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Abstract

We present a compendium of disk galaxy scaling relations and a detailed characterization of their intrinsic scatter.
Observed scaling relations are typically characterized by their slope, intercept, and scatter; however, these
parameters are a mixture of observational errors and astrophysical processes. We introduce a novel Bayesian
framework for computing the intrinsic scatter of scaling relations that accounts for nonlinear error propagation and
covariant uncertainties. Bayesian intrinsic scatters are ∼25% more accurate than those obtained with a first-order
classical method, which systematically underestimates the true intrinsic scatter. Structural galaxy scaling relations
based on velocity (V23.5), size (R23.5), luminosity (L23.5), color (g− z), central stellar surface density (Σ1), stellar
mass (M*), dynamical mass (Mdyn), stellar angular momentum ( j*), and dynamical angular momentum ( jdyn) are
examined to demonstrate the power and importance of the Bayesian formalism. Our analysis is based on a diverse
selection of over 1000 late-type galaxies from the Photometry and Rotation Curve Observations from Extragalactic
Surveys compilation with deep optical photometry and extended rotation curves. We determine the tightest relation
for each parameter by intrinsic orthogonal scatter, finding M*− V23.5, R23.5− j*, and L23.5− jdyn to be especially
tight. The scatter of the R23.5− L23.5, V23.5− (g− z), and R23.5− jdyn relations is mostly intrinsic, making them
ideal for galaxy formation and evolutionary studies. Our code to compute the Bayesian intrinsic scatter of any
scaling relation is also presented. We quantify the correlated nature of many uncertainties in galaxy scaling
relations and scrutinize the uncertain nature of disk inclination corrections and their effect on scatter estimates.

Unified Astronomy Thesaurus concepts: Disk galaxies (391); Galaxies (573); Galaxy structure (622); Galaxy
rotation curves (619); Galaxy photometry (611); Galaxy physics (612); Galaxy formation (595); Scaling relations
(2031); Bayesian statistics (1900); Galaxy properties (615); Astrostatistics (1882)

1. Introduction

Scaling relations are a critical component of any character-
ization and understanding of galaxy formation and evolutionary
scenarios. For instance, a necessary benchmark for the success
and fine-tuning of hydrodynamics or semi-analytic models of
galaxies is the degree to which they reproduce the slope and
scatter of known scaling relations for observed galaxies
(Steinmetz & Navarro 1999; Brook et al. 2012b; Scannapieco
et al. 2012; Knebe et al. 2018; Lagos et al. 2018). In addition,
one can describe the evolution of galaxies with time (redshift)
in terms of scaling relations (Mo et al. 1998; Hopkins et al.
2009; Peng et al. 2010; van der Wel et al. 2014; Mowla et al.
2019). Scaling relations of observed galaxies and their residuals
are also valuable for estimating galaxy distances (Tully &
Fisher 1977; Jacoby et al. 1992; Willick 1999; Sakai et al.
2000; Kourkchi et al. 2020) and fine-tuning structural
parameter corrections (Tully & Fouqué 1985; Giovanelli
et al. 1994; Willick et al. 1997; Courteau et al. 2007;
Giovanelli 2013). They can also drive the discovery of new
physical relationships (Bender et al. 1993; Woo et al. 2008;
Beifiori et al. 2012; Ellison et al. 2020).

Galaxy scaling relations are typically linear in log scale and
are therefore characterized by three quantities: slope, intercept,
and scatter. Cold dark matter (ΛCDM) galaxy formation models
that match both the abundance and size distribution of galaxies
can reproduce some galaxy scaling relations such as velocity–
luminosity, also known as the Tully–Fisher relation (TFR;
Tully & Fisher 1977), with reasonable accuracy (Dutton et al.
2011; Brook et al. 2012b; Ferrero et al. 2017). Simultaneously
matching multiple scaling relations is, however, a challenging
task (Dutton et al. 2011; Trujillo-Gomez et al. 2011). Small

changes to a numerical model can indeed result in significant
changes to slope, intercept, and/or scatter for one or more
scaling relations simultaneously (Dutton et al. 2010; Brook et al.
2012a; Kim et al. 2014; Schaller et al. 2015).
Scaling relation slopes and scatters reported in the literature

