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Abstract

We study halo mass functions with high-resolution N-body simulations under a ΛCDM cosmology. Our simulations
adopt the cosmological model that is consistent with recent measurements of the cosmic microwave backgrounds
with the Planck satellite. We calibrate the halo mass functions for 108.5Mvir/(h

−1Me) 1015.0–0.45 z, whereMvir is
the virial spherical-overdensity mass and redshift z ranges from 0 to 7. The halo mass function in our simulations can
be fitted by a four-parameter model over a wide range of halo masses and redshifts, while we require some redshift
evolution of the fitting parameters. Our new fitting formula of the mass function has a 5%-level precision, except for
the highest masses at z� 7. Our model predicts that the analytic prediction in Sheth & Tormen would overestimate
the halo abundance at z= 6 with Mvir= 108.5–10 h−1Me by 20%–30%. Our calibrated halo mass function provides a
baseline model to constrain warm dark matter (WDM) by high-z galaxy number counts. We compare a cumulative
luminosity function of galaxies at z= 6 with the total halo abundance based on our model and a recently proposed
WDM correction. We find that WDM with its mass lighter than 2.71 keV is incompatible with the observed galaxy
number density at a 2σ confidence level.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902)

1. Introduction

Understanding the origin and evolution of large-scale structures
is one of the most important subjects in modern cosmology. In the
current standard cosmological model, which is referred to as the Λ
cold dark matter (ΛCDM) model, the formation of astronomical
objects is expected to occur hierarchically. Dark matter halos are
gravitationally bound objects that are made through nonlinear
evolution of cosmic mass density. Halos can compose the large-
scale structures in the universe. Since galaxies would be born in
dark-matter halos (e.g., White & Rees 1978; Somerville &
Primack 1999; Somerville & Davé 2015), the abundance of halos
plays a central role in understanding statistical properties of
observed galaxies in modern large surveys.

Mass function of dark-matter halos is defined by the halo
abundance as a function of halo masses. There are various
application examples of the halo mass function in practice, which
include constraining cosmological parameters with a number
count of galaxy clusters (e.g., Allen et al. 2011, for a review), and
inference of the relation between stellar and total masses in single
galaxies (e.g., Wechsler & Tinker 2018, for a review).

Although the formation of dark-matter halos is governed by
complex gravitational processes, there are some simple analytic
predictions of the halo mass function (e.g., Press & Schechter 1974;
Bond et al. 1991; Sheth & Tormen 2002). The basic assumption in
analytic approaches is that one can relate halos with their mass of
M with the linear density field smoothed at some scales of R. A
common choice of the scale R is set to ( ¯ )R M3 4 m

3pr= where
¯mr is the average cosmic mass density. The variance of the linear
density field smoothed by a top-hat filter with R, denoted as σ2(R),
is then used to characterize the mass fraction of dark-matter halos
of M. Under simple but physically motivated assumptions, the
analytic approaches predict that any dependence of halo masses,
redshifts, and underlying cosmological models in the halo mass
function can be determined by the variance σ(R) alone. One can

factor out a pure σ dependence in the halo mass function with the
analytic approaches. This σ dependence is known as the multi-
plicity function f (σ), expecting that it is a universal function for
different halo masses, redshifts, and cosmological models.
Numerical simulations have validated the universality of the

multiplicity function so far. Jenkins et al. (2001) constrained
the redshift- and cosmology-dependence of the multiplicity
function to be less than a ∼15% level when the halo mass is
defined by the Friends-of-friends (FoF) algorithm (Davis et al.
1985) with some FoF linking lengths. Different definitions of
halo masses can introduce a systematic non-universality of the
multiplicity functions in simulations (White 2002; Tinker et al.
2008; Diemer 2020). At increasing particle resolutions, several
groups have found that the multiplicity function for the FoF
halos depends on cosmological models with a 10% level (e.g.,
Warren et al. 2006; Bhattacharya et al. 2011) but its redshift
dependence is weak (e.g., Watson et al. 2013). Recently,
Despali et al. (2016) have claimed the universality of the
multiplicity function in their simulation sets when defining the
halo mass with a virial spherical overdensity and expressing the
multiplicity function in terms of a re-scaled σ.
In this paper, we extend previous measurements of the multi-

plicity function toward lower halo masses. Figure 1 summarizes the
coverage of halo masses and redshifts in our paper. In this figure,
we convert the halo mass scale M to the top-hat variance σ2(R)
using the linear matter power spectrum in the best-fit ΛCDM
cosmology inferred in Planck Collaboration et al. (2016, Planck16).
The red shaded region in Figure 1 shows our coverage, while other
shaded and hatched regions represent the coverage in some of the
previous studies. Our measurements of f (σ) include the range of
108.5�M/(h−1Me) 1010 at wide redshifts of z� 7, which is not
explored in the literature. We examine the universality of the
multiplicity function in the Planck16 ΛCDM cosmology, from
gaseous mini-halos (e.g., Benítez-Llambay et al. 2017; Benitez-
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Llambay & Frenk 2020) to massive galaxy clusters. To do so, we
analyze dark-matter-only N-body simulations with different resolu-
tions at 40 different redshifts in Ishiyama et al. (2015), Ishiyama &
Ando (2020). This allows us to study the possible redshift evolution
of the multiplicity function in detail.

This paper is organized as follows. In Section 2, we describe the
simulation data of dark-matter halos used in this paper. In Section 3,
we present an overview of the halo mass function, introduce how to
estimate the multiplicity function from simulated halos, as well as
statistic errors in our measurements. The analysis pipeline to find
the best-fit model to our measurements is provided in Section 4.
The results are presented in Section 5, while we summarize some of
the limitations of our results in Section 6. Finally, the conclusions
and discussions are provided in Section 7. Throughout this paper,
we assume the cosmological parameters in Planck16. To be
specific, we adopt the cosmic mass density Ωm0= 0.31, the baryon
density Ωb0= 0.048, the cosmological constant ΩΛ= 1−Ωm0=
0.69, the present-day Hubble parameter H0= 100h km s−1Mpc−1

with h= 0.68, the spectral index of primordial curvature perturba-
tions ns= 0.96, and the linear mass variance smoothed over
8 h−1Mpc, σ8= 0.83. We also refer to log as the logarithm with
base 10, while ln represents the natural logarithm.

2. N-body Simulations and Halo Catalogs

To study the abundance of dark-matter halos, we use a set of
halo catalogs based on high-resolution cosmological N-body
simulations with various combinations of mass resolutions and
volumes (Ishiyama et al. 2015; Ishiyama & Ando 2020). In this
paper, we use the halo catalogs based on three different runs of
ν2GC-L (L), ν2 GC-H2 (H2), and phi1.6 Table 1 summarizes
specifications of our simulation sets.

