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Abstract

Many astrophysical phenomena are time-varying, in the sense that their brightness changes over time. In the case
of periodic stars, previous approaches assumed that changes in period, amplitude, and phase are well described by
either parametric or piecewise-constant functions. With this paper, we introduce a new mathematical model for the
description of the so-called modulated light curves, as found in periodic variable stars that exhibit smoothly time-
varying parameters such as amplitude, frequency, and/or phase. Our model accounts for a smoothly time-varying
trend and a harmonic sum with smoothly time-varying weights. In this sense, our approach is flexible because it
avoids restrictive assumptions (parametric or piecewise-constant) about the functional form of the trend and
amplitudes. We apply our methodology to the light curve of a pulsating RR Lyrae star characterized by the
Blazhko effect. To estimate the time-varying parameters of our model, we develop a semi-parametric method for
unequally spaced time series. The estimation of our time-varying curves translates into the estimation of time-
invariant parameters that can be performed by ordinary least squares, with the following two advantages: modeling
and forecasting can be implemented in a parametric fashion, and we are able to cope with missing observations. To
detect serial correlation in the residuals of our fitted model, we derive the mathematical definition of the spectral
density for unequally spaced time series. The proposed method is designed to estimate smoothly time-varying
trends and amplitudes, as well as the spectral density function of the errors. We provide simulation results and
applications to real data.
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1. Introduction

RR Lyrae stars are important astrophysical tools for the
measurement of distances and studies of the astrophysical
properties of old stellar populations. They are moderately
bright, evolved low-mass stars, currently in the core helium-
burning phase, also known as the horizontal branch. Their
periods are typically in the range of between about 0.2 and
1.0 day, which together with their characteristic light-curve
shapes, allow them to be relatively easily identified in time
series photometric surveys. An overview of their properties can
be found in the monographs by Smith (1995) and Catelan &
Smith (2015).

In spite of their astrophysical importance, RR Lyrae stars are
still not fully understood. Indeed, one of the longest-standing
problems in stellar astrophysics is also one that specifically
affects RR Lyrae stars: the so-called “Blazhko effect”
(Blažko 1907). It is a long-term modulation of an RR Lyrae’s
light curve, over timescales ranging from a few to hundreds of
days (for recent reviews, see Catelan & Smith 2015; Gillet et al.
2019). The Blazhko effect is particularly common among
fundamental-mode (ab-type) pulsators (e.g., Plachy et al.
2019), but is also present, to a lesser extent, in first-overtone
(c-type) RR Lyrae stars (e.g., Netzel et al. 2018).

Over the decades since it was first described, the Blazhko
effect has persistently defied theoretical explanations as to its

cause (e.g., Gillet et al. 2019). Gradual strengthening and
weakening of turbulent convection in the stellar envelope
(Stothers 2006), a 9:2 resonance between the fundamental and
ninth-overtone radial modes (Buchler & Kolláth 2011), and
interaction between fundamental and first-overtone modes in
the “either-or” region of the instability strip (Gillet 2013) are
the most recent candidates, but no consensus has yet been
reached as to the root cause of the Blazhko effect, due in large
part to the difficulties involved in the nonlinear hydrodynami-
cal modeling of the phenomenon.
In this article, we introduce a model for time series

observations of variable stars having a smoothly time-varying
trend and amplitudes. More precisely, we develop a semi-
parametric method for unequally spaced time series measuring
the brightness of a modulated variable star. Our approach is
flexible because it avoids assumptions about the functional
form of the trend and amplitudes. The estimation of our time-
varying curves translates into the estimation of time-invariant
parameters that can be performed by ordinary least squares,
with the following two advantages: modeling and forecasting
can be implemented in a parametric fashion, and we are able to
cope with missing observations. We also study the spectral
density of the residuals obtained from the fit of our novel
model.
In order to detect serial correlation in the residuals, in this

paper we derive the definition of the spectral density for
unequally spaced time series. There are many reasons why
astronomical time series are not sampled equidistantly, and the
gaps can be either regular or random. From the Earth, stars
cannot be observed during the day, which introduces regular
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gaps in the time series. Also, for about half a year, most objects
become unobservable, as they are up on the sky at the same
time as the Sun, which introduces yearly gaps. There could be
clouds or high winds, forcing the closure of telescopes,
producing random gaps. There could be high-priority alerts
overriding the observations, or the telescope could be available
only on certain nights.

In some cases, observations are unevenly spaced due to
missing values. Astronomical data sets often contain missing
values, and this limitation is sometimes due to incomplete
observations or varying survey depths. Even if telescopes are
recording and storing information systematically, that is, at a
regular cadence, there are a few things that can alter the regular
sampling. For example, an astronomer might decide to increase
the exposure time if there are clouds obscuring the target, to try
to increase the signal-to-noise ratio. Conversely, if the
observing conditions are excellent, the astronomer might
decide to decrease the exposure times (and hence the cadence)
to avoid saturating the detector, for example. Missing values
are usually handled via imputation, that is, the gap generated by
the missing value is “filled in” by an estimated value. If
observations are missing because of the survey, imputation can
be performed using statistical models. For example, Feigelson
et al. (2018) apply ARIMA models to fill in missing data in
astronomical time series.

However, in astrostatistics, missing value problems are
sometimes inherently brought about by the manner in which
physical processes are recorded. In particular, telescopes are
not located in the center of the solar system. Since the speed of
light is finite, this results in a time delay between the arrival
times of signals at our position and at the center of the solar
system. This is typically corrected for by referring the times of
observations to either Heliocentric Julian Dates (HJD) or
Barycentric Julian Dates (BJD), which refer to the center of the
Sun or the entire solar system, respectively. Thus, even if
telescopes record data strictly evenly according to the local
time at the observatory (e.g., one observation performed every
night at local midnight), this correction will slowly change
between observations, modifying what was initially a regular
grid to an irregular one. Also, this correction is different for
every source on the sky, even though sources close to each other
may have very similar corrections. Therefore, for some astronom-
ical data sets where missing values may arise from the manner in
which observations of a physical process are collected, or even the
nature of the physical process itself (e.g., sudden, extreme
dimming events that may occasionally render an object impossible
to detect for a certain amount of time), the imputation method may
not be applicable (see Chattopadhyay 2017). Our novel approach,
which involves the classical periodogram, has the advantage of not
relying on any imputation method.

We shall divide the present study into six main sections. In
Section 2 we introduce our novel model and clarify analogies
and differences as compared with previous approaches. In
Section 3, the present status of important ingredients of
amplitude and frequency modulations is critically discussed. In
Section 4 we present the method we adopt to estimate the time-
varying parameters. In Section 5 we present a new method to
estimate the spectral density of unequally spaced times series,
which is needed for the analysis of the residuals. Section 6
provides simulation results, whereas Section 7 illustrates the
advantages of using our novel method by means of an

application to an RR Lyrae variable star. Finally, our main
conclusions are summarized in Section 8.
Through the paper we use bold uppercase letters to denote

matrices, and bold slanted to denote vectors. We denote by Im
the identity matrix of size m, by 0n a column-vector of zeros of
length n, by { }Atr the trace of A, by A the transpose of A, by
∥A∥ the Frobenius norm [ { }]= A A Atr 1 2, and by A−1 the
inverse of the square matrix A, that is, the square matrix A−1

such that A−1A=AA−1= I.

2. A Novel Time-varying Modulation Model for Variable
Stars

Light curves of variable stars are typically fitted using
harmonic models with a linear (or constant) trend and time-
invariant amplitudes (see Equations (1) and (5) in Richards
et al. 2011). This type of model would be inappropriate when
the underlying trend and amplitudes change over time in a
more complex way. Eilers et al. (2008) proposed a model with
one harmonic component (K= 1) where the trend and
amplitudes vary smoothly over time. In this paper, we extend
the model by Eilers et al. (2008) to the case of K� 1 harmonic
components, where the amplitudes associated with each
harmonic component vary smoothly over time. We estimate
our model by means of P-splines (Eilers & Marx 1996), which
are a combination of B-splines and penalties. The estimation of
the time-varying curves translates into the estimation of time-
invariant parameters that can be performed by the least-squares
method, with the following three advantages: it is computa-
tionally fast, forecasting can be implemented in a parametric
fashion, and we can cope with missing observations.
Compared to local smoothers (such as kernel smoothers), the

main advantage of regression spline in the context of time
series is that the unknown parameters are time-invariant and
thus they can be estimated globally rather than locally. As a
consequence, forecasting only requires good estimates of the
global unknown parameters. We can think of regression splines
with B-splines as a semi-parametric model in the sense that it
contains parametric as well as nonparametric components. The
parametric component is given by a finite number of
parameters, whereas the nonparametric component is given
by the basis functions. Another advantage of parametric and
semi-parametric models over nonparametric models is the
computing speed, as many nonparametric models are compu-
tationally intensive. Finally, the use of B-splines in regression
allows us to rewrite the estimation problem as a least-squares
fit, avoiding the use of numerical methods—such as Newton
−Raphson—which can be time consuming.
Let{ }º = ¼Y Y i N, 1, ,i ti be a set of observations occurring

at certain discrete times t1, K, tN. In the case of equally spaced
observations, ti= t0+ iΔ where i is an integer, and Δ> 0 is
the constant data spacing. Then |ti− tk|=Δ|i− k|, and
typically Δ= 1. Astronomical light curves are often observed
unequally in time, that is, the data spacing of observation times
is not constant.
We decompose the observed light curve into the sum of a

deterministic signal μ and a random noise z. The deterministic
part ( )m t consists of a trend m(t) and a modulated periodic
signal. The modulated periodic signal is a linear combination of
K cosines and sines, with weights given by the modulating
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functions g(t):
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or in matrix notation Y=μ+ z, where ( )= ¼Y Y Y, , N1 is the
vector of observations at time ( )= ¼t t t, , N1 , m =
[ ( ) ( )]m m¼t t, , N1 is the expectation of Y, m(ti) is the smooth
time-varying trend at time ti, the g(ti)ʼs are smooth time-varying
amplitudes of the cosine and sine waves at time ti, respectively,
wk= 2πfk is the angular frequency, and fk is the ordinary
frequency. Since the errors are zero mean, the expectation of
the observed brightness at time ti is equal to the deterministic
part of the signal at time ti, that is, [ ] ( )m=Y tE i i .

We refer to m( · ) as the “trend,” that is, the (typically)
aperiodic change in the mean of the light curve. By contrast, we
call “amplitudes” the functions g( · )ʼs that weigh the periodic
variation (of this average brightness) of cosine and sine waves.
In Appendix A we summarize the standard mathematical
definitions of amplitude modulation and frequency modulation.
Both trend and amplitudes are typically restricted to be
sinusoidal, whereas in this paper our trend m(t) and our
amplitude functions g(t)ʼs are general smooth functions and not
necessarily sinusoidal. In Section 3 we clarify the mathematical
connection between the standard modulation models and our
novel modulation model in Equation (1).