can vary greatly as a result of the many different selection
functions, systematic errors from heterogeneous reduction and
analysis methods, observational errors, bandpass sensitivities,
and other effects (see Section 5). Short of being able to correct
for all biases and systematic differences, attempts to compare
empirical scaling relations with theoretical models of galaxy
structure require at least that most (tractable) observational
errors be removed (Strauss & Willick 1995; Pizagno et al.
2005, 2007; Saintonge & Spekkens 2011; Lelli et al. 2017). In
this work, we present a detailed framework for the simulta-
neous derivation of the intrinsic scatter estimates for numerous
galaxy scaling relations.
The intrinsic slope, intercept, and total scatter of a scaling

relation can be found to arbitrary precision (limit of random
error goes to zero) by fitting a model to a large unbiased galaxy
sample. However, the intrinsic scatter must also be inferred by
modeling uncertainties. Due to the complex and heteroscedastic
nature of observational uncertainties in astronomy, accounting
for their impact in empirical studies can be challenging (Isobe
et al. 1990; Andreon & Hurn 2013). Two broad paths are
typically explored to connect galactic observations and models.
One path consists of generating mock observations of a model
by introducing uncertainties tuned to a specific observational
campaign (Jonsson et al. 2010; Snyder et al. 2015; Torrey et al.
2015; Bottrell et al. 2017; Yung et al. 2019). This technique has
the advantage of being flexible; once the mock observations are
complete, one can apply standard analysis pipelines and
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produce any desired quantity for a large sample size. The
results are however nontransferable between different models
and observations, and so must be redone for each model–
observation pair. The second path accounts directly for
uncertainties and effectively subtracts their effects from an
analysis of observational data in order to arrive at intrinsic
quantities. This second method is in principle preferable since
physically meaningful results are directly extracted and can
instantly be compared with any model. The main drawback of
this approach is the complexity in accounting for sample
completeness, bias, and uncertainty in the data.

The TFR is a case where the intrinsic scatter has been
inferred from observations (Bernstein et al. 1994; Gnedin et al.
2007; Pizagno et al. 2007; Reyes et al. 2011; Saintonge &
Spekkens 2011), and likewise for the radial acceleration
relation (McGaugh 2004; McGaugh et al. 2016; Lelli et al.
2017) where intrinsic scatters can differentiate physical models
(McGaugh et al. 2016; Rong et al. 2018; Stone &
Courteau 2019). However, intrinsic scatter estimates in some
of these examples are determined to first order by subtracting
the average uncertainty in quadrature. This “classical” analysis
(detailed in Section 2.2) has notable drawbacks, including the
absence of correlated uncertainties and an assumption of
linearity in all transformations, not to mention the possibility of
returning nonphysical negative scatters. In contrast, some weak
lensing scaling relations are now benefiting from Bayesian
estimates of intrinsic scatter that more robustly account for
sources of error (Sereno & Ettori 2015).

In this work, we present a Bayesian framework for analyzing
intrinsic scatter and apply it to a suite of well-known structural
and dynamical galaxy scaling relations. This framework is
easily implemented numerically and provides robust measures
of intrinsic scatter, even when confronted with certain biases
that the classical analysis cannot take into consideration
(Appendix B).

This paper is organized as follows. We begin by modeling
the scatter of a general scaling relation in Section 2 and
explicitly define the classical and Bayesian procedures for
evaluating intrinsic scatters. Section 3 then describes the
Photometry and Rotation Curve Observations from Extraga-
lactic Surveys (PROBES) compilation that is used in our
analysis; it represents the largest collection of deep long slit
spectroscopic rotation curves coupled with deep multiband
photometry to date. Section 4 presents the fit results and
intrinsic scatter measurements following the outlined analysis
techniques. Section 5 performs a detailed literature comparison
with our results and many others, including a comparison of
intrinsic scatters where available. We expound in Section 6 on
robust measures of intrinsic scatter as a powerful metric for
validating and improving galaxy evolutionary models. For
more information on the numerical technique, see Section 2.4
where we present the numerical method to compute Bayesian
intrinsic scatters and tests of the technique’s stability.
Appendix C provides a minimalist python implementation of
the Bayesian intrinsic scatter code for ease of use by other
authors. In Section 3.4 we explore the uncertain nature of
inclination corrections and the importance of a multi-scaling
relation analysis to determine their true form.

