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Abstract

Over the last decades, international attempts have been made to develop realistic space weather prediction tools
aiming to forecast the conditions on the Sun and in the interplanetary environment. These efforts have led to the
development of appropriate metrics to assess the performance of those tools. Metrics are necessary to validate
models, to compare different models, and to monitor the improvements to a certain model over time. In this work,
we introduce dynamic time warping (DTW) as an alternative way of evaluating the performance of models and, in
particular, of quantifying the differences between observed and modeled solar wind time series. We present the
advantages and drawbacks of this method, as well as its application to Wind observations and EUHFORIA
predictions at Earth. We show that DTW can warp sequences in time, aiming to align them with the minimum cost
by using dynamic programming. It can be applied for the evaluation of modeled solar wind time series in two
ways. The first calculates the sequence similarity factor, a number that provides a quantification of how good the
forecast is compared to an ideal and a nonideal prediction scenario. The second way quantifies the time and
amplitude differences between the points that are best matched between the two sequences. As a result, DTW can
serve as a hybrid metric between continuous measurements (e.g., the correlation coefficient) and point-by-point
comparisons. It is a promising technique for the assessment of solar wind profiles, providing at once the most
complete evaluation portrait of a model.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Time series analysis (1916); Solar wind
(1534); Space weather (2037)

1. Introduction

Improving the accuracy of space weather forecasting at Earth
is directly linked to a better understanding of the capabilities
provided by the space weather prediction models currently
available to the operational and scientific community. A large
number of such models have been developed over the past
decades, aiming to reconstruct the solar corona and the
heliospheric environment (see, e.g., MacNeice et al. 2018 for
an overview of the available models and their capabilities).
Some models are fully empirical, such as the PDF model
(Bussy-Virat & Ridley 2014), the PROJECTZED model (Riley
et al. 2017), and the Analog Ensemble model (Owens et al.
2017). Others require extensive empirical tuning, such as, e.g.,
the Wang–Sheeley–Arge model (WSA; Arge & Pizzo 2000;
Arge et al. 2003, 2004), which is one of the most widely used
operational coronal models, or the Empirical Solar Wind
Forecast model (ESWF; Reiss et al. 2016), which relates the
areas of the coronal holes, as observed in EUV, to the solar
wind speed prediction at the Lagrangian point 1 (L1), based on
Vršnak et al. (2007). Some models combine empirical
approximations with physics (see, e.g., the MULTI-VP model
by Pinto & Rouillard 2017), using the PFSS model for the
reconstruction of the lower corona and relying on the solution
of magnetohydrodynamic (MHD) equations for the calculation

of the solar wind properties in the upper corona. Another large
category of models are the physics-based models that consist
entirely of MHD codes. Such models can either reconstruct the
global solar corona alone, such as the Magnetohydrodynamics
Around a Sphere (MAS) model (Mikić et al. 1999; Lionello
et al. 2003), or the heliospheric domain alone, such as the
heliospheric parts of ENLIL (Odstrčil & Pizzo 1999) and
EUHFORIA (Pomoell & Poedts 2018). Some models can
reconstruct both domains, such as the MAS model for corona
and heliosphere (Riley et al. 2011) or the AWSoM model
(Meng et al. 2015). Last but not least are models based on
tomographic techniques. For example, HelTomo (Jackson et al.
1998; Jackson & Hick 2002; Jackson et al. 2020) is a tool that
reconstructs the solar wind, including coronal mass ejections
(CMEs), by employing interplanetary scintillation of astro-
nomical radio sources that are viewed through the ambient
solar wind plasma.
Space weather prediction models are subject to continuous

changes and improvements. Therefore, it is of utmost
importance for space weather forecasting applications to record
and quantify these changes over time. The differences in
performance among different models should also be recorded,
e.g., MAS versus ENLIL versus EUHFORIA, or among
combinations of different models. For example, an overview of
the coupling between the WSA coronal model and the time-
dependent MAS solar wind model is given in Linker et al.
(2016), and an overview of the coupling between the MULTI-
VP coronal model and EUHFORIA-heliosphere is given in
Samara et al. (2021). Metrics are the only way of quantitatively
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understanding which setup provides the best results, based on
the user’s needs and goals, every time.

A number of metrics proposed through the years are being
used by the scientific community. Owens (2018) presents an
overview by categorizing such metrics in two large groups:
point-by-point metrics and time window metrics. The former
category includes the so-called error functions, such as the
mean-square error (MSE), the mean absolute error, the rms
error, or general skill scores constructed by the aforementioned.
All of them are widely used to compare the amplitudes between
observed and predicted time series in a point-by-point manner.
Another subcategory of point-by-point metrics is binary
metrics. Binary metrics show whether large-scale structures
of the solar wind (e.g., high-speed streams, abbreviated as
“HSSs”) have arrived at the point of interest or not. This
technique is based on hit/miss statistics between the observed
and predicted time series once specific requirements are
fulfilled (e.g., HSS arrives within a specific time window and
has an an amplitude and gradient value above a specific
threshold). For example, by setting a solar wind velocity
threshold at 500 km s−1 and by taking into account a specific
interval in time (e.g., 2 days), this binary technique indicates
whether a solar wind feature was captured by both the observed
and predicted time series (hit), whether it was observed but not
predicted (miss), whether it was predicted but not observed
(false alarm), or, lastly, whether neither observations nor the
forecast indicated the arrival of an event (true negative; see,
e.g., Reiss et al. 2016; Hinterreiter et al. 2019).

The mentioned metrics are necessary for quantifying the
differences between observed and predicted time series. They
are not sufficient, though, to present a complete picture of the
comparison between observations and predictions. The most
significant deficiency is found in their weakness of quantifying
time uncertainties. A solution to this problem can be given by
using time window metrics. The simplest time window
approach is to conduct a case-by-case analysis in which the
time differences between the arrival/ending times of observed
and modeled events can be recorded. Nevertheless, this is a
time-consuming procedure that requires a priori definitions of
each event as discussed in Owens (2018). The same author
introduces an alternative time window approach, the so-called
scale-selective approach, based on which agreements between
observations and predictions are taken into account at a range
of time scales. As the time scales become increasingly coarse,
false alarms and missed events are canceled out. This technique
allows an assessment of the time scales at which the forecast
provides a specific accuracy level.

