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Abstract

Turbulence is the dominant source of collisional velocities for grains with a wide range of sizes in protoplanetary
disks. So far, only Kolmogorov turbulence has been considered for calculating grain collisional velocities, despite
the evidence that turbulence in protoplanetary disks may be non-Kolmogorov. In this work, we present calculations
of grain collisional velocities for arbitrary turbulence models characterized by power-law spectra and determined
by three dimensionless parameters: the slope of the kinetic energy spectrum, the slope of the autocorrelation time,
and the Reynolds number. The implications of our results are illustrated by numerical simulations of the grain size
evolution for different turbulence models. We find that for the modeled cases of the Iroshnikov–Kraichnan
turbulence and the turbulence induced by the magnetorotational instabilities, collisional velocities of small grains
are much larger than those for the standard Kolmogorov turbulence. This leads to faster grain coagulation in the
outer regions of protoplanetary disks, resulting in rapid increase of dust opacity in millimeter wavelength and
possibly promoting planet formation in very young disks.

Unified Astronomy Thesaurus concepts: Interstellar dust (836); Protoplanetary disks (1300)

1. Introduction

Interstellar dust grains play an important role in many
aspects of astrophysics: they are building blocks of planets,
commonly used gas tracers, and catalysts of molecular
chemistry. All these processes depend on the size distribution
of dust grains, and great efforts have been made to model the
process of grain growth, especially in protoplanetary disks (see
reviews by Blum & Wurm 2008; Testi et al. 2014; Birnstiel
et al. 2016). In various astrophysical environments, turbulence
is the major driving force for grain growth. Turbulent motions
stir up the grains, leading to their mutual collisions. In
protoplanetary disks, for example, turbulence is among the
dominant sources for collisional velocities between grains in
the size range of microns to meters (Birnstiel et al. 2011).

The calculation of grain collisional velocity induced by
turbulence generally relies on one critical assumption: the
turbulence is Kolmogorov with a kinetic energy spectrum of
E(k)∝ k−5/3. Völk et al. (1980) and Markiewicz et al. (1991)
made the ground-laying work of calculating grain collisional
velocities in Kolmogorov turbulence. Later Ormel & Cuzzi
(2007, hereafter OC2007) derived the analytic expressions for
grain collisional velocities in Kolmogorov turbulence, which
were soon adopted in many grain coagulation codes (e.g.,
Brauer et al. 2008; Okuzumi et al. 2012; Akimkin et al. 2020b).
The grain collisional velocities derived from these analytic
Völk-type models were tested by direct numerical simulations
in Pan & Padoan (2015), Ishihara et al. (2018), and Sakurai
et al. (2021). The simulations showed that while Völk-type
models suffer from several drawbacks, such as the neglect of
turbulent clustering of same-size grains (which enhances their
collisional rates) and a reduction of the rms collisional velocity
(which reduces the collisional rates), the overall grain
collisional velocities derived from Völk-type models are still
accurate within a factor of ∼2. With its relative accuracy
and simplicity, the formulae in OC2007 remain the standard
adopted in the current literature.

The astrophysical turbulence, however, does not necessarily
have the Kolmogorov spectrum. The presence of magnetic fields
is expected to change the turbulence cascade, and many
alternative theories have been proposed to describe the
magnetohydrodynamic (MHD) turbulence. The Iroshnikov–
Kraichnan (IK) theory, for example, predicts E(k)∝ k−3/2

(Iroshnikov 1964; Kraichnan 1965). Alternatively, the Gold-
reich–Sridhar theory predicts ( ) µ -E k k 2 parallel to the mean

magnetic field and ( ) µ^ ^
-E k k 5 3 perpendicular to the mean

magnetic field (Goldreich & Sridhar 1995). These theories,
however, assume that there is a dominant mean magnetic field.
In many astrophysical environments such as the protoplanetary
disks, the magnetic field is weak and the mean field varies on
spatial and temporal scales of the turbulent cascade. It is unclear
whether the theoretical predictions by the IK or Goldreich–
Sridhar turbulence models still hold in these environments.
In our previous paper (Gong et al. 2020, hereafter Paper I),

we performed numerical simulations of the MHD turbulence in
protoplanetary disks generated by the magnetorotational
instabilities (MRIs). We observed a persistent kinetic energy
spectrum of k−4/3, which appears to be converged in terms of
numerical resolution. This k−4/3 energy spectrum has also been
observed in many other MHD turbulence simulations in the
literature (see Table 6 in Paper I). To further investigate this
phenomenon, we also performed driven turbulence simulations
with and without the magnetic field and obtained the same
energy spectrum. We concluded that the k−4/3 power-law slope
is likely due to the bottleneck effect near the dissipation scale
of the turbulence (Ishihara et al. 2016). Due to the limited
numerical resolution, we were not able to constrain whether the
k−4/3 energy spectrum extends to a larger dynamical range. In
addition, we found the turbulence autocorrelation time to vary
close to ∝k−1, which is steeper than that for the Kolmogorov
turbulence. Moreover, the injection scale of the MRI turbulence
is determined by the fastest-growing mode of the MRI—not by
the scale height of the disk assumed as the injection scale