2. Intrinsic Scatter Model

We have noted that any (linear) scaling relation can be
represented by a slope, intercept, and scatter. This section

pertains specifically to the characterization of a scaling
relation’s intrinsic scatter. Modeling the scatter of a scaling
relation involves clearly defining the source of each perturba-
tion on a data point and tracking their effect on the position of
this point in a given mathematical transformation. We express
the mathematical model used to define intrinsic scatter and its
relation to observational uncertainties. In a classical frame-
work, the intrinsic scatter is calculated by averaging the
observational uncertainties to first order and subtracting them
in quadrature from the total observed scatter. In a Bayesian
framework, a posterior is constructed for the intrinsic scatter by
marginalizing over all observational uncertainties. Both frame-
works are reviewed below.

2.1. Scatter Model for Scaling Relations

We first assume a vector of variables θ that describes the
measurements taken of an object (e.g., a galaxy). A scaling
relation is constructed using the functions X(θ) and Y(θ) for
each axis. Some values in θ may not be used in the X or Y
functions and some may be used by both (likely leading to
covariance); θ simply represents all necessary inputs to
compute the relation. The scaling relation is a function f such
that f (X(θ))= Y(θ) for a “perfect” relation. Nature does not
produce perfect (scatter-free) relations though; instead, every
object (galaxy) will suffer a perturbation from the relation
drawn from an intrinsic scatter distribution. Since the exact
nature of the intrinsic scatter cannot be recovered exactly, its
form is assumed to be a normal distribution, which scatters
about the y-axis. There is some loss of generality in the
assumption of normal distribution; however, there is no
compelling reason to suspect otherwise. Thus our scaling
relation can be written f (X(θ))= Y(θ)+ ò where ò is the
perturbation drawn from s 0, i

2( ∣ ) where  is a normal
distribution probability density function (pdf) and σi is the
intrinsic scatter.
The quantities θ cannot be measured perfectly, and we

measure instead f q q= + ˜ where q̃ is some perturbation
drawn from q sfP (˜∣ ) where σf are the uncertainties for each
variable. For each measured quantity, we have access to the
measurement (f) and the uncertainty (σf); the specific
intermediate q̃ is unknown though its distribution is known.
The residuals from a scaling relation can then be decomposed
into their measurement uncertainty and intrinsic scatter
components. Forward residuals are represented as R= Y
(f)− f (X(f)), which after decomposition look like =R
q q q q+ - + + Y f X( ˜) ( ( ˜)) . Thus the residual R can be

measured, but q q, ,˜ and ò are unknown. Recovering σi, which
generates the ò distribution, can be achieved in various ways as
we address below. Section 2.2 presents the classical first-order
method and Section 2.3 presents our more careful Bayesian
technique.

2.2. Classical Intrinsic Scatter

In the classical framework, the observed scatter (σo) and
uncertainty scatter (σu) of a scaling relation are computed to
first order and subtracted in quadrature to produce the intrinsic
scatter. Assuming a normal distribution, the observed scatter is
computed with a standard deviation of the forward residuals;
estimating the scatter due to uncertainty is more complex. For
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an individual data point, the uncertainty scatter is computed as:
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where σy is the y-axis scatter, θi is a variable used in computing
the relation,

q
df

d i
is the derivative of the relation with respect to

variable θi, and sqi is the uncertainty on variable θi. In the
specific context of galaxy scaling relations, data are highly
heteroscedastic, and a procedure for averaging the uncertainties
is required. The average of the variances sy

2 (not the standard
deviation σy) gives an unbiased estimator of the scatter due to
observational uncertainties:

ås s=
N

1
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where N is the total number of observations. The intrinsic
scatter is then computed as s s s= -i o u

2 2 2. Note that while this
formula may produce negative intrinsic scatters, these values
must be reported despite the unrealistic value for the estimator
to be unbiased on average. The value of interest is σi, not si

2,
and so a square root must be taken. In the event that si

2 is
negative, we report a negative σi; the estimator for σi is

therefore s ssign i i
2 2( ) ∣ ∣ . A confidence interval for σi can be

determined using bootstrap sampling (Efron 1992).

