging over particles and
over directions n .ijˆ By defining p z vij= ´ˆ ˆ ˆ where ẑ is out of
plane, then n v pcos sinij ij f f= +ˆ ˆ ˆ where f is a random angle
that differs for each of the S collisions. Since v v nj iji - =( ) · ˆ
v v cos ,ji f-∣ ∣ then f averaging of v v n nj ij iji -( ) · ˆ ˆ gives
v v v vn n cosj ij ij j

2
i i f- = -( ) · ˆ ˆ ( ) . Averaging over many parti-

cles gives v v u un n 2j ij ij ji iá - ñ = -( ) · ˆ ˆ ( ) so combining
Equations (4) and (5) gives
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The collisional drag frequency νij is thus determined from the
numerical simulation by counting how many collisions S are
experienced by a particle in a time T and then using
Equation (6). The ergodic assumption that the friction of a
single particle over many collisions is the same as the average
instantaneous friction experienced by many particles allows
this determination to be made by following a single numerical
particle.

A reflective boundary at an inner radius r a0.1= -¯ ¯ is used
to avoid the infinite gravitational force when particles move
close to the origin. This reflective boundary means that a
particle is reflected back with an opposite radial velocity when
it tries to penetrate inside a circle having radius r 0.1=¯ .
Because this reflection is radial, it conserves both canonical and
ordinary angular momentum. There is no boundary at large
radius. Unless specified otherwise, a 0.01=¯ , and the number
of particles is N= 16,128. The ion mass is set to

/m m m 1i i n= = , and the electron mass is set to
/m m m 0.1e e n= = . The simulation starts at t 0=¯ with

particles located in concentric circles ranging from r 0.3=¯ to
r 1.9=¯ , with a spacing d a2.5=¯ ¯ between adjacent concentric
circles. The particles are arranged at t 0=¯ with uniform
azimuthal spacing on each circle with interparticle angular
separation / /r d2 2q p pD = ⌈ ⌉ where /r d2p⌈ ⌉ means the
nearest integer greater than or equal to /r d2p . Particles are
assigned an initial Kepler velocity with ^/v r1 q= . The
magnetic field direction is opposite to the Kepler rotation sense,
i.e., B< 0. A Boris method (Boris 1970) is used for pushing the
particles, and the time step is t 10 4D = -¯ . The total system
dimensionless CAM (Bellan 2016) is
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and the total system dimensionless OAM is
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3. Main Results

Figure 1 displays simulation results when there is an ion (red
dot) and an electron (black dot) and a large number of neutrals
(blue and gray dots). The neutrals neighboring the ion–electron
pair at t 0=¯ are shown as dark blue dots. The ion is at initial
position r, 1, 0q =( ¯ ) ( ) with 50ciw = -¯ . The electron is at
initial position r, 1.025, 0q =( ¯ ) ( ) with 500cew = +¯ . By
counting the number of collisions made by the electrons and
ions in one Kepler period, it is found that 56.6inn =¯ and

253.1enn =¯ . Figures 1(a)–(d) show the system state at t 0=¯ ,
0.34, 0.68 and 1. Figure 1(e) displays the time dependence of
the total system CAM Pq̄ as defined by Equation (7) and the
total system OAM Lq¯ as defined by Equation (8). Figure 1(e)
thus verifies that the basic conserved quantity is not the system
OAM but rather the system CAM. Figure 1(f) plots the ion and
electron radial positions and shows that the ion moves radially
inwards while the electron moves radially outwards.
Figure 1(g) plots the time dependence of the CAM of the ion
and of the electron and shows that the ion and electron CAM
are both increasing. Because total system CAM Pq̄ is conserved
and the ion and electron CAM are increasing, the OAM of the
neutrals decreases as shown in Figure 1(h). Effectively, the
neutral OAM is transferred to the ion and electron CAM as the
system evolves. Since OAM scales as r1/2, removing OAM
from neutrals corresponds to the neutrals accreting toward the
star. Neutral–neutral collisions will conserve neutral OAM, so
it is possible for some neutrals to move inwards while others
move outwards in a way that conserves OAM; unlike collisions
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with charged particles, this process will not cause global loss of
neutral OAM.