In this paper, we introduce the dynamic time warping
(DTW) technique as an additional method for assessing solar
wind time series. It is a powerful tool that combines the
qualities of both point-by-point and time window metrics and,
as a result, is very useful for providing a more complete
assessment of the relation between predictions and observa-
tions. DTW finds matching solar wind signatures (even weak
ones of slow speed, or HSSs) in order to quantify their
underestimated or overestimated arrival times, their amplitudes,
and their durations. Even though this technique was introduced
many decades ago, and has been used extensively in other
scientific fields, we will show how it can be applied to the
evaluation of solar wind time series, for the better under-
standing of modeled solar wind profiles (long-term and short-
term) and their comparisons with measurements. DTW can also

be applied to the evaluation of time series during CME arrivals
at specific points of interest. Nevertheless, the reasons that led
us to focus on solar wind time series are summarized as
follows:

1. The solar wind forecast at Earth (or at any other point in
the heliosphere) usually deals with long and variable time
series (in the order of days, weeks, or even months,
depending on the goals). For the correct prediction and
assessment of both the fast and the slow solar wind, we
need to evaluate the whole range of the available data set.
This procedure is much more complicated than assessing
CME signatures for which the arrival of the shock/
magnetic cloud is well defined during a limited time
interval (in the order of hours) and, thus, allows the easy
quantification of both the amplitude and the time delay.

2. When we focus on the assessment of fast streams in the
solar wind, the majority of the modeled HSSs arrive later
or earlier than observed (see Hinterreiter et al. 2019). As a
result, there is always a time difference between the
observed and predicted large-scale variations in solar
wind time series. DTW is an ideal technique for
evaluating these variations, since it aligns time series by
warping them in time.

3. In some cases, it is not clear how and if the predicted data
should be matched with the observed data (see the
example in Figure 1(a)). Hence, a technique that
quantifies the overall performance of two sequences is
required, regardless of the identified structures.

Figure 1 shows a comparison of the observed (by the Wind
satellite; Ogilvie et al. 1995) and the predicted (by
EUHFORIA) solar wind time series for Carrington rotations
(CRs) 2197 and 2198. It covers the time interval from 2017
November 6 to 2017 December 30. Based on the Richardson-
Cane list (Cane & Richardson 2003; Richardson & Cane 2010),
only one CME was recorded influencing Earth during that
period. This was on 2017 December 25, so we will not
comment on the time interval after this date, to avoid any
uncertainties. Between 2017 November 6 and 2017 December
24, seven HSSs were identified, based on the criteria proposed
by Jian et al. (2006). We cross-validated the associated coronal
holes on the Sun by checking the Atmospheric Imaging
Assembly (Lemen et al. 2012) images from the Solar Dynamics
Observatory (Pesnell et al. 2012), as well as NOAA full-Sun
drawings.6 Figure 1(a) shows an example of an unclear HSS
reconstructed case. More specifically, it is uncertain whether
the first modeled HSS (in red; see the black arrow) corresponds
to the first observed HSS (with a maximum velocity of up to
≈700 km s−1), which impacted Earth between 2017 November
6 and 2017 November 12, or to the second, slower HSS
observed between 2017 November 15 and 2017 November 18
(with a maximum velocity of up to ≈500 km s−1). Therefore,
instead of trying to determine whether an HSS arrived at Earth,
and which one, it is more practical to determine how similar the
time series are overall. In Figure 1(b), we notice three HSSs
influencing Earth between 2017 December 3 and 2017
December 24. The first two were modeled arriving later than
expected by EUHFORIA. For the third HSS, we are uncertain
if it was actually predicted by the model. These examples show
that assessing the time series as a whole, instead of trying to

6 https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-imagery/
composites/full-sun-drawings/boulder/
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evaluate uncertain cases on a one-by-one basis, is often the
optimal solution.

2. Benefits, Drawbacks, and Restrictions of DTW

DTW is a well-known technique for estimating the
similarities between two time series that have similar patterns
but differ in time (Keogh & Pazzani 2001; Górecki &
Luczak 2013, and references therein). It was initially developed
for speech recognition purposes, where specific words are
recognized by their audio signal profiles (Itakura 1975; Sakoe
& Chiba 1978; Myers et al. 1981; Müller 2007). Over the
years, it was met with great interest by other scientific fields,
such as meteorology, robotics, medicine, music processing, and
manufacturing, and it is widely used in data mining for time
series clustering and classification purposes (Keogh &
Pazzani 1998, 2001, and references therein). DTW is a distance
measure, similar to the Euclidean distance. The main difference
from the latter is that DTW can manage time distortions (Zhang
et al. 2017) and does not always obey the triangular inequality
(Vidal et al. 1988). More specifically, it allows the drifting of
the vector components along the time axis when a comparison
between two sequences is made. The sequences are eventually
nonlinearly warped along the time dimension to match each
other (Müller 2007; Górecki & Luczak 2013). A recent study
by Laperre et al. (2020) used this technique for evaluating the
Dst forecast with machine learning. In this work, for the first
time, we will apply the DTW technique as a means of
quantifying the differences between observed and modeled
time series in solar wind forecasting. For this, we will use DTW
in two different ways. The first way is based on the so-called

cumulative cost or DTW score, a single number that DTW
produces that translates to an estimation of the minimum
“effort” that the technique put in to align the observed and
predicted time series of the solar wind parameters. After DTW
has estimated the best (and less costly) alignment between the
data points, we can explicitly quantify the differences in time
and amplitude between the two sequences. This is the second
way in which the method can be exploited, from which we can
derive a number of relevant statistics.

