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Abstract

The transport of charged particles in various astrophysical environments permeated by magnetic fields is described
in terms of a diffusion process, which relies on diffusion-tensor parameters generally inferred from Monte Carlo
simulations. In this paper, a theoretical derivation of the diffusion coefficient in the case of a purely turbulent
magnetic field is presented. The approach is based on a red-noise approximation to model the 2 point correlation
function of the magnetic field experienced by the particles between two successive times. This approach is shown
to describe the regime in which the Larmor radius of the particles is in resonance with the wavelength power
spectrum of the turbulence (gyroresonant regime), extending hence previous results applying to the high-rigidity
regime in which the Larmor radius is greater than the larger wavelength of the turbulence. The results are shown to
be consistent with those obtained with a Monte Carlo generator. Although not considered in this study, the
presence of a mean field on top of the turbulence is discussed.

Unified Astronomy Thesaurus concepts: Cosmic rays (329); Magnetic fields (994); Interplanetary turbulence (830)

https://doi.org/10.3847/1538-4357 /ac1341

CrossMark

Transport of Charged Particles Propagating in Turbulent Magnetic Fields as a Red-noise

1. Introduction

Many astrophysical environments such as jets, galaxies,
clusters of galaxies, and interplanetary, interstellar, or inter-
galactic space are considered as collisionless turbulent plasmas
for the propagation and acceleration of high-energy charged
particles (cosmic rays), the confinement and transport of which
are governed by their scattering off magnetic turbulence. This
is because the fluctuating magnetic field permeating these
environments acts as an effective source of collisions in
the transport equation of the velocity distribution of the
particles (Jokipii 1972). Once approximated as a relaxation
process, the effective collision term tends to bring the average
velocity distribution to its isotropic mean (Bhatnagar et al.
1954). It is then well established that the flux of particles can be
related to their gradient of density by means of a diffusion
tensor D;;, which can be expressed in terms of the magnetic
field unit vector b, the diffusion coefficients parallel and
perpendicular to the mean field Djand D, and the antisym-
metric diffusion coefficient D, describing the particle drifts
as (Jones 1990)

D,‘j = DL(S,']‘ + (DH - DL)bibj + DAfijkbk- (1)

As long as the fluctuating field 6B is subdominant with respect
to the regular field B, the level of turbulence defined as
n= 682/ (B> + B?) is low and the diffusion coefficients can be
determined using a quasi-linear theory approach (Jokipii 1966,
1973). However, there are many situations of interest for which the
turbulence level is found to be of the order of 0.5 (turbulent field of
the order of the regular field) or even close to 1 (pure turbulent
field). In such turbulence-level regimes, many estimates of the
diffusion coefficients have been made from numerical simulations
exploring wide ranges of particle rigidities (e.g., Giacalone &
Jokipii 1999; Casse et al. 2001; Candia & Roulet 2004; Hauff et al.
2010; Fatuzzo & Melia 2014; Snodin et al. 2016; Reichherzer et al.
2020, 2021).

In the high-rigidity regime, which is relevant in situations
where the Larmor radius of the particles exceeds the coherence

length of the turbulence, a theoretical derivation of the
coefficients, in agreement with the numerical results, has been
formulated in Plotnikov et al. (2011). It is based on the exact
estimation of the average velocity of the particles propagating
in the turbulence as a function of time, which is expressed as a
Dyson series. In this regime, the values of the magnetic field
experienced by the particles decorrelate on timescales much
smaller than that of the scattering. This allows the use of a
white-noise model for the 2 point function of the magnetic field
experienced between two successive times. Under these
conditions, the resummation of the Dyson series gives rise to
an exponential decay of the average velocity characteristic of a
Markovian process.