We now explain why an ion and an electron have opposite
average radial displacement as a result of collisions with
neutrals and then relate this to angular momentum transport.

The equation of motion for charged particles σ moving in a sea
of neutral particles is

u
u u u

d

dt
z 9c n nw n» ´ - -s

s s s sˆ ( ) ( )

Figure 1. Simulation results when there is an electron–ion pair in the system. The ion is at initial position r, 1, 0q =( ¯ ) ( ) with 50ciw = -¯ and 56.6inn =¯ . The electron
is at initial position r, 1.025, 0q =( ¯ ) ( ) with 500cew = +¯ and 253.1enn =¯ . (a)–(d) The particle trajectories of the whole system at time t 0=¯ , 0.34, 0.68 and 1. Neutral
particles are blue and gray. The ion is red, and the electron is black. The neutrals surrounding the electron–ion pair at t 0=¯ are dark blue. The full trajectories video
(t 0 to 1=¯ ) is shown as an animation. (e) The total canonical angular momentum of the system and the total ordinary angular momentum of the system. (f) The radial
positions of the ion and electron. (g) The canonical angular momentum of the ion and electron. (h) The ordinary angular momentum of the neutrals and the total
canonical angular momentum of the system.

(An animation of this figure is available.)
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where νσn is given by Equation (6). The gravitational force on
the charged particles is ignored because  1cw s∣ ¯ ∣ . The exact
solution for Equation (9) is
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On time-averaging over a cyclotron period, the terms contain-
ing tcos cw s( ) and tsin cw s( ) vanish. On defining n

c
x =s

n
w
s

s
, the

time-averaged charged particle velocity is
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We presume that the neutrals are in Keplerian motion, so un
is in the θ direction. The radial component of the time-averaged
charged particle velocity is thus

u u
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x

=
+

s
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Because ions and electrons have opposite polarity, their ωcσ

and hence their ξσ have opposite signs, so uir and uer have
opposite signs. The simulation has B< 0 and Kepler rotation
with unθ> 0. Equation (12) gives negative radial velocity for
ions and positive for electrons, so ions move radially inwards
and electrons move radially outwards as seen in the simula-
tions. Because B< 0, the CAM magnetic component qBr2/2
thus increases for both electrons and ions. Furthermore, it is
seen that the radial velocity of charged particles of type σ has a
maximum of 1/2 which occurs when |ξσ|= 1. Because the total
CAM of the two particles involved in each collision is
conserved, the system total CAM is conserved. The OAM of
the neutrals must decrease as a result of collisions with both
electrons and ions because, on average, collisions cause an
increase in the CAM of both electrons and ions. The
mechanism is insensitive to the polarity of the magnetic field,
because if B> 0, Equation (12) shows ions move radially
outwards and electrons move radially inwards, so the CAM of
the charged particles increases, in which case the neutral OAM
will again decrease.

Assuming a constant collision frequency and using
/ /u r1n

1 2=q , Equation (12) can be integrated to give
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Figures 2(a)–(c) compare the time dependence of the radial
position of an ion from a simulation with the dependence
predicted by Equation (13); the ion initial position is
r, 1, 0q =( ¯ ) ( ). Figure 2(d) presents the ξi dependence of the
average radial velocity v r t r t1 0ir i i= = - =∣ ¯ ∣ ∣ ¯ (¯ ) ¯ (¯ )∣. The
simulation motion and radial velocity agree well with
Equation (13) and also confirm that the ion radial velocity
has maximum value when 1x =∣ ∣ . The discrepancy of some
simulated points in Figure 2(d) is presumed to be from the
friction collision force approximation and radial velocity of
colliding neutrals. The friction collision force is derived from
averaging over the finite number of collisions, so if the number
of collisions is not large, there will be significant variation in
how the velocity of the charged particle decreases. An
additional effect is that at t 0=¯ , neutrals have no radial
velocity component. But then, some neutrals develop a radial
velocity upon colliding with charged particles, and in
subsequent collisions, this neutral radial velocity can accelerate
or decelerate the radial motion of charged particles. Figure 2(c)
presents a simulation with a small |ξi|. The oscillations from
cyclotron motion are visible in the radial motion because the
collision frequency is much smaller than the cyclotron
frequency. Even in this regime, the ion continues to move
radially inwards, and Equation (12) still holds. In this low
collisionality limit, the average radial velocity can be evaluated
by averaging the jumps in guiding center ^r vzgc