The error vector ( )= ¼z z z, , N1 is a white noise (WN)
process with mean zero and variance sz

2. That is, each error zi,
i= 1,K,N, follows a zero-mean WN process with variance sz

2:

[ ] [ ]

{ }d s

=

= = ¼=

z z z

i j N

E 0 and E

, for all , 1 , ,

i i j

i j z
2

where δ{i=j}= 1 if i= j and zero otherwise.
Our model in Equation (1) is defined in discrete time, and it

focuses on the time domain. Kelly et al. (2014) adopt the
continuous-time autoregressive moving average (CARMA)
models to estimate the variability features of a light curve in the
frequency domain. More specifically, Kelly et al. (2014) use
the power spectral density (PSD) of CARMA models to
account for irregular sampling and measurement errors. A
stationary CARMA(p, q) process has the PSD

( ) ( ) ( )å ås b p a p=
= =

P f i f i f2 2 .
j

q

j
j

k

p

k
k2

0

2

0

2

To illustrate the importance of fitting models with time-varying
parameters, Kelly et al. (2014) simulated a light curve that
switches from one CARMA process to another. More precisely,
they constructed a nonstationary light curve by generating two
CARMA processes of the same order (p= 5, q= 3), but with
different parameters (see Kelly et al. 2014, Section 4.3):

( ) 
 

q q
q

=
<

t
t t t
t t t ,N

1 1 0

2 0

⎧
⎨⎩

where ( ) [ ( ) ( ) ( ) ( ) ( )]q a a b b s= ¼ ¼t t t t t t, , , , , ,p q1 1
2 . The

vector ( )q t is a step-wise function that is constant before and

after t0. The approach based on piecewise-constant parameters
is receiving growing interest in various areas of astrophysics.
Wong et al. (2015) adopt a Poisson model for the photon
counts. They define λ(tj, wi) as the expected count per unit time
and per unit wavelength averaged over the bin centered at
(tj, wi), and detect change points π such that {λ(tj,
wi)|tj� π}≠ {λ(tj, wi)|tj> π}. Wong et al. (2015) estimate
the number of change points and their values. Xu et al. (2021)
develop a method for modeling a time series of images, and
assume that the arrival times of the photons follow a Poisson
process. They assume that all image stacks between any two
adjacent change points (in the time domain) share the same
unknown piecewise-constant function. Xu et al. (2021)
estimate the number and the locations of all of the change
points (in the time domain), as well as all of the unknown
piecewise-constant functions between any pairs of the change
points.
Instead of considering parameters that are piecewise-

constant functions of time, in this paper we allow the
parameters to be smooth functions of rescaled time, permitting
the process to be locally stationary. The framework of local
stationarity introduced by Dahlhaus (1997), where the para-
meter curves are defined in rescaled time u= t/T, provides a
meaningful asymptotic theory. Locally stationary Y(t) means
that if the functions m(u) and g(u) in Equation (1) are “smooth”
and T is large, ( ) ( )»m mt

T

r

T
and ( ) ( )»g gt

T

r

T
for values of r

close to t, that is, locally around t. More precisely, we assume
that the functions m(x) and g(x) are Lipschitz continuous, that
is, there exist constants Cm and Cg such that

∣ ( ) ( )∣ ∣ ∣
∣ ( ) ( )∣ ∣ ∣ [ ] ( )




- -
´ - - Î

m z m u C z u
g z g u C z u u z

and
, for all , 0, 1 . 2

m

g

To define m(u) and g(u) as functions of rescaled time let us
consider, for each fixed u ä [0, 1] and increasing T, the
sequence t= tT= ⌊u T⌋, where ⌊x⌋ is the largest integer not
exceeding x. Then we obtain the following uniform bound:

∣ ∣- <usupt
t

T T

1 . A time series is stationary if the moments of
the underlying stochastic process, such as expectation and
variance, are time-invariant. The idea behind local stationarity
is to allow for time-varying parameters, in a way that locally
the process behaves as stationary. Lipschitz continuity is a
smoothness assumption that implies uniform continuity. The
model in Equations (1)–(2) is a locally stationary process
written in rescaled time in a way such that, as T grows, we
observe more and more “observations” of the same type around
u. That is, if m( · ) and g( · ) are smooth we have
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T
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m
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g
g

⎛
⎝

⎞
⎠

⎛
⎝
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⎠

for all t: = ⌊u T⌋. The locally stationary framework is important
for handling, in a meaningful way, the asymptotic theory
arising in statistics for processes with time-varying parameters.
Suppose that we observe Xt= μ(t)+ zt, with ( )s~z WN 0,t z

2

for t= 1, K, T. Inference in this case means studying the
properties of an estimator for the unknown function ( )m t on the
grid {1, K, T}. Given that μ changes over time, it is obvious
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that an asymptotic approach where T→∞ is not suitable for
describing a statistical method, since future “observations”
{μ(t), t> T} do not necessarily contain any information on ( )m t
on {1, ..., T}. To overcome these problems, Dahlhaus (1996)
suggested to consider a triangular array of data. In analogy with
nonparametric regression, it seems natural to set down the
asymptotic theory in a way that we “observe” ( )m t on a finer
grid (but on the same interval), i.e., that we observe the process

( )( ) m= +Y t zT
t

T t, where YT is now a triangular array and μ is
now rescaled to the interval [0, 1]. Working in rescaled time is
often adopted also within the estimation framework of
regression splines (see Zhou et al. 1998, among others).

Time series analysis of nonstationary sequences can be
deterministic or stochastic. A popular example of stochastic
nonstationarity is the well-known class of integrated processes,
where the observed times series can be made stationary by
differencing. Feigelson et al. (2018) apply autoregressive
integrated moving average (ARIMA) models to light curves
of several variable stars, discussing their effectiveness for
different temporal characteristics. The process {Xt} is an
ARIMA(p, d, q) process if Yt= (1− B)dXt, obtained by
applying the operator 1− B repeatedly d times, is a stationary
ARMA(p, q) process. The most popular example of an ARIMA
(p, d, q) process is the “random walk” Xt= Xt−1+ Zt, which is
an ARIMA with p= q= 0 and d= 1.

In the next section, we review the models proposed by
Benkő et al. (2011) and Benkő (2018) for Blazhko light curves.
Interestingly, our model in Equation (1) generalizes the models
by Benkő et al. (2011) and Benkő (2018) in the sense that the
modulating functions g( · ) are not confined to the class of
parametric (sinusoidal or nonsinusoidal) functions.

3. Modeling Blazhko Light Curves

The Blazhko effect is a periodic amplitude and phase
variation in the light curves of RR Lyrae variable stars. In
astronomy, the Blazhko effect is usually interpreted as a
modulation phenomenon. Modulation is the process of
transmitting a low-frequency signal into a high-frequency
wave, called the carrier wave, by changing its amplitude,
frequency, or phase angle through the modulating signal. In
Appendix A we review the main mathematical definitions
underlying the modulation phenomenon in astrophysics.

In this section, we review the models proposed by Benkő
et al. (2011) and Benkő (2018), respectively, and we compare
them with our novel model in Equation (1). To describe
Blazhko light curves, Benkő et al. (2011) proposed to fit the
following model:

( )

( ) ( )
[ ( )] [ ( )]

*m

p j

= +

+ å + + +=

3

t a a a g t

a a a g t kf t kg tsin 2 ,
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0 0 0
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where ak and f0 denote amplitude and frequency, respectively,
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j
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m j
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M

More recently, Benkő (2018) introduced a similar model:

( ) ( )

[ ( )] [ ( )] ( )

*m p j

p j

= + å +

+ å + + +
=

=

t m b rf t

a g t kf t g t

sin 2

sin 2 , 5

r
ℓ

r m r
b

k
K

k k
A

k k
F

0 1

1 0

where br and fr
b denote amplitude and frequency of the

modulating signal, respectively, and

( ) ( ) ( )å p j= + =
=

g t a jf t M A Fsin 2 , or . 6k
M

j

ℓ

kj
M

m kj
M

1

k
M

The functions ( )g tM and ( )g tk
M in Equation (4) and (6) are the

modulating functions with subscripts M= A and M= F
denoting amplitude and frequency modulation, respectively.
The main pulsation frequency is denoted by f0, whereas fm is
the modulating frequency. In this paper we improve the models
in Equations (3)–(4) and (5)–(6) from two different viewpoints.
From the modeling viewpoint, we relax the assumption of
parametric amplitude and frequency modulations. Assuming
parametric amplitude and frequency modulations results in a
Fourier sum with time-invariant amplitudes and time-invariant
frequencies, whereas our time-varying amplitudes and frequen-
cies do not obey any particular form. From the estimation
viewpoint, we do not rely on the nonlinear least-squares
algorithms, such as the Levenberg−Marquardt algorithm, that
are typically used to fit parametric nonlinear models. These
methods require initial values close to the solution, which in
some applications are difficult to find.
Both models proposed by Benkő et al. (2011) and Benkő

(2018) and given by Equations (3) and (5), respectively, are a
special case of our model defined by Equation (1). To see this,
let us define

( ) ( )
( ) [ ( )] [ ( )]

( ) [ ( )] [ ( )]
( )

j

j

= +

= + +
= ¼
= + +
= ¼

v t a a a g t
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1, , ,
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k
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k
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k
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k
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2, 0
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We now show how Equations (7) and (8) allow to us compare
our model in Equation (1) with the models proposed by Benkő
et al. (2011) and Benkő (2018), respectively. Comparing the
models in Equations (1) and (3), the time-varying trend and
amplitudes of the model in Equation (1) are expressed as

( ) ( )
( ) ( ) ( )

=
= = = ¼

m t v t
g t w t ℓ k K

,
, 1, 2, 1, , . 9ℓ k ℓ k, ,

At the same time, comparing the model in Equation (1) with the
model in Equation (5), the time-varying trend and amplitudes
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of the model in Equation (1) are

( ) ( )
( ) ( ) ( )

=
= = = ¼

m t u t
g t h t ℓ k K

,
, 1, 2, 1, , , 10ℓ k ℓ k, ,

the ordinary frequency being fk= kf0.
As we can see in Equations (9) and (10), the functions m(t)

and ( )g tℓ k, incorporate the amplitude and frequency modulation
functions ( )g tM and ( )g tk

M in Equations (4) and (6). In this
sense, the limitation of our approach is that it does not aim at
identifying the amplitude and frequency modulating functions

( )g tM and ( )g tk
M in Equations (4) and (6). That said, the benefit

of our approach from the estimation viewpoint is twofold. An
important advantage of our model in Equation (1) over the
models in Equations (3) and (5) is that the modulating
frequency fm does not need to be estimated. In other words,
in order to describe statistically a Blazhko light curve using our
model in Equation (1), we only need to estimate f0. If the
observed time series is indeed a Blazhko light curve, the
modulating frequency fm is included in the nonparametric trend
m(t) and amplitude gℓ,k of our model in Equation (1). Moreover,
assuming that the frequencies are known, for our model in
Equation (1) we only need to estimate the functions m( · ) and
gℓ,k( · ), whereas for the model in Equations (3) and (5) the
estimated parameters are the amplitudes a A

0 , a0, m0, akʼs, brʼs,
and a M

kj
ʼs, and the phases jr

bʼs, jkʼs, j j
Mʼs, and jkj

Mʼs.

