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Abstract

Using observed data from the literature, we compare in one single publication the angular momentum (AM) of low
surface brightness galaxies (LSBGs), with that of high surface brightness galaxies (HSBGs), a comparison that
either is currently spread across many unconnected references, or simply does not exist. Partly because of the
subject, this has received little attention outside the realm of simulations. We use previous results of the stellar
specific AM j* from the SPARC database containing Spitzer 3.6 μm photometry and accurate H I rotation curves
from Lelli et al. using a sample of 38 LSBGs and 82 HSBGs. We do this with the objective of comparing both
galaxy populations, finding that LSBGs are higher in the Fall relation by about 0.174 dex. Additionally, we apply
and test different masses and formation models to estimate the spin parameter λ, which quantifies the rotation
obtained from the tidal torque theory, finding no clear evidence of a difference in the spin of LSBGs and HSBGs
under a classic disk formation model that assumes the ratio ( fj) between j* and the specific AM of the halo is ∼1.
In another respect, by using the biased collapse model, where fj depends on the star formation efficiency, it was
found that LSBGs clearly show higher spin values, having an average spin of ∼2 times the average spin of HSBGs.
This latter result is consistent with those obtained from simulations by Dalcanton et al.

Unified Astronomy Thesaurus concepts: Galaxy evolution (594); Galaxy formation (595); Galaxy dark matter
halos (1880); Galaxy kinematics (602); Galaxy dynamics (591); Low surface brightness galaxies (940); Galaxy
rotation (618); Galaxy rotation curves (619)

1. Background and Introduction to the Problem

When we look at the properties of galaxies, the angular
momentum (AM hereafter) J, along with the mass M and
energy E, emerges as one of the most important and studied
physical parameters. The relationship between the AM with the
evolution and formation of galaxies has been studied in various
ways. Examples include studies of the origin of the AM in
galaxies (e.g., Peebles 1969), the conservation of AM (e.g.,
Fall 1983), the relationship with morphological types (e.g.,
Romanowsky & Fall 2012), the effect of mergers in the gain or
loss of AM (e.g., Lagos et al. 2017), the many numerical
simulations that try to match the observations (e.g., Lagos et al.
2016; Kulier et al. 2020; Navarro & Steinmetz 2000), and
others. In particular, there is an aspect that, although it has been
studied, still holds many loose ends, and that is the case of the
AM of low surface brightness galaxies (LSBGs; e.g., de Blok
et al. 1996; Schombert et al. 2001; O’Neil 2008; Galaz et al.
2015), and how it compares with that of high surface brightness
galaxies (HSBGs). The very existence of LSBGs posses a
challenge to modern galaxy formation and evolution theories.
Schombert et al. (2001) compares the study of LSBGs to
psychologists studying extreme behaviors. Like with people, if
there is a hope to understand galaxies, a need to be able to
explain the extreme conditions that LSBGs present is required.
Furthermore, studies indicate that LSBGs dominate the volume
density of galaxies (e.g., Dalcanton et al. 1997; O’Neil &
Bothun 2000). It seems that, in reality, these extreme behaviors
are quite common. In another respect, LSBGs actually provide
great opportunities to understand galaxy evolution, as they are
considered to be dominated by dark matter (DM), which makes
them useful to test DM theories. And because they are believed
to evolve slowly compared to HSBGs, they are sometimes
referred to as fossils of galaxy formation.

Following this logic, if the aim is to understand the AM of
galaxies, it might be insightful to take a look at the AM of
LSBGs. For example, a major issue regarding the AM of
galaxies is the need to understand the reasons for the observed
differences in AM of spirals and elliptical galaxies, with
observations that result in spirals having systematically higher
AM. This issue began from observational results, but on the
other hand, in the LSBG versus HSBG case, this comparison
arose mainly from simulations (e.g., Dalcanton et al. 1997),
resulting in LSBGs having, in general, higher AM. Never-
theless, few studies had actually put together both observed
measurements of the AM of LSBGs and HSBGs, side by side,
and contrasting results with models. With this work the goal is
not to provide new AM computations of galaxies, as those
already exists in the literature. Instead, we aim to connect the
existing results and present them under the context of an
LSBGs versus HSBGs comparison.
In the context of the Cold Dark Matter model, galaxies are

formed in the center of DM halos, and the origin of the AM is
explained by the so-called Tidal Torque Theory (TTT), first
introduced by Hoyle (1949) and later expanded upon by
Peebles (1969) in the gravitational instability picture before the
gravitational collapse. Halos acquire their AM via tidal torques
exerted by neighboring overdensities of other halos, and then
DM and baryons start to collapse in the overdense regions
conserving AM. Since DM does not dissipate energy, its
collapse halts when the system virializes. We should add that
the gas, which is also being affected by the tidal torques, can
dissipate energy. Because of this, the gas can lose potential
energy and fall to the center of the halo, where it becomes cold
and dense enough for nuclear fusion to ignite and thus starts
star formation.
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The AM obtained in this way can be quantified in the form
of the dimensionless spin parameter λ= J|E|1/2G−1M−5/2

(Peebles 1971), with G being the gravitational constant. Or,
alternatively, some authors use (Bullock et al. 2001)

( )l¢ =
j

R V2
, 1

vir vir

where Rvir is the virial radius, =V GM Rvir vir vir is the
circular velocity at Rvir, with Mvir being the virial mass, and j is
the specific AM, defined by j≡ J/M. Instead of using J, we
define the specific AM j, because it contains information about
both the length scale, Rd, and rotational velocity. This value,
however, depends on the mass of the galaxy since the rotational
velocity is correlated with mass by the Tully–Fisher relation
(Tully & Fisher 1977). This is the advantage the spin parameter
has over the specific AM, since the spin does not depend on the
mass. But, in another respect, j is easier to estimate (needing
less assumptions than the spin), and can still provide much
insight about the formation of galaxies, especially from the j–M
diagram.