The Astrophysical Journal, 917:82 (12pp), 2021 August 20 https://doi.org/10.3847/1538-4357/ac0ce8
© 2021. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0003-1613-6263
https://orcid.org/0000-0003-1613-6263
https://orcid.org/0000-0003-1613-6263
https://orcid.org/0000-0002-1590-1018
https://orcid.org/0000-0002-1590-1018
https://orcid.org/0000-0002-1590-1018
https://orcid.org/0000-0002-4324-3809
https://orcid.org/0000-0002-4324-3809
https://orcid.org/0000-0002-4324-3809
https://orcid.org/0000-0003-1481-7911
https://orcid.org/0000-0003-1481-7911
https://orcid.org/0000-0003-1481-7911
mailto: munan@mpe.mpg.de
http://astrothesaurus.org/uat/836
http://astrothesaurus.org/uat/1300
https://doi.org/10.3847/1538-4357/ac0ce8
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac0ce8&domain=pdf&date_stamp=2021-08-20
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac0ce8&domain=pdf&date_stamp=2021-08-20


in OC2007. All these factors—the energy spectrum, the
autocorrelation time, and the injection scale of the turbulence
—can have a big impact on the grain collisional velocities.

Recently, Grete et al. (2021) performed numerical simula-
tions of weakly magnetized MHD turbulence and found the
same kinetic energy spectrum slope of k−4/3. They analyzed
the energy transfer mechanisms in their simulations and argued
that magnetic tension must be the dominant force for energy
transfer across scales. The energy transfer mechanism in
Kolmogorov turbulence, the kinetic energy cascade, is
suppressed in this case by the magnetic tension, to which they
attributed the cause of the shallower k−4/3 energy spectrum.
Although they believe that the bottleneck effect is not the cause
of the k−4/3 slope, their numerical resolution is still limited at
(2048)3. The power-law slope measured in Grete et al. (2021)
spans within ∼2 dex of the dissipation scale, where the
bottleneck effect is known to affect the energy spectrum
(Ishihara et al. 2016). Moreover, there is no theoretical
understanding so far about why the energy transfer by magnetic
tension force may lead to the k−4/3 energy spectrum. However,
if the energy spectrum is indeed determined by the magnetic
tension, the k−4/3 slope can represent the inertial range of the
turbulence cascade and extend to a much wider dynamic range
far from the dissipation scale.

In addition, pure hydrodynamic instabilities can also
generate turbulence in the protoplanetary disks in the absence
of magnetic fields. For example, the subcritical baroclinic
instability (SBI) driven by the radial entropy gradient (Klahr &
Bodenheimer 2003; Klahr 2004; Petersen et al. 2007; Lesur &
Papaloizou 2010) and the vertical shear instability (VSI) driven
by the strong vertical shear (Nelson et al. 2013; Stoll &
Kley 2016) can both generate long-lived turbulence in disks.
Numerical simulations have found that the turbulence induced
by the SBI or VSI can have much steeper kinetic energy spectra
than the Kolmogorov turbulence across certain scales (Klahr &
Bodenheimer 2003; Manger et al. 2020).

Given the uncertainty in the turbulence properties, this paper
aims to provide insights into how non-Kolmogorov turbulence
may affect grain collisional velocities and grain growth. In
Section 2, we describe the turbulence models and the procedure
for calculating the grain collisional velocities. We focus on three
examples: the Kolmogorov turbulence, the IK turbulence, and
the MRI turbulence described in Paper I. The results are shown
in Section 3. Section 3.1 derives the analytic approximation for
the collisional velocities assuming a general case of power-law
turbulence spectrum, and Section 3.2 compares the analytic
approximation with accurate numerical integration. We also
supply publicly available Python scripts that implemented our
formulae for calculating the collisional velocities. Section 3.3
shows the dependence of grain collisional velocity on turbulence
parameters, by describing its behavior in different limiting
regimes. Section 4.1 presents an application of our work: we
calculate grain growth in protoplanetary disks with different
turbulence models and estimate the fragmentation and drift
barrier for grain growth due to non-Kolmogorov turbulence.
Finally, Section 5 gives a summary of this work.

2. Method

We follow the method in Völk et al. (1980), Markiewicz et al.
(1991), and OC2007 to calculate grain collisional velocities.
These previous works considered only Kolmogorov turbulence.
Here we generalize to a generic turbulence model with arbitrary

power-law slopes of energy spectrum and autocorrelation time.
We first describe the turbulence model and then the steps to
calculate the turbulence-induced grain collisional velocities. For
the convenience of the reader, we summarize the important
notations used in this paper in Table 1.

2.1. Turbulence Model

There are two important properties of turbulence that
determine the grain collisional velocities: the kinetic energy
spectrum E(k) and the eddy autocorrelation time τ(k). We
assume that the turbulence has a kinetic energy spectrum

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )= h

-

 E k E
k

k
k k k, , 1L

L

p

L

where kL and kη are the injection scale and dissipation scale of
the turbulence. Outside of the range kL� k� kη, we simply
assume E(k)= 0.3

The dissipation scale is determined by the Reynolds number,

( )
n

=
vL

Re , 2

where ν is the viscosity, v is the velocity, and L is the length
scale. Usually, the Reynolds number is defined for the largest
turbulence eddy, ( ) ( ) ( ) n= =k v k L kRe Re L L L . For turbulence
eddy k, ( ) ( ) ( )= µ -v k kE k k p1 2, and L(k)∝ 1/k. At the
dissipation scale, ( ) ( ) ( ) n= =h h hk v k L kRe 1. This gives
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Table 1
Summary of Notations for the Key Physical Variables