2.1. Properties and Requirements of DTW

DTW determines how similar two time series are by
providing a temporal alignment between them, in an optimal
way and under certain constraints (Müller 2007). Strictly
speaking, DTW is not a metric, as it violates the triangular
inequality.7 Nevertheless, it can be used as one by obeying the
following three principles (Müller 2007; Jeong et al. 2011):

1. The first and last point of one sequence should be
matched with the first and last point of the other sequence
(but it is not necessary for their matches to be unique).

2. The mapping of the elements should be monotonically
increasing (it cannot go backwards in time).

3. There should be no data gaps, namely, every point should
be matched with at least one other point (the con-
tinuity rule).

(a)

(b)

Figure 1. Solar wind speed time series of the observed (blue) and predicted (red) data for CR 2197 (panel (a)) and CR 2198 (panel (b)). The arrow in panel (a) points
to the unclear modeled HSS structure, and we are not sure if it corresponds to the observed HSS between 2017 November 6 and 2017 November 12 or to the second,
slower HSS observed between 2017 November 15 and 2017 November 18. The first two arrows in panel (b) show the two HSSs that are reproduced by the model but
arrive late compared to observations. The third arrow in the same panel corresponds to the uncertain HSS case, and we are not sure if this was predicted by the model.

7 For the definition of a distance measure as a metric, see https://mathworld.
wolfram.com/Metric.html.
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The method finds the optimal alignment between two
sequences by finding the path through the DTW cost matrix
that minimizes the total cumulative cost among all the other
possible paths (Keogh & Pazzani 2001; Müller 2007; Ratana-
mahatana & Keogh 2004). This path is called the warping path,
and it characterizes the mapping between the two time series of
interest. The DTW cost matrix is filled based on the following
equation:

d= + - - - -

1
D i j s q D i j D i j D i j, , min 1, 1 , 1, , , 1 ,i i

( )
( ) ( ) { ( ) ( ) ( )}

where D(i, j) is the cumulative DTW cost or distance, and
δ(si, qi)= |si− qi| corresponds to the Euclidean distance
between the point si from one time series and the point
qi from the other time series. The first element of the array
D(0, 0) is equal to δ(s0, q0). After the DTW cost matrix has
been filled, the warping path can be efficiently found. For that,
dynamic programming is used to evaluate the recurrence that
defines the cumulative DTW distance D(i, j) as the Euclidean
distance, δ(i,j), found between two elements and the minimum
of the cumulative distances of the adjacent elements (Ratana-
mahatana & Keogh 2004; Górecki & Luczak 2013).

2.2. Drawbacks of DTW and Ways of Eliminating Them

The weak point of DTW is the so-called “pathological
alignment problem,” namely, the fact that a data point in one
time series can be linked to a large subsection of points in the
other time series (Keogh & Pazzani 2001; Górecki &
Luczak 2013, and references therein). These pathological
alignments are called singularities. Many techniques have been
proposed to alleviate this problem. Three of the most widely
used techniques can be summarized as follows (Keogh &
Pazzani 2001):

1. Windowing (Berndt & Clifford 1994): the allowable
elements of the cumulative matrix are restricted to those
that fall into a warping window. In other words, a data
point in one time series cannot be matched with all of the
data points in the second time series, but can only be
matched with the points found in a specific time window.
Although this approach constrains the maximum size of a
singularity, it does not prevent their occurrence.

2. Slope weighting (Kruskall & Liberman 1983; Sakoe &
Chiba 1978): if the equation that calculates the
accumulated cost is replaced with d= +D i j i j, ,( ) ( )

- -D i jmin 1, 1{ ( ), XD(i− 1, j), XD(i, j− 1)}, where
X is a positive real number, we can constrain the warping
by changing the value of X. As X gets larger, the warping
path is increasingly biased toward the diagonal.

3. Step patterns or slope constraints (Itakura 1975; Myers
et al. 1981): we can replace the cumulative cost equation
with d= + - -D i j i j D i j, , min 1, 1( ) ( ) { ( ), D(i− 1,
j− 2), D(i− 2, j− 1)}, which corresponds to the step
pattern. Using this equation, the warping path is forced to
move one diagonal step for each step parallel to an axis.

Besides these three methods, a number of DTW variants have
been proposed with the aim of reducing singularities. For
example, the derivative DTW (DDTW; Keogh & Pazzani 2001),
the weighted DTW (WDTW; Benedikt et al. 2008), and the
value-derivative DTW (VDDTW; Kulbacki & Bak 2002) are

some of these techniques. The outputs from these three methods
were also tested for the cases investigated in this work, but they
yielded ambiguous results. Therefore, for the purposes of this
study, we only focus on classic DTW, as it leads to the most
transparent output.
It is important to note that even though singularities are

considered a drawback of DTW by many authors, we find that
for solar wind time series, the best alignment between two
sequences cannot be achieved without them. Identical time
series have no singularities. As we deal with nonidentical (but
similar) time series, we expect singularities to occur as a way of
optimally matching the points between them.

3. Data Preprocessing

In order to apply DTW efficiently to the evaluation of
modeled solar wind time series, we need to adopt a number of
constraints that will best serve our needs. We focus on the
evaluation of the solar wind bulk speed, as it is the best-
modeled solar wind characteristic in EUHFORIA (v1.0.4; see,
e.g., Pomoell & Poedts 2018). The same procedure can be
applied to other solar wind signatures, such as, e.g., density,
magnetic field, temperature, etc.

3.1. Sensitivity on the Initial and Final Points of the Sequences

We are interested in approximately two years of continuous
solar wind data (2017 November–2019 September). The first
important task is to separate this interval into smaller periods,
for two reasons: first, because it will be easier for future users to
compare an upgraded version of EUHFORIA (or any other
model) with the current version; and second, because it is faster
to evaluate shorter periods, rather than a single, extended one,
since DTW has a quadratic (O(nw)) complexity (Keogh &
Pazzani 2001; Ratanamahatana & Keogh 2004, and references
therein). Nevertheless, recent studies have shown that for many
applications, DTW complexity is reduced to linear (O(n); Dau
et al. 2019), similar to the complexity of the Euclidean
distance.
Special attention is needed during the division of the large

time interval into smaller periods, since DTW is highly affected
by the initial and final points of the sequences. One way to do
this is to split the whole range into time segments of CRs.
However, this is not always the best solution, as an HSS may
be cut by the artificial start and end time of the CR (see
Figure 2(a)). For an optimal evaluation with DTW, we require
that solar wind features (such as HSSs) are fully covered,
preferably with quiet background solar wind times before and
after the time period under study (see the comparison between
Figures 2(a) and (b)).
We now consider a simple example with random time series.