The aim of this study is to extend the results presented in
Plotnikov et al. (2011) to a range of rigidities gyroresonant
with the power spectrum of turbulence. Although the methods
employed can be applied to any type of turbulence, this paper
is limited, without loss of generalities, to the study of an
isotropic 3D turbulence without helicity. The general proper-
ties of such a 3D turbulence are reminded in Section 2, as well
as the numerical and formal methods based on a Dyson series
to determine the time evolution of the mean particle velocities
and the 2 point velocity functions. The red-noise assumption
to model the 2 point function of the magnetic field
experienced between two successive times, which allows
the introduction of a short time memory, is presented in
Section 3. It is then shown that this assumption, which makes
possible a partial resummation of the Dyson series, allows the
numerical results to be reproduced at the cost, just as in
the white-noise case, of a single time parameter related
to the turbulence correlation time. From these methods, the
diffusion coefficients, which are reduced to a single one in the
n=1 studied case, are reproduced in both the gyroresonant
and high-energy regimes. The presence of a mean field on top
of a turbulence is discussed in Section 4, where some
theoretical hints are given. The results are finally discussed in
Section 5.
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2. Transport of Charged Particles in Isotropic Magnetic
Turbulence

2.1. Diffusion of Charged Particles in Magnetic Turbulence

For a random motion, the spatial diffusion tensor is known to
be related under very broad conditions to the velocity correlation
function, (vov()), through a time integration (Kubo 1957):

Dy(r) = fo " dt (v (1), )

in the limit that # — oo . Here, vo; = v{(=0) and (- ) stand for
the average quantities, taken over several space and time
correlation scales of the turbulent field. Throughout the paper,
because cosmic rays are high-energy relativistic particles, the
norm of the velocity is identified to ¢ for convenience. The
fluctuations are considered ergodic, in the sense that averaging
over an ensemble of systems would lead to the same average
quantities as through the operation ( - ). The aim of the study is
hence to determine a semianalytical expression for the velocity
correlation function. The fluctuating magnetic field, denoted as
OB(x) in the spatial space and ¢B(k) in the reciprocal Fourier
one, is characterized in a standard way as a Gaussian random
field with zero mean and rms value §B* modeling a 3D
homogeneous and isotropic turbulence without helicity. For
homogeneous turbulence, the 2 point correlation function
between two components of 6B(x) is invariant under spatial
translations. In the Fourier space, this translates into

(6B;(k) 6B} (k') = P;(k)o(k — k'), 3)

which states that two Fourier components of the field are
uncorrelated at different wavenumber vectors. The P;; quantity
is the spectral tensor defined as the Fourier transform of the 2
point correlation function. To guarantee the solenoidal nature
of the field, the spectral tensor must satisfy k;P; = k;P; =0, a
condition which, combined with the 3D isotropic character of
the turbulence imposing rotational invariance on the 2 point
correlation function and with the invariance by symmetry with
respect to a plane (no helicity of the field), implies the form
Pi(k) = Bk)(6; — k[kj/kz) (Batchelor 1970), with ((k) any
function at this stage. On inserting this expression into the
kinetic energy spectrum of the turbulence defined as

1
&) = 3 j; AR P, “)

with X, standing for the sphere of radius & in the Fourier space,
one is left with the relationship £(k) = 4wk?3(k) so that the
spectral tensor can finally be expressed as a function of a
directly interpretable quantity:

E(k) kik;
P;(k) = W(é, - k;)- ®)

The size of the largest “eddies,” Lax, is given by the distance
over which the correlation function is nonzero. This translates
into a minimum wavenumber kp;, = 27/Ly., beyond which,
for the Kolmogorov turbulence adopted here, the spectrum
function follows a power law, E(k) = Ek /3, up to a
maximum wavenumber Kpyax = 27/Lyin, where Ly, corre-
sponds to the scale at which the dissipation rate of the
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turbulence overcomes the energy cascade rate. The normal-
ization & is such that (|6B(x)[*) = 6B

2m)2/38B2
&o= % (6)
3(Lmax - Lmin)

There are several ways to characterize the distance L. over
which the correlation function of the turbulence is nonzero in
the real space. We follow here that of Plotnikov et al. (2011),

L.— foc dr (6B;(x)6B;i(x + r))

0 6B?
which leads, for the Kolmogorov turbulence, to L. =
(L33 — L3Y/[10(L2S — L33). This is a quantity of
interest to estimate in Section 3.1, the correlation time that
provides the duration beyond which a particle experiences a

field value decorrelated from the initial one.