Symbol Meaning

v Gas velocity
δv v − vK, turbulent gas velocity
vtot Large-scale turbulent velocity (Equation (5))
vrel(k) Relative velocity between grain and eddy (Equation (11))
vp ≡ δvp Turbulence-induced grain velocity (Equation (8))
Δv12 Collisional velocity between grains 1 and 2 (Equation (18))
St Stokes number (Equation (9))
Re Reynolds number (Equation (2))
τf Grain friction/stopping time (Equation (8))
τcross(k) Eddy crossing time (Equation (13))
τ(k) Eddy autocorrelation time (Equation (7))
E(k) Kinetic energy spectrum (Equation (1))
kL Injection scale (Figure 1)
kη Dissipation scale (Figure 1)
p Power-law slope of E(k)
m Power-law slope of τ(k)

3 In Paper I, we found that the injection scale kL is similar to the fastest-
growing mode of the MRI in the disk, kMRI. At k < kMRI, there is still a region
with E(k) > 0. However, because the slope of E(k) in this region is much
shallower than at k > kMRI, the kinetic energy is dominated by k ≈ kL.
Therefore, by using the simple assumption of E(k) = 0 for k < kL, the dust
collisional velocities are not affected significantly.
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The large-scale (total) turbulent velocity vtot is defined as

( ) ( )ò=v dkE k . 5tot
2

From the Plancherel theorem, = á ñv vtot
2 2 , where v is the

magnitude of turbulent gas velocity and “〈 〉” denotes the
spatial average. Integrating Equation (5), we have

⎜ ⎟
⎡

⎣
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⎛
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⎥ ( )

( )
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-
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p
L L

tot
2

1

For the integration to converge, it requires p> 1.
The corresponding turbulent autocorrelation time in the

inertial range is

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )t t=
-

k
k

k
. 7L

L

m

Figure 1 illustrates the models for E(k) and τ(k). For the
detailed definitions of E(k) and τ(k) see Paper I.

Ormel & Cuzzi (2007) assumed ( ) ( ( ) )t =k k kE k1 2 from
the kinetic cascade, which gives ( )t = k E k1L L L L and
m= (3− p)/2. In Paper I, we did observe that ( )t »k

( ( ) )k kE k1 2 for the MRI and driven turbulence.4 In
principle, τ(k) can be influenced also by other physical
processes such as the interaction between the gas and the
magnetic field. Without losing generality, we keep p and m as
separate parameters. We focus on three turbulence models
shown in Table 2: the Kolmogorov turbulence, the IK
turbulence, and the MRI turbulence in Paper I. We note that
our method can also be applied to other turbulence models with
arbitrary values of p and m.

2.2. Turbulence-induced Collisional Velocities

The dynamical property of a dust grain is characterized by its
friction time (also often called the stopping time) τf. The
randomly fluctuating component of grain velocity δvp follows

(Equation (5) in Völk et al. 1980)

( )
d d d

t
=

-v v vd

dt
, 8

p p

f

where δv is the random component of the gas velocity, such as
the turbulent velocity in the protoplanetary disk. For the
simplicity of notations, we hereafter drop the δ in Equation (8)
and use vp to denote the randomly fluctuating component of
grain velocity induced by turbulence.
It is convenient to define the dimensionless Stokes number

( )t t=St . 9f L

Physically, τf or St is determined by the properties of both the
grain and gas, as well as the relative velocity between them
(Youdin 2010). For spherical grains in the Epstein drag regime
(Epstein 1924), the friction time τf= ρsa/(ρgvth), where ρs and
a are the material density and radius of the grain, ρg is the gas
density, and vth is the mean thermal velocity of the gas. In a
protoplanetary disk, the Stokes number can be written as
(Birnstiel et al. 2016)

( )p r
=

S
a

St
2

, 10s

g

where Σg is the gas surface density. Using the minimum-mass
solar nebula (MMSN) model in Hayashi (1981), St≈ 10−8− 1
for typical grain sizes from 0.1 μm to 1 cm at 1–100 au.
In this work, only perturbations from the gas motions on dust

gains are considered, and the back-reaction of dust grains onto
the gas is ignored.

Figure 1. Schematic diagrams of the kinetic energy spectrum E(k) (left panel) and the eddy autocorrelation time τ(k) (right panel). kL and kη denote the injection and
dissipation scales, respectively. The blue annotations mark the transition between class I and class III eddies (see Equations (12)–(15)).

Table 2
Parameters for Turbulence Models Considered in This Work

Modela p m (p − 1)/m

Kolmogorov 5/3 2/3 1
IK 3/2 3/4 2/3
Paper I 4/3 5/6 2/5

Note.
a The parameter (p − 1)/m determines the scaling between the collisional
velocity and the Stokes number for small grains (Equation (31)).

4 In Paper I, we found that ( ) { ( ( ) )}t » Wk k kE kmin 1 , 1 2 for the MRI
turbulence, where Ω is the local orbital frequency. With kMRI ≈ Ω/〈vA,z〉,
where 〈vA,z〉 is the average Alfvén speed in the vertical direction, and

» » á ñv E k vL A ztot MRI , (turbulent velocity comparable to the Alfvén speed),
we have ( ( ) » Wk k E k2MRI MRI MRI . This means ( ) ( ( ) )t »k k kE k1 2 at
k > kMRI.