The simulations were performed by a massive parallel TreePM
code of GreeM7 (Ishiyama et al. 2009, 2012) on the K computer
at the RIKEN Advanced Institute for Computational Science,
and Aterui supercomputer at Center for Computational
Astrophysics (CfCA) of National Astronomical Observatory
of Japan. The authors generated the initial conditions for the L
and H2 runs by a publicly available code, 2LPTic,8 while
another public code MUSIC9 (Hahn & Abel 2011) has been
adopted to generate the initial conditions for the phi1 run. Note
that either public code uses second-order Lagrangian perturba-
tion theory (e.g., Crocce et al. 2006). All simulations began at
z= 127. The linear matter power spectrum at the initial redshift
has been computed with the online version of CAMB10 (Lewis
et al. 2000). In the simulations, the Planck16 cosmological
model has been adopted.

Figure 1. Top-hat mass variances σ2 covered by several N-body simulations. The red open region represents the parameter space explored in this paper. Our paper
aims at calibrating the halo mass function at lower-mass regimes (M  108 h−1Me) than in previous studies at redshifts of z  7. For comparison, the shaded, orange
filled, purple filled, and green filled regions show the coverage in the σ−1

–z plane in Tinker et al. (2008), Bhattacharya et al. (2011), Watson et al. (2013), and Despali
et al. (2016), respectively. Note that black dashed lines provide the linear-theory predictions at M = 1014 h−1Me, 10

12 h−1Me, 10
10 h−1Me and 108 h−1Me, from top

to bottom.

Table 1
A Summary of Simulation Sets Analyzed in this Paper

Name Np Lbox (h
−1 Mpc) mp (h

−1 Me) ò (h−1 kpc)

L 81923 1120 2.20 × 108 4.27

H2 20483 70 3.44 × 106 1.07

phi1 20483 32 3.28 × 105 0.48

Note. The total number of N-body particles (Np), the simulation box size on
each side (Lbox), the mass of each N-body particle (mp), and the softening
length (ò) are provided for three different runs. Note that the softening length is
set to be 3% of the mean free path of particles in each run.

6 The halo catalogs are available at https://hpc.imit.chiba-u.jp/~ishiymtm/
db.html. Note that ν2 GC stands for new numerical galaxy catalogs.

7 https://hpc.imit.chiba-u.jp/~ishiymtm/greem/
8 http://cosmo.nyu.edu/roman/2LPT/
9 https://bitbucket.org/ohahn/music/
10 http://lambda.gsfc.nasa.gov/toolbox/tbcambform.cfm
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All halo catalogs in this paper have been produced with the
ROCKSTAR halo finder11 (Behroozi et al. 2013). We focus on
parent halos identified by the ROCKSTAR algorithm and
exclude any subhalos in the following analyses. We keep halos
with mass greater than 1000 times mp, where mp is the particle
mass in the N-body simulations. Throughout this paper, the
halo mass is defined by a spherical virial overdensity (Bryan &
Norman 1998). We analyze the halo catalogs at 40 different
redshifts, as follows: z= 0.00, 0.03, 0.07, 0.13, 0.19, 0.24,
0.30, 0.36, 0.42, 0.48, 0.55, 0.61, 0.69, 0.76, 0.84, 0.92, 1.01,
1.10, 1.20, 1.29, 1.39, 1.49, 1.60, 1.70, 1.83, 1.97, 2.12, 2.28,
2.44, 2.60, 2.77, 2.95, 3.14, 3.37, 3.80, 4.04, 4.29, 4.58, 5.98
and 7.00.

We adopt the default halo mass definition in the ROCKSTAR
finder. This mass definition does not include unbound particles.
Since unbound particles around a given dark-matter halo can
contribute to the spherical halo mass, the halo mass function
without unbound particles may contain additional systematic
uncertainties. In Appendix A, we examine the impact of
unbound particles in our measurements using a different set of
N-body simulations. We confirmed that unbound particles did
not introduce systematic errors in the calibration beyond
statistic uncertainties.

3. Halo Mass Function

3.1. Model

In spite of a strong dependence on the matter power
spectrum, some analytical approaches have successfully
predicted the number density of dark-matter halos (e.g., Press
& Schechter 1974; Bond et al. 1991; Sheth & Tormen 2002).
These approaches commonly relate the halos with their mass
M to the linear density field smoothed at some scale

( ¯ )R M3 4 m
1 3pr= . To develop an analytic formula of the

halo abundance, Press & Schechter (1974) assumed that the
fraction of mass in halos of mass greater than M at redshift z is
set to be twice the probability that smoothed Gaussian density
fields exceed the critical threshold for spherical collapse, δc. In
this ansatz, the number density of halos can be written as

¯ ( ) ( )dn

dM M

d

dM
f

ln
, 1m

1r s
s=

-

where σ is the root mean square (rms) fluctuations of the linear
density field smoothed with a filter encompassing this mass M.
The rms is usually defined with a spherical top-hat filter,

( ) ( ) ( ) ( )M z
k dk

W kR P k z,
2

, , 22
2

2 TH
2

Lòs
p

=

where PL(k, z) is the linear matter power spectrum as a function
of wavenumber k and redshift z, and WTH is the Fourier
transform of the real-space top-hat window function of radius
R. To be specific, the top-hat window function is given by

( ) [ ]W x x x x x3 sin cosTH
3= - . Press & Schechter (1974)

found that the function f, referred to as the multiplicity
function, is expressed as

⎜ ⎟
⎛
⎝

⎞
⎠

( )f
2

exp
2

. 3c c
PS

2

2p
d
s

d
s

= -

The multiplicity function in Press & Schechter (1974) was
later revised by introducing excursion set theory (Bond et al.
1991) and adopting the ellipsoidal collapse (Sheth &
Tormen 2002). Note that previous analytic models predict that
the multiplicity function is a universal function and any
dependence on redshifts and cosmological models can be
encapsulated in σ(M, z).
Motivated by these analytic predictions, we assume that the

multiplicity function can be described by a four-parameter
model,
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´ +

´

-

where A(z), a(z), p(z), and q(z) are free parameters in the model. In
Equation (4), we introduce the redshift-dependent critical over-
density for spherical collapse, δc,z. In a flat ΛCDM cosmology,
this quantity is well approximated as (Kitayama & Suto 1996)

( ) [ ( )] ( )z
3 12

20
1 0.123 log , 5c z,

2 3

md
p

= + W

( ) ( )
( ) ( )

( )z
z

z

1

1 1
. 6m

m0
3

m0
3

m0
W =

W +
W + + - W

3.2. Estimator of the Multiplicity Function

To find a best-fit model of f (σ, z) to the simulation data, we
need to construct the multiplicity function from the halo
catalogs. We start with a binned halo mass function, which is
directly observable from the simulations. Let Δnbin be the
comoving number density of dark-matter halos in a bin size of