A classic example of the specific AM being capable of
explaining the possible evolution of galaxies, is the case of the
Fall relation, which shows that galaxies of different morpho-
logical types fall in different regions of the j*–M* diagram (the
∗ subscript refers to the stellar component). It was first
introduced by Fall (1983), who shows that spiral galaxies
follow a tight trend, while ellipticals are more spread out and
located below the spirals in the diagram. Later, Romanowsky
& Fall (2012) and Fall & Romanowsky (2013) reproduced the
same diagram with more data and additional techniques,
showing that at a fixed mass M*, elliptic galaxies have about
∼4 times less AM than spirals. They claimed that galaxies of
different morphological types would fall at different regions in
the diagram, so that they would have trends with the same
slope of ∼2/3 but different zero-point, with the most disk-like
galaxies on top and the more bulge-like on the bottom of the
diagram, as shown in Figure 1. They obtain results consistent
with this model, and find that, on average, lenticular galaxies
fill the gap between ellipticals and spirals, suggesting that the

Hubble sequence could be replaced by a more physically
motivated classification, based on angular momentum and
stellar mass.
It is rather apparent that the DM must have a big effect on

the AM distribution of baryons, considering that the strongest
evidence supporting the existence of DM halos is the rotation
curves of galaxies (Rubin et al. 1970), which are a key
ingredient of AM. Not only the rotational velocity, but also the
radial distribution of baryons would be affected by the DM
(more on that later in this paper). Furthermore, a more
straightforward connection can be made, since from the TTT
we can arrive at the relation

( )lµj M , 2h h
2 3

with jh being the specific AM of the halo and Mh being the
mass of the halo. The j*–M* relation actually provides an
important connection with the DM component of the AM. If
the retained AM is defined as fj= j*/jh, the star formation
efficiency as f* =M*/Mh, and the relation (2) is multiplied by
fj and

-f 2 3

*
the following expression is obtained,

( )lµ -j f f M . 3j
2 3 2 3

* * *

This means that slopes of∼ 2/3 in the Fall relation imply
that the factor l -f fj

2 3

*
is roughly constant, and any deviations

from this slope would suggest systematic changes in this
physically related factor.
Aside from the TTT, another mechanism in which galaxies

might gain or lose specific AM is the merging process (e.g.,
Lagos et al. 2017). Since we know from Toomre & Toomre
(1972) that a massive elliptical could be formed after a major
merger of two disk galaxies, this could explain the position of
the ellipticals in the diagram. Fortunately, for the purpose of
this work, there is not a strong reason to consider mergers when
comparing LSBGs with HSBGs, since LSBGs seem to be
mostly isolated systems (Rosenbaum & Bomans 2004; Tano-
glidis et al. 2021), with very late Hubble types.
LSBGs are commonly defined as galaxies with central

surface brightness (SB) μ0 fainter than 22 B mag arcsec−2,
which corresponds to a value outside the range that Freeman
(1970) initially find for the central SB of spirals and S0, of
μ0= 21.65± 0.30 B-mag arcsec−2. Initially, it was thought
that galaxies with fainter values do not exist, but later Disney
(1976) showed that this apparent physical limit (called initially
the “Freeman limit”) was indeed a bias from the photographic
plates: the value was basically the sky brightness registered by
the plates themselves. Any disk fainter than this value would be
submerged in the sky brightness. Disney showed then the
existence of a large fraction of LSBGs, arguing that they were
not visible because of the difficulty of detecting galaxies of
faint SB given the limitation of photographic plates. Perhaps
the first grand design LSB galaxy that really surprised the
astronomical community was the giant LSB Malin 1,
discovered in 1986 (Bothun et al. 1987), and since then many
other LSBGs have been found, giving birth to a new area of
research.
One recursive question is whether LSBGs follow the same

Tully–Fisher (TF) relation as normal galaxies (e.g., Zwaan
et al. 1995; Chung et al. 2002). At present we found that they
mostly do follow the same relation, and the implications of this
are best shown by Zwaan et al. (1995) in a small calculation;
since by definition LSBGs have fainter I0 than HSBGs, where

Figure 1. Schematic of the Fall relation (Fall 1983). On top disk-like galaxies
appear (Sc, Sb, and Sa), and at the bottom bulge-like galaxies are situated
(ellipticals), with lenticular galaxies in between spirals and ellipticals.
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I0 denotes the central SB in physical units, the difference in I0
must be compensated by a difference in mass to light ratio M/
L. Consequently, from the relations µM v Rdmax

2 and
µL I Rd0

2, where L is luminosity, and vmax is the maximum
rotation velocity, we can write

( )
( )µL

v

I M L
. 4max

4

0
2

Since the TF relation expresses that µL vmax
4 , then

( )I M L0
2 needs to remain constant, implying higher M/L

ratios for LSBGs. Also, from these very same relations we have
( ) ( ) s̄µ = -M L R Md

2 1, with s̄ the mean surface mass
density. Thus, I0∝ σ2, proving that LSBGs are less dense than
HSBGs. On the one hand, both of these implications indicate
that LSBGs have a higher fraction of gas and DM, and lower
star formation rates. On the other hand, simulations made by
Dalcanton et al. (1997) show that rotation curves with high AM
have higher M/L ratios due to the dominance of dark matter
(DM) at any radius, suggesting that high AM systems should
be found mostly in LSBGs. They also find that changes in λ
affect the form of the rotation curves: when λ is increased, the
collapse factor of baryons decreases, leaving them at a higher
radius, so that the baryonic fraction at any radius is smaller.
The latter shows that the rotation curve of LSBGs is mostly
dominated by the DM distribution, with curves that rise more
slowly, rather than steeply.