4. Estimation

In Section 4.1 we define estimators of the unknown trend
m( · ), amplitudes {gℓ,k( · ), ℓ= 1, 2, k= 1, K, K}, and
variance sz

2 of the model in Equation (1), and in Section 4.2
we explain how to select the tuning parameters associated with
the B-splines and the penalization used in the estimation
method. We denote by N the sample size, T= tN− t1 the time
span, J the number of B-splines basis, d the degree of the B-
splines, K the number of harmonics components, r the order of
the penalty, and M the number of replications in Monte Carlo
simulations.

We performed our calculations using the R Language for
Statistical Computing (R Core Team 2021). Our codes combine
existing functions (available as part of R packages) with our
own development. The computations implemented in this paper
are available as a GitHub public code repository.6

4.1. Penalized Least Squares

As mentioned in Section 2, we use B-splines to estimate the
trend and amplitudes of the model given by Equation (1). The
smooth trend function m(ti) is modeled as a linear combination
of B-splines basis

( ) ( )å a= = ¼
=

m t B t i N, 1, , ,i
j

J

j j i
1

which can be written in matrix notation as

a=m B ,

where [ ( ) ( )]= ¼m m t m t, , N1 , B= [Bij]= [Bj(ti)] is the N× J
basis matrix (i= 1,K,N, j= 1,K, J) and ( )a a a= ¼, , J1 .
The exact definition of B-splines is given in Appendix B.

The smooth amplitude functions, gℓ,k(ti), ℓ= 1, 2, are
modeled in the same way:

( ) ( )

( ) ( )

b

g

= å

= å = ¼

=

=

g t B t

g t B t k K

,

, 1, , .

k i j
J

k j j i

k i j
J

k j j i

1, 1 ,

2, 1 ,

In matrix notation

b g= = = ¼g g k KB Band , 1, , ,k k k k1, 2,

where ( )b b b= ¼, ,k k k J,1 , , ( )g g g= ¼, ,k k k J,1 , , and =gℓ k,

[ ( ) ( )]¼g t g t, ,ℓ k ℓ k N, 1 , , ℓ= 1, 2, k= 1,K, K. Thus, α, βk, and
γk, k= 1,K,K, are vectors associated with the trend and
amplitudes, respectively. We define the N× N matrices Ck and
Sk as

{ ( ) ( )}
{ ( ) ( )}

= ¼
= ¼
= ¼

w t w t
w t w t

k K

C
S

diag cos , , cos and
diag sin , , sin ,
1, , .

k k k N

k k k N

1

1

Thus, the model for the expected value of Y, in matrix
notation, can be expressed as

[ ] m q= =YE ,

where  is the N× c design matrix given by

[ ∣ ∣ ∣ ∣ ∣ ∣ ] = B C B C B S B S B... ... ,K K1 1

with c= J(2K+ 1), and

( )     q a b b g g= ¼ ¼, , , , , ,K K1 1

is the vector of regression coefficients of length c.
The ordinary least squares (OLS) estimator of θ is the

vector qOLS, which minimizes the sum of squares:

∣∣ ∣∣q= -q YM .2

Equating to zero the partial derivatives with respect to each
component of θ and assuming (as we shall) that   is
nonsingular, the estimator of θ is

( )   q = - Y.OLS
1

The OLS estimate also maximizes the likelihood of the
observations when the errors z1, K, zN are independent and
identically distributed and Gaussian.
The size of the basis determines the amount of smoothing of

the fitted curves. The larger the value of J, the bumpier the
fitting will be. To avoid overfitting, Eilers & Marx (1996)
proposed a penalty on the (high-order) finite differences of the
coefficients:

∣∣ ∣∣ ∣∣ ∣∣

{ ∣∣ ∣∣ ∣∣ ∣∣ }

*

å

q a

b g

t

t t

= - +

+ +

q

=
+

YM D

D D ,

r

k

K

k r k k r k

2
1

2

1
2

2
2 1

2

where {τk, k= 1, K, 2K+ 1} are positive regularization
parameters that control the smoothness of the curve, penalizing
the coefficients that are far apart from one another. If τk= 0,
k= 1, K, 2K+ 1, we have the standard normal equations of
linear regression with a B-splines basis. The larger the value of
τk, the closer the coefficient θ is to zero. When τk→∞we
obtain a polynomial fit. The matrix Dr constructs rth-order6 https://github.com/DarlinSoto/Modulation-models
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differences of a vector η as

h h= DD .r
r

The first difference of η, Δ1η, is the vector with elements
ηl+1− ηl. Repeated differencing applied to Δη results in
higher differences, such as Δ2η and Δ3η.

The penalties can be represented as θPθ with the block-
diagonal matrix = ÄP T D Dr r and T= diag{τ1, τ2, τ3, K,
τ2K+1}. Then, minimizing

∣∣ ∣∣ * q q q= - +q YM P2

with respect to θ, the penalized ordinary least squares
estimator (POLS) of θ is

( ) ( )   q = + - YP . 11POLS
1

The prediction of Y at time ti is given by

( ) ( ) ( ) qm= =  Y t t , 12i i i POLS

where ( ) ti is the ith row of , the residuals are = - z Y Y ,
with ( )= ¼ Y Y Y, , N1 , and the mean square error (MSE)
is ( )= å --

=
N Y YMSE i

N
i i

1
1

2.
The estimators of the trend m and amplitudes {gℓ,k, ℓ= 1, 2,

k= 1, K, K}, are

( )a b g= = =  m g gB B B, , . 13k k k k1, 2,

Another parameter of interest is the variance of the errors,
sz

2, which can be estimated by

[ ( )] { ( ) } å qs = - --

=

  N Y tStrz
i

N

i i
2 1

1
POLS

2

where ( )    = + -S P .1

In addition to the point estimate, interval estimation for Yi is
often of interest and is easy to construct. In Appendix C we
derive parametric and nonparametric confidence intervals
for Yi .

4.2. Automatic Selection of the Tunable Parameters

Before calculating the estimator in Equation (11), it is
necessary to select the tuning parameters t =

( )t t t¼ +, , , K1 2 2 1 . To choose the tuning parameters, we
propose to use the Akaike information criterion (AIC).
The AIC penalizes the log-likelihood of a fitted model by

considering the effective number of parameters. The definition
of AIC given by Hastie et al. (2004) is

( ) ( )t t s= + 
N

AIC err 2
df

,0
2

where ( )terr corresponds to the mean square error in the case
of Gaussian errors, df is the effective number of parameters, N
is the number of observations used to fit the model, and s0

2 is
given by the variance of the residuals from the Yi that are
computed when τ= 02K+1.
The value for τ is chosen by minimizing the AIC, which is

computed as

( ) { ( ) } ( ) ( ) åt q s= - +
=

 
N

Y t
N

S
AIC

1
2

tr
, 14

i

N

i i
1

POLS
2

0
2

The AIC given by Equation (14) can also be used to select
the number of B-splines J, the degree d of the B-spline, the
order of penalty r, and the number of harmonic components K.
In Figure 1, we have generated N= 500 observations from

the model described in Equation (1), with the Gaussian errors
{zi, 1� i� 500} being simulated using the R function rnorm.
We consider the following artificial signal:

( ) ( )
( ) ( ) ( )

m
p p

= - - - +
´ + -
t t t t

t t t
0.05 0.0002 0.0003

cos 0.2 1 0.0005 sin 0.2 ,
i i i i

i i i

2

with the errors following a Gaussian distribution with zero
mean and variance s = 1z

2 . Time t is unequally spaced and was
obtained from a uniform distribution U(θ1, θ2) with θ1= 0 and
θ2= 55 using the R function runif. In the first plot of
Figure 1 the observations Y are represented by the gray points,
and the mean μ by the black curve. The orange, blue, and green
curves illustrate three possible estimates for Y obtained using
the method described in the Section 4.1 with increasing
smoothing parameters. The orange line is the fit obtained with
τj= 0, j= 1, 2, 3: the corresponding Y matches the data well,
but fits the true μ poorly because it is wiggly. The blue curve is

Figure 1. Automatic selection of the tunable parameters presented in Section 4.2. Left: data (gray dots) simulated according to the model defined by Equation (1), with
N = 500, ( ) ( ) ( )m p= - - - +t t t t t0.05 0.0002 0.0003 cos 0.2i i i i i

2 ( ) ( )p+ - t t1 0.0005 sin 0.2i i (black curve), and where the errors follow a Gaussian distribution with
zero mean and variance s = 1z

2 . Time is unequally spaced, obtained from a uniform distribution U(0, 55) (gray ticks on the horizontal axis). We illustrate three
estimates of Y corresponding to three different specifications of τj, with j = 1, 2, 3: τj = 0 (orange curve), τj = 30 (blue curve), and τj = 200 (green curve). Right:
values of the AIC in Equation (14), obtained from the simulated and estimated light curve, corresponding to forty-one equally spaced values of τ ranging from 0 to
200. The three points (orange, blue, and green) on the AIC curve correspond to the three fits presented in the left-hand plot of the figure.
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obtained using the smoothing parameters τj= 30, j= 1, 2, 3,
and the green curve is obtained using τj= 200, j= 1, 2, 3. In
the second plot of Figure 1, we observe that the optimal tuning
parameters are τj= 30, j= 1, 2, 3, and as the values of τ

increase the obtained curve fits the observed data less closely.

5. Detecting Serial Correlation

A statistical model is an approximation to the true process that
generates the observed data. After fitting the model given by
Equation (1), it is necessary to check whether the residuals
obtained from the fit behave like a white noise process. A
significant departure from this assumption suggests the inade-
quacy of the assumed form of the model. Thus, it is important to
assess whether the residuals follow a white noise process.

Detecting serial correlation becomes more challenging when
the available observations are unequally spaced in time. If the
observations are unequally spaced, so are the errors. In order to
study the spectral density of the residuals obtained from the
fitted model, in this section we derive the mathematical
definition of the spectrum for unequally spaced time series.

Before presenting our approach, we briefly review the results
given by Deeming (1975) about the relationships between the
periodogram, the spectral density (PSD), and the autocorrela-
tion function for continuous time series. Then, we extend the
results given by Deeming (1975) to the case of discrete time
series.

Let {εi} be a continuous, zero-mean stationary times series
with spectral density

( ) ( ) ( )òl l l= -¥ < < ¥e e
-¥

¥
P r h i h dhexp , ,

and autocovariance function

( ) ( ) ( ) ò l l l= - Îe e
-¥

¥
r h P i h d hexp , .

Consider a time series ε1, K, εN with spectrum Pε( · ) and
autocovariance function rε( · ), and assume that the observa-
tions ε1, K, εN are obtained at unequally spaced times t1, K,
tN, respectively. The periodogram of ( )e e e= ¼, , N1 at
frequency λ is defined as

( ) ( [ ]) ( )åål e e l l p= - =e
= =

I i t t fexp , 2 . 15
k

N

j

N

k j k j
1 1

Deeming (1975) proved that the expectation of the period-
ogram of {εi} in Equation (15) is

[ ( )] ( ) ( ) ( )l l l=e e eI P WE , 16

where Wε(λ) is the power spectral window given by

( ) ( [ ])åål l= -e
= =

W i t texp ,
j

N

k

N

k j
1 1

and Pε(λ)åWε(λ) is the continuous convolution of Pε(λ) with
Wε(λ) defined as

( ) ( ) ( ) ( ) òl l w l w w= -e e e e
-¥

¥
P W P W d .