3
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For two dust grains with friction times τf1 and τf2, their
collisional velocityΔv12 can be obtained by following the steps
below:

1. Calculate the relative velocity vrel(k) between the eddy k
and each dust grain (see Equation (19) in OC2007):

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )
( )

( )ò
t

t t
= + ¢ ¢

+ ¢
v k v dk E k

k
, 11

k

k f

f
rel
2

sys
2

2

L

where vsys is the systematic velocity of the dust not driven
by turbulence, such as the radial drift by pressure-
gradient-driven headwind or vertical settling due to the
stellar gravity. Throughout this work, we assume that the
turbulent motions dominate and set vsys= 0.

2. Determine the classes of eddies for each dust grain. The
concept of “eddy classes” is first introduced by Völk et al.
(1980). For a given dust grain with the friction time τf and
a given eddy k, the eddy class is determined by

⎧
⎨⎩

{ ( ) ( )}
{ ( ) ( )} ( )

t t t
t t t

<


k k

k k

min , , class I eddy

min , , class III eddy,
12

f

f

cross

cross

where

( )
( )

( )t =k
kv k

1
13cross

rel

is the timescale on which the grain moves across the
eddy. Grains are well coupled with the class I eddies.
This corresponds to small grains, for which τf is short
enough that the grain “forgets” its initial motion and
moves with the gas before it leaves the eddy or the eddy
decays. On the contrary, grains are only weakly coupled
with the class III eddies. Such grains are large enough
that τf is long, and the eddy only exerts small
perturbations to their motions. Because both τ(k) and
τcross(k) increase with k, a grain is better coupled with the
large eddies than the small eddies. The transition scale
between class I and class III eddies is defined as k

*

: the
eddies are class I for k< k

*

and class III for k� k
*

. k
*

is a
function of τf and can be solved by

{ ( ) ( )} ( )t t t=k kmin , . 14fcross* *

Appendix A shows that k
*

can be approximated using
τ(k

*

)= τf. This gives

( )= -k k St . 15L
m1*

Thus, there is no class I eddy for St� 1 and no class III
eddy for ( )h k kSt L

m (see the right panel of Figure 1).
3. Calculate the velocity dispersion of each dust grain. The

velocity dispersion of a dust grain induced by turbulence
is given by Equation (6) in Markiewicz et al. (1991),

( )( )

( )( )[ ( ) ( )] ( )

ò
ò c c

= -

+ - +

v dkE k K

dkE k K g Kh

1

1 , 16

p
I

2 2

III

where K= τf/[τf+ τ(k)], ( ) ( )c c c= -g arctan1 , h(χ)=
1/(1+ χ2), and χ=Kτ(k)kvrel(k). Here I and III denote
the integration over class I (k< k

*

) and class III (k� k
*

)
eddies, respectively.

4. Calculate the cross-correlation of the velocities between
grains 1 and 2, 〈vp1 · vp2〉. From Equation (8) of

Markiewicz et al. (1991),

· ( )

[ ( ) ( )] ( )

òt t

t t

á ñ =
+

´ - + -

v v dkE k

K K

1

1 1 , 17

p p
f f I

f f

1 2
1 2

1 1
2

2 2
2

12

where I12 denotes that the integration is over the eddies
that are class I for both grains 1 and 2, i.e., <k

{ }k kmin ,1 2* * .
5. Obtain the collisional velocity between grains 1 and 2.

Finally, the collisional velocity Δv12 can be calculated
from

( ) · ( )D = + - á ñv vv v v 2 . 18p p p p12
2

1
2

2
2

1 2

For a given turbulence model, ( )Dv12
2 is proportional to

the total kinetic energy of the turbulence. Therefore, we
usually present the normalized Δv12/vtot in the following
sections.

3. Results

3.1. Analytic Approximations for Grain Collisional Velocities

We calculate the analytic approximations of grain collisional
velocities in different regimes. The k

*

from Equation (15) is
used to distinguish class I and class III eddies.
First, we calculate vp

2 in Equation (16), which we divide into
two terms, = +v T Tp I

2
III, where

( )( ) ( )ò= -T dkE k K1 19I
I

2

and

( )( )[ ( ) ( )] ( )ò c c= - +T dkE k K g Kh1 20III
III

for the class I and class III eddies, respectively.
For the TI term, there are two possible cases: (1) St� 1.

There is no class I eddy, and TI= 0. (2) St< 1. In this case, for
class I eddies τf� τ(k), and thus we can approximate

[ ( )]t t- » -K k1 1 f
2 2. This gives
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where

{ } ( )¢ = hk k kmin , . 22*

( )∣ ¢T StI k
k

L
denotes the integration of the function E(k)(1−K2) in

the range of ¢ k k kL for a grain with Stokes number St.
For the TIII term, we use the approximation g(χ)≈ h(χ)≈ 1,

following OC2007. This gives (1− K )[g(χ)+ Kh(χ)]≈1−
K2≈ 2τ(k)/τf, with τ(k)< τf for class III eddies. There are
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three cases: (1) St� 1. In this case, all eddies are class III, and
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(3) ( )h k kSt L
m. There are no class III eddies, and TIII= 0.

The cross-correlation term in Equation (17) is only nonzero
for two grains with St1< 1 and St2< 1. Assuming St2<
St1< 1, Equation (17) can be written as

· ( )∣ ( )∣ ( )á ñ =
+

+
+

¢ ¢
v v T T

St

St St
St

St

St St
St , 25p p I k

k
I k

k
1 2

1

1 2
1

2

1 2
2L L

1 1

where { }¢ = hk k kmin ,1 1* . The analytic approximation can be
obtained from Equation (21).