Besides simulations, an important question is what are the
observations telling us about the spin of LSBGs? The problem
is that there are few direct computations of the spin from
observed data in LSBGs and HSBGs, because of the trouble in
estimating the AM of DM. Another problem is that works
about the observed AM in galaxies often have other main
interests, which have distributed information regarding the AM
in LSBGs as minor results in various unconnected papers.
Thus, with this work the purpose is, on the one hand, to
compute the spin distributions of LSBGs and HSBGs from
observational data using a variety of different common
assumptions, and on the other hand, to take those already
existing results about AM in galaxies and present them in a
single publication, under a direct LSBG versus HSBG
comparison. This paper should provide a simple but useful
connecting point that organizes what we know about the AM of
LSBGs.

2. Data

2.1. Data and Sample

The data used in this paper comes from the Spitzer
Photometry and Accurate Rotation Curves (SPARC) database
(for a complete description of the SPARC sample, see Lelli
et al. 2016), which we chose because it provides a complete,
medium-sized sample with enough information to compare and
study the AM of the two galaxy populations in question. It is
comprised of a collection of 175 H I rotation curves from
various compilations made with the WSRT, VLA, ATCA, and
GMRT telescopes, along with 3.6 μm near-infrared images
from the Spitzer telescope. SPARC aims to have a broad galaxy
sample, with morphologies ranging from S0 to Im/BCD,
luminosity values from∼107 to∼1012 Le, effective SB from
∼5 to ∼5000 Le pc−2, and rotational velocities ranging from
∼20 to ∼300 km s−1. Galaxy distances were measured in three
different ways: accurate distances from the red giant branch,

cepheids, and supernovae (errors between ∼5% and ∼10%),
distances from the Ursa Major cluster, and uncertainties
estimated from the Hubble flow assuming H0= 73 km s−1

Mpc−1, with errors between ∼10% and ∼30% (these errors
account for peculiar velocities and an uncertainty of 7% in H0).
They perform surface photometry at 3.6 μm and obtain central
SB μ0 for galaxies by fitting exponential functions to the outer
parts of the SB profiles. They also estimate the disk scale length
Rd.
The selected sample for this work is similar to most of the

existing SPARC samples used in the literature. Using a quality
flag to select galaxies, only flags of less than 3 would be used.
Only galaxies with inclinations of 30°� i were considered, due
to the uncertainty in their rotation velocity. And finally, only
galaxies with valid measurements of the mean velocity along
the flat part of the rotation curve, vf, were included. This leaves
a total sample of 120 galaxies. Subsequently, and in order to
clearly separate LSBGs from HSBGs, the central SB, I0, in
physical units (Le pc−2), was converted to magnitude units by
the formula1

( ) ( )m = + -mm I21.572 2.5 log , 50 ,3.6 m 0

where me,3.6 μm= 3.26 is the magnitude of the Sun at 3.6 μm
(Willmer 2018). All galaxies with μ0> 19 (3.6 μm) mag
arcsec−2 were considered as LSBGs, as it is the limit
Schombert & McGaugh (2014b) find in a sample of LSBGs,
from which most of the LSBGs in SPARC were taken. The
total central SB distribution is shown in the histogram of
Figure 2.
Morphologies of the resulting sample are presented in

Figure 3, which are also provided by the SPARC database
(Lelli et al. 2016). From here it can be noted that the LSBGs are
mostly classified as very late Hubble types, such as Sm and Im.
This is because Hubble classification does not represent very
well the physical differences in LSBGs (McGaugh et al. 1995),
and tends to classify LSBGs as very late types.

Figure 2. Central SB (3.6 μm) histogram of the final sample. The red vertical
line marks the separation between HSBGs and LSBGs. 82 are HSBGs and
38 are LSBGs.

1 Borrowed from Schulz (2017).

3

The Astrophysical Journal, 915:125 (10pp), 2021 July 10 Salinas & Galaz



2.2. Computing the Stellar Angular Momentum

The AM of the ith component (stars, gas, ...) in a volume V is
given by

∭ ( ) ( ) ( )= Sr rJ v dV , 6i
V

i i

where vi(r) is the rotation velocity at the point r, and Σi(r) is the
mass density at r. In the case of a disk, this translates into

( ) ( ) ( )òp= SJ v r r r dr2 , 7i

R

i i
0

2
max

where r is the galactocentric radius and Rmax is the maximum
radius of the disk. Similarly, the mass for a disk is

( ) ( )òp= SM r rdr2 . 8i

R

i
0

max

Subsequently, the specific AM can be calculated using
Equations (7) and (8).