, @)

2.2. Monte Carlo Approach

To serve as a reference for testing the model below, a Monte
Carlo estimation of the velocity correlation function is used.
The strategy of this Monte Carlo experiment is similar to that
widely used in the literature. A large number of particle
trajectories in given turbulent magnetic field configurations is
simulated by solving numerically the Lorentz—Newton
equation of motion that preserves the energy (and hence the
Lorentz factor) of the particles:

Vi(1) = 6 v, (1) Sby (7). (8)

Here, 6Q = c’Z|e|6B/E is the gyrofrequency with Zle| the
electric charge and E the energy of the particle, and
Ob(t) = 6b(x(?)) is the kth component of the magnetic field,
expressed in units of 6B, at the spatial coordinate x(7) of the
particle at time . The numerical integration of Equation (8) is
performed using the standard Runge—Kutta integrator. To
approximate numerically the isotropic and spatially homo-
geneous turbulent field, an algorithm similar to that in
Batchelor (1970); Giacalone & Jokipii (1999) is used. The
recipe consists in summing a large number N,, of plane waves
(N, = 250 in this study) with the corresponding wavevector k,,,
the direction, phase ¢,, and polarization of which are chosen
randomly:

N, 2 ,
SB() =3 3" Ekn) &, coslhy - x + &), ©)
n=la=1
To ensure the condition V-6 B = 0, the two orthogonal polarization
vectors E: are oriented in the plane perpendicular to the directions
of the wavevectors. The wavenumber distribution is built from a
constant logarithmic spacing between k., and k... The wave
amplitudes satisfy £2(k,,) = E,0B%;, >/ (k, — k,_1), where & is
a normalization factor such that }_ & ﬁ(k,,) = 6B2. The dynamic
range of the turbulence explored here is Liay /L, = 100.

2.3. Formal Approach: Dyson Series

Due to the stochastic nature of the magnetic field, the
velocity of the particles is a stochastic variable as well, the
probability density function of which can be sampled by means
of the Monte Carlo generator described in Section 2.2.
Formally, the moments of this underlying distribution can be
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obtained by expressing the solution of Equation (8) as a Dyson
series. The first moment reads as

o0
<Vio(t)> = Voi, + Z 6" €Cigiyjy Cirinjy ++ Cin—1inj, VOiy

n=1
t 4 1
xfo dtlfo dtg...fo dt, (b, (t)... 6b; (1)),
(10)

which requires evaluating the expectation value in the
integrand of the right-hand side. In the Gaussian approx-
imation, the Wick theorem allows for expressing this expecta-
tion value in terms of all possible permutations of products of
contractions of pairs of (0b; (t;)0b;,(t;,)). Using the ansatz

6i1i2
<6bi1(tjl)6biz(tj2)> = TgD(lj] — tjz)’ (]])

and making use of the summation properties over one or two
indexes of the Levi—Civita symbol, the first moment of the
velocities can be expressed as (vi(#)) = u(f)vo;, where the
“propagator” u(t) reads as

[e%e} _ 2\
u(t) =1 +Z(27‘SQ)

3

n=1
t 4 -1

><f dtlf dtg...f dir, Y [Tt — 1). (12)
0 0 0 { )

i<j

Here, the notation _; _» [T ¢ (& — t;) stands for the (2n — 1)!!
permutations of products of contractions of pairs.