MlogD with mass ranges [M1, M2]. Using Equation (1), one
finds

¯ ( ) ( )n d M
M

d

d M
fln 10 log

log

log
. 7

M

M

bin
log

log
m

1

1

2

ò
r s

sD =
-

In the limit of Mlog 0D  , we obtain

⎜ ⎟
⎛
⎝

⎞
⎠

( )∣
¯

∣ ( )

f
M n

M

d

d M

1

ln 10 log

log

log
, 8

M M

M M

sim
bin

m

bin

1 1

bin

bin

s
r

s

=
D

D

´

=

- -

=

where Mbin is a center of the binned mass.
In Equation (8), we require the logarithmic derivative of

logs with respect to the halo mass M. This derivative is known
to be affected by the size of simulation boxes (e.g., Lukić et al.
2007; Reed et al. 2007) because Fourier modes with scales
beyond the box size are missed in the simulations. To account
for the finite-volume effect on the estimate of f (σ), we follow
an approach in Reed et al. (2007). The mass variance in a finite-
volume simulation σloc is not equal to the global value in
Equations (2). Nevertheless, we assume that the halo mass
function in the finite-volume simulation, ( )dn dM loc, can be11 https://bitbucket.org/gfcstanford/rockstar
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written as

⎛
⎝

⎞
⎠

∣ ( )dn

dM

dn

dM
. 9

loc
loc= s s=

This ansatz is motivated by the consideration in Sheth &
Tormen (2002). Here, we define the halo mass function in the
finite-volume simulation as

⎛
⎝

⎞
⎠

¯ ( ) ( )dn

dM M

d

dM
f

ln
. 10

loc

m loc
1

loc loc
r s

s=
-

Using Equations (9) and (10), we can predict the global mass
function with f (σ)= floc(σ) once we calibrate the functional
form of floc as a function of σloc. In practice, Equation (8)
provides an estimate of floc(σloc) (not f (σloc)). To evaluate the
σloc–M relation, we directly compute the variance of smoothed
density fields at the initial conditions of our simulations as
varying smoothing scale of ( ¯ )R M3 4 m

1 3pr= . To do so, we
grid N-body particles onto meshes with 5123 cells using the
cloud-in-cell assignment scheme and apply the three-dimen-
sional Fast Fourier Transform. Figure 2 shows the finite-
volume effect of the mass variance measured in the phi1 and
H2 runs at z= 127. We find that the finite-volume effect can be
approximated as

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( )M M
M

M
, 11loc

0
s s=

h

where M0= 2× 109 h−1Me and η=−0.02 give a reasonable
fit to the phi1 run, while M0= 1× 1010 h−1Me and η=−0.01
can explain σloc in the H2 run. For the L run, we assume no
finite-volume effects on the mass variance and set σloc= σ.

To estimate fsim, we first measure the comoving number
density of halos with 160 logarithmic bins in the range of
M= [108, 1016]. The bin size MlogD is set to 0.05. We then
compute the multiplicity function using Equation (8) with
σ→ σloc as in Equation (11).

3.3. Statistical Errors

For the calibration of our model with numerical simulations,
we need a robust estimate of statistical errors in halo mass
functions. In this paper, we adopt an analytic model of the
sample variance of dn dM that was developed in Hu &
Kravtsov (2003). Apart from a simple Poisson noise, the model
takes into account the fluctuation of the number density of
dark-matter halos in a finite volume.
Assuming that the fluctuation in dn dM is caused by

underlying linear density modes at scales comparable to the
simulation box size, one finds

⎜ ⎟
⎛
⎝

⎞
⎠

[ ] ( ) ( )n

n n V
S M z

Err 1
, , 12bin

bin bin sim
bin

1 2D
D

=
D

+

( ) ( ) ( )

( ) ( )

S M z b M z
k dk

W kR

P k z

, ,
2

, , 13

L
2

2

2 TH
2

box

L

ò p
=

´

where Err[Δnbin] represents the statistical error in Equation (7),
V Lsim box

3= , [ ( )]R V3 4box sim
1 3p= , and bL(M, z) is the linear

bias at the halo mass of M and redshift z. The first term on the
right-hand side in Equation (12) corresponds to the Poisson
error, while the term of S(M, z) represents the sample variance.
To compute Equation (13), we use the model of bL in Tinker
et al. (2010).
We validate the model of Equation (12) with the L run at

z= 0. In the validation, we divide the L run into Nsub

subvolumes, compute the mass function in each subvolume,
and then estimate the standard deviation of the mass function
over the Nsub subvolumes. We set each subvolume so that it has
an equal volume. Figure 3 summarizes our validation. In this
figure, we show the fractional error of the binned mass function
and up-turns at higher masses indicate that the sample variance
term becomes dominant. Because of Equation (8), the
fractional error of fsim is given by Equation (12).

4. Calibration of the Model Parameters

To calibrate our model of the multiplicity function
(Equation (4)) with the simulation, we introduce a chi-square
statistic at a given z below:

( ) ( ) ( ) ( ) ( ), 14tot
2

L
2

H2
2

phi1
2q q q qc c c c= + +

⎜ ⎟
⎛
⎝

⎞
⎠

( )
( ) ( )

( )
f f, ,

Err
, 15

i

i i

i i

2 sim mod

sys,

2

åq
q

c
s a s

s
º

-
+a

where ( )f ,isim s a represents the multiplicity function measured
in the α run (α= L, H2, phi1) at the i-th bin of σ, ( )f ,imod qs is
given by Equation (4) with the parameters being { ( )A zln ,q =

( ) ( ) ( )}a z p z q zln , ln , ln , Erri is the statistical error of the
multiplicity function at σ= σi, and σsys,i is possible systematic
errors at σ= σi in our simulations (we set σsys,i later). To find
best-fit parameters, we minimize Equation (14) with the
Levenberg–Marquardt algorithm implemented in the open
software of SciPy12 (Jones et al. 2001).
When computing Equation (14), we reduce the number of

bins in σ by setting the bin width of Δ(1/σ)= 0.05 for the L
run and Δ(1/σ)= 0.1 for other two runs. This re-binning of σ

Figure 2. Finite-volume effects in computing the linear top-hat mass variance
σTH. The gray-dashed line shows the prediction by linear perturbation theory
(Equation (2)), while the blue circles and orange diamonds are the mass
variance measured in N-box boxes of phi1 (Lbox = 32 h−1 Mpc) and H2 runs
(Lbox = 70 h−1 Mpc) at z = 127. The blue and orange lines are the mass
variances with a correction by Equation (11).

12 https://www.scipy.org/
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allows us to reduce scatters among bins in the analysis and
provide a reasonable goodness-of-fit for our best-fit model. In
our calibration, we do not include correlated scatters among
bins (Comparat et al. 2017), while we expect that our re-
binning would make the correlation between nearest bins less
important. Also, we remove the data with Δnbin being smaller
than 30 to avoid significant Poisson fluctuations in our fitting.
After these post-processes, we found ∼40 data points available
at z� 4.58, while 31 and 25 data points are left at z= 5.98 and
7.00, respectively. Because our model consists of four
parameters, we expect that our simulation data will give
sufficient information to find a good fit.

