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Abstract

Galaxies can be characterized by many internal properties such as stellar mass, gas metallicity, and star formation
rate. We quantify the amount of cosmological and astrophysical information that the internal properties of
individual galaxies and their host dark matter halos contain. We train neural networks using hundreds of thousands
of galaxies from 2000 state-of-the-art hydrodynamic simulations with different cosmologies and astrophysical
models of the CAMELS project to perform likelihood-free inference on the value of the cosmological and
astrophysical parameters. We find that knowing the internal properties of a single galaxy allows our models to infer
the value of Ωm, at fixed Ωb, with a ∼10% precision, while no constraint can be placed on σ8. Our results hold for
any type of galaxy, central or satellite, massive or dwarf, at all considered redshifts, z� 3, and they incorporate
uncertainties in astrophysics as modeled in CAMELS. However, our models are not robust to changes in subgrid
physics due to the large intrinsic differences the two considered models imprint on galaxy properties. We find that
the stellar mass, stellar metallicity, and maximum circular velocity are among the most important galaxy properties
to determine the value of Ωm. We believe that our results can be explained by considering that changes in the value
of Ωm, or potentially Ωb/Ωm, affect the dark matter content of galaxies, which leaves a signature in galaxy
properties distinct from the one induced by galactic processes. Our results suggest that the low-dimensional
manifold hosting galaxy properties provides a tight direct link between cosmology and astrophysics.

Unified Astronomy Thesaurus concepts: Galaxy formation (595); Cosmological models (337); Astrostatistics
(1882); Hydrodynamical simulations (767)

1. Introduction

The discovery that the universe is accelerating its expansion
(Riess et al. 1998; Perlmutter et al. 1999) marked an inflection
point in cosmology. Determining the nature and properties of
the substance responsible for this behavior, dark energy, is one
of the most important goals of current cosmology.

In order to accomplish this task we need to extract the
maximum information from cosmological surveys. We know
that for Gaussian density fields the power spectrum (or the
correlation function) is the optimal estimator to extract the
maximum available information. However, we do not know
what estimator would allow us to extract the maximum amount
of information for non-Gaussian density fields, such as the
matter and galaxy distribution on nonlinear scales. Quantifying
the information content from different estimators is currently a
very active area of research (Coulton et al. 2019; Liu &
Madhavacheril 2019; Li et al. 2019; Marques et al. 2019;
Ajani et al. 2020; Allys et al. 2020; Banerjee et al. 2020;

Dai et al. 2020; de la Bella et al. 2021; Friedrich et al.
2020; Giri & Smith 2020; Hahn et al. 2020; Lee & Ryu 2020;
Ryu & Lee 2020; Villaescusa-Navarro et al. 2020; Uhlemann
et al. 2020; Zhang et al. 2020; Banerjee & Abel 2021a,
2021b; Bayer et al. 2021a, 2021b; Cheng and Ménard 2021;
Gualdi et al. 2021a, 2021b; Hahn & Villaescusa-Navarro 2021;
Harnois-Déraps et al. 2021; Kuruvilla 2021; Kuruvilla &
Aghanim 2021; Massara et al. 2021; Naidoo et al. 2021; Porth
et al. 2021; Samushia et al. 2021; Valogiannis & Dvorkin 2021;
Harnois-Déraps et al. 2022).
Another avenue is to use machine-learning techniques, e.g.,

neural networks, to find an approximation to the optimal
estimator (Schmelzle et al. 2017; Ravanbakhsh et al. 2017;
Gupta et al. 2018; Fluri et al. 2019; Ntampaka et al. 2020; Ribli
et al. 2019; Hassan et al. 2020; Jeffrey et al. 2021; Zorrilla
Matilla et al. 2020; Lu et al. 2022; Villaescusa-Navarro et al.
2021c). Recent works have shown that even for fields that are
very contaminated by astrophysical effects, it is possible to
extract cosmological information from small scales (Villaescusa-
Navarro et al. 2021a).
Either way, both approaches yield the same conclusion:

small, nonlinear scales seem to contain a wealth of cosmolo-
gical information. Down to which scale is this statement true?

The Astrophysical Journal, 929:132 (22pp), 2022 April 20 https://doi.org/10.3847/1538-4357/ac5d3f
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-4816-0455
https://orcid.org/0000-0002-4816-0455
https://orcid.org/0000-0002-4816-0455
https://orcid.org/0000-0002-3185-1540
https://orcid.org/0000-0002-3185-1540
https://orcid.org/0000-0002-3185-1540
https://orcid.org/0000-0002-8710-9206
https://orcid.org/0000-0002-8710-9206
https://orcid.org/0000-0002-8710-9206
https://orcid.org/0000-0002-5151-0006
https://orcid.org/0000-0002-5151-0006
https://orcid.org/0000-0002-5151-0006
https://orcid.org/0000-0001-7689-0933
https://orcid.org/0000-0001-7689-0933
https://orcid.org/0000-0001-7689-0933
https://orcid.org/0000-0002-0701-1410
https://orcid.org/0000-0002-0701-1410
https://orcid.org/0000-0002-0701-1410
https://orcid.org/0000-0001-8883-0583
https://orcid.org/0000-0001-8883-0583
https://orcid.org/0000-0001-8883-0583
https://orcid.org/0000-0002-4728-8473
https://orcid.org/0000-0002-4728-8473
https://orcid.org/0000-0002-4728-8473
https://orcid.org/0000-0001-5769-4945
https://orcid.org/0000-0001-5769-4945
https://orcid.org/0000-0001-5769-4945
https://orcid.org/0000-0002-6766-5942
https://orcid.org/0000-0002-6766-5942
https://orcid.org/0000-0002-6766-5942
mailto:fvillaescusa@flatironinstitute.org
http://astrothesaurus.org/uat/595
http://astrothesaurus.org/uat/337
http://astrothesaurus.org/uat/1882
http://astrothesaurus.org/uat/1882
http://astrothesaurus.org/uat/767
https://doi.org/10.3847/1538-4357/ac5d3f
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac5d3f&domain=pdf&date_stamp=2022-04-20
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac5d3f&domain=pdf&date_stamp=2022-04-20
http://creativecommons.org/licenses/by/4.0/


Does the information run out at some point? These are difficult
questions that we do not attempt to address in this work.
Instead, we investigate whether there is any cosmological
information in one of the fundamental building blocks of many
cosmological surveys: galaxies. In other words, can we infer
the value of the cosmological parameters from a single, generic
galaxy?

To address this question we employ machine-learning
methods to connect the internal properties of individual galaxies
to the value of the cosmological and astrophysical parameters.
We made use of galaxies from the state-of-the-art hydrodynamic
simulations of the CAMELS project (Villaescusa-Navarro et al.
2021b). The internal galaxy properties considered in this
work include the stellar mass, the star formation rate, the total
mass in the galaxy’s subhalo, and the stellar radius among
others. The CAMELS simulations contain around 1 million
galaxies at fixed redshift for 2000 different cosmological and
astrophysical models from two distinct suites of hydrodynamic
simulations based on the IllustrisTNG (Marinacci et al. 2018;
Naiman et al. 2018; Nelson et al. 2018; Pillepich et al. 2018a;
Springel et al. 2018) and SIMBA (Davé et al. 2019)
frameworks. This allows us to quantify the dependence of our
results on uncertainties in astrophysics processes and on the
subgrid physics model.

As we shall see below, we find that we can infer the value of
Ωm with a ;10% precision just using the internal properties of
an individual, generic galaxy; no constraint can be placed on
the value of σ8. These constraints account for uncertainties in
astrophysics, as implemented in each of the suites comprising
the CAMELS simulations. However, they are not robust to
changes in subgrid physics, due to the intrinsic differences in
galaxy properties between the different frameworks. If our
interpretation of these results is correct, it would imply that
galaxy properties live in manifolds that change with the value
of Ωm, providing a link between cosmology and astrophysics.
To our knowledge, this is the first time that this idea has been
explored, and it may open new exciting possibilities to connect
cosmology with astrophysics through galaxy properties.

To enable the community to reproduce our results, we
release all data used in this work together with the codes,
databases, and network weights obtained after training. We
refer the reader to https://github.com/franciscovillaescusa/
Cosmo1gal for further details.

This paper is organized as follows. In Section 2 we describe
the data we use together with the machine-learning methods
employed. We present our results in Section 3 and attempt a
physical interpretation for them in Section 4. Finally, we
summarize and discuss the main results of this work in
Section 5.

2. Methods

In this section we describe the data and the machine-learning
models we use to find the mapping between the properties of
individual galaxies and the value of the cosmological and
astrophysical parameters.

2.1. Simulations

In this work we use galaxies from the simulations of the
CAMELS project (Villaescusa-Navarro et al. 2021b).
CAMELS contains two suites of state-of-the-art hydrodynamic
simulations:

1. IllustrisTNG. The simulations in this suite have been run
with the AREPO code (Springel 2010; Weinberger et al.
2020) and employ the same subgrid physics model as the
original IllustrisTNG simulations (Weinberger et al.
2017; Pillepich et al. 2018b).