In the following, it will be useful to represent the various terms
of the expansion of u(f) in the form of diagrams. The function u(f)
is considered as a propagator denoted by a double line, while a
single line stands for the corresponding “free propagator,”
u(o)(t) =1, which can be inserted in between the contraction of
a pair, <bi1(tjl)6biz(tj2)> = <6bi1(tj1)M(O)(t)6biz(tj2)>7 to build an
“interaction.” A curved dotted line connecting two “vertices” then
stands for a time-ordered integration over an average product of
two stochastic fields:

/"\‘ - —26Q2 t 51
- ( ) / dtl/ dto go(tl —12). (13)
3 0 0

The curved dotted line can hence be thought of as the
propagator of a fictitious field. A comprehensive presentation
of the diagrammatic rules can be found in, e.g., Kraichnan
(1961), Bourret (1962), and Frisch (1966). In these conditions,
the first terms of the expansion of u(f) can be written as

1 1 Jr 1 1 1 + .
(14)

By introducing a “mass operator” that stands for the sum over
all the possible connected diagrams and is represented as a
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Figure 1. Time dependence of the expectation value of (6b«(1)éby(0)) from
simulations (MC), quasi-linear theory (QLT), and red-noise approximation.
Top: reduced rigidity p = 0.1, bottom: p = 0.3.

blob, Equation (12) can be symbolically written as

A— 0

3. Red-noise Approximation

- -

3.1. 2 Point Function of the Experienced Magnetic Field

A key ingredient to estimate the Dyson series is the ansatz
of the 2 point correlation function of the magnetic field
experienced by the particles between two successive times,
which, assuming invariance under time translations, can be
explicitly written as

(i) 8by(0)) =[] dkak (8,0 81y K<), (16)

An exact estimation can be made by means of the Monte Carlo
generator. The results obtained in terms of the time-dependent
o(t) function are shown in Figure 1 as the black curves for two
different reduced rigidities p, defined as the Larmor radius
of the particles expressed in units of L., typical of the
gyroresonant regime. For p = 0.1 (top panel), the ¢(¢) function
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is observed to be nonzero over almost one 27 period of 62 7.
The nonzero range shrinks while p is increasing, as exemplified
in the bottom panel with p=0.3. Eventually, the timescale
over which ¢(#) is nonzero for large p values gets so small that
a white-noise approximation is accurate (Plotnikov et al. 2011).
On the other hand, for rigidities in gyroresonance with the
spectrum of the turbulence, an approximation beyond the
white-noise limit is required.

The simplest approximation beyond the white-noise limit,
widely used in the literature, consists in making use first of the
independence hypothesis of Corrsin (1959) to transform the
expectation value in the integrand of the right-hand side of
Equation (16) into the product of (6b;(k)&b; (k")) and (e’* *(”),
and second of a quasi-linear theory (QLT) approach to
substitute x(#) for the unperturbed motion vyf. Averaging over
Vo, this yields the expression

- 1y Sin(ker)
(6b:(£) 63 (0) gLt ~ f die Py (k) ™5 0, (17)

which is shown as the dashed—dotted curve in Figure 1. It is
observed to capture roughly the nonzero range of (7). It fails,
however, to reproduce the slope of the falloff at small times,
which is one critical feature. An improved approximation
beyond the QLT (bQLT), proposed in Casse et al. (2001),
consists in estimating (¢'**") in the white-noise limit:

<6b,(l‘) 6bj(0)>bQLT
~ fdk P,;j(k)exp(—%kzczt tdt’C(t')), (18)
0

where C(¢') is the autocorrelation function of the pitch-angle
cosine, which relies on the desired expression of (vo;v;(#')). In
this framework, the difficulty is thus to face a highly nonlinear
equation for u(f) that iterative methods might solve.

Rather than adopting such numerically demanding iterative
methods, the approach followed in this study consists in
approximating ¢(f) with an exponential function,

@(1) = exp(—1/7), 19)

which corresponds to a red-noise approximation. Just as in the
case of the white-noise limit own(t) = 7(2), this approximation
requires the introduction of a timescale parameter 7, related to
the correlation timescale of the turbulence. By essence, the
slope of the falloff of ((¢) at small times is captured accurately,
as shown by the red dashed curve in Figure 1. Compared to the
white-noise limit, the use of the red-noise approximation allows
the parameter 7 to come into play to shape the memory of the
timescale over which the particles experience magnetic field
values correlated to the initial ones. The introduction of such
a memory in the process is essential to reproduce, for
0 Smhe/Liax (22 0.2), the ascent that follows the rapid falloff
in the time evolution of the velocity auto-correlations of the
particles. This ascent, together with the final falloff, will be
shown to be well reproduced in Section 3.2, validating hence
the red-noise approximation despite the overestimation of ¢(f)
for 2 7. Finally, another benefit of this approach is, as
explicated below, the possibility to carry out analytically in the
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Laplace reciprocal space a partial summation of the Dyson
series that converges to a physical solution.