Figure 3 shows how DTW behaves in four different cases. In
the first case, we compare two identical time series. In the
second case, we shift one of the two sequences one value along
the x-axis, keeping the same initial and final points. In the third
case, we shift one of the two sequences one value along the y-
axis, maintaining the exact same pattern. In the last case, we
keep the two time series as in the initial example, but we only
shift the first element of the red time series up one value along
the y-axis. The DTW cost matrix for each case is shown as a
green heat map. The x-axis and y-axis of the heat maps
correspond to the index numbers of the elements in each time
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series. The darker shades of green correspond to higher
estimated costs, based on Equation (1). Each matrix cell
corresponds to a link between two points of the two series. The
last (bottom right) cell in the DTW cost matrix indicates the
DTW score, which is a representation of the minimum effort
the technique put in to align the two time series.

In the first case (Figure 3(a)), where identical time series are
considered, the DTW score is zero and the warping path is the
diagonal of the cost matrix. This means that every element in
sequence 1 was only matched with its exact corresponding
(and identical) element in sequence 2. In the second example
(Figure 3(b)), the DTW score is again equal to zero, but the
warping path deviates from the diagonal, due to the time series
being shifted along the x-axis. This means that the first and
last points from one sequence were matched twice with points
from the other sequence, thus creating two singularity points.
More specifically, the first point from series 1 was matched
with two points from series 2 (horizontal shifting in the
warping path), while the last point from series 2 was matched
with two points from series 1 (vertical shifting in the warping
path). The question is how we can distinguish between the
first and second cases, when no heat maps/warping paths are
provided, e.g., in large data sets, when we want to quickly
evaluate the sequences of interest. The answer is given by
calculating the sum of the diagonal elements of the cost
matrix. For example, when we compare identical time series,
the sum of the elements along the diagonal should be zero,
opposite to the case where the time series are shifted along
the x-axis.

In the third case (Figure 3(c)), in which we have shifted the
red sequence along the y-axis, we see that the DTW score and
the sum of the diagonal are different to zero. Moreover, the
warping path deviates a lot from the diagonal. To understand
better how DTW behaves during the vertical shifting of a
sequence, we compare in Figure 3(d) the same time series as in
Figure 3(a), having shifted only the first element of the red
sequence along the y-axis. The DTW score and the sum of the
diagonal in this case are again different to zero, but the warping
path is the diagonal itself.
In Figure 4, we follow the same procedure as in Figure 3, but

for sequences from our data set. We employ Wind data from
the time period 2017 December 3 to 2017 December 30 (CR
2198). In Figure 4(a), we show how DTW behaves when
comparing the observed solar wind bulk speed with the same
data set, assuming the ideal scenario in which the observed and
predicted time series are exactly the same. The x-axis in the
time series plots corresponds to the index number of the
elements that actually describe time, thus the “time elements”
label. In Figure 4(b), the observed data set has been shifted
forward by one day. The gap that is created between elements 0
and 144 (1 day) is then filled with the value at time 0 of the
nonshifted (blue) time series. The same happens for the gap
that is created between elements 3744 and 3888 (the last day)
of the nonshifted (blue) time series. It is filled with the value at
time 3888 of the shifted (red) time series. The DTW score in
this case is zero, and the warping path follows the same pattern
as described in Figure 3(b). Nevertheless, when comparing the
performance between the observed and predicted time series,
we rarely have the initial and final points of the sequences

(a)

(b)

Figure 2. An example of the extension of a not-well-selected time interval, where the influence of an HSS is still ongoing at the end of that interval. (a) CR 2197,
where the effect of an HSS is still ongoing. (b) The extension of CR 2197 until a point at which the observed and predicted data are very close to each other during
quiet solar wind levels.

5

The Astrophysical Journal, 927:187 (19pp), 2022 March 10 Samara et al.



matched in the way shown in Figure 4(b). The same sequences
as in Figures 4(a) and (b) are shown in Figure 4(c), but now the
shifting occurs by filling in the 1 day shifted interval with the
data recorded by Wind one day earlier. As a result, the initial
and final points of the sequences are not the same anymore.
The DTW score in this case is 5242.86. This number does not
have a meaning yet; it only reflects the fact that the cost of
aligning the two time series is much larger than in the cases of
Figures 4(a) and (b), and it arises due to the alignments of the
first 144 and final 144 points.

3.2. The Importance of the Applied Smoothing

The second important task is to apply an optimal smoothing
to the observed time series. This is a subjective procedure that
depends on the goals of the study, the data set, and the user.
Usually the real data, as recorded by Wind at L1, contain high-
frequency fluctuations, opposite to the modeled time series,
which are described by a smooth trend (Figure 1). For a proper
comparison between the observations and predictions, it is
optimal to smooth the observed time series in a similar way to
the modeled ones, as local minima and maxima influence the

Figure 3. Alignments, warping paths, and heat maps of random time series. The DTW score and the sum of the cost-matrix diagonal are also calculated for each case.
The DTW alignments are shown in green when one series is shifted compared to the other. (a) The two series are identical. (b) Series 2 from panel (a) has been shifted
along the x-axis with respect to series 1. The initial and final points stay fixed. (c) Series 2 from panel (a) has been shifted along the y-axis with respect to series 1. (d)
Series 2 is identical to series 1, except for its initial point, which has been shifted one value along the y-axis.
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DTW result and generate more singularities. This happens
because the method aims to match local fluctuations to parts of
the modeled time series where no fluctuations have been
detected. Figure 5(a) shows such an example. The alignment of
the points is not optimal, and the cumulative DTW cost is
larger than for the case where the fast fluctuations have been
smoothed. However, we should also be careful not to smooth
out important features. An analytic example of how different
smoothing influences the results is presented in Figures 5(b),
(c), and (d). In this figure, we apply a time-centered smoothing,
based on moving averages of 6 hr, 12 hr, and 24 hr, to the Wind
time series shown in Figure 4(c). In the event that the
smoothing window exceeded the size of the array, we applied
data padding, by reflecting about the edges of the first/last
elements.