3.2. Comparisons with Numerical Integrations

The collisional velocities Δv12 between two dust grains with
Stokes numbers St1 and St2 in different turbulence models are
shown in Figure 2, with Reynolds number =Re 108. The top
panels show the collisional velocity from numerical integra-
tions. In the regions where St1� 1 or St2� 1, the collisional
velocities are very similar across different turbulence models.
However, in the regions where St1, St2< 1, the collisional
velocities can differ by orders of magnitude depending on the
turbulence model. This behavior is explained in Section 3.3,
where we derive the scaling relationship between Δv12 and
turbulence parameters.

The analytic approximation of Δv12 is shown in the middle
panels of Figure 2, and the differences between the analytic
approximation and numerical integration are shown in the
bottom panels. The analytic approximation is accurate within
30% in most regions and within 70% in all regions. The largest
error occurs close to St= 1, St1= St2, and ( )= hk kSt L

m,
where the criteria for analytic approximations are not satisfied
(see Section 3.1).

The analytic approximation allows for fast and accurate
calculation of grain collisional velocities with arbitrary
turbulence properties, without significant sacrifice in the
accuracy. The analytic formulae in Section 3.1 can be easily
implemented in grain growth codes, enabling the calculation of
grain size evolution in non-Kolmogorov turbulence. We
provide publicly available Python scripts that implemented
our calculations at https://github.com/munan/grain_collision.

3.3. Limiting Behaviors

In order to obtain a clear physical understanding of the
dependence of grain collisional velocities Δv12 on the

turbulence properties in Figure 2, we discuss the limiting
behaviors of Δv12. We divide the Stokes numbers St1 and St2
into four regimes and discuss the dependence of Δv12 on
turbulence parameters in each regime. Figure 3 summarizes the
limiting behaviors of Δv12. Here we call the grains “big”,
“small,” or “tiny” defined by their Stokes numbers, which
determine the scales of the turbulence eddies that they are
coupled with. We always assume that the Reynolds number is
large, and therefore kL/kη→ 0.

3.3.1. Two Big Grains

Take two big grains with St1> 1 and St2> 1: the eddies are
all class III, and the cross term in Equation (17) vanishes. We
can use Equation (23) to obtain

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

( )∣ ( )∣

( )

D = +

= +

»
-

+ -
- +

» +

h

+ -

h h

26

v v v

T T

p v

p m

k

k

v

St St

2 1

1
1

1

St

1

St

1

St

1

St
.

p p

k
k

k
k

L
p m

12
2

1
2

2
2

III 1 III 2

tot
2 1

1 2

tot
2

1 2

L L

The last step uses the approximation that the factor 2(p− 1)/
(p+m− 1) is of order unity, and kL/kη= 1. In this case, each
of the two grains is moving at an uncorrelated velocity of

»v v Stp tot . The velocity perturbation is dominated by the
largest eddy.

3.3.2. One Big Grain and One Small Grain

Take one big grain with St1> 1 and one small grain with
St2< 1: from Equations (19) and (20) we have
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where { }¢ = hk k kmin ,2 2* . In the limit of St1→∞ and St2→ 0,

the terms ( )∣ hT St k
k

III 1 L
and ( )∣ ¢

hT St k
k

III 2
2

vanish. Following
Equation (21),
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The bigger grain 1 barely moves owing to its large mass, and
the smaller grain 2 is well coupled with the gas and moves at
the turbulent velocity vtot.

3.3.3. Two Small Grains

Take two small grains with ( ) < <hk k St 1L
m

1 and
St2< St1, we have
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We split the term ( )∣
¢

T StI k
k

2 L
2 into two components,

( )∣ ( )∣+
¢

T TSt StI k
k

I k

k
2 2L

1

1

2
*

*, and neglect the second one compared

to the first one, which allows us to approximate
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. In addition, one can easily show that
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*, and therefore the former term can be

ignored. With these approximations, we write
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Figure 2. Collisional velocities Δv12 between two dust grains with Stokes numbers St1 and St2, normalized by the total gas turbulent velocity vtot, in Kolmogorov
(left), IK (middle), and Paper I (right) turbulence models. (a) Collisional velocity Δv12 from direct numerical integrations. (b) Collisional velocityΔv12,a from analytic
approximations. (c) The ratio Δv12,a/Δv12.
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If we take the limit of St2= St1= 1, then =k kL1*

-St 1m
1

1 , giving

( ) ( )( )D » -v v St . 31p m
12

2
tot
2

1
1

We can understand this scaling relation by considering the
coupling of the dust grains with the gas: for eddies <k k1*,
both grains are well coupled with the gas, and the relative
velocities are small. The collisional velocity is therefore
dominated by the eddy k1*, where the larger grain 1 starts to
decouple with the gas and the smaller grain 2 is still well
coupled with the gas, running into the larger grain at the eddy
velocity. The velocity of the eddy k1* is

( ) ( ) ( )( )~ ~ -v k k E k v St . 32p m2
1 1 1 tot

2
1

1* * *

Here the slope of the autocorrelation time m determines the
scale at which the larger grain starts to decouple, and the slope
of the energy spectrum p determines the eddy velocity at that
scale.

3.3.4. Two Tiny Grains

Take two tiny grains with ( )< hk kSt , St L
m

1 2 , and assuming
St2< St1, all eddies are class I. Similar to Equation (30),
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The collisional velocity is dominated by the smallest eddy kη.
The two grains of different sizes accelerate at different rates,
causing the relative velocity. For grains with the exact same
size, the collisional velocity is zero. The collisional velocity
depends on the dissipation scale kη, as well as the velocity and

autocorrelation time of the eddy kη. These are in turn
determined by the Reynolds number, the energy spectrum
slope p, and the slope of the autocorrelation time m.