The correlation timescale parameter is determined, for
p 2 TLe/Lmax, as 722 L./c. This is because, in this rigidity
regime, particles can travel over a distance L. undergoing small
deflections only. On the other hand, for p <7L./Lyay, the
following heuristic estimate, similar to that found in Casse et al.
(2001), is observed to reproduce simulations:

k...
™ dkkE(k)
o~ lfk*k—. (20)
C max
fk ) dkEk)

In this regime of rigidity, 7 inherits a p dependency from that of
the lower boundary k, (p) = p, kmin/p With p, = 2L /(7L max)-
The truncation in the wavenumber integration range selects
modes for which particles do not experience spiral motions
around the corresponding large-scale magnetic field lines over
several Larmor times, modes that hence prevent decorrelations
from occurring on relevant timescales.

3.2. Partial Summation

The aim is to carry out a summation of the infinite Dyson
series for u(f) (Equation (12)) that provides us with a physical
solution. Although this series is absolutely convergent for all ¢,
the convergence for 1 > 3 /(26Q*7) requires very many terms to
be accounted for, which is rapidly challenging numerically. In
addition, any truncation after any finite number of terms
implies u(f) <0 or u(f) — oo for t — oo (see the Appendix),
which is physically unacceptable. It is therefore preferable to
resort to partial summation schemes.

The simplest partial summation scheme is to substitute the
full propagator for that of Bourret (1962), consisting in the sum
of unconnected diagrams only:

/ N @

~ —+ 1
This partial summation is the exact solution in the white-noise
limit due to the cancellation of all crossed or nested diagrams.
However, it proves to be insufficient in the case of red noise. A
Laplace transform of this equation allows for transforming the
integral equation for u(l)(t) into a linear one for U(l)(p), which,
after an inverse transform, leads to

A
u(l) f) = _e—Az/6T eCt/'r -1, 22
0] B ( ) (22)

with A =349 — 2472502, B=A-3, and C=
J1 — 8726Q02/3. This solution gives rise to nonphysical

oscillations around 0 for ¢ > 3/ (286Q%7).

The next partial summation scheme, known as the
propagator of Kraichnan (1961), consists in substituting the
free propagator inside the dotted loop for the full propagator so
as to sum all unconnected and nested diagrams:

; \ . (23

1
+
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This is a nonlinear equation in the time domain, which is
decoupling in the Laplace reciprocal space so that

B (—2692/3)"
U@ 1,
[ (p)] p n§>:1 (p + 7Y (p + 27 -1

s (=2 892/3)"
a3 (07 D2p 2 (p + 3R
(=2 8Q2/3)"
iza P+ T (P + 2 2 (p + 3T (p 4 A
.. (24)

The solution u®(¢) is then obtained by making use of the
numerical Stehfest scheme of the inverse Laplace transform.
Although n must be formally sent to infinity, a truncation to
n < 2 of this partial summation turns out to provide satisfactory
results. Such a truncation corresponds to approximating
Equation (23) by

~ J'_ L —_ +
(25)