1

c
D = - ´ D

w s

as a result of collisions; this corresponds to Equation (12) in the
small |ξσ| limit and yields an average guiding center radial
velocity vσr= ξσunθ.
The radial velocity of neutrals is now derived from the

conservation of total system CAM. Consider a collisional
system where, at a specific radius, neutrals have density nn and
average azimuthal velocity unθ, ions have density ni and
average azimuthal velocity uiθ, and electrons have density ne
and average azimuthal velocity ueθ. The CAM density at this

Figure 2. (a)–(c) Comparison between the simulated motion of one ion in the system (blue circles) and the predicted motion from Equation (13) (red lines). In (a) to
(c) respectively, 12ciw = -¯ , −50, −100, 28.8inn =¯ , 53.6, 9.4, which give ξ = −2.40, −1.07, −0.09. (d) Comparison between the simulated velocity of one ion in the
system (blue diamonds and black circles) and the predicted velocity from Equation (12) (red lines) with v r t r t1 0ir i i= = - =∣ ¯ ∣ ∣ ¯ (¯ ) ¯ (¯ )∣. For (c) and the black circles in
(d), the simulation has a 0.025=¯ and d a4=¯ ¯ with N = 1183 particles arranged on concentric circles from r 0.3=¯ to r 1.9=¯ . The two-dimensional particle
trajectories in (c) are available as an animation. The animation runs from t 0 to 2=¯ .

(An animation of this figure is available.)
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radius is thus
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The system temporal evolution can be decomposed into two
types of interspersed intervals, namely, time intervals where there
are collisions and time intervals where there are no collisions.
Only the time intervals when there are collisions could contribute
to angular momentum transport between charged particles and
neutrals. Because the two particles involved in a collision have
the same r at the time of their collision and because there is no
change in the total momentum of these two particles as a result of
the collision, nnmnrnΔunθ+ nimiriΔuiθ+ nemereΔueθ= 0. Ignor-
ing nimiΔriuiθ+ nemeΔreueθ because it is much smaller than the
magnetic parts of the CAM, Equation (15) reduces to
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Assuming /u v GM rn K n= =q and dividing by Δt, the radial
velocity of neutrals is obtained as
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Using Equation (12), this becomes
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Although we assume a uniform magnetic field for the sake of
simplicity, the radial velocity expression still holds for a
nonuniform magnetic field situation.

Figure 3(a)–(b) presents the radial motion of 43,022 neutrals,
440 ions, and 440 electrons initially uniformly distributed
between r 0.95=¯ and r 2=¯ while Figure 3(c)–(d) shows, for
comparison, a reference situation having neutrals only (no
charged particles). These simulations have an initial velocity
that is Kepler plus a small random velocity (essential for
collisions to occur in the neutral-only reference case since
without random velocities, neutrals in circular Keplerian orbits
would never collide with each other). Figure 3(e)–(f) compares
the unr dependence on r from the simulation with the prediction
calculated from uir and uer using Equation (17). The electric
field generated from the charge separation is presumed to be
small and is ignored in the simulation. The slight jaggedness of
the prediction (circles) is because of the limited number of
charged particles in each radius bin. The unr from the
simulation has excellent agreement with the Equation (17)
prediction in Figure 3(f) between r 1=¯ and r 1.8=¯ where the
density fraction of charged particles is relatively stable. In