4. Applications to Protoplanetary Disks

4.1. Grain Size Evolution

Turbulence plays a crucial role in grain evolution in
protoplanetary disks. It provides the dominant source of
collisional velocities for micron- to centimeter-sized grains,
which are too large to coagulate efficiently, due to Brownian
motion, and too small to experience strong differential radial
and azimuthal drift (Testi et al. 2014).
To show the impact of turbulence properties on grain

evolution, we perform numerical simulations of grain coagulation
in typical disk environments, similar to Akimkin et al. (2020b).
We consider the simplest case of noncharged compact spherical
grains with a material density of ρs= 3.0 g cm−3, a fixed dust-to-
gas ratio of ρd/ρg= 0.01, and a constant turbulence alpha-
parameter of α= 10−4. This low value of α is motivated by
recent constraints by both dust and gas observations (Pinte et al.
2016; Flaherty et al. 2018), as well as from theoretical models
(Simon et al. 2018). We take two sets of physical conditions
in the disk: (1) ρg= 5× 10−14 g cm−3, Tg= 38K, and (2)
ρg= 3× 10−15 g cm−3, Tg= 25 K, where ρg and Tg are the gas
density and temperature, respectively. These correspond to the
conditions in the disk midplane at 30 and 70 au in Akimkin et al.
(2020b). We choose to focus on the outer disk for the following
reasons: (1) it is better probed by observations with its larger
spatial scales and longer evolution timescales, and (2) the
grain growth is less affected by fragmentation and radial
drift, which we do not include in our model. In fact, for the
parameter we choose, the maximum grain collisional velocity is
vcoll≈ vtot≈ 4m s−1, smaller than the typical fragmentation
velocity of∼ 10m s−1 (Gundlach & Blum 2015). Using
Equation (40) in Section 4.3, we calculated that the radial drift
barrier occurs for grains of sizes≈5mm at 30 au and≈0.4 mm at
70 au (marked by the filled circles in Figure 5). However, we note

Figure 3. The limiting behaviors of the grain collisional velocity Δv12 in different regimes of the Stokes numbers. In regimes 1 and 2, Δv12 is dominated by the total
turbulent velocity and is insensitive to the turbulence properties. In regimes 3 and 4, Δv12 depends sensitively on the turbulence properties. The transition boundary
between the two regimes and the grain collisional velocities are sensitive to the Reynolds number Re, the power-law slope of the turbulence energy spectrum p, and
the power-law slope of the turbulence autocorrelation time m.

7

The Astrophysical Journal, 917:82 (12pp), 2021 August 20 Gong et al.



that the radial drift is very sensitive to the disk structure
commonly observed (Andrews 2020; Segura-Cox et al. 2020).
Nonsmooth structures such as gaps and rings in the disk will
significantly deter the drift.

The initial grain size distribution is taken to be a power law with
a slope of −3.5 in the range of 0.005–0.25μm (Mathis et al.
1977). The coagulation equation is solved on a grid of grain
masses ranging from 10−20 to 107 g (roughly corresponding to
sizes from 10−7 to 102 cm) with 512 bins, providing resolution of
∼20 bins per grain mass decade or∼60 bins per grain size decade.

We consider two sources of grain collisional velocities:
the Brownian motion ΔvBr and turbulence-induced velocities
Δv12. The total grain collisional velocity is D =vcoll

( ) ( )D + Dv vBr
2

12
2 . In Figure 4 we show the collisional

velocities between equal-size grains and grains with an order of
size disparity, calculated at 70 au. The Brownian motion with
ΔvBr∝ a−3/2 dominates for the smallest sizes. For a near the
transition to turbulence-driven motion, the resulting collision
velocity exhibits a deep minimum, naturally leading to a slower
coagulation for these sizes. This explains the small bump seen
for micron-size grains in the size distribution (see the left panel
of Figure 6 in Appendix B). For a large range of grain sizes
from submicron to millimeter, the collisional velocity is very
sensitive to the turbulence model, leading to dramatically
different growth rates. To demonstrate the observational effect
of different turbulence models on grain size evolution, we
calculate the dust opacity coefficient κν(t)= ∫πa2Qabs(a, ν)f (m,
t)dm/ρd, where f (m, t) is the grain mass distribution,
ρd= ∫mf (m, t)dm, and Qabs(a, ν) is the absorption efficiency
obtained using the Mie theory for spherical silicate grains
(Draine & Lee 1984; Akimkin et al. 2020a).

The left panels of Figure 5 show the evolution of the average
grain radius for the three cases of turbulence models
(Kolmogorov, IK, and Paper I). The average grain radius ¯ ( )a t
is calculated from

¯ ( )
( )