2.3. Bayesian Intrinsic Scatter

The Bayesian framework involves marginalizing over all
observational uncertainties, leaving a pdf for possible intrinsic
scatter values. If q̃ were known, we could write =
f q f q- - -Y f X( ˜) ( ( ˜)) for each galaxy and construct a

pdf for σi directly. Since q̃ is unknown (only the distribution
from which it is drawn), we construct:

f s q f q f q s= - - -P Y f X, 0, , 3i i
2( ∣ ˜) ( ( ˜) ( ( ˜))∣ ) ( )

which corresponds to the probability of obtaining the residual
(ò) given a proposed intrinsic scatter (σi) and perturbation (q̃)
combination. A notable aspect of the algorithm presented in
Equation (3) is the generality of the function f q-f X( ( ˜)),
such that our Bayesian intrinsic scatters may be computed for
any scaling relation for which residuals are measured. The
marginalization over the pdf ( q sfP (˜∣ )) of possible q̃ values
yields a pdf of f. Bayes Theorem is then used to convert the
result into a pdf for intrinsic scatter:

òf s s f s q q s q

s f s
f s s s
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where P(σi) is the prior for the intrinsic scatter (we use a flat
prior from zero to the total scaling relation scatter) and P(f) is
the normalization. The product of all posteriors is used to
combine the results for many objects (galaxies). While simple,
this procedure cannot be computed analytically; instead,
numerical techniques must be used to perform the integral in
Equation (4). Section 2.4 presents such a procedure for
computing the integral. Tests demonstrating the robustness of
the Bayesian method relative to the classical method with a toy

model are also presented in Appendix B. In our idealized toy
model, the estimates of the Bayesian intrinsic scatter have at
minimum a 25% relative accuracy improvement over classical
estimates; however, many factors influence the true error for a
real scaling relation. A code to compute a Bayesian intrinsic
scatter is also presented in Appendix C.

2.4. Numerical Bayesian Intrinsic Scatters

The procedure for marginalizing over observational uncer-
tainties to get the intrinsic scatter of a scaling relation described
in Section 2.3 cannot be completed analytically; however,
numerical techniques can achieve arbitrary precision. The
integration in Equation (4) can numerically be performed with
relative ease, though with a slightly modified procedure.
Depicted in Figure 1 are the critical steps of the numerical
procedure as performed with a toy model.
The toy model data in Figure 1(a) are constructed as follows.

Five hundred mock “galaxies” are sampled from a two-
dimensional Gaussian distribution (only 50 shown for clarity)
forming the true distribution of the galaxies (θ) with intrinsic
scatter σi as the forward residual standard deviation. Each data
point is assigned a unique observational uncertainty (σf) in the

Figure 1. Visualization of the Bayesian intrinsic scatter calculation. (a) Mock
scaling relation shown with hypothetical heteroscedastic data. (b) Sampling

q sfP (˜∣ ) for two example points; red is far from the relation, blue is near the
relation. (c) Residual pdf of ò for the two sample points, the small black tick on
the x-axis represents zero. (d) Examples of the likelihood for f. (e) Bayesian
posterior for σi for the two sample points; the blue point favors low σi, while
the red point favors large σi. (f) Product of all Bayesian posteriors. This is the
final pdf for σi given the scaling relation data in part (a). The black vertical line
in panels (e) and (f) represents the true intrinsic scatter.
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x-axis and y-axis separately by drawing an uncertainty from a
uniform distribution over the range [0.03, 0.3], thus making the
data heteroscedastic. The data points are then perturbed by
sampling normal distributions with variance determined by
their assigned observational uncertainty; this simulates the
q̃ perturbations giving f q q= + ˜ . The Bayesian algorithm
knows only the final position of the data points (f) and the
assigned observational uncertainty for each data point (σf). The
data are fit with a bivariate correlated errors and intrinsic scatter
(BCES) bisector algorithm (see Section 4.1) and all residuals
are computed relative to this.