In this way, if the rotation velocity is measured, and the mass
density radial profile is computed, j can also be computed. In
practice, however, this is not always possible. To estimate the
specific AM without measuring Σi(r), many authors use the
relation j*≈ 2Rdvf for the stellar component of disk galaxies.
This is the method that, for example, Romanowsky & Fall
(2012) use in their paper for the disk-like galaxies. The
simplicity of this relation makes it convenient for large data and
quick estimates, although it is not as accurate as computing the
AM through the density profile. Nevertheless, for the SPARC
data the radial profiles are possible to compute by assuming a
constant stellar mass-to-light ratio. Multiple studies suggest
that the stellar mass-to-light ratios in the near-infrared are
constant for a large range of morphology types and masses
(e.g., Schombert & McGaugh 2014a). Hence, we use a similar
procedure as in Posti et al. (2018a). Here, we consider a bulge/
disk decomposition (from Lelli et al. 2017), where a stellar
mass-to-light ratio of ϒb= 0.7Me/Le is used for the bulge, and
a stellar mass-to-light ratio of ϒd= 0.5Me/Le is used for the

disk. Resulting in the radial profile being described by

( ) ( ) ( ) ( )S = ¡ + ¡r I r I r , 9b b d d*
where Ib and Id are the SB of the the bulge and disk,
respectively. Then the stellar AM is calculated using
Equations (9) and (7), together with the values of v*(r) from
the rotation curves, with the mass calculated using
Equations (9) and (8). We calculate integrals numerically
using the composite Simpson method. Then the specific AM is
computed as j* = J*/M*. The error in j* is estimated as

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( )

( )åd d d
d

= + +
=

j R
N

v
v

i
i v

D

D

1

tan
, 10d

i

N

i
f

f
1

2
2 2

*

where N is the number of data points, δvi is the error in the
velocity on each point of the rotation curve, D is the distance to
the galaxy, and δD is the distance error. The error in Rd is
estimated as 10% (Lelli et al. 2016). Finally the error of M* is
estimated as

⎛
⎝

⎞
⎠

( ) ( ) ( )d d d
d

= ¡ + ¡ +M L L M
D

D
2 , 113.6

2
3.6

2
2

* * * *

where δL3.6 and δϒ* = 0.13 (same used in Lelli et al. 2019) are
the errors of the total luminosity at 3.6 μm (L3.6) and ϒ*,
respectively.
It is important to stress that the stellar specific AM of the

SPARC sample has been measured multiple times by other
authors using different methods. Thus, the purpose of
measuring it again is not to provide new values, but to use
them to make a direct comparison between LSBGs and
HSBGs, and to later estimate their spins. The former procedure
is basically the same as in Posti et al. (2018a), with the main
difference being the filter criteria, which is more rigorous in
their paper than ours. The reason we do not apply the same
criteria is because for this work we need to have a significant
number of LSBGs, which would be drastically reduced
otherwise. Thus, better measurements of the AM of LSBGs
might be required to allow for better results.

2.3. Estimating the Spin Parameter

If the spin parameter of the halo is to be measured, first we
should decide if the original definition of spin has to be used, or
if the definition given by Bullock et al. (2001) in Equation (1)
is preferred. The main problem with the original definition is
that it is not easy to accurately estimate the energy, because it
depends on the density profile. For example, one way of
measuring the spin is to follow Mo et al. (1998), where the
assumption is that the halo is an isothermal sphere, and from
the virial theorem one finds that the energy can be expressed as

( )= - = -E
GM

R

M V

2 2
. 12vir

2

vir

vir vir
2

Using a Navarro–Frenk–White profile (NFW; Navarro et al.
1996), one finds that the energy is the same as that for an
isothermal sphere, but multiplied by a factor of FE(c) that
depends, in turn, on the concentration factor c. To obtain the
virial masses, in this work we use the results from Li et al.
(2019), in which they employ three different halo density
profiles to estimate the halo mass, by fitting the SPARC
rotation curves using the NFW profile, the Einasto profile

Figure 3. Morphology distribution of LSBGs (blue) and HSBGs (red). The
Hubble types are given in numerical form such that 0 = S0, 1 = Sa, 2 = Sab,
3 = Sb, 4 = Sbc, 5 = Sc, 6 = Scd, 7 = Sd, 8 = Sdm, 9 = Sm, 10 = Im, and
11 = BCD. The morphological classification is provided by Lelli et al. (2016).
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(Einasto 1965), and the DC14 profile (Di Cintio et al. 2014).
For this reason, it is considered that a better option would be to
use the value l¢ of Equation (1), instead of the definition given
by Peebles (1971), in order to avoid calculating the energy.
Although, in fact, obtaining l¢ is actually equivalent to using λ
and assuming the halo is an isothermal sphere. Hereafter, l¢
will simply be referred as λ.

The virial radius can be obtained from the virial mass from
the relation

( )p r= DM R
4

3
, 13c cvir vir

3

where ρc is the critical density of the universe and Δc is the
over-density constant. In order to be consistent with the halo
mass results of Li et al. (2019), we adopt Δc= 200 (for a
discussion about the different halo mass definitions, see
White 2001), thus Mvir=M200 is redefined and Rvir= R200.
Using this value, the virial radius looks like

⎜ ⎟
⎛
⎝

⎞
⎠( )

( )=R
M G

H z100
, 14200

200
2

1 3

with

( ) ( )( ) ( )
( )

= W + - W - W + + W +L LH z H z z1 1 1 ,

15
0 0

2
0

3

the Hubble parameter, z the redshift, and H0= 100h Mpc−1

km s−1. We assume a ΛCDM cosmology, with ΩΛ= 0.692,
Ω0= 0.308, and h= 0.678. Galaxy redshifts were taken from
the NASA/IPAC Extragalactic Database.2

Finally, in order to estimate the specific AM of the halo of
the galaxies, jh, two formation models are used in combination
with three halo mass models. The first one used is the so-called
classic model. In this model, the specific AM of the disk is
equal to that of the halo (e.g., Fall & Efstathiou 1980; Mo et al.
1998). The second model is the so-called biased collapse model
(van den Bosch 1998; Romanowsky & Fall 2012; Posti et al.
2018b), in which fj depends on f*.