Besides the different smoothing, we keep the same temporal
resolution for both time series under comparison. This means
that both sequences have the same number of elements, even
though DTW can also be applied to unequal time series (see,
e.g., Wong & Wong 2003; Zhang et al. 2021, and references
therein). In our analysis, we adopted a 10 minute resolution and
a 12 hr smoothing window as the ideal setup for Wind and
EUHFORIA time series (see Section 5).

3.3. Window Constraint

After the time series preprocessing, we discuss the employed
DTW constraints. The first restriction comes from the fact that the
time warping of the sequences needs to be done within a specific
time interval. We have to restrict all of the possible matches of the
points within a specific time window, otherwise the temporal
alignment between them could be indefinite. For solar wind
forecasting purposes, it is undesirable for a point at day one to be
matched with a point at day five, six, seven, or more if the
temporal uncertainty of the predictions lies within a smaller time

window. The approximate maximum Δt in EUHFORIA between
the arrival of the observed and modeled HSSs for the time interval
of interest (2017 November–2019 September) is ≈2 days, so a
time window of ±2 days is applied for our purposes. Some other
studies have shown that there is a mismatch by at least 1 day and
up to 3 days between the arrival of modeled and observed solar
wind structures (see, e.g., Owens et al. 2008; MacNeice 2009;
Gressl et al. 2014; Jian et al. 2015; Reiss et al. 2016; Temmer
et al. 2018). Setting a window like this also reduces the
computational time in calculating the cost matrix. No constraints
regarding slope weighting or step pattern are further imposed
because we do not want to bias the alignment of the points toward
one or another direction.
In Figure 6, we show the DTW cost matrix (heat map) and the

alignment of the time series presented in Figure 4(c) and
Figure 5(c) when we apply a time window constraint of±2 days.
The DTW score and alignment of the points are the same, as is the
warping path. The only thing that changes is the extent of the
DTW matrix. We notice that it is now only filled in within a zone
along the diagonal. This is because of the ±2 day window
restriction that we imposed, which does not allow the alignment of
points outside that time window. The subset of the matrix that the
warping path is allowed to visit is called a “warping window” or
“band” (Ratanamahatana & Keogh 2004). In our case, we
implement a band similar to the Sakoe–Chiba band (Sakoe &
Chiba 1978). The reason that the DTW score and warping path
are the same in this particular example is because the maximum
time difference between the two sequences is 1 day. Therefore,
our results are not affected by the window constraint.

3.4. Influence of CMEs

During the considered time intervals, 15 CMEs were
recorded influencing Earth. Five of them occurred very close
to each other, between 2019 May 6 and 2019 May 30 (see

Figure 4. The same as Figure 3, but for time series observed by Wind during CR 2198. The DTW alignments are shown in green when one series is shifted compared
to the other. (a) The two time series are identical. (b) The red series was shifted by 1 day compared to the blue one. The initial and final points of the two time series
overlap. (c) The red series was shifted by 1 day compared to the blue one, while their initial and final points do not overlap. On the contrary, the 1 day data gap has
been filled in with data observed by Wind 1 day earlier.
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Cane & Richardson 2003; Richardson & Cane 2010). Even
though most of the periods we evaluated did not include any
CMEs, for those cases in which CMEs were detected, we
ignored them as events and applied DTW normally, as if these
structures were not there. As a result, our recommendation for
a future user who wants to assess an improved version of
EUHFORIA for the same time intervals is to work in the same

way that we do in this paper; namely, to ignore the potential
CME structures and to apply DTW as if these structures never
occurred. Only then will the decrease (or increase) of the
DTW score be consistent and comparable to the one
calculated based on the current EUHFORIA version, allowing
us to track how the change of the model influences the
modeling output.

Figure 5. The same as Figure 4, but for time series with different smoothing. (a) A comparison between time series with no smoothing and 12 hr smoothing. In panels
(b), (c), and (d), 6 hr, 12 hr, and 24 hr smoothing has been applied to both time series, respectively. The red sequence is always shifted by 1 day compared to the blue
one, similar to Figure 4(c).
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4. Application of DTW for Assessing the Performance of
Solar Wind Time Series

DTW can be applied in two ways for the evaluation of
modeled solar wind time series. The first way compares the
DTW score of the predicted time series to an ideal and a
nonideal (reference) case scenario. The second way quantifies
the time and amplitude differences between each point of the
time series, as aligned by DTW.

4.1. First Way of Applying DTW: The Sequence Similarity
Factor (SSF)

The Wind data for CR 2198 (blue time series in Figure 6)
will be considered our observations, while the same data set,
shifted by 1 day (red time series in Figure 6), will constitute our
predictions. The ideal scenario will be the flawless forecast in
which the red time series is identical to the blue one (see
Figure 4(a), for which the DTW score= 0 and sum(diag)= 0).
If the case we study is not the ideal one, then the DTW score
will not be zero and will not have an actual meaning unless it is
compared to (a) the ideal scenario and (b) a nonideal
(reference) prediction. We define this reference prediction as
the mean model of observations, which represents the forecast
of the average observed speed for the period of interest. Such a
model has no variations in time, and will later prove useful for
the direct comparison of the DTW results with traditional
metrics (see Section 5).