In Figure 1(b) the observational uncertainties ( q sfP (˜∣ )) are
numerically integrated over by sampling their distribution 500
times (only 100 shown for clarity). In Figure 1(c) the residuals
of the samples form a pdf for the perturbation ò given the
observed data point and observational uncertainties.
Figure 1(d) shows the likelihood for f as a function of possible
σi values. This is essentially an inverted Gaussian distribution.
The probability density is plotted by varying σ for a fixed x (not
the other way around) where x is a single residual value after
sampling in Figure 1(b). In Figure 1(e), the “integral” is
performed by summing each f likelihood at a given σi value,
and Bayes theorem is used to turn this into a pdf for σi. Only
two examples are shown for clarity, one that favors low σi
values and one that favors large σi values. Finally, in
Figure 1(f), the product of all posteriors is taken to give the
posterior for the full data set in Figure 1(a).

3. PROBES Sample

We have described a new and powerful method for
computing intrinsic scatters for arbitrary scaling relations. To
demonstrate the general usefulness of this algorithm, we will
apply it to a compendium of galaxy scaling relations. We begin
by describing the data used in our analysis.

The PROBES compilation combines several rotation curve
surveys and homogeneous photometry from the Dark Energy
Spectroscopic Instrument Legacy Imaging Survey (DESI-LIS;
Dey et al. 2019). Here we describe the parameter extraction
techniques used in this analysis as well as the choices for
corrections, uncertainty propagation, and data quality cuts.

3.1. Light Profile Extraction Using AutoProf

Photometry for our analysis comes from the DESI-LIS,
which provides images in the g-, r-, and z-bands for a large
(≈14,000 deg2) section of the sky (Dey et al. 2019). The
intersection of DESI-LIS and PROBES (Section 3.2.1) totals
1396 galaxies to be used for our analysis, with some removed
due to selection cuts described in Section 3.6. Images are
processed using our surface photometry package, AutoProf,
which is briefly described below.

AutoProf is our Python-based galaxy image isophotal
solution pipeline, with functions for center finding, background
subtraction, star masking, isophote fitting, and surface bright-
ness profile extraction. Center finding uses centering methods
from the photutils Python package (Bradley et al. 2019) or with
a user-defined center (in pixel coordinates). Background
subtraction and star masking are also completed using standard
tools from the photutils package. Star masking is generally
turned off by default, but wrappers are included for IRAF star
finding (Tody 1986) and the DAO star finder (Stetson 1987).
The isophote optimization algorithm minimizes the amplitude

of low-order fast Fourier transform coefficients (Cooley &
Tukey 1965) for flux values evaluated around an isophote, plus
a regularization term (Shai Shalev-Shwartz 2014). The
regularization term penalizes large differences in ellipticity
and position angle between adjacent isophotes using the l2
norm (the sum of squared differences; also see Shai Shalev-
Shwartz 2014). This effectively smooths out the isophotal
solution while not setting any explicit boundaries on the
difference between adjacent isophotes. In some cases, typically
for non-axisymmetric features such as bars or strong spiral
arms, it is desirable to allow for large variations in ellipticity
and/or position angle. Multiple isophotes are fit simulta-
neously; these are selected with geometrically growing radii
out to a signal-to-noise ratio (S/N) of ∼10 (typically

- -z23.5 mag arcsec 2 ), beyond which the ellipticity and
position angle are taken as constant. To sample a surface
brightness profile, the isophotal solution ellipticity and position
angle are linearly interpolated allowing for any desired
sampling of the image. Surface brightnesses are taken as the
median flux from many sample points around an isophote, and
so most foreground stars need not be masked from an image as
they will be ignored by the median. A curve of growth is
computed as the integral of the surface brightness profile; the
summed flux of all pixels within each isophote is reported as
well. The fluxes are converted to the AB magnitude system.1