contrast, Figure 3(h) shows that when there are no charged
particles, unr is zero in the central region, and there is only a
small diffusive flux at the edges associated with the density
gradient. Comparison between Figures 3(f) and (h) of unr in the
interior region r1 1.8< <¯ , (i.e., no edge diffusion) clearly
shows that there is a substantial radial inward neutral flow only
when charged particles are present. For the system with ions
and electrons, the total system CAM is conserved with
P 5.4 104= ´q̄ while the total system OAM decreases from
L t 0 5.4 104= = ´q¯ (¯ ) to L t 0.8 3.7 104= = ´q¯ (¯ ) . For the
neutrals-only system, the total system OAM is conserved
with L t L t0 0.8 5.4 104= = = = ´q q¯ (¯ ) ¯ (¯ ) .
The simulation conserves the total energy W= sum of kinetic

and potential energies. For a single particle in a pure circular
Keplerian orbit, the total energy in dimensioned parameters is
W= L2/(2mr2)−mM*G/r=−mM*G/(2r); thus, total energy
would not be conserved if a particle moved from a pure circular
Keplerian orbit at one radius to a pure circular Keplerian orbit at
a different radius. Consequently, particles cannot change radius
while simultaneously conserving energy and maintaining a pure
circular Keplerian orbit. In a real disk, the energy released from
the decrease of particle radial position would be extracted as
blackbody radiation and electrical power expended in driving
the astrophysical jets. This energy release from the disk would
enable particles to maintain nearly circular Keplerian orbits
as their radial position decreased. If it is assumed that
particles maintain a pure circular Keplerian orbit as their radius
decreases, Equation (17) becomes modified to give a unr that
is double that of Equation (17); this comes from assuming
that n m r u n m u rn n n n n n n n

1

2
D = Dq q( ) , since for a pure circular

Keplerian orbit, unθ∼ r−1/2 and n m r un n n nD =q n m u rn n n n
1

2
- Dq .

The mass accretion rate is M rv2 nrp= - S where Σ≈ nmnh
is the surface density and h is the scale height. Using the radial
velocity of neutrals given by Equation (19), the accretion rate is
thus
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The friction collision frequency between charged particles and
neutrals taking into account dipole moment effects of neutrals is
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n
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cients are v 1.9 10 cm sin
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m
15 2 128

9
e

e

1
2

p
- ( ) (Draine et al. 1983). At r= 1 au, we

presume nn= 1020 m−3 (Hayashi 1981), B= 5 mG (Harrison
et al. 2021), χ= 10−12 (Ilgner & Nelson 2006; Walsh et al.
2012), Te= 100 K, h= 0.1 au, mi=mH= 1.66× 10−27 kg, and
m m 3.32 10 kgn H

27
2= = ´ - . Then 2627ix =∣ ∣ and ex =∣ ∣

9.44. Since   1i ex x∣ ∣ ∣ ∣ Equation (20) gives the mass
accretion rate as / M nr h qB M2 2.9 10 yre

2 8 1pc x= = ´ - -∣ ∣ .
This agrees well with observations that the mass accretion rate is
10−9