There are several factors to introduce systematic effects on
computing the mass function in N-body simulations (e.g.,
Heitmann et al. 2005; Crocce et al. 2006; Lukić et al. 2007;
Knebe et al. 2011, 2013; Ludlow et al. 2019). Because we set
the minimum halo mass to be 1000mp with the particle mass of
mp in the simulation, the finite force resolution does not affect
our measurement of the mass function beyond a 1σ Poisson
error (Ludlow et al. 2019). Although our simulations have a
sufficient mass and force resolution, and we properly correct
the finite box effect in the measurement of mass functions (see
Section 3.2), the identification of substructures in single halos
can cause a systematic effect in our measurement. There is no
unique way to find substructures in N-body simulations (e.g.,
Onions et al. 2012), and over-merging may take place even in
the latest N-body simulations (e.g., van den Bosch &
Ogiya 2018).

Recently, Diemer (2021) found that the definition of boundary
radii of host halos can change the subhalo abundance by a factor
of ∼2, which implies that our halo catalogs contain a non-
negligible mislabeling of subhalos. The mislabeled subhalos are
mostly located at the outskirts of host halos (Diemer 2021). Note
that we use the virial radius to identify subhalos in the
simulation, but the virial radius does not correspond to a
gravitational boundary radius in general (e.g., More et al. 2015;
Diemer 2017). Because more subhalos will be found as halo-
centric radii increase, we expect that the difference of the

multiplicity function with and without subhalos will be able to
provide a reasonable estimate of systematic errors in our
measurement. In our simulation, we find that the multiplicity
function with subhalos is different from one without subhalos in
a systematic way. The difference is less sensitive to the redshift
and it can be well approximated as

 ⎜ ⎟
⎛
⎝

⎞
⎠

⎧
⎨
⎩

( )
( )

( )
( ) ( )

( )
( )

f z

f z
log

,

,

0.05 1
0.025 3 1 3
0 3

, 16s

fid

s
s

n
n n

n
=

<
-

>

+

where f+s is the multiplicity function with subhalos, ffid is the
counterpart without subhalos (our fiducial data), and ν= δc,z/σ.
Using Equation (16), we set ( )f f flog ln 10sys fid s fids = ´+ .
Note that our estimate of σsys should be overestimated because
we assume that all subhalos are subject to mislabeling. Hence,
our analysis is surely conservative.

5. Results

5.1. A Simple Check of Non-universality

Before showing the results of our calibration, we perform a
sanity check to see the redshift dependence of the multiplicity
function in the simulation. Figure 4 shows the result of our
sanity test. In this figure, we first find a best-fit model for the
multiplicity function at z= 0, denoted as fBest(σ, z= 0). We then
compare the multiplicity function in the simulation at z> 0 and
fBest(σ, z= 0). If the function f (σ, z) is universal across different
redshifts, then we should find a residual between the simulation
results at z> 0 and fBest(σ, z= 0), as small as the case for z= 0.
In the top panel in Figure 4, the blue-dashed line represents the
best-fit model fBest(σ, z= 0), while blue circles show the
simulation result at z= 0. Comparing between the blue-dashed
line and blue circles, our fitting at z= 0 provides a representative
model of the simulation result. The orange squares and green
diamonds in the figure show the simulation results at z= 1.01
and z= 4.04, respectively. The bottom panel shows the residual
between the simulation results and the model of fBest(σ, z= 0),
which highlights the prominent redshift evolution of the
multiplicity function at δc,z/σ 3 from z= 0 to 4. In this figure,
the error bars show the statistical uncertainties and we account
for the sample variance caused by finite box effects in our
simulation (see Section 3.3).

5.2. Fitting Results

This section will give the main results of this paper.
Figure 10 in Appendix B summarizes the residual between the
multiplicity functions in our simulations and the best-fit model
at different redshifts. We find that our fitting works well across
a wide range of redshifts (0� z� 7). A typical difference
between the simulation results and our best-fit model is an of
order of 0.02 dex, except for bins at δc,z/σ(z) 2–3. Although
the bins at δc,z/σ(z) 2 suffer from statistical fluctuations that
are induced by the sample variance, we find that the residual is
still within 0.06 dex even for such rare objects. The goodness-
of-fit for our best-fit models ranges from 0.1 to 1.1. It would be
worth noting that we include possible systematic errors due to
modeling of subhalos in our fitting. These systematic errors can
reduce the score of χ2 for the best-fit model, making the best-fit
χ2 smaller than the number of degrees of freedom.
The redshift evolution in best-fit parameters is shown in

Figure 5. The gray shaded region in each panel shows ±1σ

Figure 3. Sample variance of the mass function in a finite volume. The colored
points show the fractional error of the mass function in subvolumes in the L run
at z = 0, while the error bars represent the Gaussian error. In this figure, we set
the simulation results with the bin width being Mlog 0.25D = for
visualization. From top to bottom, we show the results when dividing the L
run into Nsub = 43, 83, 163, and 323 pieces, respectively. Solid lines correspond
to our model predictions based on Equation (12), showing a reasonable fit to
the simulation results for different Nsub.
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errors of a given parameter, which are inferred from the
Jacobian of Equation (14). In each panel, the circles at z� 4.57
represent averages of the best-fit parameter within coarse bins
of z, while those at z= 5.98 and 7.00 show the best-fit
parameters. To compute the average, we set seven coarse
redshift bins. The edge of coarse bins is set to [0.00, 0.30),
[0.30, 0.61), [0.61, 1.01), [1.01, 1.49), [1.49, 2.44), [2.44,
3.36), and [3.36, 4.57]. We choose this binning of redshifts to
ensure that the dynamical time (i.e., the ratio of the virial radius
and virial circular velocity for halos) is comparable to the
Hubble time at bin-centered redshifts.

The blue-solid lines in Figure 5 present our calibrated model.
We find that the following form can explain the redshift
evolution of the best-fit parameters and return a similar level of
the residual as in Figure 10 when used in Equation (4):

( ) ( )A z z0.325 0.017 , 17= -
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( ) ( )
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( ) ( )p z 0.692, 19=

( ) ( ) ( )q z z1.611 1 , 200.12= +

where δc,z is given by Equation (5).