In Figures 7(a), (b), and (c), we show the application of
DTW between observations and (a) the ideal prediction
scenario, (b) the mean model, and (c) our predicted data set,
respectively. After calculating the DTW scores for each of
these cases, we quantify the similarity of the observed and
predicted time series. This is done through the sequence
similarity factor (SSF), which we define as:

= Î ¥
O M

O O
SSF

DTW ,

DTW ,
, SSF 0, , 2score

score

( )
( ¯ )

[ ] ( )

where O,M, and Ō stand for Observed,Modeled, and Averaged
Observed data, respectively. The SSF is equal to zero when we
have achieved the perfect forecast, and equal to one when our
forecast is as bad as a straight average line prediction. In
Figure 7(c), the SSF between the observed and predicted time
series is 0.021, very close to the perfect scenario of SSF= 0
(Figure 7(a)).
The fact that DTW dynamically warps the sequences in time

and, as a result, is able to locate which point from one time
series better corresponds to a point from the other time series is
a huge advantage compared to other metrics. In their study,
Owens et al. (2005) noted that one of the most frequent metrics
used, MSE, has a very significant drawback, even if it is a
useful tool for a first-order assessment of time series. This
drawback comes from the fact that a straight line (Model A, red
dotted line in Figure 8) can sometimes give a lower MSE when
compared to observations, from a time series that is very
similar to observations but shifted in time (Model B, black
dashed line in Figure 8). DTW overcomes this problem,
opposite to the simple error functions that are completely based
on the Euclidean distance measure (see, e.g., the comparison
between the DTW scores calculated in Figures 7(b) and (c) and
the example shown in Figure 8). Nevertheless, there are still
some cases for which the straight average line performs better
than our modeled data set. For these cases, it is not the potential
shifting in time that causes this discrepancy, as this has already
been solved by DTW. On the contrary, the variability in the y-
axis, which is sometimes opposite to what is observed in the
real data (e.g., the model predicts valleys in place of peaks, and
vice versa), is the reason why we get DTW scores that are
larger than the ones calculated for the straight-line scenario. As
a result, it is reasonable for such cases to obtain an SSF that is
higher than one.

4.2. Quantification of Time and Amplitude Differences

Besides the SSF, DTW permits the estimation of time
differences and amplitude differences between the points that
are best aligned. This important feature is not easily provided
by other metrics that can usually quantify only one of these
aspects at a time. Figures 9(a) and (b) show histograms of the
time and amplitude differences between the aligned points of
the sequences presented in Figure 7(c). A maximum Δt of 1
day can be observed in Figure 9(a), which was expected since
this is by how much we shifted our data. Figure 9(b) shows a
maximum Δvb of 60 km s−1. The maximum difference in
velocity arises at the beginning of the time series, when our
predicted data set (red time series) is higher than the observed
one (blue time series).
We note that the alignments of the points provided by DTW

do contain singularities, i.e., when a point from one sequence
can be matched with two or more points from the other

Figure 6. The same as Figure 4(c) and Figure 5(c), but with a time window
constraint of ±2 days.
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sequence. Even though singularities are generally assumed to
be a drawback of DTW, we find their existence necessary, as
they help to ensure the best possible alignment between time
series. As a result, theΔt and vb presented in the histograms are
not only relevant to the time and amplitude differences of the
points that are uniquely aligned between them, but also to the
singularity points. By improving the model and, consequently,
the solar wind forecasting, these singularities are minimized,
the DTW score becomes lower, and a better agreement with the
observations is achieved.

5. Evaluating the Performance of Solar Wind Time Series
in EUHFORIA

5.1. SSF versus Traditional Skill Scores: Using the Mean
Model as a Reference Model

In this section, we apply the DTW method to the solar wind
velocity time series as modeled by EUHFORIA v1.0.4 for
the period 2017 November–2019 September. The setup of
EUHFORIA is the same as the one presented in Pomoell &
Poedts (2018) and Hinterreiter et al. (2019). We first split the
considered time interval into smaller periods, as listed in the second

column of Table 1. Then, we adopt the smoothing and window
constraints (see Sections 3.2 and 3.3, respectively). Finally, we
quantify EUHFORIA’s performance compared to observations by
employing both of the DTW ways mentioned in Section 4. The
upper panel of Figure 10 shows the DTW alignment for the time
period with the lowest SSF. This corresponds to the time interval
between 2019 July 8 and 2019 July 26 (period 20), during which
EUHFORIA performed the best compared to all of the other
periods we considered in this study. In the same figure, we also
present histograms of the time and velocity amplitude difference
between the observed and predicted data sets. The time difference
between the two sequences is±2 days, which is the maximum
temporal window we imposed for the alignment. The velocity
amplitude differences are the lowest among all of the other periods,
with a maximum of 40 km s−1. The application of DTW to the rest
of the periods is shown in Figure 13 in the Appendix, and the SSFs
are summarized in the fourth column of Table 1.
To prove our point about the significant advantages that DTW

offers compared to traditional metrics (see Section 4), in the fifth
column of Table 1 we present the results of EUHFORIA’s
performance compared to observations, as evaluated using a
traditional MSE-based skill score metric. This metric is defined

Figure 8. An example of an observed data set (solid line) and two predicted time series (Model A, red dashed line, and Model B, black dashed line). Model A is just a
straight line, while Model B is very similar to the observed data but shifted in time. The MSE of Model B is larger than the one calculated for Model A, meaning that a
straight-line prediction performs better than a prediction that is very similar to observations, but shifted in time (adapted from Owens et al. 2005).

Figure 7. Examples of the first approach to evaluate the performance of the predicted solar wind time series compared to observations. (a) The ideal prediction
scenario with DTW =O M, 0score( ) . (b) The nonideal/reference case prediction scenario with the maximum DTW score for that specific time interval for which
DTW =O O,score( ¯ ) 253,850.04. (c) Our actual observed and predicted time series with DTW O M,score( ) ranging between 0 and 253,850.04.
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as:

= Î ¥Skill Score
MSE

MSE
, Skill Score 0, . 3

ref
[ ] ( )

The nominator corresponds to the MSE between observations
and EUHFORIA, while the denominator corresponds to the
MSE between observations and a reference model. In this
section, the reference model will be the mean model. Similar to
Equation (2), a Skill Score equal to zero corresponds to the
perfect prediction, while a Skill Score equal to one means that
the prediction performs the same as the reference model. For a
Skill Score higher than one, the reference model performs
better than our predictions.