3. Models

3.1. Halo Mass Models

To obtain the virial masses of the galaxies, we use values
computed by Li et al. (2019). These authors use the NFW,
Einasto, and DC14 profiles for the dark matter halos to fit the
SPARC rotation curves, and obtain the halo masses. Next, we
present the corresponding radial profiles of the mass models, as
well as a brief description of the properties of some of them.

We start with the NFW density profile. This comes from an
N-body simulation in which the radial distribution of a
particular halo is given by

( )
( )( )

( )r r
r

=
+

r
r r r r1

, 16c
s s

0
2

where ρ0 and rs are free parameters. This profile, however, fails
when applied to LSBGs due to what is known as the “Cuspy
halo problem,” where the observed density in the inner regions
is lower than in the model. This implies that the NFW profile

tends to overpredict the mass in some galaxies, and clearly the
matter density at the galaxy bulges. Additionally, this model
does not fit the rotation curves of LSBGs as well as other
profiles allow, like DC14 (Katz et al. 2017).
The next profile model that is used is the Einasto one,

defined by

⎜ ⎟⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

( ( ) ) ( )r r = - --
-

r n
r

r
ln 2 1 , 17

n

2
2

where r−2 is the radius at which the density profile has a slope
of 2, ρ−2 the density at that radius, and n is a parameter that
describes the shape of the profile.
Finally, the DC14 profile, is based on a hydrodynamic

simulation that introduces a dependence on f*, in such a way
that baryons affect the shape of the DM distribution, which
goes as

( )( ) ( )
( ) ( )( )r

r
=

+
g a b g a-r

1
, 18s

r

r

r

rs s

with ρs and rs free parameters, α, β, and γ parameters
depending on f*. In particular, this model is worth considering
since LSBGs should have smaller values of f* when compared
to HSBGs, because of the low star formation rates and the
dominance of DM in LGBGs.

3.2. Classic Disk Formation Model

For the computation of the specific momentum of the halo,
we consider two models. The first one, the classic disk
formation (CDF hereafter) model, assumes that the specific
momentum of the disk is equal to the halo specific AM, i.e.,
jd= jh. This assumption was first used by Fall & Efstathiou
(1980), under the argument that baryons and DM experience
the same external torques, before separating into two different
components. This assumption also implies that fj is constant
and close to 1 for all galaxies, which is unlikely since fj
depends on factors such as the dynamical friction, and should
be less than 1. But this is not the only problem. It turns out that
even a constant fj< 1 does not work in this case. As shown by
Posti et al. (2018b), there is no constant fj that is able to
reproduce the observed Fall relation. Keeping this in mind, the
results derived from this model should, nevertheless, at least
provide a limiting case for the values of the spin of the galaxies.
To calculate the specific AM of the disk, we chose the same

procedure used to compute j*, but considering only the disk
component in Equation (7).

3.3. Biased Collapse Model

Since the CDF model does not work for all cases, we also
consider the biased collapse model (van den Bosch 1998;
Romanowsky & Fall 2012; Posti et al. 2018b). In this model, fj
is correlated with the star formation efficiency ( f*); and since
f* is not constant, fj is not either. This model postulates that
stars are formed, first, in the inner parts of the galaxy, where the
gas density is higher and where the cooling is more effective.
While the outer parts, with richer AM, fail to form stars.
Meaning j* will be lower than the total specific AM. If we add
that the momentum inside a radius r grows as a power law with
the gas mass, ( ) ( )< µ <j r M r s

gas gas (van den Bosch 1998;
Bullock et al. 2001; Dutton & van den Bosch 2012), this

2 The NASA/IPAC Extragalactic Database (NED) is operated by the Jet
Propulsion Laboratory, California Institute of Technology, under contract with
the National Aeronautics and Space Administration.
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implies that

⎜ ⎟
⎛
⎝

⎞
⎠

( )=f
f

f
, 19j

b

s

*

where fb= 0.157 is the baryon fraction. Since M* and M200 are
available, fj can be calculated using this equation, obtaining jh,
which can later be used to get the spin. We use the exponent
s= 0.4, as in Posti et al. (2018a).

The first consequence of considering this model applied to
LSBGs and HSBGs, is that we expect f*/fb to be smaller in
LSBGs, and thus fj would be smaller and jh would be higher.
Therefore, we should find higher spins for the LSBGs in this
model when compared to the CDF model.

However, when considering this method, it is important to be
aware of the glaring disadvantage that comes from the use of an
exponent taken from fittings of this same sample. The model is
basically forced to work, which makes the results seem
artificial. On the other hand, this does not mean that the
concepts and fundamentals of the model are wrong. It is worth
considering both formation models, because the CDF model is
known to not be accurate, and the biased collapse model seems
too convenient. In other words, the truth can probably be found
somewhere in between the results of the two formation models.