5.3. Comparison with Previous Studies

Our model (Equations (17)–(20)) can be compared with
previous models in the literature. The most popular model in
Sheth & Tormen (1999) predicts a universal multiplicity
function f (σ) with A= 0.322, a= 0.707, p= 0.3 and q= 1.0. It
would be worth noting that the parameter of A in Sheth &
Tormen (1999) is fixed by the normalization condition:

( ) ( )d fln 1, 21ò s s =
-¥

¥

where it means that all dark-matter particles reside in halos.
Because our model has been calibrated by the data with a finite
range of σ, it is not necessary to satisfy the condition of
Equation (21). The integral of Equation (21) for our model can
be well approximated as ( ) ( )z z1.37 1 0.55 1 10.50.35 0.21+ --

at z� 7 within a 0.5%-level accuracy. In reality, the upper limit
in the integral of Equation (21) may be set by the free-streaming
scale of dark-matter particles. If dark matter consists of Weakly
Interacting Massive Particles (WIMPs), with a particle mass
being ∼100 GeV, then the minimum halo mass is estimated to
be 10−12

–10−3Me (e.g., Hofmann et al. 2001; Berezinsky
et al. 2003; Green et al. 2004; Loeb & Zaldarriaga 2005;
Bertschinger 2006; Profumo et al. 2006; Diamanti et al.
2015). When we set the upper limit to be σupp(z)=
σ(M= 10−6 h−1Me, z), the fraction of mass in field halos can
be approximated as
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where the approximation is valid at z� 7 within a 0.4%-level
accuracy. Equation (22) is less sensitive to the choice of the
minimum halo mass as long as we vary the minimum halo mass
in the range of 10−12

–10−3 h−1Me. Our model predicts that
about 72% of the mass density in the present-day universe
resides in dark-matter halos.
For parameter a, our model (Equation (18)) shows a modest

redshift evolution with a level of ∼20% from z= 7 to z= 0.
Note that an effective critical density ( )a z c z,d becomes less
dependent on z and only evolves by 2%–3% in the range of
0� z� 7. The redshift dependence of a is mostly consistent
with the model in Bhattacharya et al. (2011), but the overall
amplitude differs by ∼20%. Note that the model in
Bhattacharya et al. (2011) has been calibrated for the halo
mass function when the mass is defined by the FoF algorithm.
Because the FoF mass is expected to strongly depend on inner
density profiles and substructures (More et al. 2011), our model
does not need to match the one in Bhattacharya et al. (2011).
The present-day values of a, p, and q are in good agreement
with the result in Comparat et al. (2017), which presented the
calibration of the halo mass function at z= 0 with the
MultiDark simulation (Prada et al. 2012; Klypin et al. 2016).
Note that Comparat et al. (2017) adopted same halo finder,
mass definition and cosmology as ours.
Despali et al. (2016) argued that the multiplicity function can

be expressed as a universal function once one includes the
redshift dependence of the spherical critical density δc.
Although we also adopt the redshift-dependent critical density,

Figure 4. Non-universality of virial halo mass functions in the ν2 GC
simulations. The top panel shows the multiplicity function f as a function of
ν = δc,z/σ at different redshifts. In the top, blue circles, orange diamonds, and
green squares, represent the simulation results at z = 0.00, 1.01, and 4.04,
respectively. The blue-dashed line in the top panel is the best-fit model of f at
z = 0.00. In the bottom, we show the difference of flog between the simulation
results at the three redshifts and the best-fit model at z = 0.00. If the
multiplicity function is universal across redshifts, then all of the symbols
should locate at y = 0 in the bottom panel. This figure clarifies that the virial
halo mass function exhibits a strong redshift evolution.
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we find that the parameters in the multiplicity function depend
on redshifts (also see Figure 4). The main difference between
the analysis in Despali et al. (2016) and ours is halo
identifications in N-body simulations. We define halos by the
FoF algorithm in six-dimensional phase-space, while Despali
et al. (2016) adopted a spherical-overdensity algorithm with a
smoothing scale being the distance to the tenth nearest
neighbor for a given N-body particle. Note that halo finders
based on particle positions may not distinguish two merging
halos. The ROCKSTAR algorithm utilizes the velocity informa-
tion of N-body particles. This allows us to very efficiently
determine particle-halo memberships, even in major mergers.

We next compare our model of the halo mass functions with
previous models in the literature. For comparison, we consider
six representative models (which are summarized in Table 2).
Three of the models assume a universal functional form of the
multiplicity function, while the other models include some
redshift evolution. Among the previous studies, Despali et al.
(2016) investigated the mass function when using the virial halo
mass, and their results can be directly compared to ours. Tinker
et al. (2008) and Watson et al. (2013) studied mass functions for
various spherical-overdensity masses. Here we use their fitting
formula, which takes into account the dependence of spherical-
overdensity parameters, while the calibration for the virial halo

mass has not been done in Tinker et al. (2008) and Watson et al.
(2013). Bhattacharya et al. (2011) have calibrated the halo mass
function when the mass is defined by the FoF algorithm, which
indicates that a direct comparison with our results may not be
appropriate (e.g., see More et al. 2011, for details).
The left-hand panel in Figure 6 shows the comparison of

fitting formulas for the halo mass function at z= 0, while the
right-hand panel presents the case at z= 6. Our model is
shown by blue-solid lines in both panels and the gray shaded
region in the figure represents the range of halo masses not
explored by our simulations. At z= 0, our model is in good
agreement with most of previous models in the range of
109−13 h−1Me, but there are 15%-level discrepancies at the
high-mass end (M 1014h−1Me). This figure implies that
previous fitting formulas are not sufficient to predict
cosmology-dependence of the mass function for cluster-sized
halos at z= 0, even within a concordance ΛCDM cosmology.
A commonly adopted model by Tinker et al. (2008) may have
a systematic error to predict the cluster abundance with a level
of 20%–30%, but the exact amount of systematic errors
should depend on the definition of spherical-overdensity halo
masses. We need larger N-body simulations (e.g., see
Ishiyama et al. 2021, for a relevant example) to precisely
calibrate the mass function at high-mass ends and make a

Figure 5. Redshift evolution of parameters for virial halo mass functions in the ν2 GC simulations. In each panel, the shaded region shows ±1σ error bars inferred by
our fitting, while the circles are best-fit parameters at representative coarse redshift bins (see the main text). The blue line represents our calibrated model. For
comparison, the red-dashed line is the redshift-dependent model in Bhattacharya et al. (2011), while the orange solid and purple dotted lines are the redshift-
independent models in Sheth & Tormen (1999) and Despali et al. (2016), respectively.
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robust conclusion about systematic errors in cluster cosmol-
ogy (e.g., McClintock et al. 2019; Bocquet et al. 2020; Klypin
et al. 2021). We leave further investigation of cluster mass
functions for future studies.

At z= 6, our model shows an offset from the universal
models by Sheth & Tormen (1999) and Despali et al. (2016).
The difference reaches a 15%–20% level at M= 109−10 h−1Me

and becomes larger at higher masses. This is mainly caused by
the redshift evolution of the amplitude in the multiplicity
function, A(z). Our model predicts that the amplitude in the

multiplicity function decreases at higher redshifts, and this
trend is clearly found in the simulation results (see Figure 4).

5.4. Implications

An important implication of our calibration is that modeling of
the halo mass function for ΛCDM cosmologies can affect
constraints of nature of dark-matter particles by high-redshift
galaxy number counts (e.g., Pacucci et al. 2013; Schultz et al.
2014; Menci et al. 2016; Corasaniti et al. 2017). Warm dark matter

Table 2
Models of the Multiplicity Function f (σ, z) Selected in this Paper

Name Cosmology Calibrated Ranges of Halo Masses and Redshifts Halo Mass z-evolving f?