2. SIMBA. The simulations in this suite have been run with
the GIZMO code (Hopkins 2015) and employ the same
subgrid physics model as the original SIMBA simulation
(Davé et al. 2019), building on its precursor MUFASA
(Davé et al. 2016) with the addition of supermassive
black hole growth and feedback (Anglés-Alcázar et al.
2017).

All simulations follow the evolution of 2× 2563 dark matter
plus fluid elements in a periodic comoving volume of

h25 Mpc1 3-( ) from z= 127 down to z= 0. All simulations
share the value of the following cosmological parameters:
Ωb= 0.049, h= 0.6711, ns= 0.9624, ∑mν= 0.0 eV, w=−1.
However, each simulation has a unique value of Ωm and σ8.
The hydrodynamic simulations also vary the values of four
astrophysical parameters that control the efficiency of super-
nova and active galactic nucleus (AGN) feedback: ASN1, ASN2,
AAGN1, and AAGN2.
In this work we use the LH sets of the IllustrisTNG and

SIMBA suites. Each set contains 1000 simulations, where the
values of Ωm, σ8, ASN1, A ,SN2 AAGN1, and AAGN2 are arranged
in a Latin hypercube defined by

0.1, 0.5 1mW Î [ ] ( )

0.6, 1.0 28s Î [ ] ( )

A A, 0.25, 4.0 3SN1 AGN1 Î [ ] ( )

A A, 0.5, 2.0 , 4SN2 AGN2 Î [ ] ( )

and each simulation has a different value of the random seed
that sets the initial conditions. We note that the Latin
hypercubes of the IllustrisTNG and SIMBA simulations are
different, i.e., there is no correspondence between simulations
from the two sets. We emphasize that the astrophysics
parameters have different meanings in the IllustrisTNG versus
SIMBA suites due to the distinct internal workings of these two
models.
We refer the reader to Villaescusa-Navarro et al. (2021b) for

further details on the simulations of the CAMELS project.

2.2. Galaxy Properties

We have run SUBFIND (Springel et al. 2001) to identify halos
and subhalos in the simulations. In this work we define galaxies
as subhalos that contain more than 20 star particles. All
galaxies from all simulations are characterized by 14 different
properties:

1. Mg. The gas mass content of the subhalo hosting the
galaxy, including the contribution from the circumgalac-
tic medium.

2. MBH. The total mass of black holes in the galaxy.
3. M*. The stellar mass of the galaxy.
4. Mt. The total mass of the subhalo hosting the galaxy, i.e.,

the sum of the mass in dark matter, gas, stars, and black
holes in the subhalo.

5. Vmax. The maximum circular velocity of the subhalo
hosting the galaxy: V GM R Rmaxmax = <( ( ) ).
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6. σv. The mass-weighted velocity dispersion of all particles
contained in the galaxy’s subhalo.

7. Zg. The mass-weighted gas metallicity of the galaxy.
8. Z*. The mass-weighted stellar metallicity of the galaxy.
9. SFR. The galaxy star formation rate.
10. J. The modulus of the galaxy’s subhalo spin vector.
11. V. The modulus of the galaxy’s subhalo peculiar velocity.
12. R*. The radius containing half of the galaxy stellar mass.
13. Rt. The radius containing half of the total mass of the

galaxy’s subhalo.
14. Rmax. The radius at which GM R R Vmax< =( ) .

For galaxies of the IllustrisTNG simulations we also consider
three additional properties:

15. U. The galaxy magnitude in the U band.
16. K. The galaxy magnitude in the K band.
17. g. The galaxy magnitude in the g band.

These three properties are only present in the IllustrisTNG
simulations because they are calculated on the fly and saved to
the simulation output files by the AREPO code but not by the
GIZMO code.

We have employed the above galaxy properties because
these are computed by SUBFIND and therefore easily accessible
to us. Using other properties would require postprocessing the
snapshots, which we leave for future work. We emphasize that
while most of the considered properties can be associated with
galaxies themselves, there are others that should be seen as
properties of the subhalos hosting the galaxies, like Vmax, Mt,
and σv. We note that in this work we are not splitting galaxies
according to some property, e.g., large or small, central or
satellite.

2.3. Machine-learning Algorithms

We made use of several machine-learning algorithms for
three different reasons: first, to assert that our conclusions hold
independently of the method used; second, because some tasks
(e.g., feature ranking) require a significant amount of
computation, and it is difficult to perform them if not using
fast methods; and third, to provide some interpretability to our
results.

1. Gradient Boosting Trees: This method is based on
decision trees and therefore computationally efficient.
We made use of the XGB package12 to estimate the value
of Ωm from the 17 galaxy properties. For each task, we
tune the value of the following hyperparameters: (1) the
learning rate, (2) the maximum depth, (3) the minimum
child weight, (4) the value of gamma, (5) the value of
colsample_bytree, and (6) the number of estimators. The
loss function we optimize is the mean squared error.
XGB accounts for L2 regularization internally. We note
that in this case we perform parameter regression, while
with neural networks we do likelihood-free inference.

2. Neural networks: We made use of fully connected layers
because they are appropriate for the task we consider in
this work. Our architecture consists of several fully
connected layer blocks. These blocks contain a fully
connected layer that is followed by a LeakyReLU
activation layer with a slope of 0.2 and a dropout layer
where the value of the dropout rate is a hyperparameter.

The very last layer of the architecture is just a fully
connected layer not followed by an activation or dropout
layer. The hyperparameters we consider are (1) the
number of fully connected layers, (2) the number of
neurons in each layer, (3) the dropout value, (4) the value
of the weight decay, and (5) the learning rate. Our
networks are trained to perform likelihood-free inference;
they estimate the posterior mean and standard deviation
for each parameter by minimizing the loss function of
moment networks (Jeffrey & Wandelt 2020).

We use the optuna13 (Akiba et al. 2019) package to perform
the hyperparameter optimization of both gradient boosting trees
and neural networks. In both cases, we first sample the
hyperparameter space using between 25 and 30 trials14 and
then we perform Bayesian optimization for 75–80 more trials.
In all cases we search the hyperparameter space to minimize
the value of the validation loss. The value of the hyperpara-
meters for the best models we found can be obtained in https://
github.com/franciscovillaescusa/Cosmo1gal together with the
network weights and scripts used.
For gradient boosting trees and neural networks we split the

data into three different sets: training, validation, and testing.
Because galaxies in the same simulations may share features in
either low- or high-dimensional spaces, we first split the data
by simulation. The training set contains 850 simulations with
all their galaxies. The validation set has all galaxies from 100
simulations, while the testing set contains 50 simulations with
all their galaxies. By splitting the data in this way, we can
guarantee that the galaxies in the test set, together with their
associated cosmology and astrophysics, have never been seen
by the model before. We note that according to our galaxy
selection criteria (i.e., subhalos with more than 20 star
particles) the number of galaxies will differ in the different
simulations. For instance, models with high values of Ωm and/
or σ8 will typically contain more galaxies than simulations with
lower values of these parameters. This effect could potentially
introduce a bias because the values of the parameters are
effectively not sampled uniformly. However, because the
differences in the number of galaxies between the different
simulations are relatively small, we think this effect is not very
important. On the other hand, correcting this effect may lead to
slight improvements in our results.

2.4. Accuracy and Precision

Throughout this paper we will be discussing the accuracy
and the precision of a given model. Here we describe what we
mean by these.
Neural networks. With this method, we perform likelihood-

free inference, and the output of the networks is the posterior
mean (μ) and standard deviation (σ) of a given parameter i, i.e.,

X Xp d , 5i i i i i
i

òm q q q=
q

( ) ( ∣ ) ( )

X Xp d , 6i i i i i i
2

i
òs q q m q= -
q

( ) ( ∣ )( ) ( )

12 https://xgboost.readthedocs.io

13 https://optuna.org
14 A trial represents the result of training the model with a given value of the
hyperparameters.
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where X is the vector containing the galaxy properties and
pi(θi|X) is the marginal posterior over the parameter i,

X Xp p d d d d... ... . 7i i i i i i n1 1 1òq q q q q q=
q

- +( ∣ ) ( ∣ ) ( )

We define the accuracy of the model for the parameter i as

Accuracy , 8i i
T

i
2q m= á - ñ( ) ( )

where i
Tq is the true value of the parameter i and the average is

done over all galaxies in the considered set (e.g., the test set).
Meanwhile, we define the precision of the model on the
parameter i as

Precision . 9i
i

i

s
m

= ( )

Gradient boosting trees. With this method we only perform
parameter regression, and the output of the model is the
predicted value of the parameter i: iq̃ . In this case we only
define the model accuracy,

Accuracy . 10i i
T

i
2q q= á - ñ( ˜ ) ( )

We emphasize the differences between our definitions of
accuracy and precision. Accuracy quantifies the dispersion
around the true values (independently of the size of the error
bars for the prediction), while precision estimates the size of the
relative errors (independently of whether the values are close to
or far from the true values).