4. Results

4.1. Size, Rotation, and Mass Relations

Before going straight to the results of the AM, it is useful to
first analyze the basic quantities involved in the computation of
the AM. These are the size (Rd), rotation velocity (vf), and mass
(M*) of the galaxies. To start, we present in Figure 4 a size–
mass relation together with their distributions. Figure 5 shows
the rotation velocity component and the stellar mass Tully–
Fisher relation.

From Figure 4, it can be noted that LSBGs have a wide range
of masses between ( ) – ~M Mlog 7 12* , while HSBGs lie
between ( ) – ~M Mlog 8 12* . Note also that the number of
high mass ( ( ) >M Mlog 10* ) LSBGs is significantly lower
than that of the HSBGs. This is important to note, since the AM
increases with mass, although this does not really affect the
trends in the j–M diagram. It is also worth noting that low
stellar mass LSBGs have larger sizes in general, but above

( ) ~M Mlog 10* , LSBGs are smaller than HSBGs.

As expected from previous measurements of the TF relation
in the SPARC sample, all the galaxies follow the same TF
relation, with LSBGs and HSBGs equally distributed around
the linear fit of Figure 5, which is only a replot of the results
found in Lelli et al. (2019) but with different colors for LSBGs
and HSBGs to better show that there is not a distinction
between both populations in the TF diagram. It is worth noting
that the TF relation is quite similar to the Fall relation, since
j*∝ Rdvf. This means that should the size of HSBGs be the
same as LSBGs, then both would follow the same Fall relation.
However, Figure 4 implies that this should not be expected to
be the case. In addition, if we take into account the work of
Dalcanton et al. (1997), galaxies with high spin values have
baryons spread to a higher radius. Assuming the hypothesis
that LSBGs have higher spin, and expecting the AM of baryons
to be conserved during collapse, a higher specific AM in
LSBGs could be reflecting this increase in radius.

4.2. Fall Relation for LSBGs and HSBGs

After measuring j* andM*, we perform a linear fit of ( )jlog
*and ( )Mlog * of the entire sample of LSBGs and HSBGs in

Figure 6 using the orthogonal distance regression method
(Boggs & Rogers 1990). The corresponding error bars are
calculated from the use of this method, together with the
previously discussed uncertainties of the specific AM and
stellar mass. This plot is similar to that of Posti et al. (2018a),

Figure 4. Size–mass relation and distributions of LSBGs (blue) and HSBGs
(red). It is apparent from this plot that the fraction of LSBGs is very low at
masses higher than ( ) ~M Mlog 10* , and only few have smaller sizes
compared to the HSBGs at the same stellar mass.

Figure 5. Stellar mass Tully–Fisher relation. This is a replot of the results in
Lelli et al. (2019), but emphasizing the two populations of galaxies to show that
both LSBGs (blue) and HSBGs (red) follow the same relation.

Figure 6. Linear fit to the j*–M* relation of the entire sample, with LSBGs
(blue) and HSBGs (red). It is noted that LSBGs are mostly over the HSBGs,
meaning that at a fixed stellar mass, they show, in general, higher stellar AM.
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but with a slightly larger sample (this one has more LSBGs
included) due to fewer filter criteria. From Figure 6 it is clear
that LSBGs have higher j* in comparison with HSBGs at a
fixed M*, indicating to us that the position of galaxies in the
Fall relation is strongly related with their surface brightness.
However, it is worth noting that the few massive LSBGs in the
sample are not necessarily above the HSBGs, and in fact seem
to be a bit lower. A possible explanation for this could be that
these particular galaxies have earlier types than the rest of the
LSBGs, and therefore one can speculate that during their
evolution they might have been involved in more gravitational
interactions lowering their AM. Though this is just a rough
hypothesis, which is hard to confirm with only a small number
of LSBGs in this mass range. An alternative explanation for
this is presented at the end of the next section, where we
estimate the spin and try to find a connection with the DM
component. But perhaps we are in need of more and better data
to have a complete and accurate picture. If we instead repeat
this plot using j*≈ 2Rdvf the massive LSBGs do show higher
AM than HSBGs, which raises the question of whether we
really have accurate measurements of j*. More observations of
massive LSBGs would definitely help in this regard.

Since most of the LSBGs are classified as late types and the
Fall relation was first studied using the morphological type as a
type or population discriminator, it may be challenged if these
results are only a consequence of the morphology distribution
of the sample. Hence, we can ask if differences stand if only
one galaxy type is considered. In an attempt to answer this
question we plot in Figure 7 the residuals from the linear fit of
Figure 6 against central SB, but also against Hubble types.
From here, it is apparent that most of the LSBGs are of later
types than HSBGs, but with a closer inspection it seems that
even if LSBGs and HSBGs are considered to be of the same
morphological type, LSBGs still tend to be located above the
HSBGs, which is clearer if we look at morphology types
between 7 and 10. This seems to indicate that the scatter in the
Fall relation might be better explained by a range in stellar
density, rather than only a range in morphology. However, it is
also true that this is not a large enough sample to claim this
with confidence. In any case, even if it is a consequence of the
morphologies in the sample, LSBGs definitely seem to have
higher specific AM as compared to HSBGs, finding an average
difference of 0.174 dex between the residuals of LSBGs and
HSBGs.