This paper Planck16 108.5 � M (h−1Me) � 1015−0.45z and 0 � z � 7 ROCKSTAR Yes

Press & Schechter (1974) L L L No

Sheth & Tormen (1999) L L L No

Tinker et al. (2008) WMAP1, WMAP3 1011 � M (h−1Me) � 1015 and 0 � z � 2 SO Yes

Bhattacharya et al. (2011) WMAP5 6 × 1011 � M (Me) � 3 × 1015 and 0 � z � 2 FoF Yes

Watson et al. (2013) WMAP5 M (h−1 Me) � 1.96 × 109 at z  8 SO Yes

M (h−1 Me) � 3.63 × 106 at 8  z � 26

Despali et al. (2016) WMAP7, Planck14 5.8 × 109 � M (h−1Me)  1015 and 0 � z � 5 SO No

Note. Note that the functional form of f is provided in Equation (4), except for the models in Tinker et al. (2008, T08) and Watson et al. (2013, W13). The T08/W13
model assumes ( ) [( ) ] ( )f z A b c, 1 expa 2s s s= ¢ ¢ + - ¢- ¢ where A a b, ,¢ ¢ ¢ and c¢ are redshift-dependent parameters. In this table, the second column shows which
cosmological model is used to calibrate the functional form of f. WMAP1, WMAP3, WMAP5 and WMAP7 represent the first-, third-, fifth- and seventh-year WMAP
constraints, respectively (Spergel et al. 2003, 2007; Komatsu et al. 2009, 2011). Planck14 is the best-fit cosmological model derived in Planck Collaboration et al.
(2014), while Planck16 refers to the model in Planck Collaboration et al. (2016). The fourth column summarizes the mass definition of dark-matter halos in
simulations, while the fifth column shows if the parameters in f are dependent on redshifts or not.

Figure 6. Comparison of fitting formulas for halo mass functions at z = 0 and 6. The left-hand and right-hand panels show the comparison at z = 0 and 6, respectively.
Note that there are no available data for the gray shaded regime in our simulations. In each panel, the blue-thick solid line presents our result. Other predictions in Press
& Schechter (1974), Sheth & Tormen (1999), Tinker et al. (2008), Bhattacharya et al. (2011), Watson et al. (2013) and Despali et al. (2016) are also shown by pink
dashed–dotted, orange thin solid, green thick dashed, red thin dashed, purple thick dotted, brown thin dotted lines, respectively.
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(WDM) is an alternative candidate of cosmic dark matter with free
streaming due to its thermal motion. Some physically motivated
extensions of the Standard model predict the existence of WDM
with masses in keV range, such as sterile neutrino (e.g., Adhikari
et al. 2017; Boyarsky et al. 2019). Structure formation with WDM
particles can be suppressed at scales below free-streaming lengths
λfs, while the bottom-up formation of dark-matter halos remains as
in the standard CDM paradigm at scales larger than λfs. A
characteristic mass scale for λfs has been estimated as∼1010Me
for WDM with a particle mass of O(1) keV (e.g., Bode et al.
2001).
In a hierarchical structure formation, less massive galaxies

form at higher redshifts. At a fixed cosmic mean density, WDM
particles with larger masses are less effective at suppressing the
growth of low-mass halos (e.g., Schneider et al. 2012).
Assuming that high-z galaxies only form in collapsed halos,
the observed abundance of high-z galaxies can thus provide a
lower limit to the particle mass of WDM.

Recent high-resolution N-body simulations for WDM have
indicated that the correction of the halo abundance due to free
streaming can be expressed as a universal form of:
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where ∣dn dM WDM is the halo mass function for WDM
cosmologies, ∣dn dM CDM is the counterpart of CDM, Lovell
(2020) found that α= 2.3, β= 0.8 and γ=−1.0 provide a
reasonable fit to simulation results. In Equation (24),Mhm is so-
called “half-mode” mass, which is defined as the mass scale
that corresponds to the power spectrum wavenumber at which
the square root of the ratio of the WDM and CDM power
spectra is 0.5 (Schneider et al. 2012). The mass Mhm depends
on the particle mass of WDM mWDM:
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where μ= 1.12 and ΩWDM is the dimensionless density
parameter of WDM. According to Equation (23), an accurate
calibration of mass function for ΛCDM cosmologies is
essential to predict the counterpart of WDM. We caution here
that Equations (23) and (24) have been validated at z= 0 and
z= 2 in Lovell (2020). We assume that these equations are
valid at z∼ 6. We leave a validation of Equations (23) and (24)
at z 2 for future studies.

Figure 7 demonstrates the importance of the calibration of
CDM halo mass function when one constrains WDM masses
with high-redshift galaxy number counts. For given limiting
magnitude and redshift, the cumulative galaxy number density
should be smaller than the whole halo mass function within

WDM cosmologies. This leads to

 ∣ ( )dL
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where Lcut is the luminosity corresponding to the limiting
magnitude, dn dLgal is the galaxy luminosity function, and
we set M h M1min

1
= - and M h M10max

16 1
= - . Note that our

lowest mass M h M1min
1

= - is much smaller than the half-
mode massMhm 1010 h−1Me for mWDM 1 keV. For the UV
luminosity function at z= 6 in the Hubble Frontier Fields
with the limiting AB magnitude of −12.5 (Livermore et al.
2017), the lower bound of fobs has been estimated as

( [ ])log Mpc 0.01obs
3f >- at a 2σ confidence level (Menci

et al. 2016). Assuming the best-fit cosmological parameters in
Planck Collaboration et al. (2016) and WDM is made of the
whole abundance of dark matter, our model of the halo mass
function with Equation (24) allows us to reject WDM with a
mass smaller than 2.71 keV at the 2σ level. This lower limit is
degraded to 2.27 keV and 1.96 keV for the commonly adopted
models by Sheth & Tormen (1999) and Press & Schechter
(1974), respectively. This simple example highlights that
calibration of the mass function for ΛCDM cosmologies is
essential to accurate predictions of the mass function for WDM
cosmologies.
Our lower limit of the WDM particle mass can be compared

to other methods. For example, Baur et al. (2016) found a
lower limit of 2.96 keV from observations of the Lyα forest,
while Palanque-Delabrouille et al. (2020) placed a lower limit
of 5.3 keV (a similar limit is found by Iršič et al. (2017)).
Chatterjee et al. (2019) used high-redshift 21 cm data from

Figure 7. Lower limits of warm dark matter (WDM) masses obtained from UV
luminosity function of galaxies at z = 6. The dashed-horizontal lines represent
the lower bounds of the UV luminosity function at z = 6 in the Hubble Frontier
Fields as estimated in Menci et al. (2016) (1σ, 2σ and 3σ levels from top to
bottom). The solid line shows the maximum number density of dark-matter
halos as a function of WDM masses based on our calibrated halo mass
functions and the correction proposed in Lovell (2020). Assuming that a one-
to-one correspondence of dark-matter halos and faint galaxies, one can exclude
the WDMmodel if the maximum number density of dark-matter halos becomes
smaller than the observed galaxy abundance. Our calibrated mass function
places the lower limit of mWDM > 2.71 keV at the 2σ confidence level. This
constraint is degraded with a level of 28% and 16% when one uses the
commonly adopted mass functions by Press & Schechter (1974) and Sheth &
Tormen (1999), respectively.
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EDGES to rule out WDM with mWDM< 3 keV. Note that our
limit is less sensitive to details of baryonic physics than the
others because our analysis relies on the cumulative abundance
of dark-matter halos.