Finally, we note that the accuracy and precision as defined
above will give more weight to low-mass galaxies, as those are
the most abundant in the simulations. When studying how
constraints change for different galaxies in a given simulation,

it will prove useful to quantify the dependence of accuracy and
precision on stellar mass.

3. Results

We start by training a neural network that takes as input the
17 properties of individual galaxies of the IllustrisTNG
simulations at z= 0 and outputs the posterior mean and
standard deviation for each cosmological and astrophysical
parameter. Once the network is trained, we test it using the
properties of individual galaxies of the test set. In Figure 1 we
show the derived posterior means and standard deviations for
50 random galaxies versus their true value.
The network has not found enough information to infer the

value of AAGN1, AAGN2, and σ8, so it just predicts the mean
value with large error bars for these parameters. For the
supernova parameters, ASN1 and ASN2, the network may be
using some information to provide some loose constraints (we
provide further details in Appendix D). On the other hand, for
Ωm, the network seems to have found enough information to
determine its value for almost all galaxies considered. We
emphasize that these constraints are derived for individual
galaxies, each having a different cosmology and astrophysics
model, that were selected randomly, e.g., independently of
their stellar mass and whether they are centrals or satellites.
From Figure 1 we cannot tell whether the network is able to

infer the value of Ωm for any generic galaxy or whether we
were lucky with the random selection we carried out in that
exercise. To shed light on this question, we compute the
averages of the means and standard deviations of the posteriors
for all galaxies in each simulation of the test set,

N N

1 1
, 11i s

s j s
i j i s

s j s
i j, , , ,å åm m s s= =

Î Î
¯ ¯ ( )

Figure 1. We have trained a neural network to perform likelihood-free inference on the value of the cosmological (Ωm and σ8) and astrophysical (ASN1, ASN2, AAGN1,
and AAGN2) parameters using as input 17 properties of individual galaxies from the IllustrisTNG simulations at z = 0. Once the network is trained, we test it using
individual galaxies from the test set. The different panels show the posterior mean and standard deviation predicted by the network vs. the true value. Every point with
its error bar represents a single galaxy. We find that our model is able to infer the value of Ωm from the properties of individual galaxies with a ∼10% precision.
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where i denotes the considered parameter (e.g., Ωm) and j
runs over all Ns galaxies of a given simulation s. In the top
panel of Figure 2 we show the above values for each of the
simulations in the test set. In the bottom-right part of that
panel, we quote the accuracy and precision of the model. As
can be seen, on average for all galaxies, the network is able to
infer the value of Ωm with an accuracy of 0.034 and a 10.5%
precision.

We perform the following exercise to investigate in more
detail whether our model works for all galaxies or just a subset
of them. First, we select three different simulations of the test
set with different values of Ωm: one low, one high, and one
intermediate. From each of those simulations we randomly
select 150 galaxies. For each of those galaxies, we compute the
posterior mean and standard deviation of Ωm. In the bottom
panels of Figure 2 we show the results. The constraints are
color-coded according to the stellar mass of the galaxies. Those
plots show that our network not only works for a subset of
galaxies but seems to perform well for the majority of the
galaxies in a given simulation.

Three features are worth noticing. First, in all cases there
seem to be some outliers where the posterior mean is
significantly away from the true value. Second, for the models
with intermediate and high values of Ωm, the size of the
standard deviation of the posterior is very similar for all
galaxies,15 while for the cosmology with a low value of Ωm we
find that massive galaxies have smaller posterior variances than
low-mass galaxies. Third, from the top panel of Figure 2 we
can see that in some simulations there seem to be systematic
differences between the posterior means and the true value. We
will attempt to provide an explanation for these features in
Section 4.
From the above results we conclude that there is evidence

showing that the value of Ωm can be inferred from the
properties of individual galaxies for the vast majority of the
cases. This statement holds for galaxies with very different

Figure 2.We trained neural networks using galaxies from 850 IllustrisTNG simulations and have reserved all the galaxies from 50 additional IllustrisTNG simulations
for the test set. For each galaxy of a given simulation of the test set we compute the posterior mean and standard deviation. The bottom panels show the results for 150
individual galaxies of three different simulations with three different values of Ωm (shown with a horizontal solid line) color-coded according to the value of the stellar
mass of the galaxy. Galaxies are organized according to their stellar mass; galaxies on the left are small while the ones on the right are large. We have then computed
the posterior mean and standard deviation from all galaxies in a simulation (Equation (11)) and plotted the results in the top panel. The black points in that panel show
the results for the simulations in the bottom panels. The numbers inside the top panel show the accuracy and precision of the model. All results are at z = 0. As can be
seen, our network is able to infer the value of Ωm for the vast majority of galaxies in a given simulation.

15 For the model with high Ωm, the minimum and maximum values only vary
by a factor of ∼3 while for the model with low Ωm the difference is more than a
factor of ∼7.
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cosmologies, astrophysics, and almost independently on
whether the galaxy is massive or dwarf, central or satellite.16

3.1. Dependence on Method and Data

We have carried out other sanity checks to investigate
whether our conclusions hold for different methods and
different simulations:

1. We have repeated the above analysis but using galaxies
from the CAMELS-SIMBA simulations (using their 14
properties) instead of the IllustrisTNG galaxies, reaching
the same conclusions as above. We provide further details
of this test and its results in Appendix A.

2. We have repeated the above exercise but performed
parameter regression through gradient boosting trees. We
have trained these models using both galaxies from the
IllustrisTNG and SIMBA simulations (separately). We
find that the accuracy of these methods on Ωm is similar
to the one from neural networks.

These tests indicate that our results are robust to the
particularities of the method used to perform the mapping
between galaxy properties and the value of Ωm.

3.2. Dependence on Redshift

We now investigate whether our results only hold at z= 0, or
we can also infer the value of Ωm from the internal properties of
galaxies at higher redshifts. For this, we have trained neural
networks to infer the values of the cosmological and

astrophysical parameters from galaxies at redshifts 1, 2, and
3 using both the IllustrisTNG and the SIMBA suites.
Once the models are trained, we test it on individual galaxies

from simulations of the test set and compute the average
posterior mean and posterior standard deviation from all
galaxies in a given simulation (i.e., Equation (11)). We then
show these measurements in Figure 3.
As can be seen, results at redshifts higher than zero are

qualitatively very similar to the ones at z= 0 for both
IllustrisTNG and SIMBA galaxies. We computed the accuracy
and precision for all models and quote them in the bottom-right
part of each panel. We find that both the accuracy and precision
of the models are very similar across redshifts, although there is
a slight improvement when using galaxies at higher redshifts.
The models trained on IllustrisTNG galaxies, however, exhibit
a better accuracy and precision than the ones trained on
SIMBA galaxies. This is due to the inclusion of the three
additional features contained in the IllustrisTNG galaxies (the
magnitudes in the U, K, and g bands). This can be seen more
clearly in the top-left and bottom-right panels of Figure 4,
where models trained on the same variables from IllustrisTNG
and SIMBA exhibit similar accuracy and precision. Overall, we
conclude that it seems possible to infer the value of Ωm from
the internal properties of galaxies at redshifts z� 3.
Next, we investigate whether our results are independent of

redshift, i.e., whether a model trained on galaxies at a given
redshift is able to infer the value of Ωm from galaxies at a
different redshift. We have tried this on different models at
different redshifts and found that it does not work. We have
also tried a few different things to verify that the reason was not
due to the use of comoving versus proper quantities (see, e.g.,
Shao et al. 2022) but we did not find any improvement. From
these tests we conclude that the mapping between the internal

Figure 3. Redshift dependence. We have trained neural networks to infer the value of the cosmological and astrophysical parameters using properties of individual
galaxies at different redshifts and for galaxies of the IllustrisTNG and SIMBA simulations. For each galaxy of each simulation of the test set we compute the posterior
mean and standard deviation for Ωm. Next, we compute the mean of those two numbers (Equation (11)) and plot them in the figure for the 50 different simulations in
the test set. We show results at redshifts 1, 2, and 3. The numbers in the bottom-right corner show the model accuracy and precision. As can be seen, our networks can
infer the value of Ωm from individual galaxies at redshifts higher than z = 0 with an accuracy similar to the one achieved by the models at z = 0.

16 We emphasize that we do not provide the models with information on
whether a galaxy is a central or a satellite.
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galaxy properties and Ωm should have an intrinsic dependence
on redshift. In the next section we attempt to provide a physical
understanding of this result.

3.3. Robustness

Ideally, we would like to apply this method to the internal
properties of real galaxies to derive the value of Ωm and see
whether it agrees with the one derived from standard
cosmological measurements (e.g., CMB or galaxy clustering).
However, to carry out that task, we need a robust model, i.e.,
one that works independently of the type of simulations used
for training. At its core, CAMELS was designed to test the
robustness of models by providing simulations from two
distinct suites: IllustrisTNG and SIMBA.

Here we quantify the robustness of our model by testing on
one suite the models that were trained on the other suite. We
show the results of such exercise in Figure 4. We find that
while testing the model on galaxies from the same subgrid
model as the one used for training yields precise and accurate
results for both the IllustrisTNG and SIMBA models, the
model fails when tested on galaxies from different subgrid
models. In Appendix B we provide further details on this test.