( )òp
r

r
=a t

m f m t m4

3

, d
. 34s

3
2

d

The corresponding dust opacity at the wavelength of 1.3 mm
(ALMA Band 6) is illustrated in the right panels of Figure 5. The
evolution of grain size distribution and dust opacity at 70 au is
presented in Figure 6 in Appendix B. The evolution at 30 au is
qualitatively similar to that at 70 au but occurs faster owing to the
higher density and turbulent velocity. The higher collisional
velocity for smaller grains in the IK and Paper I turbulence makes
their growth faster than in the standard Kolmogorov turbulence
case. The size range of 0.1–0.5 mm (gray shaded region in the left
panels of Figure 5) is important, as such grains contribute the most
to the disk millimeter emission (Rosotti et al. 2019; Akimkin et al.
2020a). This is also shown in the right panels of Figure 5: as the
average grain size increases, the 1.3 mm dust opacity first
increases and then decreases, peaking around the 0.1–0.5mm size
range. At 70 au, the grains grow to submillimeter sizes within
0.1Myr with the Paper I turbulence, while for the Kolmogorov
turbulence it takes 1Myr to reach the same sizes.
The faster grain growth enabled by the non-Kolmogorov

turbulence has interesting implications in many observational
and theoretical aspects. This can result in rapid radial drift of
dust grains in the outer disk, leading to the small disk sizes
observed in class 0 and I protostars (Segura-Cox et al.
2016, 2018). Furthermore, it is known that grain charging
may completely stop coagulation for micron-sized grains,
especially for fluffy aggregates (Okuzumi 2009; Akimkin et al.
2020b). The higher collisional velocities provided by the IK
and Paper I turbulence can help to overcome this charge
barrier. Generally, the faster grain growth provides more
favorable conditions for early planet formation in young disks,
by both accelerating the core formation processes and
supplying solid material from the outer disk by the radial drift.

4.2. Fragmentation Barrier

We calculate the fragmentation barrier for grain growth
following Birnstiel et al. (2012), but we take into account the
dependence of grain collisional velocities on turbulence
properties. We estimate the collisional velocities of dust grains
with St< 1 from Equation (31),

( )aD »
-

v c St , 35scoll
p

m
1

2

where cs is the sound speed. By equating Δvcoll to the
fragmentation velocity vfrag, we obtain the fragmentation
barrier site,
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For Kolmogorov turbulence, where m/(p− 1)= 1, we recover
Equation (8) in Birnstiel et al. (2012) within a pre-factor of
order unity. For both the IK and Paper I turbulence, the higher
collisional velocities lead to smaller values of afrag than that for
the Kolmogorov turbulence. We note that the largest collisional
velocity occurs for grains with St≈ 1 (see Section 3.3) at

aD »v cscoll . If a <c vs frag, the fragmentation barrier is
never reached (which is true for the cases considered in
Section 4.1).

Figure 4. Illustration of collision velocities between equal-size grains (solid
lines) and grains with an order-of-magnitude size disparity (dashed lines). The
results are for our three turbulence models (Kolmogorov, IK, and Paper I) at
70 au. For very small grains, the collisional velocity is dominated by the
Brownian motion, which scales as a−3/2. For larger grains, the collisional
velocity is determined by turbulence and can be approximately described by
the four regimes discussed in Section 3.3. Consecutive transitions between
regimes 4 and 1 (see Figure 3) are evident following the dashed lines
(a2 = 10a1) as a1 increases. For a wide range of grain sizes from submicron to
millimeter, the collisional velocity is very sensitive to the turbulence properties.

8

The Astrophysical Journal, 917:82 (12pp), 2021 August 20 Gong et al.



4.3. Radial Drift Barrier

Similar to the fragmentation barrier, the radial drift barrier
also depends on the turbulence properties, which influences the
grain growth timescale. From Birnstiel et al. (2012), the grain
growth timescale is

( )t
r

r
=

D
a

v
, 37s

d
grow

coll

with the collisional velocity from Equation (35). The dust
density ρd is obtained from ( )r p= S h2d d d , where the dust
surface density is given by Σd= òΣg with a constant dust-to-
gas ratio ò= 0.01. The dust disk scale height hd is calculated by
Youdin & Lithwick (2007),

( )a
=h h

St
, 38d g

where hg is the gas disk scale height.5 The drift timescale is
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cSt
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s
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where r is the disk radius and ∣ ∣g = d P d rln ln is the absolute
value of the power-law index of the gas pressure profile in the
disk. From τgrow= τdrift, we obtain the drift barrier site,
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For Kolmogorov turbulence,
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which recovers the result from Equation (33) in Birnstiel et al.
(2016). The values of adrift are higher for the IK and Paper I
turbulence compared to that for the Kolmogorov turbulence,
due to the higher collisional velocities and faster grain growth
rates (Figure 5).

5. Summary

In this paper, we calculate grain collisional velocities for an
arbitrary turbulence model characterized by three dimensionless
parameters: the slope of the kinetic energy spectrum p, the slope of

Figure 5. Left: evolution of the average grain size (Equation (34)) in the disk midplane at 30 and 70 au. The gray shaded region marks the size range that contributes
the most to the dust emission at millimeter wavelengths. The filled circles indicate radial drift barriers for each turbulence model according to Equation (40). Right:
evolution of the dust opacity coefficient at the wavelength λ = 1.3 mm (ALMA Band 6). The horizontal red dashed line shows the opacity coefficient of 2.3 cm2 g−1

in the observations by Beckwith et al. (1990).