For a conservative analysis, we consider that a significant
small halos of M= 1 h−1Me can be responsible to the observed
galaxy abundance at high redshifts. To further tighten the limit
of WDM particle mass, it would be interesting to discuss more
realistic halo mass scales to the faintest galaxy at z∼ 6. In the
Planck ΛCDM cosmology, we find that the minimum halo mass
of∼107 h−1Me provides the cumulative halo abundance of
1.35Mpc−3, which is close to the observed galaxy abundance at
z= 6. When setting the minimum halo mass to 107 h−1Me in
Equation (27), we find a stringent 2σ limit of mWDM> 14.1 keV.
However, this stringent limit is very sensitive to the choice of
the minimum halo mass. For the minimum halo mass of
106 h−1Me, the limit changes to mWDM> 6.23 keV. This simple
analysis implies that a more detailed modeling of galaxy-halo
connections at Mvir∼ 106−7 h−1Me and z∼ 6 would be worth
pursuing in future work.

6. Limitations

In this section, we summarize the major limitations in our
model of virial halo mass functions. All of the following issues
will be addressed in forthcoming studies.

6.1. Cosmological Dependence

Our model of halo mass functions is calibrated against N-
body simulations in the ΛCDM cosmology consistent
with Planck16. In terms of studies of large-scale structure,
Ωm0 and σ8 are the primary parameters and the simulations
in this paper adopt Ωm0 = 0.31 and σ8 = 0.83. Therefore,
our calibration of Equations (17)–(20) may be subject to an
overfitting to the specific cosmological model. To examine
the dependence of our model on cosmological models, we
use another halo catalog from N-body simulations with a
different ΛCDM model. For this purpose, we use the
Bolshoi simulation in Klypin et al. (2011) and the first
MultiDark-Run1 simulation performed in Prada et al.
(2012). The Bolshoi simulation consists of 20483 particles
in a volume of [ ]h250 Mpc3 1 3- and assumes the cosmolo-
gical parameters of Ωm0 = 0.27, Ωb0 = 0.0469, ΩΛ = 1−
Ωm0 = 0.73, h= 0.70, ns = 0.95, and σ8 = 0.82. These are
consistent with the five-year observation of the cosmic
microwave background obtained by the WMAP satellite
(Komatsu et al. 2009) and we refer to them as the WMAP5
cosmology. The MultiDark-Run1 simulation adopted the
same cosmological model and the number of particles as in
the Bolshoi simulation, while the volume is set to

[ ]h1 Gpc1 3- . We use the ROCKSTAR halo catalog at z= 0,
0.53, 1.00, 1.96, 2.93 and 4.07 from the Bolshoi and
MultiDark-Run1 simulations.13 To compute our model
prediction for the WMAP5 cosmology, we fix the functional
form of Equation (4) and parameters in Equations (17)–(20) but
include the cosmology-dependence of the critical density δc,z
and the top-hat mass variance σ, accordingly.

Figure 8 summarizes the multiplicity function in the Bolshoi
and MultiDark-Run1 simulations. In this figure, the dashed

lines show the predictions by our model for the WMAP5
cosmology, while the different symbols represent the simula-
tion results. We find that our model can reproduce simulation
results within a 10% level even for the WMAP5 cosmology at
0.7 δc,z/σ 2.5. At high-mass ends (δc,z/σ 2.5), our model
tends to underestimate the halo abundance by ∼30%–40% in a
wide range of redshifts. It is worth noting that the residual
between our model and the WMAP5-based simulation is less
dependent on redshifts. In fact, we found a better matching
between our models and the WMAP5-based simulations
when reducing the overall amplitude in the parameter a(z) by
4%–5%. In summary, our model cannot predict the simulation
results for the WMAP5 cosmology with the same level as in the
Planck cosmology. The 10%-level difference in Ωm0 can cause
systematic uncertainties in our model predictions with a level
of 10%, except for high-mass ends. Future studies would need
to calibrate the cosmological dependence of a(z) for precision
cosmology based on galaxy clusters. At low masses and high
redshifts, our model can provide a reasonable fit to the
simulations adopting the WMAP5 cosmology. According to
this fact, we examine how much the WDM limit in Section 5.4
is affected by the choice of underlying cosmology. For the
WMAP5 cosmology, we find a 2σ limit of mWDM> 2.75 keV,
which differs from our fiducial limit by only ∼1.4%.

Figure 8. Comparison of the multiplicity function f measured in the MultiDark-
Run1 and Bolshoi (MB) simulations (Klypin et al. 2011; Riebe et al. 2013;
Prada et al. 2012), and predictions by our fitting formula. Different symbols in
each panel show the simulation results at various redshifts. The dashed lines in
the top panel show our predictions. Note that we introduce an arbitrary shift in
f/σ2 for visibility in the top panel. In the bottom panel, we show the difference
of flog between the simulation results and our predictions. Note that the MB
simulations adopt the cosmological model with Ωm0 = 0.27, while our fitting
formula of f relies on the simulation with Ωm0 = 0.31. The other ΛCDM
parameters are almost same between the two. The bottom panel shows that our
fitting formula of f can have a systematic error with a level of 0.05–0.2 dex if
one changes Ωm0 by 13%.

13 The halo catalogs at different redshifts are publicly available at https://slac.
stanford.edu/~behroozi/MultiDark_Hlists_Rockstar/and https://www.slac.
stanford.edu/~behroozi/Bolshoi_Catalogs/.
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6.2. Baryonic Effects

Our calibration of halo mass functions relies on dark-matter-
only N-body simulations and ignores possible baryonic effects.
Baryonic effects on halo mass functions have been studied with
a set of hydrodynamical simulations (e.g., Stanek et al. 2009;
Cui et al. 2012, 2014; Sawala et al. 2013; Cusworth et al. 2014;
Martizzi et al. 2014; Bocquet et al. 2016; Beltz-Mohrmann &
Berlind 2021). The evolution of cosmic baryons is governed
not only by gravity but also complex processes associated with
galaxy formation. Relevant processes include gas cooling, star
formation and energy feedback from supernovae (SN) and
Active Galactic Nuclei (AGNs). Adiabatic gas heated only by
gravitational processes affects the halo mass function with a
level of 2%–3% (Cui et al. 2012), while radiative cooling,
star formation and SN feedback increase individual halo
masses due to condensation of baryonic mass at the halo center,
which changes the halo mass function (Stanek et al. 2009; Cui
et al. 2012). Efficient SN feedback can decrease the halo mass
function at M 1011Me by ∼20%–30% (Sawala et al. 2013).
The mass function at M; 1013−14Me would be affected by
AGN feedback, while current hydrodynamical simulations
adopt a sub-grid model to include the AGN feedback. Because
a variety of sub-grid models have been proposed, the impact of
the AGN feedback on the mass function is still uncertain (Cui
et al. 2014; Cusworth et al. 2014; Martizzi et al. 2014; Bocquet
et al. 2016).