The following lemma states that it is possible to extend the
result in Equation (16) to the case of a discrete zero-mean
stationary times series that is generated according to equally
spaced times but observed at unequally spaced times. The
lemma applies to unequally spaced time points ti with index i

belonging to a subset  of the set { } = 1, 2, ... of positive
integers.

Lemma 1. Let { }e = + D D > Î Ít t i i, , 0,i i 0 be a
zero-mean, stationary, discrete time series with spectral density

( ) ( ) ( ) ( ) ål
p

l l= D -¥ ¥e e
=-¥

¥

P i h r h
1

2
exp , , 17

h

with autocovariance function defined as ( ) [ ]e e=er h E k j , with
∣ ∣= +k j h , Îh , that can be expressed in term of the

spectral density in Equation (17) as

( ) ( ) ( ) ( )




åp
l l= - D Îe e

=

r h
N

i h P h
2

exp , , 18
j

N

j j
1

where l p= f2j j, with ( )= Df j Nj and { } =N Imax . Then,
the expectation of the periodogram in Equation (15) obtained
from { }e Îi,i is

[ ( )] ( ) ( ) ( )


*l
p

l l=e e eI
N

P WE
2

, 19

with power spectral window given by

( ) ( [ ]) ( )
 

åål l= -e
Î Î

W i t texp 20
k j

k j

and ( ) ( )*l le eP W is the discrete convolution of ( )leP with
( )leW defined as

( ) ( ) ( ) ( )



* *l l w l w

w p

= å -

= =
D

e e e e=P W P W

f f
j

N

,

2 , .

j
N

j j

j j j

1

Our result in Equation (19) differs from the result by Deeming
(1975) in Equation (16). Deeming (1975) proved that the
expectation of both discrete and continuous Fourier transforms
of a continuous stochastic process f (t); (in the sense of Equations
(31) and (32) in Deeming 1975) is equal to the continuous
convolution of the spectral density of f (t) with a spectral window
(see Equations (33) and (36) in Deeming 1975). In Lemma 1,
instead, we prove that the expectation of the discrete Fourier
transform of the discrete stochastic process εt is equal to the
discrete convolution of the spectral density of εt with a spectral
window (up to the constant p N2 ).
When the time series is generated according to an equally

spaced stochastic process and the observations are equally
spaced, the periodogram is an (asymptotically) unbiased
estimator of the spectral density (see Priestley 1981, page
418). However, when the observations are unequally spaced it
does not make sense to estimate the spectral density in the same
way. This is due to the power spectral window Wε(λ) in
Equations (19)–(20). Nevertheless, as we show in the following
proposition, it is possible to disentangle the spectral density
Pε(λ) from the spectral window Wε(λ).

Proposition 1. Let { }[ ] g kj denote the Discrete Fourier
Transform of the sequence of m numbers ¼g g, , m1 into
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another sequence ¼h h, , m1 , that is,

{ }[ ] ( )

( )

 å p= = -

= ¼
=

h g k g ikj m

k m

exp 2 ,

1, , . 21

k j
j

m

j
1

Accordingly, define { }[ ]- h jk
1 as the Inverse Discrete Fourier

Transform of the sequence ¼h h, , m1 into another sequence
¼g g, , m1 , that is,

{ }[ ] ( )

( )

 å p= =

= ¼

-

=

g h j h ikj m

j m

exp 2 ,

1, , . 22

j k m
k

m

k
1 1

1

Assume that { }e Îi,i satisfy the same conditions as in
Lemma 1. Then we can write the spectral density ( )leP j in
Equation (17) at frequency l p= f2j j, with ( )= Df j Nj , as

( )
{ [ ( )]}[ ]
{ ( )}[ ]

[ ]

( )









l
p

l
l

=

= ¼

e
e

e

-P
N I k

W k
j

j N

2

E
,

1, , . 23

j
j

j

1⎧
⎨⎩

⎫
⎬⎭

The proofs of Lemma 1 and Proposition 1 are given in
Appendix D. Equation (23) suggests that in order to estimate
Pε(λ), we need the value ofΔ andWε(λ), as well as the estimate of

[ ( )]leIE . Notice that, in general, the time series denoted in this
section as ( )e e e= ¼, , N1 is possibly autocorrelated, whereas the
errors ( )= ¼z z z, , N1 of our model in Equation (1) are assumed
to be serially uncorrelated. The following algorithm is proposed to
establish whether the unequally spaced residuals obtained when
fitting our model in Equation (1) are uncorrelated.

1. Obtain the residuals = - z Y Y .
2. For each = ¼j N1, , , define ˆ ( )lIz j as the periodogram

in Equation (15) computed upon the residuals z obtained
in step (1), with


l = p

Dj
j

N

2 .

3. For each = ¼j N1, , , define ( )lWz j as the power
spectral window in Equation (20) computed upon the
residuals z obtained in step (1), with


l = p

Dj
j

N

2 .
4. Smooth the periodogram obtained in step (2) over

frequencies, and denote the smoothed periodogram
by ˜ ( )lIz j .

5. Calculate the Discrete Fourier Transform in Equation
(21) of the power spectral window and the periodogram
obtained in steps (3) and (4), respectively.

6. For each frequency


l = p
Dj
j

N

2 , define the estimated
spectral density of the errors z as

( )
{˜ ( )}[ ]
{ ( )}[ ]

[ ]

( )









l
p

l
l

=

= ¼

- 


P

N I k

W k
j

j N

2
,

1, , , 24

z j
z j

z j

1⎧
⎨⎩

⎫
⎬⎭

where the inverse Fourier transform -1 is given by
Equation (22).

7. If the estimated spectral density obtained in step (6) does
not vary significantly over frequencies, conclude that the
errors are uncorrelated over time.

6. Simulation Results

In this section we provide Monte Carlo simulations to
illustrate the performance of the estimators ( )m t , ( )m t , ( )g tℓ k, ,
ℓ= 1, 2, k= 1,K,K, defined by Equations (12) and (13), and
the estimator of the spectral density in Equation (23).
In Section 6.1 we simulate unequally spaced observations

from the model in Equation (1), under two scenarios. In the first
scenario both the trend and amplitudes are sinusoidal, whereas
in the second scenario the trend and amplitudes are polynomial.
In Section 6.2 we simulate a Blazhko light curve and fit the
model in Equation (1). Finally in Section 6.3 we evaluate the
performance of the estimator of the spectral density defined in
Equation (23) of a discrete unequally spaced time series.

6.1. Simulating Our Novel Time-varying Model

In this section we generate the data according to the model
described by Equation (1) with K= 2, N= 500, and time t is
unequally spaced, obtained from a uniform distribution U(θ1, θ2)
with θ1= 0 and θ2= 1. In order to illustrate the flexibility of our
novel method, we consider two different scenarios for the trend
and amplitudes. In the first scenario, we simulate a sinusoidal
trend and amplitudes as ( ) ( )p=m t tsin 2 , ( ) ( )p=g t tcos 91,1 ,

( ) ( )p=g t tsin 62,1 , ( ) ( )p=g t tcos 41,2 , ( ) ( )p=g t tsin 72,2 , with
frequencies w1= 40π and w2= 100π. In the second scenario, we
simulate a (global) polynomial trend and amplitudes as
m(t)= 0.2t− 5t2+ 5.5t3, ( ) = -g t t t4 51,1

3 2, g2,1(t)=−0.5−
0.5t+ 2.5t2− 0.5t3, g1,2(t)=−t+ t2+ 1.3t3, g2,2(t)= 0.5+
2t2− 3t3, with frequencies w1= 30π and w2= 40π. In both
scenarios, we assume that the error terms {zi, i= 1, K, N}
follow a Gaussian distribution with zero mean and var-
iance s = 2z

2 .
In both scenarios, we simulate M= 200 realizations of the

model in Equation (1). For each j= 1,K,M, we compute the
estimate

( )q j
defined by Equation (11). In the first scenario, we

select the smoothing parameter ( )t = 50, 1, 2, 10, 1 , a total
number of B-splines J= 33 of order d= 3, and an order penalty
r= 2. In the second scenario, we choose the smoothing parameter

( )t = 3, 3, 3, 3, 3 , a total number of B-splines J= 6 of order
d= 3, and an order penalty r= 4. Figure 2 shows our estimates of
μ, m, {gℓ,k, ℓ= 1, 2, k= 1, 2}, and their 95% confidence intervals.
Figure 2 shows that our model in Equation (1) fits well the
simulated data in both the sinusoidal and polynomial scenarios.
That is, the trend and amplitudes are well fitted in both scenarios.
The 95% confidence intervals are constructed in a nonparametric
fashion using quantiles; see Appendix C.1 for more details.

6.2. Simulating a Blazhko RR Lyrae Light Curve Characterized
by Amplitude Modulation

We simulate a Blazhko RR Lyrae light curve with amplitude
modulation according to Benkő et al. (2011) as

( )

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

m

m

p j
p j

= + = ¼ =

= +

= + å +
= +

=

Y t z i N

t
U t

U
c t

c t a a kf t

U t a f t

, 1, , 1000,

1 ,

sin 2 ,

sin 2 , 25

i i i

i
m i

c

k k i k

m m m m

0 1
4

0

⎡
⎣⎢

⎤
⎦⎥

where c(t) is the carrier wave with four harmonic components,
( )U tm is the modulating signal, Uc= am/h is the amplitude of the

unmodulated light curve, and {zi, i= 1, K, N} are the error terms.
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The values of the parameters used in Equation (25) and the time
design are obtained from Benkő et al. (2011). In particular,
am= 0.1 mag, h= 1.2, a0= 0.01 mag, fm= 0.05 days−1,
jm= 270°, and the values {ak, jk, 1� k� 4} are presented in
Table 1. We convert the Blazhko phase jm and the main phases
{jk, 1� k� 4} in Equation (25) from degrees to radians using the
R function NISTdegTOradian (available in the R package
NISTunits2016 by Gama 2016). The original time design
{tj, j= 1, K, 28,799} in Benkő et al. (2011) is equally spaced.
However, variable stars are often observed at irregular intervals. For
this reason, in our simulation exercise we sample a subset of the
original time points and use this subset to evaluate the performance
of our method. We obtain the time design {ti, i= 1, K, 1000} in
Equation(25) by sampling the original, equally spaced time design
{tj, j= 1, K, 28,799}. We end up with N= 1000 unequally

spaced observations ranging from t= 0.03819 days to t= 69.37847
days. The error terms are generated independently from a Gaussian
distribution with zero mean and variance s = 0.005z

2 .
If we consider of our novel model in Equation (1), with time-

varying trend and amplitudes specified as

( ) [ ( ) ]
( ) ( )[ ( ) ]