We have repeated this exercise with the gradient boosting
tree method, reaching the same conclusions. We have also tried

with a smaller set of variables, e.g., M V Z, ,max* *{ }, but the
models are still not robust. We thus conclude that our models
may be learning something particular about each simulation
code or that the two suites do not overlap in the parameter
space of possible models. In the next section we shall see that
one reason behind this behavior is that the two different suites
of simulations produce very different galaxies with distinct
properties, limiting the range where they both overlap and
therefore making the model not robust.
It is interesting to note that the trends we observe in the

cross-analysis of Figure 4 go in the same direction. In other
words, when the model is trained on IllustrisTNG/SIMBA
galaxies, it tends to overpredict the value of Ωm when tested on
galaxies from SIMBA/IllustrisTNG. We would have expected
that if the model trained on IllustrisTNG overpredicts when
tested on SIMBA, the model trained on SIMBA should
underpredict when tested on IllustrisTNG. Investigating this is
beyond the scope of this work, but it may be a consequence of
the topological properties of the manifold hosting the galaxy
properties.

4. Interpretation

In this section we attempt to provide a physical explanation
to our findings above. We will focus our attention on Ωm.

Figure 4. Robustness test. We have trained neural networks to perform likelihood-free inference on the value of the cosmological and astrophysical parameters using
the internal properties of individual galaxies at z = 0. In this case we made use of the 14 internal properties that are common between the galaxies in the IllustrisTNG
and SIMBA simulations. We have trained models using galaxies from either the IllustrisTNG or SIMBA simulations. For each simulation in the test set, we compute
the posterior mean and standard deviation for Ωm for each galaxy on it. We then compute the average value of those two numbers from all galaxies in a given
simulation (Equation (11)). These panels show the results for all 50 simulations in the test set when training on galaxies of a given simulation and test it on galaxies of
the same simulation or another simulation. In the bottom-right part of each panel we quote the accuracy and precision of the model on the tested galaxies. As can be
seen, when the model is tested on galaxies from simulations different to the ones used for training, the model is not able to infer the correct cosmology in most cases.
This indicates that the model is not robust and may be using information that is specific to each galaxy formation model.
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4.1. Linear Correlations

We start by investigating whether there are strong linear
correlations between the galaxy properties and Ωm. For that, we
plot in Figure 5 the correlation matrix of all galaxy properties
plus Ωm, defined as

R
C

C C
, 12ij

ij

ii jj

= ( )

where

C p p p p , 13ij i i j j= á - - ñ( ¯ )( ¯ ) ( )

where pi refers to the i feature of the data vector (galaxy
properties plus Ωm) and p pi i= á ñ¯ . This matrix gives informa-
tion about the linear correlation between the different variables.

As can be seen, while some galaxy properties seem to be
highly correlated (e.g., Vmax and σv), the linear correlations
between Ωm and the galaxy features are not particularly high.
For IllustrisTNG galaxies, the strongest correlated variable with
Ωm is σv, while for SIMBA galaxies is Vmax.

These tests indicate that our findings are not due to simple
linear correlations between Ωm and galaxy properties. To
further reinforce this point, we have explicitly performed linear
regression from the galaxy properties to the value of Ωm,
finding that the model performs badly; the model mainly
predicts the mean value of Ωm with very little scatter. We have
carried out this exercise for both the IllustrisTNG and SIMBA
galaxies and using different numbers of galaxy properties,
finding that the results barely change. This reinforces our
interpretation that the relation between galaxy properties and
Ωm cannot be described by a simple linear relation.

As a side calculation we have also carried out an analysis
with the Principal Component Analysis (PCA) to try to identify
the number of components and variables that are responsible
for most of the overall data variance (i.e., considering both
galaxy properties plus Ωm). For IllustrisTNG galaxies we find
that the first principal component is dominated by Ωm as well as
V, Vmax, and σv, while for SIMBA the most important features

are Ωm and Vmax, followed by Zg, Z*, σv, and V. It is interesting
to see that Ωm and Vmax seem to form a basis to explain most of
the data variance.

4.2. Properties Ranking

Next, we try to identify the most important galaxy features
that the network is using in order to carry out the inference. We
have used different methods to perform this task, like
computing saliency maps and SHapley Additive exPlanation
(SHAP) values for the neural networks, and using the feature
importance method for random forest and gradient boosting
trees regressors. However, we found that these methods did not
allow us to identify the most important features, likely because
of the strong internal correlations between the different
variables. In Appendix C, we provide additional details about
our results when using SHAP values.
We therefore tackle this problem as follows. First, we train a

model using all galaxy properties and record its accuracy. Next,
we remove one of the considered properties and retrain a model
using the rest of the properties. We then reincorporate that
feature, remove another property, and train another model on
those variables. We repeat this procedure until all properties
have been independently removed. For instance, we train a
model that contains all properties except gas mass, we train
another model that contains all properties except stellar mass,
we train another model that contains all properties except black
hole mass, and so on. For each model we save the accuracy
obtained. This method allows us to quantify the worsening of
the model accuracy by removing a single feature.
We then continue the exercise by removing the variable that

changes the accuracy the least. With the subset of variables left,
we repeat the above procedure and train models where we
remove one galaxy property at a time and record the model
accuracy. In this way we can rank order17 the features

Figure 5.We have computed the correlation matrix (see Equation (12)) of the galaxy properties plus Ωm for the IllustrisTNG (left) and SIMBA (right) simulations. We
find a strong linear correlation among different galaxy properties (e.g., gas mass and total mass), but the correlations between Ωm and the galaxy properties are
relatively mild. This indicates that the value of Ωm cannot be inferred due to simple, linear correlations between Ωm and galaxy properties.

17 We note that this method is not guaranteed to give the correct ordering in
general. For instance, removing two or more properties at a time may lead to a
different ordering.
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according to their contribution to the model accuracy.
Unfortunately, doing this exercise with neural networks while
performing hyperparameter optimization is too computationally
expensive for this work, so we decided to do it using gradient
boosting trees instead of neural networks.

We show the rank-ordered features in Figure 6. We find the
two most important features to be Vmax and M* for both
IllustrisTNG and SIMBA galaxies. The stellar metallicity and
stellar radius are also among the five most important features in
both cases. However, for IllustrisTNG galaxies, the K-band
magnitude appears as a very relevant property (this property is
not present in the SIMBA galaxies) while in the case of
SIMBA galaxies the radius associated with the maximum
circular velocity, Rmax, is selected as an important feature. In
Figure 6 we show the accuracy (quantified in terms of the rms
error) gained as we add variables cumulatively from top to
bottom. For IllustrisTNG galaxies, using the subset of
V M Z R K, , , ,max * * *{ } only degrades results by 17% with
respect to the accuracy achieved by training on all 17
properties. Meanwhile, for SIMBA galaxies, using the subset
of V M R Z R, , , ,max max* * *{ } only degrades results by 15% with
respect to training using all 14 features.

Next, with these subsets of five variables we have trained
neural networks to perform likelihood-free inference. For
IllustrisTNG/SIMBA galaxies we find that the accuracy on
predicting Ωm degrades by 27%/28% when comparing it to the
accuracy of model trained using all 17/14 variables. When
using the five most important features according to the absolute
SHAP values (e.g., M K M Z V, , , ,g g max*{ } for the IllustrisTNG
simulations), we found that the model performs significantly
worse: the rms error between the posterior mean and the true
value degrades by 47%. These results show that this procedure
can find a minimum set of variables that is responsible for most
of the model accuracy.

4.3. Visual Inspection

Before attempting a physical explanation of our results with
the information gained from the above experiments, we
perform a visual inspection of some galaxy features in two
and three dimensions to gain intuition. For this, we randomly
select 10,000 galaxies from 100 different IllustrisTNG
simulations (100 galaxies per simulation); we do the same
exercise for the SIMBA simulations. For this exercise we
consider three galaxy properties: Vmax, M*, and Z*. We have
chosen these variables because Vmax and M* are the most
important ones for both IllustrisTNG and SIMBA galaxies,
while Z* is among the four18 most important variables in both
suites.
In Figure 7 we show the 2D and 3D projections of the data.