To account for the baryonic effects on the halo mass
function, it is important to correct individual halo masses
according to baryonic processes. Baryons do not change the
abundance of dark-matter halos, but they do affect the internal
structures and spherical masses of halos. Hence, one may be
able to model the halo mass function in the presence of baryons
by abundance matching between the gravity-only and hydro-
dynamical simulations for a given definition of the halo mass
(e.g., Beltz-Mohrmann & Berlind 2021). In this sense, our
calibration of the halo mass function provides a baseline model
and still plays an important role in understanding the baryonic
effects on large-scale structures.

7. Discussion and Conclusion

In this paper, we have studied mass functions in the
concordance ΛCDM model inferred from the measurement of
cosmic microwave backgrounds by the Planck satellite (Planck
Collaboration et al. 2016). We have calibrated the abundance
of dark-matter halos in a set of N-body simulations (Ishiyama
et al. 2015; Ishiyama & Ando 2020) covering a wide range of
redshifts and halo masses. For a theoretically motivated virial
spherical overdensity mass M, we have employed least-square
analyses to find best-fit models to our simulation results in the
range of 108.5�M [h−1Me] 1015−0.45z where redshifts z
range from 0 to 7.

Our calibrated models are able to reproduce the simulation
results with a 5%-level precision over all redshifts explored in
this paper, except for high-mass ends. We found that the

multiplicity function f defined in Equation (1) exhibits some
redshift dependence, which contradicts the commonly adopted
analytic model as in Sheth & Tormen (1999, ST99). The
redshift evolution of the multiplicity function is prominent in
our simulation data, even at high redshifts z 3. Our calibrated
halo mass function is in good agreement with previous models
in the literature within a level of15% at z= 0, while our
model predicts that the halo mass function in the range of
M= 108.5–10 h−1Me at z= 6 can be smaller than the ST99
prediction by 20%–30%.
If cosmic dark matter consists of WIMP with a particle mass

of∼100 GeV, then the minimum halo mass would be of an order
of 10−12

–10−3 h−1Me (e.g., Hofmann et al. 2001; Berezinsky
et al. 2003; Green et al. 2004; Loeb & Zaldarriaga 2005;
Bertschinger 2006; Profumo et al. 2006). An extrapolation of our
calibrated halo mass function to such minimum halo masses
allows us to predict the fraction of cosmic mass density that
is contained in halos. We found that the fraction can be
well approximated as ( ) ( )z z0.724 1 1.29 1 14.50.28 1.02+ --

at 0� z� 7. This implies that about 72% of the mass density at
present is confined in gravitationally bound objects. If cosmic
dark matter consists of WDM with a particle mass of ∼1 keV,
such as sterile neutrino (e.g., Adhikari et al. 2017; Boyarsky
et al. 2019), then our model with a recently proposed WDM
correction (Lovell 2020) provides a powerful test of WDM
scenarios by comparing with galaxy number counts at high
redshifts. We found that WDM with a particle mass smaller than
2.71 keV is incompatible with the UV luminosity function at
z= 6 in the Hubble Frontier Fields (Livermore et al. 2017) at a
2σ confidence level. It would be worth noting that this upper
limit can be degraded by 16% when one adopts the ST99
prediction. This highlights that the calibration of halo mass
functions in ΛCDM cosmologies is required to place cosmolo-
gical constraints of WDM, especially when using high-redshift
observables.
Our fitting formula of the virial halo mass function is based

on dark-matter-only N-body simulations for a specific cosmol-
ogy. We found that a 10%-level difference in the average
cosmic mass density can cause systematic uncertainties in our
model predictions with a 10% level. Baryonic effects such as
gas cooling, star formation, and some feedback processes can
affect the internal structures of dark-matter halos. Although it is
still difficult to account for the baryonic effects in our model,
recent simulations indicate that abundance matching between
the gravity-only and hydrodynamical simulations would be
promising (e.g., Beltz-Mohrmann & Berlind 2021). This
implies that our calibrated model is still meaningful as a
baseline prediction before including baryonic effects, while
more detailed analysis with hydrodynamical simulations is
demanded. Our analysis pipeline can be applied to any N-body
simulations based on non-CDM, such as validating a universal
suppression of the halo abundance (see Equation (24)) in
WDM cosmologies.
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Appendix A
Impact of Unbound Particles in Halo Mass Definition

We here examine some of the possible effects of unbound
particles around dark-matter halos on our calibration of the halo
mass function. For this purpose, we use N-body simulations
with 40963 particles and the box length on a side being
560 h−1 Mpc, referred to as the ν2 GC-M run in Ishiyama et al.
(2015). We prepare two different halo catalogs at redshifts of
z= 0.00, 1.01, 1.97, 2.95 and 4.04. One is the catalog with the
default option for the ROCKSTAR finder and does not include
unbound particles in the virial mass for individual halos, while
another imposes the option of STRICT_SO_MASSES=1 to
account for unbound particles. Figure 9 compares the multi-
plicity functions measured in the two halo catalogs. We find
that our fitting of the multiplicity function with the default halo
catalogs (our fiducial runs) is not affected by the inclusion of

Figure 9. Comparison of the multiplicity function f with and without unbound particles. Different symbols in the top panel show the simulation results including
unbound particles at various redshifts, while the dashed lines in the top panel show the best-fit models for our fiducial halo catalogs (without unbound particles). In the
bottom panel, we show the difference of flog between the two and the error bars show statistical uncertainties.
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unbound particles beyond the statistical errors for the ν2 GC-
M runs.

Appendix B
Summary of Our Fitting Results

In this Appendix, we provide a summary of our fitting
results as in Figure 10. Note that Figure 10 shows the residual
between simulation results and the best-fit model. It is non-

trivial to reproduce the simulation results with a similar level
to Figure 10 when we interpolate the model parameters as in
Equations (17)–(20). The comparison with the simulation
results and the model with Equations (17)–(20) are
summarized in Figure 11. This figure represents the
performance of our calibrated model and we find a 5%-level
precision in our model for a wide range of masses and
redshifts.

Figure 10. A summary of our fits to virial halo mass functions in the ν2 GC simulations. Each panel shows the residual of the multiplicity function f in logarithmic
space at different redshifts (0 � z � 7). The colored symbols in each panel represent the residual between the simulation result and its best-fitted model and the black
line shows no difference between the two. The blue circles, orange diamonds, and green squares are the results in the L, H2, and phi1 runs, respectively.
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