( ) ( )[ ( ) ]
( )

j

j

= +
= +
= ¼
= +
= ¼

m t a U t U
g t a U t U

k
g t a U t U

k

1 ,
cos 1 ,

1, , 4,
sin 1 ,

1, , 4, 26

i m i c

k i k k m i c

k i k k m i c

0

1,

2,

we can rewrite the model in Equation (25) as a special case of
our model given by Equation (1). The main advantage of fitting
the model in Equation (1) instead of the model in Equation (25)

Figure 2. Simulation scenarios of Section 6.1: data generated from the model in Equation (1) with sinusoidal and polynomial time-varying trends and amplitudes.
Time t is unequally spaced, obtained from the uniform distribution U(0, 1). The first column shows the fit of the model in Equation (1) with a sinusoidal trend and
amplitudes, whereas the second column shows the fit of the model in Equation (1) with a polynomial trend and amplitudes. From the M = 200 realizations of our
estimators we compute, for each fixed t, three averages and confidence intervals. The first row shows the true ( )m t (red solid line), together with the average

( ) ( )( )m m= å = t t
M j

M j1
1 of the estimates ( )( )m tj (black solid line). The second row shows the true trend m(t) together with the average ( ) ( )( )= å = m t m t

M j
M j1

1 of the

estimates ( )( )m tj . The third and fourth rows show the true amplitudes ( )g tℓ k, , ℓ = 1, 2, k = 1,2, together with the average ( ) ( )( )= å = g t g tℓ k M j
M j

,
1

1 ℓ k,
of the estimates

( )( )g tℓ k
j

, . The nonparametric quantiles (black dashed lines) are the confidence intervals corresponding to the 2.5th and 97.5th order statistics, respectively; see
Appendix C.1.
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is that one does not need to estimate the parameters am, h, a0,
jm, ak, jk, k= 1, K, 4, fm. Moreover, we do not need to adopt
any specific functional form for m( · ) and g( · ), such as those
given by Equation (26), because they are well approximated by
B-splines.

We fit the model in Equation (1) with K= 4 to the data
generated according to the model in Equation (25). We assume that
the frequencies fk, k= 1, K, 4, of each harmonic component are
known; see Table 1. Also, we use a total of J= 18 B-splines of
degree d= 3, an order penalty r= 1, and the smoothing
parameters ( )t = 5, 1, 0.1, 0.1, 0.1, 0.1 ,1, 0.1, 4 .

We fit the model in Equation (1) to the simulated data
obtained from the model in Equation (25), and present the
results in Figure 3. The first row shows the simulation of the
amplitude modulated RR Lyrae light curve given by
Equation (25); (gray points), together with the true and fitted
curve (solid red and solid black lines, respectively). The second
row shows the residuals, and the third and fourth rows show the
true trend and amplitudes (red lines) given by Equation (26)
and their fits (black lines). We observe from Figure 3 that the
model in Equation (1) fits well the simulated data. That is, the
trend and amplitudes are well fitted, and the residuals satisfy
the assumption of zero mean and constant variance. The 95%
confidence intervals are constructed in a parametric fashion; see
Appendix C.2 for more details.

6.3. Estimating the Spectral Density of Unequally Spaced Time
Series

In this section we estimate the spectral density of unequally
spaced time series by means of our novel estimator in
Equation (23). To this end, we simulate unequally spaced
observations generated from the following AR(2) process:

( )
( )



e f e f e

s

= + +

~
= + D

- - z

z

t t i

0,

, 27

i i i i

i z

i

1 1 2 2

2

0

where i= 1,K,N, with N= 500 equally spaced observations,
starting time t0= 0.67, and Δ= 0.33. In order to simulate a
realistic AR(2) process, we use the coefficients of the sunspot
numbers in Example 3.2.9 of Brockwell & Davis (2016), where
f1= 1.318, f2=−0.634, and s = 289.2z

2 . These f coeffi-
cients ensure the existence of a causal solution

( )åe y=
=

¥

-z 28i
j

j i j
0

of Equation (27). The time series in Equation (28) is causal in
the sense that ε depends upon current and past (rather than

future) values of the error term z. We simulate M= 500 times
the AR(2) model given by Equation (27) obtaining the
observations ( ) ( )e e¼, ,m

N
m

1 , m= 1,K,M. Then, in order to
obtain unequally spaced observations we use the following
three steps.

1. We divide time into 50 blocks, where each block has 10
observations, in a way to preserve the original time series
structure.

2. In order to preserve the autocorrelation between the
observations, we select randomly 30 blocks and collect
the time points corresponding to these blocks, obtaining a
new set of time points { }* = ¼t i n, 1, ,i , with n= 300
observations. In contrast to the simulation schemes of
Sections 6.1 and 6.2 where time was sampled randomly,
here data sets with uniformly sampled subsets are
produced. While the former sampling is close to the data
distribution of large ground-based surveys, the latter is
the typical sampling of photometric space telescopes that
are dedicated to high-cadence time series observations,
such as Kepler (Koch et al. 2010).

3. Finally, we collect the observations ( )ei
m corresponding to

the new set of time points { }* = ¼t i n, 1, ,i and rename
them as ( ) ( )e=ei

m
i
m , with ( )ei

m being observed at time *ti ,
i= 1, K, n.

Thus, we obtain the unequally spaced observations
( ) ( )¼e e, ,m

n
m

1 , which represent a subset of the equally spaced
time series ( ) ( )e e¼, ,m

N
m

1 . For each m= 1,K,M, and each fixed
frequency λj= 2πfj, f= j/(NΔ), j= 1,K,N, we compute the
periodogram of ( ) ( )¼e e, ,m

n
m

1 as

( ) ( [ ])( ) ( ) ( ) * *åål l= -
= =

I e e i t texp ,e
m

j
k

n

d

n

k
m

d
m

j k d
1 1

the average of the periodograms ( )( ) lIe
m

j as

( ) ( )( )ål l=
=

I
M

I
1

,e j
m

M

e
m

j
1

and the power spectral window of ( ) ( )¼e e, ,m
n

m
1 as

( ) ( [ ])* *åål l= -
= =

W i t texp .e j
d

n

k

n

j k d
1 1

For each frequency λj, j= 1,K,N, replacing [ ( )]lIE e j with
( )lIe j and substituting We(λj) in Equation (23), the estimated

spectral density of the unequally spaced time series
( ) ( )¼e e, ,m

n
m

1 is given by

( )
{ ( )}[ ]
{ ( )}[ ]

[ ] ( )



l

p
l
l

= -P N I k

W k
j

2
. 29e j

e j

e j

1⎧
⎨⎩

⎫
⎬⎭

A smooth version of the estimated spectral density in
Equation (29) is

( ) ( ) ( ) ( )ål l l l= -
=

l

l
 P K P . 30e j N

i

N

h j i e j
1

1

The rescaled kernel function is defined as ( ) ( )=K x K x hh h

1 ,
where K is a second-order kernel and h is the bandwidth.
For this application, we used the Gaussian kernel

( ) ( )= -
p

K y yexp 21

2
2 and a bandwidth h= 0.3.

Table 1
Parameters of Simulated RR Lyrae Star

k kf0 ak jk

(days−1) (mag) (°)

1 2 0.401 5.490
2 4 0.171 144.040
3 6 0.133 285.250
4 8 0.097 81.290

Note. Parameters (frequencies, amplitudes, and phases) obtained from Benkő
et al. (2011), as explained in Section 6.2.
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Figure 4 compares the underlying spectral density Pε(λj) of
the equally spaced time series {εi}, with the estimated spectral
densities ( )lPe j and ( )lPe j of the unequally spaced time series

{ei}. The underlying spectral density of the equally spaced time
series {εi}, generated by the AR(2) process in Equation (27), is
given by

Figure 3. Simulated Blazhko RR Lyrae light curve characterized by amplitude modulation; see Section 6.2. The first row shows the light-curve data of an RR Lyrae
star simulated according to the model given by Equation (25) (gray points), the curve ( )m t in Equation (25) (solid red line), the prediction Yi (solid black line), and the
parametric 95% confidence intervals (dashed black lines) obtained according to Appendix C.2. The second row shows the residuals. The third row shows the time-
varying trend m(ti); (red solid lines) simulated according to Equation (26), together with the estimated trend ( )m ti (solid black lines) obtained according to
Equation (13). The last four rows show the time-varying amplitudes {gℓ,k(ti), ℓ = 1, 2, k = 1, K, 4} (red solid lines) simulated according to Equation (26), together
with their estimates ( )g tℓ k i, (solid black lines) given by Equation (13). The parametric 95% confidence intervals (dashed black lines) are obtained according to
Appendix C.2.
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( ) [

( ) ( ) ( )] ( )

l
s
p
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-

P
2

1 2

2 cos 4 cos . 31

j
z

j j

2

1
2

2
2

2
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2 1

The estimated spectral density ( )lPe j of the unequally time
series {ei} is given in Equation (29), and its smooth version
˜ ( )lPe j in Equation (30). Figure 4 shows that the estimated
spectral density of the unequally time series, ( )lPe j , fits very
well the true spectral density Pε(λj).

7. Application to Real Data

In this section, we fit our model in Equation (1) and the
model proposed by Benkő (2018) in Equation (5) to the same
light curve: the V783 Cyg, KIC 5559631. This time series has
61,351 unequally spaced observations and is available online
from the Konkoly Observatory of the Hungarian Academy of
Sciences webpage.7 We choose this particular light curve for
two reasons. First, the Blazhko effect of the V783 Cyg time
series is known to be characterized by a sinusoidal amplitude
and frequency modulation (Benkő et al. 2014). The light curve
of V783 Cyg can be described by K= 15 significant harmonics
with a sinusoidal amplitude and frequency modulations (Benkő
et al. 2014), which makes V783 Cyg an ideal target for
comparing the fits obtained with the models in Equations (1)
and (5). Second, these two modulations are well captured and
fitted by our novel model in Equation (1).

In order to reduce the computational time and to satisfy the
condition ti= t0+ iΔ with Δ> 0 and Î Íi (which is
required by Proposition 1), we analyze a≈78 days segment of
this light curve from t= 827.44 days to t= 904.9 days. For this
segment, the time origin and the time spacing take the values
t0= 827.42 days and Δ= 0.0204345 days, respectively, with a
total of N= 2101 unequally spaced observations.