Each point, representing a galaxy, is color-coded according to
its Ωm value. As can be seen, galaxy properties occupy
different regions in the 2D and 3D plots depending on the value
of Ωm. In particular, the dependence of theV Mmax *– relation on
Ωm is particularly pronounced. We will discuss this trend in
more detail in the next subsection. We emphasize that galaxies
are randomly selected from the simulations, i.e., they not only
differ in their value of Ωm but also in σ8 and the four
astrophysical subgrid parameters.
From Figure 7 we can also see the large, intrinsic differences

between the SIMBA and IllustrisTNG galaxies: While they
exhibit similar qualitative dependence with Ωm, they populate
the parameter space differently. This is, however, expected,
given the large differences between the IllustrisTNG and
SIMBA subgrid models. We note that in higher dimensions, the

Figure 6. We rank order the galaxy properties for both IllustrisTNG (left) and SIMBA (right) such that the variables contributing the most to the model accuracy are
on top while the features contributing the least are on the bottom (see text for details on the procedure used). The horizontal bars indicate the accuracy (in terms of
RMSE) achieved by the considered variables, cumulatively from top to bottom, and the black numbers inside them show the loss in accuracy with respect to a model
trained using all variables. For instance, for the IllustrisTNG galaxies, a model that only uses Vmax achieves an RMSE of ∼0.1 and performs 163.4% worse than the
model trained on all 17 properties (with an RMSE of ∼0.04). Likewise, a model trained on SIMBA galaxies using V M R Z R, , , ,max max* * *{ } achieves an RMSE of
;0.04, which is only 14.7% worse than the model trained on all 14 galaxy properties. We emphasize that this ordering was derived when training gradient boosting
trees models to perform regression to the value of Ωm.

18 We note that Z* is the third and fourth most important variable for the
IlllustrisTNG and SIMBA galaxies, respectively. The third most important
variable for SIMBA is Rmax, but it has a rather low importance ranking for
IllustrisTNG.
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differences between the simulations may be even more
pronounced. We believe that this is the reason why our models
are not robust, i.e., a model trained on galaxy properties from
IllustrisTNG simulations does not work when tested on
SIMBA galaxies, and the other way around.

4.4. Physical Interpretation

We now discuss the physics behind our results. As we saw in
Figure 7, galaxy properties populate the parameter space
differently depending on the value of Ωm. This indicates that
Ωm induces an effect on galaxy properties, or on a subset of

them, that cannot be mimicked by astrophysical effects. Let us
first focus our attention on the two most important properties of
both the SIMBA and the IllustrisTNG galaxies: Vmax and M*.
From the top panels of Figure 7 we can see that at fixed stellar
mass, the maximum circular velocity increases monotonically
with Ωm. This may be explained by taking into account that
higher values of Ωm will increase the dark matter density in the
universe, and therefore, more dark matter is expected to reside
in galaxies, enhancing their gravitational potential well and
therefore their Vmax value. However, feedback from supernovae
and AGNs are also expected to affect the stellar mass of the
galaxy, introducing some scatter in the M Vmax*– relation.

Figure 7. For both the IllustrisTNG and SIMBA suites we have randomly taken 100 simulations. From each simulation we have randomly selected 100 galaxies at
z = 0, for a total of 10,000 galaxies. Top: For each of those galaxies we show correlations betweenVmax andM* (left), Z* and M* (middle), and Z* andVmax (right) for
the IllustrisTNG (top row) and SIMBA (bottom row) galaxies. Each galaxy is color-coded according to the value of Ωm of its simulation (blue/green/red indicate
low/medium/high values of Ωm). As can be seen, there is a prominent correlation between Vmax and M* that changes with Ωm. We can also observe other more
complex trends in the Z*–M* and Z Vmax*– planes with Ωm. Bottom: We show the results in 3D. Galaxies occupy different regions in the properties space depending
on their value of Ωm. We believe that in higher dimensions (i.e., considering more galaxy properties), galaxies should occupy even more disconnected regions as a
function of Ωm. We interpret these results as Ωm changing the manifold where galaxy properties reside in a different way as feedback does. Machine-learning methods
can use these patterns to determine the value of Ωm.
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As we shall see below, our tests suggest that Ωm is not
imprinted onto a single property (e.g., Vmax) and that even
knowing the value of the astrophysical parameters perfectly
does not significantly help due to intrinsic scatter among
different galaxies within any given model with a fixed set of
parameters. Thus, we may think that Ωm may change the
manifold where galaxy properties live and that change is
different from the one induced by changes in feedback.

This explanation could shed light on why we cannot
determine the value of σ8 with a single galaxy. In contrast to
Ωm, σ8 will only change the amplitude of the initial matter
fluctuations and that by itself is unlikely to induce systematic
differences in galaxy properties. σ8 may, however, affect the
abundance of galaxies, in particular, that of the most massive
ones, similarly to what it does for the halo mass function. Thus,
while a single galaxy (unless located in the high-mass end) may
not be enough to infer σ8, a set of galaxies can potentially be
used as a probe of σ8. We leave this direction of study for
future work.

As we saw in the results section, for some simulations, the
predictions of the models seem to exhibit an overall bias. This
may be due to the following reason. The networks may be
learning some function that approximates the galaxy proper-
ties’ manifold and its dependence on Ωm. However, due to the
limited data we have to train them, it may happen that the
learned manifold may be off with respect to the true one. In this
case we will expect an overall bias between the prediction of
the network and the true value for all galaxies in the considered
simulation.

4.5. Breaking Degeneracies with Astrophysics?

We may wonder whether the network is aware of the clear
dependence on Ωm of the Vmax versus M* relation but needs
additional information to break the degeneracy between
cosmology and astrophysics. Maybe in this case the network
is using the other properties (e.g., Z*, R*, and K ) to first
constrain astrophysics (i.e., feedback parameter values) and then
determine cosmology. To test this hypothesis we train a network
using as input variables M V A A A A, , , , ,max SN1 SN2 AGN1 AGN2*{ }.
If our hypothesis holds, by providing the network with the true
value of the feedback parameters plus M* and Vmax, it would be
able to infer Ωm accurately. However, we find that this model
performs very badly when inferring the value ofΩm: Its accuracy
decreases by 91% with respect to the model trained on all
variables. This test indicates that the network is not simply
extracting information from Vmax and M* and using the other
variables to break the degeneracies between cosmology and
astrophysics.

Next, we test whether knowing the value of the astrophysical
parameters adds additional information to those already
contained in the galaxy properties. To quantify this, we train
a network using the 17 properties of the galaxies from the
IllustrisTNG simulations plus the value of A A A, ,SN1 SN2 AGN1,
and AAGN2. We find that results barely improve: The model
accuracy and precision increases by 3% and 5%, respectively.
This indicates that most of the information the network is
extracting is already contained in the internal galaxy properties,
and knowing the value of the feedback parameters perfectly
does not add any significant additional information. This and
the above test indicate that the networks are not trying to infer
feedback to break some degeneracies with a particular

observable, but rather that it is the observable itself that is
sensitive to Ωm.
We note that it is well known that galaxy properties change

with redshift. This not only explains why the models we train at
z= 0 do not work at higher redshifts but also why knowing the
value of the astrophysical parameters perfectly does not add
much information because these values will be the same across
redshifts.

4.6. Dark Matter Content

The explanation we formulated above to interpret our
findings relies on dark matter playing a crucial role in galaxies.
In order to test this hypothesis, we performed the following
test. We have trained networks on galaxies from the
IllustrisTNG simulations using all properties except Vmax, σv,
Mt, Rt, and Rmax. These are quantities that are expected to
receive large contributions from the dark matter component of
galaxies, and therefore, is a way to quantify how important it is
for the network to know the dark matter component or the
depth of the gravitational potential well. We find that the
network trained with this configuration is still able to infer the
value of Ωm but with much lower accuracy: 96% worse than
the model trained on all properties. This test indicates that these
variables are very important, although Ωm leaves some weaker
signatures on the other galaxy properties. In a complementary
way, we have checked that in the case of the IllustrisTNG
galaxies, once we have identified the five most important
variables V M Z R K, , , ,max * * *{ }, removing Vmax from that set
completely cancels the constraining power. In other words, for
that subset, Vmax is needed to infer Ωm. From these tests we
conclude that the network may be using information either
about the dark matter content of the galaxy or about its
gravitational potential well.
Next, to reinforce our explanation, we test explicitly whether

the dark matter content of galaxies increases with Ωm. We have
taken the 100 galaxies for 100 different models that we discussed
above and plot in Figure 8 theVmax versusM* projection for those
galaxies. The top panels show the galaxies color-coded by their
value of Ωm and show the trend we already discussed above (the
top panels are identical to the panels in the left column of
Figure 7). The panels in the middle row show the results color-
coded by the ratio between the dark matter mass19 and stellar
mass in the galaxies. We use that ratio and not the dark matter
mass itself because the latter has a strong correlation with
stellar mass, making the visualization more challenging. As can
be seen, for a fixed value of the stellar mass, the larger the dark
matter mass, the higher the value of Vmax. This trend is very
clear for IllustrisTNG galaxies; meanwhile, for SIMBA it is
also clear for low- and high-mass galaxies, while for
intermediate galaxies ( M h M9.3 log 111

*< <-( ) ) the
dependence is much weaker. This is the same trend we find
with Ωm (top panels), indicating that larger values of Ωm will
tend to increase the dark matter content of galaxies.
We note that increasing the dark matter content of galaxies

can also affect other galaxy properties. For instance, changing
Ωm will affect the halo collapse time and concentration, and
these may leave an imprint on Z*, Rmax, and R*. However, the
relationship between these variables and the V Mmax *– plane is
not clearly visualized in a three-dimensional plot (two plus

19 The dark matter mass is computed as Mt − Mg − M* − MBH.
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color) as in Figure 8. We argue that this is due to the high-
dimensional manifold on which these features depend on Ωm.