Comparing the SSF and Skill Score values in columns four
and five of Table 1, we see that even though both measures
have been similarly defined they sometimes provide different

assessment results for the same periods (see numbers in bold).
Periods 2 and 6 correspond to such controversial examples for
which SSF <1, meaning that EUHFORIA performed better
than the mean model, but at the same time the Skill Score >1,
meaning that EUHFORIA performed worse than the mean
model. To clarify the situation, we present the time series for
these particular periods in Figure 11. We notice that in both
cases EUHFORIA predicted the observations better than the
mean model. As a result, we should expect a SSF <1 and a
Skill Score <1. Nevertheless, due to the time lag of the
predicted time series compared to the Wind data, and the
inability of the traditional skill score to capture the overall
shape of the sequence, the MSE of the mean model was lower
than the MSE of the EUHFORIA time series. This resulted in a
Skill Score >1, which does not reflect the actual bad
performance of the mean model in terms of forecasting the
variability in the solar wind.

Figure 9. Histograms of the time and velocity amplitude differences between the aligned points, as matched by DTW. (a) Histogram of time differences (Δt in days).
(b) Histogram of velocity differences (Δvb in km s−1).

Table 1
Evaluation of the Performance of the EUHFORIA Solar Wind Time Series Based on the SSFs and Skill Scores for the Individual Periods of Interest

Period Dates No. of Elements SSFmean Skill Scoremean SSF27days Skill Score27days

1 2017-11-06 to 2017-12-03 3889 1.07 2.59 4.33 4.46
2 2017-12-03 to 2017-12-30 3889 0.70 1.74 2.99 2.00
3 2017-12-30 to 2018-01-18 2737 0.49 0.94 1.19 0.77
4 2018-01-18 to 2018-03-07 6913 1.43 3.91 2.78 3.19
5 2018-03-07 to 2018-04-17 5905 0.83 1.93 1.70 1.34
6 2018-04-17 to 2018-05-16 4177 0.69 1.09 1.93 1.47
7 2018-05-16 to 2018-06-12 3889 0.66 1.12 1.62 1.30
8 2018-06-12 to 2018-07-29 6769 0.80 1.65 1.15 0.83
9 2018-07-29 to 2018-09-02 5040 0.87 1.56 1.68 1.73
10 2018-09-02 to 2018-09-29 3889 0.42 0.90 1.03 0.72
11 2018-09-29 to 2018-10-31 4608 0.43 0.78 0.66 0.80
12 2018-10-31 to 2018-11-23 3313 0.48 1.15 1.90 1.76
13 2018-11-23 to 2018-12-24 4465 0.47 0.92 1.37 1.29
14 2018-12-24 to 2019-01-21 4033 1.07 1.81 1.89 1.07
15 2019-01-21 to 2019-02-19 4177 0.36 1.02 1.92 2.88
16 2019-02-19 to 2019-03-24 4753 0.90 1.41 1.69 1.05
17 2019-03-24 to 2019-04-19 3745 1.09 2.73 1.90 1.88
18 2019-04-19 to 2019-06-03 6481 1.17 2.54 1.75 2.07
19 2019-06-03 to 2019-07-08 5041 0.63 1.56 0.64 0.42
20 2019-07-08 to 2019-07-26 2593 0.15 0.64 0.25 0.54
21 2019-07-26 to 2019-08-22 3889 0.49 0.80 1.52 1.54
22 2019-08-22 to 2019-09-19 4033 0.86 1.06 2.89 1.37

Note. A 10 minute resolution and a 12 hr smoothing window was adopted. The subscripts “mean” and “27 days” indicate which reference model was employed each
time. The bold values correspond to cases at which the SSF and Skill Score provided opposite performance evaluations for the time series of interest.
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5.2. SSF versus Traditional Skill Scores: Using the 27 Day
Persistence Model as a Reference Model

In this section, we perform the same test as in Section 5.1, but
we employ a different reference model—the 27 day persistence
model (Owens et al. 2013), which is widely used within the
space weather community. Based on this model, we assume that
the solar wind speeds measured over a full solar rotation predict
the future solar rotation as well. The SSF and Skill Score results
for the individual periods of interest are summarized in the sixth
and seventh columns of Table 1. We notice that in all but three
periods (periods 3, 8, and 10) the SSFs and Skill Scores agree
with the evaluation of the EUHFORIA time series. Namely,
when the SSF <1 and the Skill Score <1, both measures reflect
that EUHFORIA performs better compared to the 27 day
persistence model, and vice versa.

In Figures 12(a) and (b), we present the time series for two of
the three periods for which the SSF and Skill Score showed
opposite results. In both cases, the 27 day persistence model
predicts the Wind data better than EUHFORIA, not only
because of the number of HSSs that it captures, but also
because it better reproduces the HSS amplitudes. In
Figures 12(c) and (d), we further show two cases for which
the SSFs and Skill Scores agree. In the former case, the 27 day
persistence model performs better than EUHFORIA, and that is
reflected in the SSF and Skill Score numbers. In the latter case,
EUHFORIA performs better than the persistence model, with
both the SSF and Skill Score numbers being lower than unity.