When fitting the models in Equations (1) and (5), the main
pulsation and modulation frequencies are not estimated: they take
the values f0= 1.611084 days−1 and fm= 0.036058 days−1 (see

Benkő et al. 2014), respectively. In addition to the K= 15
significant harmonics fitted by Benkő et al. (2014), we found, after
pre-whitening and fitting our model in Equation (1), four significant
frequencies taking the values ¢ =f 18.325411 days−1,
¢ =f 19.936512 days−1, ¢ =f 21.547613 days−1, and ¢ =f14

23.1587 days−1. The values we obtain for { } ¢f j, 11 14j
demonstrate that these frequencies are not harmonics of the form
kf0, which might suggest that these four are independent
frequencies. Interestingly, however, we find that the latter belong
to a set of fourteen “reflection frequencies” of the form
{ ( ) } ¢ = - -f f j f j2 30 , 1 14j N 0 , where fN= 24.46
days−1 is the Nyquist frequency. Among these fourteen frequen-
cies, only the last six{ } ¢f j, 9 14j exhibit significant peaks in
the Lomb−Scargle periodogram (computed according to
Lomb 1976). However, to avoid overfitting, we only consider the
four frequencies { } ¢f j, 11 14j corresponding to last four
peaks of the estimated power spectrum (see the last row of Figure 5,
bottom right panel). In summary, the only truly independent
frequencies are f0, fm, and fN, the other frequencies {fk= kf0, k= 1,
K, 15} and { ( ) } ¢ = - -f f j f j2 30 , 1 14j N 0 being linear
combinations (or harmonics) of those.
The frequencies ¢f j do not depend on the Blazkho frequency

fm, as the information regarding the Blazhko effect is captured
by the time-varying trend m( · ) and amplitudes {gℓ,k( · ), ℓ= 1,
2, k= 1, K, K}; see Equations (9)−(10) and Figure 6. We use
a different notation ( ¢f rather than f ) to avoid confusion, since
in this case fN< 16f0= 25.77 days−1, and the four frequencies
we are considering take values< 24 days−1.
After fitting the models in Equations (1) and (5), we compute

their residuals and estimate their spectral densities using
Equation (24). To estimate the spectral densities according to
the procedure in Section 5, we adopt the Gaussian kernel

( ) ( )= -
p

K y yexp 21

2
2 with a bandwidth h= 7.2. We fitted

both models with a PC having a 2.7 GHz 12 core Intel Xeon E5
processor and 64 GB of 1866MHz DDR3 memory. Fitting our
novel model in Equation (1) required 17 minutes and 13 s,
whereas fitting the model by Benkő (2018) in Equation (5)
required 12 minutes and 28 s.

Figure 4. Estimated spectral density of the unequally spaced time series sampled by blocks in Section 6.3. Left: comparison between the true spectral density in
Equation (31) (red line) and the estimated spectral density ( )lPe j in Equation (29) (black line) for j = 1, .., N/2. Right: comparison between the true spectral density in
Equation (31) (red line) and the smooth estimated spectral density ( )lPe j in Equation (30) (black line) for j = 1, ..., N/2. The true spectral density corresponds to the
equally spaced time series εi, which follows the AR(2) process given by Equation (27), whereas the estimated spectral density is computed from the unequally spaced
observations ( ) ( )¼e e, ,m

n
m

1 , m = 1, K, M. The unequally spaced time series ( ) ( )¼e e, ,m
n

m
1 is obtained as a subset of the time series ( ) ( )e e¼, ,m

N
m

1 . In this example
N = 500, n = 300, and M = 500.

7 https://konkoly.hu/KIK/data_en.html
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The description provided so far applies to both fits of models
in Equations (1) and (5). We now provide, separately,
computational details about the estimation of these two models.
Then in Sections 7.1 and 7.2 we compare and interpret the fits.

To fit our novel model in Equation (1), we apply the
methodology described in Section 4. When fitting our model in
Equation (1) we consider two sets of harmonic components. The
first set is given by the harmonic components with frequencies
{fk= kf0, k= 1, K, 15} provided by Benkő et al. (2014),
weighted by our amplitudes {gℓ,k(ti), ℓ= 1, 2, k= 1, K, 15}. For
the second set, the harmonic components are characterized by the
four amplitudes{ ( ) }¢ = = ¼g t ℓ j, 1, 2, 11, , 14ℓ j i, weighting the

corresponding four frequencies { }¢ = ¼f j, 11, , 14j . That is, we
fit the following extended version:

( ) ( ) { ( ) ( )
( ) ( )}

{ ( ) ( ) ( ) ( )}

m = + å
+

+ å ¢ ¢ + ¢ ¢

=

=

t m t g t w t

g t w t

g t w t g t w t

cos

sin

cos sin

i i k k i k i

k i k i

j j i j i j i j i

1
15

1,

2,

11
14

1, 2,

of the model in Equation (1), with ωk= 2πfk and w p¢ = ¢f2j j .
The resulting fitted model involves a total of 39 J parameters.
Before fitting our model, we select the smoothing parameters τ

and the number of B-splines J. These parameters are selected
by the AIC criterion described in Section 4.2. To simplify the
selection of the smoothing parameters τ, we consider the case
τ2= ...= τ11, τ12= ...= τ21, τ22= ...= τ31, and τ32= ...= τ39.
We pick the smoothing parameter τ1 over the grid {0, 0.1, 10},
the parameters {τk, k= 2, K, 39} over the grid {0, 0.1, 10,
100}, and the total number J of B-splines (of degree d= 3) over
the grid {8, 13, 23, 33}. We apply the AIC formula in
Equation (14). The lowest AIC value occurs for J= 33 B-
splines, τ1= 0, τk= 0.1, k= 2, K, 21, τk= 0, k= 22, K, 31,
and τk= 10, k= 32, K, 39.
To fit the model in Equation (5), we implement the

Levenberg−Marquardt algorithm using the R function nls.
lm (available in the R package minpack.lm by Elzhov et al.
2016), with K= 15 and = = =ℓ ℓ ℓ 1k

A
k
F , k= 1,K,K, for a

total of 93 parameters.

7.1. Comparing the Accuracy of the Fits

The MSE corresponding to the fit of our model in
Equation (1) is 0.000001, whereas the MSE of the model in
Equation (5) is 0.000008. That is, the MSE of the model in

Figure 5. Comparison of fitted models to the light curve of V783 Cyg in Section 7.1. The first column corresponds to the fit of the model in Equation (1), whereas the
second column corresponds to the fit of the model in Equation (5). From top to bottom: the first row shows the Brightness mag (red solid lines) together with the fits
(black solid lines). The second row shows the residuals resulting from the fits. The last two rows show the spectral density of the residual obtained with Equation (24)
under different transformations (log-10 scale and square root).
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Equation (1) is approximately 12.5% smaller than the MSE of
the model in Equation (5). Fitting the model in Equation (1)
involves 1287 parameters, whereas the number of parameters
estimated with the model in Equation (5) is 93. The larger
number of parameters needed to fit the model in Equation (1) is
due to the semi-parametric form of the trend and amplitudes,
which does not impose any particular shape to the underlying
functions we estimate.

Figure 5 compares the fits of the models in Equations (1) and
(5). The first row shows the fitted curves, the second row shows
the residuals, and the third and fourth rows show the estimated
spectral density of the residuals. Although the fitted curves
(first row) look very similar, the residuals are significantly
different. Indeed, the residuals obtained with the model in
Equation (1) are compatible with the assumption of stationary
and uncorrelated errors. By contrast, the residuals obtained
with the model in Equation (5) exhibit a time-dependent trend.
Moreover, the estimated spectral densities in the last two rows
of Figure 5 show that the model in Equation (1) delivers
residuals with a flat estimated spectral density, mimicking the
behavior of the spectral density of white noise errors, whereas
the model in Equation (5) shows that some harmonic
components should be added to the model (see the peaks

between the frequencies 17 days−1 and 24 days−1 in the
last row).

7.2. Comparing the Estimated Time-varying Parameters

In Section 3 we have showed that the model in Equation (5)
is a special case of our novel model in Equation (1). To
establish whether the fitted model in Equation (1) matches (or
differs from) the fitted model in Equation (5), we now compare
the estimates of m(t) and ( )g tℓ k, obtained by fitting the model in
Equation (1) with the estimates of u(t) and ( )h tℓ k, defined in
Equation (8) obtained by fitting the model in Equation (5).
Figure 6 shows the estimates ( )m t , { ( ) = =g t ℓ k, 1, 2,ℓ k,

}¼1, , 15 , and { ( ) }¢ = = ¼g t ℓ j, 1, 2, 11, , 14ℓ j, (black lines),

together with the estimates ( )u t and { ( ) =h t ℓ,ℓ k,
}= ¼k1, 2, 1, , 15 (red lines). The estimated trend ( )m t is

similar to the sinusoidal ( )u t . Similarly, the first eight estimated
harmonic components { ( ) }= = ¼g t ℓ k, 1, 2, 1, , 8ℓ k, and

{ ( ) }= = ¼h t ℓ k, 1, 2, 1, , 8ℓ k, are very close to each other.
The next seven estimated harmonic components { ( ) =g t ℓ,ℓ k,

}= ¼k1, 2, 9, , 15 and { ( ) }= = ¼h t ℓ k, 1, 2, 9, , 15ℓ k,
are still similar but in some cases are slightly different.

Figure 6. Comparing the estimated time-varying trend and amplitudes fitted to the light curve of V783 Cyg studied in Section 7.2. Red solid lines: estimates of u(t)
and { ( ) }= = ¼h t ℓ k, 1, 2, 1, , 15ℓ k, defined in Equation (8) obtained with the model in Equation (5). Black solid lines: estimates of m(t),
{ ( ) }= = ¼g t ℓ k, 1, 2, 1, , 15ℓ k, , and { ( ) }¢ = = ¼g t ℓ j, 1, 2, 11, , 14ℓ j, obtained with our novel model in Equation (1). Black dashed lines: 95% confidence
intervals for m(t), ( )g tℓ k, , and ( )¢g tℓ j, obtained according to Appendix C.2.
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Nevertheless, these small differences do not have a significant
impact on the fitted curves, because the last harmonic
components have less of a contribution to the fit than the first
ones. For the four estimated harmonic components associated
with the frequencies { }¢ = ¼f j, 11, , 14j , which were fitted
only for the model in Equation (1)—and were not fitted for the
model in Equation (5)—we observe that the four corresponding
time-varying amplitudes { ( ) }¢ = = ¼g t ℓ j, 1, 2, 11, , 14ℓ j, are
allowed to have either a sinusoidal or a nonsinusoidal form.
This finding is in accordance with the form of Amplitude
Modulation and Frequency Modulation of Blazhko stars
described by Benkő (2018). Finally, in Figure 6, we see that
most of the confidence intervals of ( )g tℓ k, contain ( )h tℓ k, .
Therefore we conclude the following. Although the modulation
frequency fm is not a parameter of our model in Equation (1),
we are able to describe, through the estimated time-varying
trend ( )m t and amplitudes ( )g tℓ k, , the Blazhko effect resulting
from the amplitude and frequency modulation considered by
the model in Equation (5).

8. Summary

In this article, we introduced a model for time series
observations of variable stars that are modulated by smoothly
time-varying mean magnitudes, amplitudes, and phases.
Previous approaches assume that the underlying parameters
are either time-invariant or piecewise-constant functions. From
the modeling viewpoint, our approach is more flexible because
it avoids assumptions about the functional form of the
aforementioned time-dependent quantities. From the computa-
tional viewpoint, estimating our time-varying curves translates
into the estimation of time-invariant parameters that can be
performed by ordinary least squares.

An important challenge when dealing with astronomical time
series is that observations are unequally spaced in time. In
some cases, observations are unevenly spaced due to missing
values. Missing values are sometimes handled via imputation,
that is, the gap generated by the missing value is “filled in” by
an estimated value. Our novel approach, which involves the
classical periodogram, has the advantage of not relying on any
imputation method.