–10−7 Me yr−1.
The accumulation of ions at small radius and accumulation

of electrons at large radius establishes a radial electric field
Er> 0. The radial inward motion of the ions and outward
motion of the electrons corresponds to a radial electric current
Jr< 0. Because ErJr< 0, the process acts as an electric
generator and so is a dynamo that converts gravitational
potential energy into electrical energy. The radial electric field
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Figure 3. (a), (b) The particle trajectories of a system with ions and electrons at times t 0=¯ and 0.8. The simulation has a 3 10 3= ´ -¯ , d a5=¯ ¯, and 50ciw = -¯ with
Nn = 43,022 neutrals, Ni = 440 ions, and Ne = 440 electrons located in concentric circles ranging from r 0.95=¯ to r 2=¯ . The ions and electrons are initially in
adjacent pairs separated by a small azimuthal angle. The initial velocity is a Kepler velocity plus a random thermal velocity having 10% of the Kepler velocity
magnitude, that is / /v t r r v0 1 0.1 1 randomq= = +( ) ˆ ˆ where vrandomˆ is a random direction vector. The trajectories of the neutrals, ions, and electrons from
t 0 to 0.8=¯ are provided in the first part of the animation. (c), (d) The particle trajectories of a reference system having neutrals only at times t 0=¯ and 0.8 with the
same initial condition for neutrals as in (a). The trajectories from t 0 to 0.8=¯ of the system with neutrals only appear immediately after the animation of the system
with neutrals, ions, and electrons. (e), (f) The neutral radial drift velocity profile and the density fraction of ions and electrons of the system in (a), (b). The blue line is
the radial drift velocity profile of neutrals obtained from the simulation. The average radial velocity at a certain radius r̄ is obtained as the average velocity of particles
that are in a bin between radial position r r- D¯ ¯ and r r+ D¯ ¯ with r 0.05D =¯ . The blue circles are the radial velocity of neutrals calculated as a function of the ion
radial velocity and electron radial velocity as predicted by Equation (17). The red solid/dashed line shows the ion/electron density fraction vs. radial position. (g), (h)
The neutral drift velocity profile and neutral surface density nA vs. radial position of the system of (c), (d). The rippling of nA in (g) is from the aliasing of the radial
position bin period and the concentric circle position period; this rippling smooths out as the random velocity and collisions destroy the imposed initial pattern of
concentric circles of neutrals.

(An animation of this figure is available.)
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provides an electric force that opposes the radial inward motion
of the ions and outward motion of the electrons. The maxi-
mum radial electric field on the disk plane E Bur nmax = - =q

B GM

r
- * is achieved when the charge accumulation stops; this
maximum will occur if there is no means to drain the charge
accumulation, and at this maximum radial electric field, the
time-average radial velocity of charged particles goes to zero so
the electric current would cease. However, if a mechanism such
as an astrophysical jet circuit exists to drain the charge
accumulation, the radial electric field in the z= 0 plane will
drive an out-of-plane electric current; this electric field will be
less than Er max. The bidirectional jet electric currents are
directed away from the accretion disk in the small radius region
(ion accumulation region). The slight r component of the out-
of-plane electric current and its associated azimuthal magnetic
field Bf produce JrBf forces that drive bidirectional astro-
physical jets flowing away from the disk plane; this adds to
axial pressure gradients that also drive a flow away from the
disk plane (Bellan 2016, 2020). This jet generation configura-
tion is topologically analogous to the Caltech astrophysical jet
experiment (Hsu & Bellan 2002; You et al. 2005; Kumar &
Bellan 2009) where a poloidal current is produced by a power
supply imposing a radial electric field between a conducting
disk in the z= 0 plane and a coplanar conducting annulus
surrounding the disk and separated by a small gap.

4. Conclusions

(i) The fundamental conserved quantity is the canonical
angular momentum mrvθ+ qψ/2π, not the ordinary angular
momentum mrvθ. Ordinary angular momentum and canonical
angular momentum are identical for a neutral but are very
different for charged particles.

(ii) Collisions transfer neutral ordinary angular momentum to
charged particle canonical angular momentum, so neutrals
spiral inward.

(iii) The accumulation of ions at small radius and electrons at
large radius creates a radial electric field. Since ErJr< 0, the
disk acts as a gravity-powered dynamo.
(iv) The accumulation of ions at small radius drives an

axially outward out-of-plane poloidal electric current along the
poloidal magnetic field at small radius. This current and its
associated magnetic field produce forces that drive bidirectional
astrophysical jets flowing away from the disk. The increasing
energy in the jets as they lengthen is powered by the
gravitational disk dynamo.

This material is based upon work supported by NSF award
Nos. 2105492 and 1914599.
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