From these results questions emerge: in the first place, why
LSBGs have a higher specific AM than HSBGs? And, in which
step of their evolution do they gain this systematically higher
AM? One explanation could be mergers, as is usually invoked
in the spiral versus elliptical problem. In this case, however, it
seems unlikely due to the nature of LSBGs: considering the
fact that LSBGs populate less dense environments (Prole et al.
2020, and references therein), we expect LSBGs to participate
in fewer galaxy–galaxy interactions than HSBGs. On the other
hand, one could suggest, based on the simulation from
Dalcanton et al. (1997), that it is the spin of LSBGs that is
higher than that of HSBGs, which could explain the higher j*
found in the Fall relation.
Another possibility that is worth considering is that -f fj

2 3

*could be higher for LSBGs than for HSBGs. The last option of
expecting f* to be smaller for LSBGs, does seem possible as
well, but the factor fj also needs to be taken into consideration.
Under the CDF model, fj should not be too different between
LSBGs and HSBGs, meaning that a small f* might be sufficient
to explain the higher j* in LSBGs. But, on the other hand, with
the biased collapse model, small values of fj are expected for
LSBGs, which might cancel-out the contribution that a small f*
gives to the specific AM. If this last case is true, then higher
spins are perhaps a better explanation for higher specific AM in
LSBGs.

4.3. Spin Parameter for LSBGs and HSBGs

Before looking at the spin distribution for galaxies, we can
look at values in Table 1, containing the mean fractions of f*
and fj for LSBGs and HSBGs, and for every different model.
We see that f* is smaller for LSBGs in all mass models, and in
the biased collapse model, fj is also smaller for the LSBGs.
Therefore, we should expect jh to be higher for LSBGs.
In order to compare models with observations, we carry out

linear fittings of jh versus Mh. The fits explore whether or not
we find slopes close to the 2/3 value given by Equation (2). In
Figure 8 it is apparent that the trends of the diagrams in the
CDF model do not follow the expected relation of Equation (2),
with the closest slope being ∼1 on the DC14 model for the
HSBGs. Since the estimation of this result uses the values from
the Fall relation, this means that this particular model does not
match the observations, and it is inconsistent with relation (2).
What is found is that LSBGs are above HSBGs in Figure 8, but
that is expected, given that we use in this model fj∼ 1, and M*

with Mh are related, so this basically can be traced back to the
M*–Mh diagram. In fact, the large deviation from the trend at
high masses is most likely due to the same deviation at high
masses that occurs in the M*–Mh diagrams (e.g., the diagrams
in Li et al. 2019).
When we look at the spin distributions in Figure 9 it

becomes apparent that the LSBGs do not appear to have higher
spin than HSBGs, as we came to expect from Dalcanton et al.
(1997). On the contrary, the LSB population seems to have a
slightly smaller average spin. In the NFW model, no indication
whatsoever is found of a higher spin for LSBGs, but this might
be because the NFW model does not fit the rotation curves
well, especially in the case of LSBGs. Notwithstanding, in the
case of the Einasto and DC14 models, however, it is shown that
the peak of the LSBG distribution might be at a slightly higher
spin value. But, once again, the sample seems to be too small to
assert this with enough confidence, as the peaks do not appear
to be completely defined. This suggests that a larger sample

Figure 7. Plot of the residuals from the linear fit of Figure 6 with central SB.
Morphology is color coded following the numerical Hubble type of Figure 3.
The red vertical line marks the separation between HSBGs and LSBGs.

7

The Astrophysical Journal, 915:125 (10pp), 2021 July 10 Salinas & Galaz



would allow us to reveal that LSBGs have higher spin than
HSBGs when using this model.

The results of the biased model, however, are quite different
from the previous one. In fact, we found that the slope of the
jh–Mh diagrams follows the theorical value of 2/3 remarkably
well, meaning that this model is a good candidate to explain the
observations. From these diagrams we find once more that
LSBGs lie above HSBGs, but with slopes more parallel to each
other, with lower dispersion, and without the flattening of the
specific AM at high masses that occurs in the previous model.

Regarding the spin distributions of Figure 10, a clear
difference between HSBGs and LSBGs is present, with the
latter having a very high spin that almost doubles the spin of
the HSBGs in all of the halo mass models. This is interesting,
since a recent study made by Pérez-Montaño & Cervantes Sodi
(2019), finds that the mean spin of LSBGs is 1.3 to a factor of 2
larger than that for HSBGs. Although they estimated the spin
with the CDF model and a much larger sample as well, which
could indicate the slightly shifted peaks in Figure 9, the Einasto
and DC14 profiles could be perfectly in agreement with this
tendency observed in a larger sample. Another interesting
aspect when analyzing the biased collapse models is that spins
extend to larger values, especially for the LSBGs, which now
have a wider range of spins than HSBGs, contrary to what the
CDF model predicts, with a narrower distribution as compared
to the HSBGs.

Since f* is smaller for LSBGs, and the biased collapse model
is giving more consistent results, it seems more likely that the
retained AM fraction ( fj) of LSBGs is smaller than that of
HSBGs. This means that LSBGs would be more affected by the
biased collapse than their normal counterparts. A possible
reason for this, and borrowing again from the results in
Dalcanton et al. (1997), could be that the mass in LSBGs is
more spread out than in HSBGs. On the other hand, what is
also interesting is that even when they retain less specific AM,
they also end up having higher stellar AM than HSBGs, which,
under the biased collapse scenario, is best explained by LSBGs
having significantly higher spin values, as the results are
showing. This is making the biased collapse model consistent
and in agreement with the results from Dalcanton et al. (1997).