Comparisons of u®(r) with the Monte Carlo results are
shown in Figures 2 and 3 for several values of rigidities. For
p < 0.01, arange of rigidities such that the Larmor radius of the
particles is smaller than the smallest wavelengths of the
turbulence, the main features of the time evolution of u(r) are
captured by the various approximations leading to u®(f) but a
good agreement cannot be claimed. By contrast, for values of
p > 0.01 such that the Larmor radius is in gyroresonance with
wavelengths of the turbulence or larger than the size of the
largest eddies, agreement between the red-noise approximation
and the Monte Carlo is observed. In particular, the non-
exponential falloff that holds in the gyroresonant regime,
probed in several numerical studies (Candia & Roulet 2004;
Fraschetti & Giacalone 2012), is reproduced. As p is
increasing, the range over which u®(7) is significantly nonzero
(scattering timescale) increases from several to very many
multiples of 27 in terms of 6€2 ¢. This illustrates that in the high-
energy regime, the scattering timescale gets much larger
than the correlation one; an exponential falloff is then
recovered (Plotnikov et al. 2011).

4. Hints in the Presence of a Mean Field

Although the case of a purely turbulent magnetic field is
relevant in some astrophysical contexts, most cases of interest
must deal with intermediate or low levels of turbulence. The
numerous Monte Carlo studies exploring the (1, p) parameter
space have revealed nontrivial behaviors, in particular for the
running perpendicular and antisymmetric coefficients. Adapting
the formalism presented in Section 3 to the case of a mean field on
top of a turbulence turns out to be nontrivial without introducing
several free parameters. In the following, only a few hints
illustrating the required additional ingredients are given.

One key ingredient is the modeling of the 2 point correlation
function of the magnetic field experienced by the particles
between two successive times. The presence of a mean field
modifies the picture presented in Section 3.1 in a way that the
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Figure 2. Time dependence of the autocorrelation of the particle velocities
expressed in units of 02/3 (u(t) function) for values of rigidities p = 0.003
(top), p =0.01 (middle), and p = 0.03 (bottom).

red-noise approximation is no longer valid. This is illustrated in
Figure 4, where the xx-component of the (6b,(1)6b/(0)) function is
shown for p=0.1 (gyroresonant regime) and for three levels of
turbulence, namely n=1, n=0.5, and n=0.01. In the cases
1 < 1, the mean field is oriented in the z direction, perpendicular
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Figure 3. Same as Figure 2 for values of rigidities p = 0.1 (top), p=0.3
(middle), and p = 1 (bottom).

to the initial directions of the test particles. The mean field is
observed to introduce a longer timescale memory on top of that
stemming from the turbulence, the intensity of which relative to
that of the turbulence is increasing with decreasing values of 7.
The longer timescale memory is expected to induce oscillations
in the velocity autocorrelation function on a shorter timescale
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Figure 4. Time dependence of the expectation value of (6b,(1)6b,(0)) for three
different turbulence levels and p = 0.1.

compared to that of the mean-field-induced oscillations, which are
driven by the Larmor frequency of the particles in a spiral motion
around the mean field. This effect has been observed in Monte
Carlo simulations to give rise to a subdiffusive regime for the
perpendicular and antisymmetric running coefficients prior to
reaching the plateau of the diffusion regime (e.g., Candia &
Roulet 2004; Casse et al. 2001; Fraschetti & Giacalone 2012). A
comprehensive characterization of the <6bi(t)6bj(0)> function is,
however, beyond the scope of this study and is left for a
future one.

5. Discussion

A derivation of the diffusion coefficient describing the
propagation of cosmic rays in a 3D isotropic turbulence has
been presented, extending the pioneering work of Plotnikov
et al. (2011) to the case of a range of rigidities gyroresonant
with the power spectrum of the turbulence. The derivation
relies on a single time parameter related to the turbulence
correlation time that describes in an economic way the 2 point
correlation function of the magnetic field experienced by the
particles between two successive times as a red-noise process.
Technically, such a red-noise approximation makes possible a
partial resummation of the Dyson series that solves the
equation of motion for the particle velocities.

The red-noise approximation has shown to be a valid one for
both the gyroresonant and the high-rigidity regimes. However,
it fails to describe the regime in which particles have a Larmor
radius smaller than the smallest scale of the turbulence. In such
cases, a modeling of the (6b(1)6b,(0)) functions beyond an
exponential falloff together with a summation of the Dyson
series beyond the approximations used in Section 3.2 is
required.