6. Conclusions and Discussion

In this study, we have introduced an alternative way of
assessing the performance of solar wind time series, the so-
called dynamic time warping (DTW) technique. Although

DTW is not a metric by definition, as it violates the triangular
inequality, it acts like one. It obeys the rule of continuity,
monotonicity, and the fact that the first and last points of one
sequence should be matched with at least the first and last
points of the other. It calculates a cumulative cost, the so-called
DTW score, which represents the cost of aligning two time
series in time when their patterns are similar but differ in time.
DTW has already been used in other disciplines, but this is the
first time that it has been adapted and applied for the purpose of
evaluating the performance of solar wind time series.
We have discussed the benefits and restrictions of the

technique, and presented two complementary ways in which
DTW can be exploited to assess the solar wind predictions
provided by a model. The first way calculates the DTW score
between observations and predictions, as well as between
observations and a reference model. We define the ratio of
these scores as the sequence similarity factor (SSF). This is a
skill score that is equal to zero for a perfect forecast, equal to
one when the forecast performs the same as the reference
model, and higher than one when the modelʼs prediction is
even worse than the prediction from the reference model. The
second way in which DTW can be exploited is by evaluating
the time and amplitude differences between the points aligned
by the method. As a result, DTW can be used as a hybrid
metric between continuous measurements (such as, e.g., the
correlation coefficient) and point-by-point comparisons, by
simultaneously assessing time and amplitude differences, a
property not often found in traditional metrics.
We then assessed the performance of solar wind predictions

from EUHFORIA for an interval of approximately two years
(2017 November–2019 September). This interval was first
divided into smaller periods for faster and more accurate
evaluation. To acknowledge the advantages of DTW and

Figure 10. DTW alignment (upper panel) and histograms of the time and velocity differences (lower panels) between 2019 July 8 and 2019 July 26 (period 20), during
which EUHFORIA performed the best compared to all of the other considered periods. The time in the x-axis of the upper panel corresponds to evenly spaced time
elements with a time difference of 10 minutes between each other.

12

The Astrophysical Journal, 927:187 (19pp), 2022 March 10 Samara et al.



understand its differences to traditional skill score metrics, we
performed two tests: first, we evaluated our predictions based
on the SSF and an MSE-based skill score metric by employing
the mean model as a reference model; and second, we repeated
the same procedure, but this time we employed the 27 day
persistence model as a reference. The former test showed
that in 50% of cases (11 out of 22 periods), the SSF and MSE-
based skill score yielded opposite results. In particular, the
MSE-based skill score indicated that the mean model
performed better than the EUHFORIA simulations, even
though EUHFORIA reproduced the observations much better.
The discrepancy between the two measures arises from the
ability of DTW to dynamically warp the sequences in time and
locate which point from one sequence better corresponds to a
point from another sequence, opposite to conventional
Euclidean metrics. Next, employing the 27 day persistence
model as the reference model in our study, we concluded that it
performed better than EUHFORIA in predicting the observa-
tions, for 19 out of 22 periods of interest. In 3 of those 19 cases,
the SSF and MSE-based skill score resulted in opposite
assessments, with the latter metric providing misleading
evaluations for the predictions, due to its inability to capture
the overall shape of the time series. Therefore, we prove that
DTW can be used as an objective quantification measure for
model evaluation. In addition to MSE (and other traditional
metrics), it provides more detailed information on the

similarities between the profiles of two data sets, thus it should
be used in conjunction with other measures to provide the most
complete picture of a model’s performance.
The use of DTW can also be extended to the evaluation of

other solar wind signatures besides velocity, such as the solar
wind density, temperature, magnetic field, pressure, etc. More-
over, an extension of DTW, the so-called multidimensional
DTW (see Shokoohi-Yekta et al. 2015; Abdullah & Keogh 2016,
and references therein), permits the assessment of multiple
sequences, i.e., in the case of multidimensional simulations, in
which time series from different locations around Earth (or any
other point of interest) are considered. This technique enables
pattern comparisons between multiple time series at the same
time, which is particularly useful for the evaluation of spatial
uncertainties during the arrival of an HSS at a measuring
satellite. The multidimensional DTW could also be extended to
the identification of HSSs by evaluating the various signatures of
plasma and magnetic characteristics. For example, during the
arrival of an HSS at a particular point of interest, the solar wind
density, temperature, pressure, magnetic field, and interplanetary
magnetic field polarity should conform to specific patterns and
behaviors (see Jian et al. 2006 for more details), which should be
recognized by the method. These ideas have not been tested in
the frame of the current study, but they constitute promising
ideas for the future.

Figure 12. The Wind observations (blue), EUHFORIA output (red), and 27 day persistence model (black) are shown for periods 3 (panel (a)), 8 (panel (b)), 12 (panel
(c)), and 19 (panel (d)). The SSFs and Skill Scores are also presented in the upper right parts of the panels.

(a) (b)

Figure 11. The Wind observations (blue), EUHFORIA output (red), and mean model (black) are shown for periods 2 (panel a) and 6 (panel b). The SSFs and
traditional Skill Scores are also presented in the upper right parts of each panel.
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For consistent evaluations of modeled solar wind time series
with DTW, we recommend avoiding periods that include
potential CME influence at Earth. If this is not possible, the
user can still apply the DTW by ignoring the CME signatures.
The DTW score will be slightly different then, compared to the
case in which there were no CMEs. As mentioned in
Section 3.4, 15 CMEs were identified as influencing Earth
between 2017 November and 2019 September. For most of the
individual periods listed in Table 1, there were no observed
CMEs. However, for the cases in which CMEs were detected,
we ignored them for the application of DTW. Therefore, a
future user who wants to assess an improved version of
EUHFORIA for the same time intervals should work in the
same way; namely, treat the potential CME structures as if they
were not there. Only then will the decrease (or increase) in the
DTW score be consistent and comparable to the one calculated
using EUHFORIA v1.0.4, allowing us to track how the change
of the model influences the modeling output. We note that
DTW could be applied separately to CME time series, in terms
of the evaluation of the shock, the Bz component, or other
in situ parameters.
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Appendix
DTW Alignments and Histograms between 2017 November

and 2019 September

In Figure 13, we present the optimal DTW alignments
between the Wind observations and EUHFORIA predictions,
as well as histograms of the time and amplitude differences for
all of the individual periods listed in Table 1. The green lines
show how points from the blue time series are matched with
points from the red time series. The DTW score as well as the
SSF are shown in the upper right parts of each time series plot.
Moreover, the histograms of each period provide a good idea of
the minimum and maximum differences in time and velocity
between the two sequences.
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Figure 13. DTW alignments and histograms of the time and velocity differences for the 22 periods under assessment, between 2017 November and 2019 September.
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Figure 13. (Continued.)
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Figure 13. (Continued.)
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Figure 13. (Continued.)
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