It is worth pointing out that when we compare only the
nonmassive galaxies, LSBGs have a higher average spin than
HSBGs, including the CDF model. This means that the high
mass part of the sample is responsible for the smaller spins in
LSBGs. And because we have a small number of massive
LSBGs to compare against massive HSBGs, we will need to
include more massive LSBGs if we are to paint a complete
picture. Another interesting point is the possible connection of
these results with those in the Fall relation of Figure 6, where
both galaxy populations have a smaller slope than 2/3, with

LSBGs having a slightly smaller one than HSBGs, because of
the drop in j* at high masses. If the biased collapse model is in
play, it is possible that when the mass of the LSBGs is higher,
they are finally more affected by the biased collapse, due to an
expected increase in radius and a decreasing density that lowers
their star formation efficiency, and thus, the specific AM
consequently becomes smaller.

5. Summary and Conclusion

Using a sample taken from the SPARC database, we find
that LSBGs have a higher stellar AM than HSBGs, locating
themselves higher in the Fall diagram, with an average
difference of about 0.174 dex higher than HSBGs. This is true
even if we compare galaxies of the same morphological type.
Additionally, we apply a combination of three different mass
models, and two different formation models, to compute the
spin parameter for a total of six different scenarios. Within the
CDF model, where the stellar retained fraction is constant and
close to 1, we find no clear-cut difference between the two
populations. Only one unclear result, in two of the mass
models, where the peak in the histogram of LSBGs seems to
position more to the right than the peak of HSBGs, is evident.
However, given that only 38 LSBGs were included, it is
suggested that with a bigger sample, a clearer definition of the
distribution peaks could be obtained, leading to LSBGs having
higher spins in the CDF scenario. On the other hand, with the
biased collapse model, which proved to be the most consistent
model with the observed Fall relation, HSBGs and LSBGs
have very different distributions, with LSBGs clearly having
higher spin values. With the mean spin of LSBGs being about
∼2 times higher than HSBGs in all the mass models.
The results in this work provide an observational—built-in—

comparison between the two populations in question, but there
is still room for further research for a better understanding of
the AM of LSBGs. The exact meaning in the values of the
slopes for both HSBGs and LSBGs in the Fall relation still begs
to be confirmed. Is the spin of LSBGs really higher than
HSBGs? Is a higher spin in LSBGs the sole reason for a higher
stellar AM when compared with HSBGs? Is the biased collapse
affecting massive LSBGs differently? This paper presents some
possible answers to these questions, but the full picture has yet
to be revealed, and this is, in part, because some of the more
general AM problems are not fully resolved.
On another note, subjects that are worth exploring in future

studies could include measuring the gas contribution to the
AM, which was not possible to attempt in this work due to the
lack of enough H I mass density profiles for tracing gas
distribution. This would broaden the understanding of the AM
distribution in galaxies, and could also be used to make better
estimations for the CDF model, by including the contribution

Table 1
Mean Values of f* and fj

Ratio CDF-NFW CDF-Einasto CDF-DC14 BC-NFW BC-Einasto BC-DC14

f̄ ,LSB*
0.0112 ± 0.0019 0.0170 ± 0.0033 0.0110 ± 0.0019 0.0112 ± 0.0019 0.0170 ± 0.0033 0.0110 ± 0.0019

f̄ ,HSB*
0.0346 ± 0.0033 0.056 ± 0.006 0.0305 ± 0.0031 0.0346 ± 0.0033 0.056 ± 0.006 0.0305 ± 0.0031

f̄ j,LSB 0.98 ± 0.05 0.98 ± 0.05 0.98 ± 0.05 0.298 ± 0.014 0.343 ± 0.017 0.299 ± 0.014

f̄ j,HSB 0.946 ± 0.022 0.946 ± 0.022 0.946 ± 0.022 0.484 ± 0.013 0.559 ± 0.016 0.461 ± 0.015

Note. This table contains mean values and corresponding f* and fj. BC stands for biased collapse. The values of f* are the same in both CDF and biased collapse
models, because they only depend on the mass model. The fraction fj in the CDF model is equal to j*/jd since within this model, the assumption is that jd = jh.
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Figure 8. jh–Mh diagrams of the CDF and biased collapse models for LSBGs (blue) and HSBGs (red). From the CDF plots we find that, for both populations, and for
all mass models, the slopes are higher than the value of 2/3 that is predicted by Equation (2). There is also considerable scatter, with an rms scatter for LSBGs between
0.4–0.55, and 0.36–0.39 for HSBGs. On the other hand, if we consider the biased collapse model plots, we obtain slopes that are well fitted by the model by
Equation (2), both for LSBGs and HSBGs. Also, the scatter is significantly lower, with a scatter of 0.23 for the LSBGs in the NFW model.

Figure 9. Spin distributions of the CDF model for LSBGs (blue) and HSBGs
(red). The vertical solid lines are the mean value of the distributions, and the
dotted lines represent the error of the mean. From these plots we note that
LSBGs always have an averaged spin that is slightly smaller than HSBGs. But,
on the other hand, the averaged spin of the LSBGs is contained by the error
bars of the HSBG averaged spin, and vice versa. This suggests that there is not
a big difference present in the spin of LSBGs and HSBGs for this model.

Figure 10. Spin distributions of the biased collapse model for LSBGs (blue)
and HSBGs (red). The lines represent the same values as in Figure 9. Here
results look very different from those in Figure 9, with higher spin for LSBGs
in all the mass models.
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of the gas into the specific momentum of the disk. Also, a
larger, well measured sample, would be welcome, especially
for massive LSBGs, since it should allow for clearer and more
complete results of the spin distribution of the galaxies.
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