More generally, better modelings of the (6b(r)ob,(0))
functions are necessary in the case of the presence of a mean
field. The kind of formalism presented in this study could then
be used to infer the various dependencies of the three
coefficients in Equation (1) in the whole parameter space (p, 7).

I thank Haris Lyberis for his numerous works at an earlier
stage of this study and Carola Dobrigkeit for her careful
reading of the paper.



THE ASTROPHYSICAL JOURNAL, 920:87 (8pp), 2021 October 20

Appendix
Nonconvergent Truncation of the Dyson Series

In the same spirit as the examples presented in Kraichnan
(1961), the calculation carried out in this appendix is an
illustration of the benefit of restricting the summation of the
Dyson series to tractable classes of terms to all orders such as
Equation (23).

The diagrams, denoted as f rf‘ (t), are classified below
according to two numbers, n = 2m and k = 2¢, with n the total
number of points and k the number of crossed or nested points.
Diagrams with a different topology but sharing the same k and
n numbers have equal contributions. For instance, the
following nested and crossed diagrams are equal:

Y0 P A S S A SR T G

Deligny

For k=6, a minimum number of n=6 points is required.
There are six crossed/nested ways to join the points that give
rise to the same contribution, f66 (t). Contributions to fn6 (t) can
also arise with n =8 (8 different diagrams), with n =10 by
connecting f64 (¢) and f42 (t) with any number of unconnected

diagrams (16 different diagrams denoted as ff(‘)” (1)), and with
n =12 by connecting 3 f64 (r) diagrams (8 different diagrams).
The associated combinatorics reads as

r—6) — m— 2\ 6 m—3
u(t; k=16) = Z[6(m_3)f6,,,,>2(t)+8(m_4)

m

IR () T SORRE (Chal|

2+2+2
12 m>5 (t):l

(A5)

We remind that dashed lines indicate integrations over the
ordered times crossing the continuous line. For instance,

An attempt to carry out a summation of all terms up to some
order k..« can be made by weighting all fzzni functions by the
combinatorics that determines their number of occurrences. For
k =0, one is left with the series of unconnected diagrams, each of
them with weight 1; this is the Bourret propagator. For k=2,
there are 2(rm — 1) ways to insert one nested or crossed diagram
among 2m — 4 unconnected ones. For k =4, a minimal number of
n=6 points is required. There are four crossed/nested ways to
join the points that give rise to the same contribution

(Equation (A2)), and, for m >2, there are (m - g) distinct
m

ways to insert any of these diagrams among n — 6 points joined
with unconnected diagrams. In addition, starting from n=28
points, there are four possibilities to connect any of the diagrams

of Equation (A1) into n = 8 points, and there are m—2 ways

to insert them among n — 8 points. This leads to the contribution
-2
ult; k=4)= 2[4(2 B 3)f6‘fm>2(t)

+ 4(’" N Z)fgfm>3(r)]. (A4)

(A2)

The reasoning can be repeated for higher values of k, although
the increasing number of terms quickly becomes intractable.
For k=8, the contribution reads as

| ; \ | - \ \ _ _2692 3 t 151 15) 13 7 5
- ( 3 ) / df1/ dt2/ dt3/ dt4/ df5/ die @(t1 — 13)p(t2 — 15)p(ts — 16). (A3)
0 0 0 0 0 0

u(t; k = 8) = 2[24(2 - 2)f8§m>3(;)

1600 e+ 200 2

16 Y a0+ 32(7 T )0
“a)rze (" o)

(A6)

+as(

and so on and so forth.

Comparisons between u(f; kmax) = >kms u(; k) and u'(r)
obtained from the Kraichnan propagator are shown in Figure 5.
It can be seen that the truncation to any value of k., as high
as 8 fails to produce a physical solution for r > 2/(36Q°7).
This clearly illustrates the benefit of using the Kraichnan
propagator.
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Figure 5. u(t; knax) for several values of truncation kpqy.
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