We study the performance of our approach under several
simulation scenarios. Finally, we apply our method to
V783 Cyg (KIC 5559631), a well-known RR Lyrae star
presenting the Blazhko effect. In this case, the effect is
characterized by a sinusoidal amplitude and frequency
modulation. When comparing the time-varying fit obtained
with our novel model with the time-invariant fit obtained with
the model proposed by Benkő (2018), we found that both
amplitude and frequency modulations are well captured and
fitted by our novel model, and also that our time-varying
method outperforms the time-invariant fit. Indeed the estima-
tion error obtained with our fit is significantly smaller than the
error obtained with the time-invariant fit. In addition, the
residuals obtained with our novel method are compatible with
the assumption of stationary and uncorrelated errors, whereas
the residuals obtained with the time-invariant model by Benkő
(2018) exhibit a time-dependent trend and some significant
spectral peaks.

In the future, we plan to extend our methodology in four
important directions. First, we plan to apply our novel method

to the study of a larger sample of Blazhko RR Lyrae stars.
Second, our approach can be extended to the analysis of other
classes of variable stars presenting long-term changes in their
light-curve shapes. Third, our fitting method does not require
the period(s), amplitude(s), and phase(s) of the Blazhko effect
to be determined, as we obtain instead the empirical functions
m( · ) and gi,k( · ). We are currently investigating what kind of
(or how much more) information can be obtained from these
empirical functions, as compared to conventional approaches.
Finally, we aim to study Blazhko light curves characterized by
more than one Blazhko frequency—V783 Cyg, which was
addressed in some detail in this paper, is a special case, because
this star does not show any additional Blazhko frequencies
(Benkő et al. 2014).
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Appendix A
Modulation

The Blazhko effect is a periodic amplitude and phase
variation in the light curves of RR Lyrae variable stars. In
astronomy, the Blazhko effect is usually interpreted as a
modulation phenomenon. Modulation is the process of
transmitting a low-frequency signal into a high-frequency
wave, called the carrier wave, by changing its amplitude,
frequency, and/or phase angle through the modulating signal.
The function of the carrier wave is to carry the message or
modulating signal from the transmitter to the receiver. The
superposition of the signal and the carrier wave results in the
so-called modulated signal.
In this Appendix we review two types of modulation, as

given in Benkő et al. (2011): amplitude modulation and
frequency modulation. This will be helpful for a comparison
between our model (Equation (1)) and the models proposed by
Benkő et al. (2011) and Benkő (2018), in the case of RR Lyrae
stars presenting the Blazhko effect.
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A.1. Amplitude Modulation

Amplitude modulation (AM) changes the amplitude of the
carrier signal. Let the carrier wave c(t) be a sinusoidal signal of
the form

( ) ( )p f= +c t U f tsin 2 ,c c c

where the constant parameters Uc, fc, and fc are the amplitude,
frequency, and phase of the carrier wave, respectively.

Let ( )U tm represent a waveform that is the message to be
transmitted, or the modulating signal. The transmitter uses the
information signal ( )U tm to vary the amplitude of the carrier Uc

to produce the amplitude modulated signal UAM:

( ) [ ( )] ( )

[ ( )] ( ) ( )( )
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= + = +

U t U U t f t

U U t c t

sin 2

1 . A1

c m c c

c m
c t

U

U

U

AM

c

m

c
⎡⎣ ⎤⎦

In the simplest case, when the modulating signal is
sinusoidal, that is,

( ) ( ) ( )p f= +U t U f tsin 2 , A2m m
A

m m
A

the amplitude modulated signal in Equation (A1) is

( ) [ ( )]
( ) ( )

p f
p f

= + +
´ +

U t U U f

f t

sin 2

sin 2 . A3
c m

A
m m

A

c c

AM

Clearly, a more complex example of amplitude modulation
arises when K� 1, where K denotes the number of harmonic
components. Suppose the carrier wave c(t) is a linear
combination of sine harmonics:

( ) ( )å p f= + +
=

c t a a kf tsin 2 ,
k

K

k k0
1

0

and the modulating signal is sinusoidal and given again by
Equation (A2). Following the same idea as in Equation (A1),
the amplitude modulated signal in Equation (A3) is

( ) ( ) ( )

( )

( ) ( )

p f

p f

= +

= +
+

´ + å +=

U t
U t

U
c t

U f t

U

a a kf t

1

1
sin 2

sin 2 . A4

m

c

m
A

m m
A

c

k
K

k k

AM

0 1 0

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡⎣ ⎤⎦
If we call =h U Um

A
c and use the basic trigonometrical

identities ( ) ( ) [ ( ) ( )]= - - +a b a b a bsin sin cos cos1

2
and

( )( ) = - pa asin cos
2
, Equation (A4) can be written as

( )

( ) ( )
( )

( ( ) ( ) )

( ( ) ( ) )

p f

p f

p f f p

p f f p

= + å +

+ +

+ å - + - +

- å + + + +

=

=

=

A5

U t a a kf t

a h f t

a h
kf f t

a h
kf f t

sin 2

sin 2

2
sin 2 2

2
sin 2 2 .

k
K

k k

m m
A

k
K k

m k m

k
K k

m k m

AM 0 1 0

0

1 0

1 0

This example shows that when the time-varying amplitude
( )U tm in Equation (A2) takes a sinusoidal form, the amplitude

modulated model with time-varying amplitude in Equation
(A4) can be written as a model with time-invariant parameters
as in Equation (A5). This implies that, when frequencies and

phases are known, the parameters {ak, 0� k� K} in
Equation (A5) can be estimated by ordinary least squares.

A.2. Amplitude and Frequency Modulation

Frequency modulation (FM) changes the frequency of the
carrier signal. We assume the sinusoidal carrier wave to be

( ) ( ( ))= Qc t U tsin ,c

where Θ(t)= 2πfct+ fc is the angular part of the function.
Suppose that the modulating signal is ( )U tm . Then the
modulated angular part is given by

( ) ( )òp p t t fQ = + +t f t k U2 2 d ,c

t

m
F

cFM
0

where kFM is the frequency deviation, and the frequency
modulated signal is expressed as

( ) ( ) ( )òp p t t f= + +U t U f t k Usin 2 2 d . A6c c

t

m
F

cFM FM
0

⎛
⎝

⎞
⎠

In the simplest case, when the modulating signal is represented
by a sinusoidal wave with amplitude Um

F and frequency fm, the
integral of such a signal is

( ) ( )ò t t
p

p f= +U
U

f
f td

2
sin 2 ,

t

m
m
F

m
m m

0

and the frequency modulated signal in Equation (A6) is

( ) ( )

( )

p p f f= + + +U t U f t
k U

f
f tsin 2 sin 2 .

A7

c c
m
F

m
m m cFM

FM
⎜ ⎟
⎛
⎝

⎞
⎠

In practice, modulated signals can be a mixture of amplitude
and frequency modulations, which can be used to described
Blazhko RR Lyrae stars (Benkő et al. 2011). We review the
simplest case when both AM and FM are sinusoidal.
Combining the amplitude modulated signal in Equation (A3)
and the frequency modulated signal in Equation (A7), the
amplitude and frequency modulated signal is thus

( ) [ ( )]

( )

p f

p p f f

= + +

´ + + +

U t U U f t

f t
k U

f
f t

sin 2

sin 2 sin 2 .

c m
A

m m

c
m
F

m
m m c

Comb

FM
⎜ ⎟
⎛
⎝

⎞
⎠

A.3. Blazhko Modulation

Amplitude and frequency modulations have been observed
in Blazhko RR Lyrae stars (e.g., Benkő et al. 2010; Chadid
et al. 2010; Poretti et al. 2010; Sódor et al. 2012). Assuming
that the observed data sets are precise and long enough, Benkő
et al. (2011) proposed an amplitude and frequency modulation
model for Blazhko RR Lyrae stars given by

( ) ( )
( )

( ) ( )*
*

*
*=m t

m t

c t
m t , A8Comb

AM
FM

where ( )*c t is the carrier wave, and the functions ( )*m tAM and
( )*m tFM are the nonsinusoidal amplitude and frequency
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modulations, given respectively by

( ) ( ) ( ) ( )* *å p j= + +
=

m t a a pf t c tsin 2 , A9A

p

q

p
A

m p
A

AM 0
1

⎡

⎣
⎢

⎤

⎦
⎥

( ) [

( ) ( )

* p

p j j

= + å +

+ å + +

=

=

m t a a kf t ka

k a pf t

sin 2

sin 2 . A10

k
K

k
F

p
q

p
F

m p
F

k

FM 0 1 0 0

1 ⎤⎦
Here, the modulating signal used in the amplitude and
frequency modulation is an arbitrary periodic signal repre-
sented by a Fourier sum with a constant frequency fm.
Superscripts A and F denote the amplitude modulation and
frequency modulation parameters, respectively, and f0 and fm
are the main pulsation and modulation frequencies,
respectively.

Substituting Equations (A9) and (A10) in Equation (A8), we
finally have

{
( ) ( )

( ) ]}

* p j

p

p j j

= + å +

´ + å + + å

´ + +

=

= =

m t a a pf t

a a kf t ka k

a pf t

sin 2

sin 2

sin 2 .

A
p
q

p
A

m p
A

k
K

k
F

p
q

p
F

m p
F

k

Comb 0 1

0 1 0 0 1

⎡⎣ ⎤⎦

⎡⎣

Appendix B
B-splines

In this Appendix we define B-splines and give some details
about the estimation method that we used in this manuscript.
For more details we refer the reader to the book by de
Boor (1978).

A B-spline curve f (t) of degree d is defined as

( ) ( ) ( )å=
=

f t P B t , B1
j

J

j j d
1

,

where Pj are the control points and ( )B tj d, are the B-spline basis
functions. Let tmin and tmax be, respectively, the lower and
upper bounds of the domain of interest. In order to build the B-
spline basis of degree d, we first divide the domain into n
intervals, with n being a positive integer, obtaining the n+ 1
knots ξ d, ξ d+1, K, ξ d+n. Each knot satisfies ξ j< ξ j+1, for all
j. Second, we define 2d additional knots ξ 0, ξ 1, K, ξ d−1,
ξ n+d+1, K, ξ n+2d−1, ξ n+2d. Then, the jth B-spline basis,

( )B tj d, , can be defined recursively as

( ) ( )

( ) ( )

x

x x

x

x x

=
-

-

+
-

-
= ¼

-

+ - -
-

+

+
+ -

B t
t

B t

t
B t j J, 1, , , B2

j d
j

j d j
j d

j d

j d j
j d

,
1

1 1
, 1

1, 1

with

( )
[ )

( )
x x

=
Î -B t

t1 , ,

0 otherwise
B3j

j j
,0

1⎧
⎨⎩

being used to initialize the recursion. Thus, to build the B-
spline curve given by Equation (B1), we need n+ 2d+ 1
knots, and the total number of B-splines basis functions
is J= n+ d.