On the other hand, we may also expect that differences in σ8
will lead to changes in halo formation time and concentration.
Because we cannot infer the value of σ8 from individual
properties of galaxies, we think the effect of Ωm on galaxy
properties should not be primarily driven by the above changes
to halo properties, or perhaps be a distinct change to the one
induced by σ8.

4.7. Vmax versus Mt

The above results corroborate our interpretation that
changing the value of Ωm affects the dark matter content of

galaxies, an effect that is physically different from the one from
feedback. However, at this point we may wonder why the
network prefers to use Vmax rather than other properties that are
expected to be heavily affected by dark matter, such as the
galaxy’s subhalo total mass (Mtot) or velocity dispersion (σv).
To verify that this is indeed the case, we have trained models
with galaxies of the IllustrisTNG simulations using as features
{M*, Mt, Z*, R*, K} and {M*, σv, Z*, R*, K}. We find that
using these variables the accuracy of the model on Ωm degrades
by 100% and 43%, respectively. This clearly indicates thatVmax

contains more information than Mt and σv. We believe that
this may be happening because it is known that Vmax correlates
more strongly with stellar mass than with subhalo mass

Figure 8. We have randomly taken 100 simulations from the IllustrisTNG (left column) and SIMBA (right column). For each simulation, we take 100 random
galaxies at z = 0. We then project these galaxies onto the V Mmax *– plane. Each row shows the data color-coded according to the value of Ωm (top), M Mlog dm *( )
(middle), and M Mlog max *( ) (bottom), where Mdm = Mt − Mg − M* − MBH is the dark matter mass in the galaxy and M V R Gmax max

2
max= is the total matter mass

contained within Rmax. We find that at fixed stellar mass,Vmax increases with both Ωm andMdm, supporting our hypothesis that increasing the value of Ωm increases the
dark matter content of galaxies, making the gravitational potential deeper and therefore enhancing Vmax. From the third row we can however see that at fixed stellar
mass, Vmax is more strongly correlated with M ;max this may explain why the network prefers to extract information fromVmax rather than the subhalo total mass or dark
matter mass. We note that the reason why we useMdm and Mmax normalized to the stellar mass is because there is a strong correlation between these quantities andM*.
By taking the ratio we get rid of that dependence, simplifying the visualization of the results.

12

The Astrophysical Journal, 929:132 (22pp), 2022 April 20 Villaescusa-Navarro et al.



(Conroy et al. 2006). For instance, when halos are accreted into
larger halos they may lose a significant fraction of their dark
matter content due to tidal forces. That effect will change the
dark matter content of galaxies significantly, but the value of
Vmax may remain rather stable because it mostly probes the
mass in the inner regions of the subhalo, which are the least
affected by the above processes.

To validate this hypothesis we plot in the bottom row of
Figure 8 the galaxies mentioned above but color-coded
according to M Mmax *, where M V R Gmax max

2
max= . We find

for IllustrisTNG galaxies a similar trend to when we used the
dark matter mass, while for SIMBA galaxies the trend is now
much more evident: For a fixed stellar mass, increasing the
value of Mmax increases the value of Vmax. This indicates that
either Vmax (or Mmax) is a better and more stable proxy for the
dark matter content of galaxies than the total subhalo mass or
its velocity dispersion.

The above tests may indicate that the network is focusing its
attention on the dark matter or total mass content of galaxies in
their central region, or maybe directly into the depth of the
gravitational potential, rather than in the total dark matter mass
in the subhalo’s galaxy.

5. Summary and Discussion

In this paper we have shown that it may be possible to infer
the value of Ωm with a precision of δΩm/Ωm ; 10%–15% and
an accuracy of ∼0.035–0.042 from the internal properties of
individual galaxies and their subhalos. This result holds for
galaxies of either the CAMELS-IllustrisTNG or CAMELS-
SIMBA simulations when using neural networks (to do
likelihood-free inference) or gradient boosting trees (to do
parameter regression) and at all redshifts considered, 0� z� 3.

We have shown that Ωm has a large effect on the V Mmax *–
relation, although our constraints do not arise from those two
variables alone, even if the astrophysical parameters are known
perfectly. We believe that the explanation behind our results is
that galaxy properties reside in a thin high-dimensional
manifold that changes with Ωm. That change is different from
the one induced by astrophysical effects. We think that the
physics behind the unique change in the manifold is that Ωm

affects the dark matter content of galaxies. Machine-learning
methods can be trained to find these manifolds and therefore to
infer the value of Ωm. We note that Neistein et al. (2012) found
that the formation history of a single massive galaxy was
enough to calibrate the entire galaxy population in semianalytic
models, perhaps indicating the intrinsic correlation among
galaxy properties and their location in the high-dimensional
manifold.

We note that physically, the effect of Ωm is very different
from the one of σ8, which will just change the amplitude of the
initial linear matter fluctuations, and therefore, we do not
expect it to imprint unique features on galaxy properties. This
could explain why our models cannot infer the value of σ8 from
individual galaxy properties.

5.1. Robustness

We caution the reader that our models are not robust; if the
models are trained on galaxies from the IllustrisTNG simula-
tions, they cannot infer the value of Ωm from galaxies of the
SIMBA simulations, and vice versa. We believe that this may

be due to the intrinsic differences between the galaxy properties
in the two different simulations (see Figure 7).
While this method, in its current form, cannot be used with

real data yet due to the lack of robustness, it will be interesting
to explore the use of contrastive learning (Le-Khac et al. 2020)
to force the network to learn only unique (physical) features
that are not simulation/model dependent. Another possible
avenue will be to try to develop a theoretical template (e.g.,
using symbolic regression) and calibrate its parameters directly
with real data. We leave these questions for future works.
Once the model is robust, it will be important to quantify

how much our constraints degrade by accounting for the
observational uncertainties associated with the different galaxy
properties. For instance, the value of the relevant galaxy
properties such as the stellar mass and the maximum circular
velocity can only be inferred with finite precision from
observations. We leave for future work exploring the effects
of these uncertainties in the constraints of Ωm. On the other
hand, if our interpretation is correct and galaxy properties live
in a manifold sensitive to cosmology and astrophysics, one can
use that information to reduce uncertainties in galaxy properties
by requiring them to be in a manifold. In other words, in the
real universe, galaxy properties will reside in a manifold with a
fixed cosmology and astrophysics. Thus, there will be high-
dimensional correlations that may allow us to determine the
value of some galaxy properties with higher accuracy.

5.2. Ωb

Due to the design of the CAMELS simulations, we can only
train models to infer the value of Ωm and σ8, because in all
simulations we have kept the values of the other cosmological
parameters fixed. It will be important to repeat this work using
simulations that vary the value of other cosmological
parameters to investigate whether individual galaxies can
constrain other parameters but also to study whether degen-
eracies among parameters will deteriorate the constraining
power of this method on Ωm.
In Section 4 we have seen that our models rely on both

galaxy properties and the depth of the gravitational potential
well (or the mass in the galaxy core) to infer the value of Ωm.
Thus, galaxy properties may also be sensitive to Ωb, as varying
that parameter will change the abundance of baryons in
galaxies. Thus, it will be interesting to investigate whether
galaxy properties are also sensitive to Ωb. On the other hand, it
may happen that galaxy properties are sensitive to some
particular combination of Ωb and Ωm, e.g., to its ratio: Ωb/Ωm.
While we cannot provide an answer to these questions (as it
will require running many simulations with different values of
Ωb), we can however attempt to provide a qualitative indication
of what may be happening. For this, we have run six additional
IllustrisTNG simulations. In these simulations, the value of the
astrophysical parameters is set to the fiducial IllustrisTNG
model, while σ8 is 0.8 and {Ωm, Ωb} is given by {0.2, 0.025}, {
0.2, 0.075}, {0.3, 0.025}, {0.3, 0.075}, {0.4, 0.025}, {0.4,
0.075}. For each of these six simulations, we randomly select
100 galaxies.
In Figure 9 we show these galaxies projected on the

V Mmax *– plane. Galaxies are color-coded according to the
value of Ωm (left) and Ωm/Ωb (right). In the background we
show a hexbin plot with the distribution of galaxies from the
1000 IllustrisTNG simulations with a fixed value of Ωb. As can
be seen, for a fixed value of M*, galaxies do not follow a
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monotonic relation of higher Vmax for larger Ωm when Ωb is
allowed to vary. It seems that in this case the two different
values of Ωb create a bimodal distribution.

In the right panel of Figure 9 we color code the same
galaxies as before but using instead Ωm/Ωb. In this case, we
find a more monotonic relation between Vmax and Ωm/Ωb at
fixed stellar mass. We note however that the colors of these
galaxies are a bit off with respect to the ones from the
IllustrisTNG set with fixed Ωb. Thus, while these results
indicate that Ωb/Ωm is a more relevant variable than Ωm when
Ωb is not fixed, we cannot tell whether our method is just
sensitive to Ωm/Ωb or whether in higher dimensions degen-
eracies can be broken and we can constrain both Ωm and Ωb.
We note that the value of Ωb/Ωm can be constrained from
cosmic microwave background data with high accuracy. Thus,
if galaxy properties are indeed sensitive to Ωb/Ωm, it will be an
interesting way to connect two very different observables and
physical quantities of the universe.