5 The dust disk scale height in Equation (38) is obtained from the balance of
vertical settling and turbulent diffusion of dust grains. Turbulent diffusion is
dominated by the largest eddy and not sensitive to the detailed energy spectrum
(Youdin & Lithwick 2007). Therefore, Equation (38) can be applied to all three
turbulence models considered in this work.
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the autocorrelation time m, and the Reynolds number Re. Our
work is a significant extension of calculations by OC2007, which,
although being widely adopted in the literature, are only applicable
to the Kolmogorov turbulence. As an example, we focus on three
different turbulence models: the standard Kolmogorov turbulence,
the IK model of MHD turbulence, and the MRI turbulence
described in Paper I. We calculate the grain collisional velocities
using numerical integration. In addition, we derive accurate
analytic approximations of the collisional velocities and give
scaling relations with the Stokes numbers and turbulence proper-
ties. To demonstrate the implications, we perform numerical
simulations of the grain size evolution in the outer regions of
protoplanetary disks and calculate the fragmentation and radial drift
barrier for grain growth in non-Kolmogorov turbulence models.
The main findings of this paper are summarized as follows:

1. We calculate the grain collisional velocities between two
dust grains in different turbulence models using both
numerical integration and analytic approximations
(Figure 2). The analytic approximation is simple and
accurate and can be readily implemented in complex
numerical codes to model the grain size evolution in
arbitrary turbulence models. We provide publicly avail-
able Python scripts implementing our calculations
at https://github.com/munan/grain_collision.

2. We introduce four characteristic regimes for the colli-
sional velocities, depending on the Stokes numbers of the
grains. We perform a detailed analysis of each regime,
revealing the dominant mechanism that governs the
collisional velocities and presenting the corresponding
scaling relations (Figure 3). In particular, we show that
the collisional velocities of small grains with St< 1
depend sensitively on the turbulence properties, with
( ) ( )D ~ -v St p m

12
2 1 (Equation (31)).

3. The collisional velocities of small grains in IK and Paper
I turbulence are much higher (more than an order of
magnitude for some grain sizes) than that in the
Kolmogorov turbulence (Figure 4).

4. We perform numerical simulations of grain size evolution
in the outer parts of protoplanetary disks. Compared to
the Kolmogorov turbulence, the higher grain collisional
velocities lead to faster grain growth in the IK and Paper I
turbulence models (Figure 5). For the MRI turbulence in
Paper I, grains can grow to submillimeter sizes within
∼0.1Myr even with a very low turbulence level
(α= 10−4) at 70 au. For Kolmogorov turbulence, growth
to such sizes takes ∼1Myr.

5. The faster grain growth in the IK and Paper I turbulence
may lead to rapid increase of dust opacity at millimeter
wavelength (Figure 5). Increased collisional velocities
can also help to overcome the charge barrier for the
coagulation of micron-sized dust grains, accelerate the
growth of pebbles and planetesimals, and thus promote
planet formation in very young disks.

6. We calculate the fragmentation and drift barriers for grain
growth in non-Kolmogorov turbulence (Equations (36) and
(40)). Compared to the Kolmogorov turbulence, the higher
grain collisional velocities for the IK and Paper I turbulence
lead to smaller values of afrag and larger values of adrift.

In the future, our calculations can be implemented in numerical
codes to explore the effect of non-Kolmogorov turbulence on
the grain size evolution in a wide range of environments.
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helpful discussions on this work. V. Akimkin acknowledges
the support of the Ministry of Science and Higher Education
of the Russian Federation under grant 075-15-2020-780
(N13.1902.21.0039).

Appendix A
Eddy Class

The eddy classes in Equation (12) are determined by both the
autocorrelation time τ(k)= 1/(kv(k)) and the eddy crossing
time τcross(k)= 1/(kvvel(k)). Below we show that v(k) vrel(k)
for class I eddies, and hence τ(k) τcross(k) in this case.
Therefore, the transition scale k

*

can be calculated from the
condition τ(k)= τf. There are three scenarios:

1. St� 1. In this case τf> τL, and all eddies are class III.
2. ( ) < <h

-k k St 1L
m . We define kf to be the scale where

τ(kf)= τf, and thus kf/kL= St−1/m. Below we obtain that
vrel(k) is an increasing function of k for k� kf, whereas
τ(k) always decreases with k. Therefore, for our purposes it
is sufficient to show that v(kf) vrel(kf). Because τ(k)� τf
at k� kf, we can approximate vrel(k) in Equation (11) with
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To approximate the integration, the second-to-last step
used the fact that 2m+ 1− p> 1 for the turbulence
models we considered (Table 2), as well as kf/kL> 1. For v
(k), we have
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Comparing Equations (A1) and (A2), we obtain v(kf)
vrel(kf), and thus τ(kf) τcross(kf). This gives k

*

≈ kf and
thus
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m. In this last case, we compare vrel(kη) to
v(kη). From Equation (A1), we have
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and similar to Equation (A2),
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This gives v(kη) vrel(kη) and τ(kη) τcross(kη), similar to
the previous case. In this case, all eddies are class I.

Appendix B
Grain Size Distribution and Opacity Coefficients

Figure 6 shows the evolution of the grain size distribution
and wavelength-dependent dust opacity coefficients at 70 au

for the Kolmogorov, IK, and Paper I turbulence models. The
early evolution at t 104 yr is governed by the Brownian
motion and therefore insensitive to the turbulence properties.
Higher turbulence-induced collisional velocities in the Paper
I case (see Figure 4) push the peak of the grain size
distribution to ∼100 μm already at 105 yr, giving rise to an
earlier increase of dust opacities in the millimeter wavelength
range.

Figure 6. Evolution of the grain size distribution (left) and the corresponding opacity coefficients (right) in the disk midplane at 70 au. The Kolmogorov, IK, and
Paper I turbulence cases are shown in the top, middle, and bottom panels, respectively. The red dashed lines in the right panels indicate the opacity coefficients in the
millimeter wavelength range by Beckwith et al. (1990).
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