To illustrate how to construct a B-spline basis, consider the
case of degree d= 2 and assume that the domain [ ]t t,min max has
been divided into n= 3 intervals, obtaining the knots ξ 2, K,
ξ 5. In this instance, the 2d= 4 additional knots are defined as
ξ 0, ξ 1, ξ 6, and ξ 7. Using Equation (B2), we obtain

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x
x x

x
x x

x
x x

x
x x

x
x x

x
x x

x
x x

x
x x

x
x x

x
x x

=
-
-

+
-
-

=
-
-

+
-
-

=
-
-

+
-
-

=
-
-

+
-
-

=
-
-

+
-
-

B t
t

B t
t

B t

B t
t

B t
t

B t

B t
t

B t
t

B t

B t
t

B t
t

B t

B t
t

B t
t

B t

,

,

,

,

,

1,2
0

2 0
1,1

3

3 1
2,1

2,2
1

3 1
2,1

4

4 2
3,1

3,2
2

4 2
3,1

5

5 3
4,1

4,2
3

5 3
4,1

6

6 4
5,1

5,2
4

6 4
5,1

7

7 5
6,1

where

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x
x x

x
x x

x
x x

x
x x

x
x x

x
x x

x
x x

x
x x

x
x x

x
x x

x
x x

x
x x

=
-
-

+
-
-

=
-
-

+
-
-

=
-
-

+
-
-

=
-
-

+
-
-

=
-
-

+
-
-

=
-
-

+
-
-

B t
t

B t
t

B t

B t
t

B t
t

B t

B t
t

B t
t

B t

B t
t

B t
t

B t

B t
t

B t
t

B t

B t
t

B t
t

B t

,

,

,

,

,

,

1,1
0

1 0
1,0

2

2 1
2,0

2,1
1

2 1
2,0

3

3 2
3,0

3,1
2

3 2
3,0

4

4 3
4,0

4,1
3

4 3
4,0

5

5 4
5,0

5,1
4

5 4
5,0

6

6 5
6,0

6,1
5

6 5
6,0

7

7 6
7,0

and the coefficients { ( )B tj,0 , j= 1,K, 7} are defined in
Equation (B3).
Suppose we have N observations {t1, K, tN}, that might be

either equally or unequally spaced, with [ ]Ît t t,i min max for all
i= 1,K,N. The B-splines basis matrix evaluated at time
{t1, K, tN}, denoted by B, is the N× J matrix with entries
{Bj,d(ti), i= 1, K, N, j= 1, K, J}, in a way that each row
contains a B-spline basis. The jth B-spline basis function
satisfies the following properties:

( )
( )

( )

∣( )

   

 

x x

x x x x

x x

> < <

=

å = < <

-x

- +

- + +

= +

¶

¶ =

B t t

B t t t

B t t

k d

0 ,

0 and ,

1 ,

0 1 are continuous.

j d j j d

j d j j d n d

j
J

j d d n d

B t

t t

, 1

, 0 1 2

1 ,

k
j d

k ℓ

,

⎧

⎨

⎪
⎪

⎩
⎪
⎪

For ease of notation we use, throughout our manuscript, ( )B tj

instead of ( )B tj d, . Let us now consider the example of
estimating the mean function ( )m t of model Yi= μ(ti)+ εi
using B-splines. Let ( )= ¼ ¢Y Y Y, ,1 6 be the available N= 6
responses observed, respectively, at time {t1, K, t6}, with

=t tmin 1 and =t tmax 6. Then assume that ( ) ( )m = å =t P B tj
J

j j1 ,
for all t ä [t1, t6]. We use here B-splines basis functions
of degree d= 2; in order to construct them, we
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divide the domain [t1, t6] into n= 3 intervals. Hence, the total
number of knots ξ 0, K, ξ 7 is n+ 2d+ 1= 8, and the total
number of B-splines basis functions is J= n+ d= 5. The 6× 5
design matrix B has entries Bij= Bj(ti),with i= 1,K, 6 and
j= 1,K, 5, which permits estimating the coefficients
{Pj, j= 1, K, 5} by ordinary least squares. Indeed, if

( )= ¼Y Y Y, ,1 6 denotes the response vector and
( )q = ¼P P, ,1 5 the parameter vector, we can rewrite

the model as Y=Bθ+ z, where ( )= ¼z z z, ,1 6 is the error

vector. The estimated parameters are defined as q =
( ) ( )  ¼ = - P P B B B Y, ,1

1
5 , and the estimated mean as

( ) ( )m = å = t P B tj j j1
5 , for all tä [t1, t6].

Appendix C
Confidence Intervals

C.1. Nonparametric Quantiles

We use the quantiles 0.025 and 0.975 to construct the
confidence intervals in our simulations of Section 6.1. For t
fixed, confidence intervals for ( )m t , m(t), and ( )g tℓ k, , ℓ= 1, 2,
k= 1,K,K, are calculated according to the following three
steps:

1. We estimate the coefficients of interest α, βk, and γk,
k= 1,K,K, following the procedure described in
Section 4.1, and we define the J×M matrices

[ ]( ) ( )a a= ¼ A , ,M
M1 , [ ]

( ) ( )
b b= ¼ B , ,kM k k

M1
, and =GkM

[ ]( ) ( )g g¼ , ,k k
M1 , where ( )a j ,

( )
bk

j
, and ( )gk

j correspond to
the estimators of α, βk, and γk, given by Equation (11) in
the jth Monte Carlo simulation, j= 1,K,M.

2. We define the M× 1 vectors ( )( )m tM , ( )( )g tℓ k
M
, , ℓ= 1, 2,

k= 1, K, K, and ( )( )m tM as

( ) ( )
[ ( ) ( )]

( ) ( )

[ ( ) ( )]

( ) ( ) [ ( ) ( )]

( ) ( ) { ( ) ( )

( ) ( )} [ ( ) ( )]

( )

( ) ( )

( )

( ) ( )

( ) ( ) ( )

( )

( ) ( )







åm

m m

=
= ¼

=

= ¼ = ¼

= = ¼ = ¼

= +

+ = ¼
=



 

  


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

 




m B

g B

g B

m g

g

t t

m t m t

t t

g t g t k K

t t g t g t k K

t t t w t

t w t t t

A

B

G

, , ,

, , , 1, ,

, , , 1, ,

cos

sin , , ,

M
M

M

k
M

kM

k k
M

k
M

kM k k
M

M

k

K

k k

k k
M

1

1,

1,
1

1,

2, 2,
1

2,

1
1,

2,
1

where ( )( )m tj , ( )( )m tj , and ( )( )g t tℓ k
j

N, , ℓ= 1, 2,

k= 1,K,K correspond to the estimators of ( )m t , m(t),
and gℓ,k(t/tN) given by Equations (12) and (13) in the jth
Monte Carlo simulation, and ( )B t corresponds to the
vector formed by the B-splines evaluated at time t.

3. We calculate the empirical quantiles of order 0.025 and
0.975 of the M× 1 vectors ( )( )m tM , ( )( )g tℓ k

M
, , ℓ= 1, 2,

k= 1,K,K, and ( )( )m tM .

C.2. Parametric Quantiles

We use the parametric quantiles to construct the confidence
intervals for our simulation in Section 6.2 and our application
in Section 7. Assuming that the error terms {zi, i= 1, K, N}
follow a Gaussian distribution with zero mean and variance sz

2,
the (1− α)× 100% prediction interval for [ ] ( ) [ ] q= Y tE Ei i ,
with i= 1,K, N, is

( ) ( ) ( ) [ ] ( )   q qa - t z t t1 2 Var ,i i i

where z(1− α/2) denotes the (1− α/2) quantile of the
standard Gaussian distribution, and

[ ] ( ) ( )       q s= + +- - P PVar .z
2 1 1

The (1− α)× 100% confidence interval for the trend
B[ ( )] ( ) [ ] q=  Qm t tE Ei i m is

B

B B

( ) ( )

( ) [ ] ( )

/

 

^

^

q

q

a -

´

Q

Q Q

t z

t t

1 2

Var ,

i m

i m m i

and the (1− α)× 100% confidence intervals for the amplitudes
B[ ( )] ( ) ( ) [ ] q=  Qg t t ℓ kE , Eℓ k i i g, , ℓ= 1, 2, k= 1,K, K, are

B

B B

( ) ( ) ( )

( ) ( ) [ ] ( ) ( )

/

 

q

q

a -

´





Q

Q Q

t ℓ k z

t ℓ k ℓ k t

, 1 2

, Var , ,

i g

i g g i

whereB( )ti is the ith row of the matrixB, andB [ ∣ ∣ ∣ ]= B B B...
is a matrix of dimension N× c. The c× c matrices Qm, {Qg(ℓ,
k), ℓ= 1, 2, k= 1, K, K} satisfy ( )  q a= ¼Q 0 0, , ,m J J and

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

        

          

        

q b q g

q b q g

q b q g

= ¼ = ¼ ¼

= ¼ = ¼ ¼

= ¼ ¼ = ¼


K K

Q 0 0 0 Q 0 0 0 0

Q 0 0 0 0 Q 0 0 0 0 0

Q 0 0 0 0 Q 0 0

1, 1 , , , , , 2, 1 , , , , , , ,

1, 2 , , , , , , 2, 2 , , , , , , , ,

1, , , , , , , , 2, , , , .

g J J J g J J J J

g J J J J g J J J J J

g J J K J J g J J K

1 1

2 2
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Appendix D
Proofs

In this Appendix we prove the results in Lemma 1 and
Proposition 1 (see Section 5).

D.1. Proof of Lemma 1

Notice that the expectation of the periodogram in
Equation (15) of the observations { }e Îi,i is

[ ( )] [ ] ( [ ])
 

åål e e l= -e
Î Î

I i t tE E exp .
k j

k j k j

If we replace the expectation [ ]e eE k j with the right-hand side of
Equation (18), we obtain

[ ( )] ( ) ( [ ]

[ ]) ( ) ( )

( ) ( ) ( )


 









*

l
p

w l w

p
w l w

p
l l

= å å å -

´ - = å -

=

e e

e e

e e

= Î Î

=

I
N

P i

t t
N

P W

N
P W

E
2

exp

2

2
. D1

j
N

j k j j

k j j
N

j j

1

1

D.2. Proof of Proposition 1

Let { }[ ] g kj denote the discrete Fourier transform (DFT) of
the sequence of m numbers g1, K, gm into another sequence
h1, K, hm, that is,

{ }[ ] ( ) p= = å -

= ¼
=h g k g ikj m

k m

exp 2 ,

1, , ,

k j j
m

j1

and { }[ ]- h jk
1 denote the inverse DFT of the sequence h1,

K, hm into another sequence g1, K, gm, that is,

{ }[ ] ( ) å p= =

= ¼

-

=

g h j h ikj m

j m

exp 2 ,

1, , .

j k m
k

m

k
1 1

1

Let { }[ ] g kj and { }[ ] ℓ kj be, respectively, the DFTs of the
sequences {gj} and {ℓj} into the sequences {hk} and {mk}.
Then, the convolution theorem states that

{ }[ ] { }[ ] { }[ ] ( )  * =g ℓ k g k ℓ k . D2j j j j

Applying the convolution theorem in Equation (D2) to
Equation (D1), we obtain

{ ( )}[ ]
{ [ ( )]}[ ]
{ ( )}[ ]





l
p

l
l

=e
e

e
P k

N I k

W k2

E
.j

j

j

The inverse DFT of the last equation gives the result in
Equation (23).
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