We emphasize that we have not provided a full physical
interpretation of the results presented in this work, beyond
stating that changing Ωm affects galaxy properties in a way
different from the one produced by changing astrophysics
parameters. However, we know that the dark matter content/
total matter content/depth of the gravitational potential is a
very important variable for the network. Besides, our results
indicate that the network may be more sensitive to Ωb/Ωm

rather than to Ωm. One may wonder if the network is somehow
measuring the total mass in the center of the galaxy (e.g.,
through the depth of the gravitational potential well) and also
measuring the mass in baryons in that region. This would allow
the network to directly infer Ωb/Ωm. In the future, it may be
interesting to explore whether there are relations between the
total matter and the baryonic content in the inner regions of
galaxies that somehow are robust to changes in astrophysics.
We note that the idea of measuring Ωb/Ωm from individual
objects was outlined in White et al. (1993), although there it

only applied to the most massive halos where feedback effects
cannot expel baryons out to the intergalactic medium.

5.3. Numerical Effects

Given the surprising results our models have achieved, we
should ask ourselves: Where does the information come from?
In other words, is the network extracting information from a
physical or a numerical effect?
Ωm is imprinted in the simulations through several different

effects; it affects, for example, (1) the amplitude and shape of
the linear matter power spectrum used to generate the initial
conditions, (2) the mass of the dark matter particles, and (3) the
cosmic expansion rate.
If the networks are using some nonphysical feature to get the

value of Ωm from the changes to the power spectrum, it would
be expected that they would also be able to infer the value of σ8
that also affects the linear power spectrum. Because our models
are unable to constrain the value of σ8, we believe this effect
should not be the cause of our results.
The one-to-one correlation between Ωm and the masses of

the dark matter particles (note that in CAMELS, Ωb is kept
fixed at 0.049 in all simulations) is something that can be easily
learned by neural networks but is not a physical effect.
However, in the considered galaxy properties there is no
obvious way where the dark matter particle resolution can show
up. The dark matter mass of subhalos obeys the relation
MDM=Ndmmdm, where mdm is the mass of a dark matter
particle and Ndm is the number of dark matter particles in the
subhalo, which should be an integer number. There is an
intrinsic degeneracy between Ndm and mdm for this to work.
Besides, if that were the case, the network would need to
estimate the mass in dark matter of the halo by subtracting the
gas, stellar, and black hole mass from the total mass of the
subhalo. We know from our analysis of the relevant features
that none of those properties are important for the networks.
Other properties, like Vmax, σv, V, Rt, and Rmax seem more

Figure 9. In order to explore in a very qualitative manner whether our method is sensitive to Ωb/Ωm or to Ωm and/or Ωb we have run a set of six simulations with
different values of Ωb (0.025 and 0.075) and Ωm (0.2, 0.3, and 0.4) using the AREPO and IllustrisTNG model (using the fiducial astrophysical model). For each of
those simulations we have randomly taken 100 galaxies. In the two different panels we show Vmax vs. M* of those galaxies color-coded according to their value of Ωm

(left) and Ωm/Ωb (right). In the background, we show with a hexbin plot the distribution of galaxies from the IllustrisTNG simulations. From the left panel we can
clearly see that galaxies no longer follow a monotonic relation of increasingVmax with Ωm. On the other hand, from the right panel we can see a much more steady and
monotonic relation when using Ωm/Ωb. We however note that the colors of the galaxies do not really match the ones from the background simulations with fixed Ωb.

14

The Astrophysical Journal, 929:132 (22pp), 2022 April 20 Villaescusa-Navarro et al.



unlikely to be easily related to the mass of the dark matter
particles. Thus, we find this hypothesis not very likely.

Ωm also changes the expansion rate history in the simulation.
However, we cannot think of a situation where the model may
be learning a numerical artifact associated with this.

Finally, we note that Ωb/Ωm is important for setting the
internal structure of galaxies (e.g., how baryon dominated the
rotation curve is). Thus, the density of gas in the galaxy is
expected to be affected by this, which in turn will affect cooling
and feedback. However, these effects are highly nonlinear and
it is not obvious whether numerical effects can be imprinted
on them.

Thus, while we could not identify a process that will give
rise to a numerical artifact that can be learned by the machine-
learning models, we cannot completely discard that possibi-
lity here.

5.4. Linear Information

On average, our models are able to constrain the value of Ωm

with a ∼10% precision and an accuracy of ∼0.03 for a single,
generic galaxy. We may wonder whether there are enough
modes in the Lagrangian region of those galaxies to achieve
such accuracy. To provide an answer to this question, we
consider a volume V and use the Fisher matrix formalism to
quantify how much information that volume contains,
considering it probes scales from k V2min

1 3p~ to
k h64 Mpcmax

1= - . The value of kmax arises from the Nyquist
frequency used to generate the initial conditions.

For our setup, the Fisher matrix can be computed as

F V
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where in our case θ= {Ωm, σ8}, P(k, θ) is the linear matter
power spectrum and V the cosmological volume. The integral
goes from k V2min

1 3p~ to kmax.
In Figure 10, we show with a red solid line the marginalized

constraints on Ωm as a function of kmin. As can be seen, to
achieve an error on Ωm below 0.033 we need a value of
k h2 Mpcmin

1~ - or a Lagrangian region of volume ~
h Mpc1 3p -( ) .
We expect the Lagrangian volume of most galaxies to be

smaller than the above estimate (see, e.g., Oñorbe et al. 2014),
indicating that the constraints from our models are better than
the ones that can be obtained from a linear Gaussian field of the
same volume. However, there are several caveats to this
calculation. First of all, on scales smaller than ∼1 hMpc−1, the
nonlinear matter density field may contain information not
contained in the initial Gaussian field (Bayer et al. 2021a).
Besides, our models include properties related to velocities
(e.g., the galaxy peculiar velocity or the subhalo velocity
dispersion) that can also provide additional information to the
one contained at linear order. On top of this, on very small
scales, cosmological modes are expected to be tightly coupled.
Thus, even a relatively small Lagrangian region of a galaxy
may be affected by modes larger than it, which could add
additional information.

From this test we cannot draw any definitive conclusion on
whether the constraints from our models are physical or they
just reflect some nonphysical information arising from numer-
ical artifacts.

5.5. Consequences

Our results suggest that galaxy properties would reside in
different manifolds for different values of Ωm. This in turn
implies that it should be difficult, if not impossible, to
reproduce the galaxy properties from real galaxies for
cosmologies with a value of Ωm far away from the true one.
This is a clear prediction of this work that can be tested either
using hydrodynamical simulations or semianalytic models.
Regarding hydrodynamic simulations, in CAMELS we vary

four astrophysical parameters, while many others are kept
fixed. In order to claim that Ωm induces a distinct effect on
galaxy properties, it is important to repeat the analyses carried
out in this paper but sampling a much larger volume in
parameter space where all astrophysical parameters are varied.
This will allow us to investigate whether other astrophysical
parameters may mimic the effect of Ωm on galaxy properties.
On a side note, we note that galaxy properties are known to

exhibit some level of intrinsic stochasticity (Genel et al. 2019)
in numerical simulations. If our interpretation of the results is
correct, this will imply that either the manifold containing the
galaxy properties will have some intrinsic width or that
galaxies affected by this effect will move along the manifold.

5.6. Future Work

In this work we have focused our attention on individual
galaxies. In future work we will investigate the improvement
on the parameter constraints when considering several galaxies
instead of just one. We think that in this case the manifold
where galaxies reside will be much better constrained, and
therefore, we expect tighter constraints on all parameters.
Furthermore, with many galaxies, it may be possible to extract
information from different summary statistics (e.g., stellar-mass
function) that may not be contained in the above manifolds.
While in this paper we have focused our attention on

inferring the value of Ωm from individual galaxies, in
Appendix D we show that this method can also be used to
infer the value of some astrophysical parameters. Given the
accurate measurements of the value of the cosmological
parameters from other methods, we may consider that this
method may be used as a direct probe of astrophysical effects
by fixing the value of the cosmological parameters. We will
explore this direction in future work.
Most of the properties considered in this work can be

measured from surveys. However, some of them, like the
maximum circular velocity and the velocity dispersion, cannot
be easily measured for large galaxy populations. In future work
we plan to substitute those properties with others that can be
measured, e.g., the velocity dispersion of the stars or neutral
hydrogen, and investigate whether the value of Ωm can still be
inferred with them. It will also be interesting to quantify the
accuracy gained by adding other properties not used in this
work such as galaxy morphology, stellar age, mass in neutral or
molecular gas, individual metal species, and environmental
quantities like the overdensity of matter or galaxies in a given
scale. Given the similarities we have outlined in this work with
subhalo abundance matching,20 it will be worth investigating
whether our results improve even for nonobservational
quantities, like the peak of the maximum circular velocity,

20 For instance, our results suggest that Vmax and M* are the most important
variables. These variables play a crucial role in subhalo abundance matching.
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which is known to be better correlated with stellar mass
than Vmax.

Further work is also needed to investigate the dependence
of our results on the resolution, i.e., whether the manifold
where galaxy properties live also changes with the mass and
spatial resolution of the simulations and on the algorithm
used to identify halos, subhalos, and galaxies. In similar
terms, it is also important to assess the effect of supersample
covariance on galaxy properties. While in this work we
consider individual galaxies, which are therefore sensitive to
local density fluctuations, the small CAMELS boxes do not
account for large-scale fluctuations. Although we think this
effect will not change our conclusions, it is important to
provide a quantitative statement about this. We will also
investigate whether our results still hold when using
semianalytic models instead of hydrodynamic simulations;
we will use CAMELS-SAM (L. Perez et al. 2022, in
preparation) for this because their larger boxes will also
allow us to investigate the mentioned supersample covar-
iance effects.

Another important avenue to take in this work is the use of
more interpretable machine-learning techniques, such as
symbolic regression. These techniques are designed to provide
analytic expressions between sets of variables, and their
functional form may be easier to interpret than neural networks
and gradient boosting trees. We note that we have used such
techniques in this work but we were not able to obtain
expressions accurate enough to capture the underlying relation.
We thus leave this research direction for future work.

We believe that this work illustrates the complex interplay
between cosmology and astrophysics on different physical
scales (from galactic to cosmological) and how cosmological
information may still be present within objects shaped by
complex astrophysical processes such as galaxies. We also
think this work shows how the use of machine-learning

techniques can help us better understand and disentangle
complex physical processes and discover new features and
techniques to maximize the information we can extract from
the data.
To enable the community to reproduce our results, we

release all data used in this work together with the codes,
databases, and network weights obtained after training. We
refer the reader to https://github.com/franciscovillaescusa/
Cosmo1gal for further details.
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Appendix A
Results for SIMBA Galaxies

In order to verify that our results hold for both IllustrisTNG
and SIMBA galaxies, we have repeated the exercise in
Section 3 and trained neural networks on individual properties
of SIMBA galaxies to infer the values of the cosmological and
astrophysical parameters.
We show the results in Figure 11. We find that, qualitatively,

the results for SIMBA galaxies are the same as for IllustrisTNG
galaxies. The model is able to infer the value of Ωm with an
accuracy of ∼3.7× 10−2 and a precision of 12%. We note that
we observe a generic bias for true values of Ωm below ∼0.35.
This bias seems to be more severe for SIMBA galaxies than for
IllustrisTNG galaxies, even when training on 14 variables (see
Figure 4).
From the bottom panels of Figure 11 we can see that the

network works for any generic galaxy, not a subset of them.
As in the case of IllustrisTNG galaxies, we find a very small
fraction of outliers. While the precision of the model when
inferring Ωm is very similar for all galaxies when the true
value of Ωm is intermediate or high, we find that the model is
more precise when using massive galaxies for models with
low values of Ωm. This is similar to what we found for
IllustrisTNG galaxies, although in that case the differences
were even larger.
Overall, we conclude that we can use machine-learning

methods to constrain the value of Ωm independently of the

Figure 10. We have used the Fisher matrix formalism to calculate how much
information there is in the linear Gaussian density field for a cosmological
volume V considering it contains modes from k V2min

1 3p= to
k h64 Mpcmax

1= - . The solid red line shows the constraints on Ωm as a
function of kmin, while the dashed black line displays the average error on Ωm

from our models. We can see that only volumes larger than V h3 Mpc1 3~ -( )
will contain enough modes to be able to place a constraint on Ωm similar to, or
better than, the one we obtain. We expect this volume to be larger than the
Lagrangian region of most galaxies considered.

21 https://xgboost.readthedocs.io
22 https://shap.readthedocs.io
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simulation suite used to train the model. We emphasize,
however, that our models are not robust (see Section 3.3).

Appendix B
Robustness Test

In Section 3.3 we investigated the robustness of our models,
finding that they are not robust. In other words, training the
models on galaxies from one simulation suite does not allow us
to infer the correct value of Ωm from galaxies of the other
simulation suite. In this appendix, we show a few more details
of this test, investigating whether this is a generic feature for all
galaxies or whether the model works in some cases.

We have trained a model using galaxies from the
IllustrisTNG simulations at z= 0 (using all properties except
the magnitudes in the U, K, and g bands) and tested it on
individual galaxies of the SIMBA simulations. In Figure 12 we
show the results of performing the detailed analysis outlined in
Section 3. As we already saw in Figure 4 we find that on
average, the model is not able to infer the correct value of Ωm

(top panel). We, however, perform a more detailed analysis of
many individual galaxies and show the results in the bottom
panels of Figure 12. As can be seen, in general, the model does
not work for a generic galaxy. On the other hand, results are not
completely off; for instance, see Figure 4 of Villaescusa-
Navarro et al. (2021a) for a similar exercise with 2D maps. We
find that the true value of Ωm lies within the model standard
deviation in a large fraction of galaxies, although there is
obviously a large underlying bias.
We note that the model works better for cosmologies with

low and high values of Ωm and performs worse for intermediate
values. This relative success, however, may just be an artifact,
namely the network may be using information from priors. For
the model with a true value of Ωm∼ 0.27, there is still a
nonnegligible fraction of galaxies where the model seems to be
working. This does not look like the fraction of outliers we
have seen in all models in the main text. We defer to future
work the exploration of the properties of these galaxies and
whether they exhibit more similarities to the ones from the
IllustrisTNG simulations.

Figure 11. Same as Figure 2 but for SIMBA galaxies at z = 0.
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Appendix C
SHAP Values

In order to identify the most important features of our
networks, we have computed the SHapley Additive exPlana-
tion (SHAP) value of each galaxy property. This method
assigns to each feature of each galaxy a value; larger absolute
values for a given property indicate that the feature is having a
larger contribution to the final output of the model. In Figure 13
we show the distribution of SHAP values for the different
features for the models trained on IllustrisTNG (left) and
SIMBA (right) galaxies.

For the IllustrisTNG simulations we find that features such
as stellar mass, K-band magnitude, gas mass, gas metallicity,
and maximum circular velocity to be among the most
important variables. For SIMBA we instead get properties

like total mass, stellar mass, maximum circular velocity, gas
mass, and subhalo radius. In order to determine whether these
variables are indeed the most important ones, we have
retrained neural networks using as input those five variables
instead of the 17/14 original ones from IllustrisTNG/
SIMBA. However, the performance of the models trained
on these variables is relatively poor, much worse than the
variables identified in Section 4.2. We think that the reason
behind this is that there are multiple variables that are highly
correlated, and the model may be extracting information from
them in a similar way. Under this condition, the SHAP values,
while still reflecting the contribution of each variable to the
model prediction, does not inform us of the minimum set of
variables we are interested in in order to gain intuition on the
physics behind the model.

Figure 12. Same as Figure 2 but for a model trained on IllustrisTNG galaxies and tested on SIMBA galaxies.
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Appendix D
Constraining Astrophysical Parameters

In this paper we have focused on predicting the value of Ωm.
However, we saw in Figure 1 that our models have some
constraining power on ASN1 and, to a lesser extent, on ASN2. To
investigate this more, we repeated the analysis outlined in
Section 3 using IllustrisTNG galaxies at z= 0 and show the
results in Figures 14 and 15 for the parameters ASN1 and ASN2,
respectively.

We find that the model is able to infer the value of ASN1 with
an accuracy of ∼0.37 and a precision of ∼33%, while the
constraints on ASN2 have an accuracy and precision of ∼0.29
and ∼27%, respectively. We note that although the numbers
are better for ASN2, the visual inspection of the results reveals

that these are largely affected by priors and the model actually
performs better on ASN1.
When inspecting the results from individual galaxies more

closely in the bottom panels of Figures 14 and 15, we find that
the model performs relatively well for ASN1 in general, while
for ASN2 we can see that in many cases the model is just
predicting the mean value with large error bars, independently
of galaxy type, cosmology, and astrophysics.
From this exercise we conclude that while the network is

capable of using galaxy properties to infer the value of ASN1

with large error bars, it can barely say anything beyond
predicting the mean value for ASN2. We emphasize that the
network cannot infer the value of the other parameters not
mentioned in this appendix, i.e., AAGN1, AAGN2, and σ8.

Figure 13. In order to identify the most important variables used by the model in order to carry out its predictions, we have computed the SHAP (SHapley Additive
exPlanation) values for each galaxy in the test set. The panels show the distribution of SHAP values for the galaxies of the IllustrisTNG (left) and SIMBA (right)
simulations sorted by the different features. The color indicates the value of the variable from low (blue) to high (red). Larger absolute values indicate that the
considered feature has a larger impact on the model’s final prediction.
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Figure 14. Same as Figure 2 but predicting the astrophysical parameter ASN1 from IllustrisTNG.
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