Isophotal solutions are visually inspected to identify possible
failures such as those involving non-axisymmetric features.
Most PROBES galaxies already have archival photometry
available, though for a limited range of photometric bands.
These (heterogeneous) light profiles were used to validate the
accuracy of the automated DESI-LIS photometry. Galaxies
deemed to have failed the visual isophote inspection or deviate
in some pathological way from the older PROBES photometry
were discarded. The surface brightness profiles are evaluated
out to a typical photometric depth in the z band of roughly

-26 mag arcsec 2 before reaching a cutoff uncertainty of
-0.2 mag arcsec 2 . More details on the AutoProf algorithm

can be found in C. Stone et al. (2021, in preparation). We close
this section with a reference to another automated SB
extraction code of ours, “Pix2Prof,” which benefits from deep
learning methods (Smith et al. 2021). Comparisons between
AutoProf and Pix2Prof are presented in Smith et al. (2021).
While both packages provide useful SB information, AutoProf
is ideally suited to the needs of this analysis hence our reliance
on it here.

3.2. Input Parameters

PROBES is composed of a large set of galactic observations.
These observations take the form of rotation curves, photo-
metry, distances, and morphological types. Below we describe
the nature of the PROBES observations and uncertainty
modeling. These uncertainties will be propagated through all
extracted parameters (Section 3.3), necessary for the computa-
tion of intrinsic scatters.

3.2.1. Rotation Curves

PROBES draws rotation curves from seven different
surveys, each with different selection criteria. See Stone &
Courteau (2019) for a brief description of the PROBES

1 See Dey et al. (2019) and https://www.legacysurvey.org/dr8/description/
for specifics of the DESI-LIS photometry.
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compilation or consult the original survey papers for more
detail (Mathewson et al. 1992; Mathewson & Ford 1996;
Courteau 1997; Courteau et al. 2000; Lelli et al. 2016;
Ouellette et al. 2017).

The survey by Dale et al. (1999) is not described in Stone &
Courteau (2019) and was added subsequently to PROBES.
This sky spanning sample, also referred to as “SCII,” provides
522 Hα rotation curves for galaxies from 52 Abell clusters up
to redshifts of ∼25,000 km s−1. Distances to these galaxies
come from a combination of Hubble–Lemait̂re flow and cluster
distances. Galaxies are selected from the Abell Rich Cluster
Catalog (Abell et al. 1989), favoring those with redshift
information available at the time.

Observed velocities are measured through long slit Hα
spectroscopy for all galaxies except those assembled in the Lelli
et al. (2016) “SPARC” compilation, which has H I or hybrid H I/
Hα profiles. A rotation curve must include a minimum of 10
independent radial points in order to be included in our analysis.
The global recessional velocity is subtracted from each rotation
curve by fitting the Courteau (1997) multiparameter model using a
regularized, error weighted, least-squares fit (Tibshirani 1996; Zou
& Hastie 2005; Friedman et al. 2010). Some surveys already have
subtracted recessional velocities; however, we readjust the velocity
centers with our multiparameter model for consistency (with one
exception). Lelli et al. (2016) presented folded rotation curves (all
measurements at positive radii), so no further recessional velocity
subtraction is performed. For those that do require a global velocity
subtraction, we compare the Courteau (1997) multiparameter
model fits with a simple arctan model (also used in Courteau 1997)
and find a good agreement with 3 km s−1 scatter. This average
scatter is included in our uncertainty model as a random global
shift in the rotation curve for the Bayesian analysis. For the
classical analysis, it is added in quadrature to the velocity
measurement uncertainties. Most surveys report both velocity
measurements and uncertainties for each data point; if uncertainties
are not provided, we use the standard deviation of the residuals
from the Courteau (1997) multiparameter model fit as the
uncertainty (this is an upper bound for the average uncertainty).

3.2.2. Photometry

The photometry extraction procedure described in
Section 3.1 also generates an uncertainty for all measurements.
For surface brightness values, the uncertainty is determined by
taking the half 16–84 interquartile range and dividing by the
square root of the number of samples. The half 16–84
interquartile range is used instead of the standard deviation as
it is more robust to outliers (pixels affected by foreground
stars), but limits to the same value for normally distributed
data. These uncertainties are calculated in linear flux space and

converted to mag arcsec−2 with
s

2.5
f ln 10

f

· ( )
where f is the flux

and σf is the uncertainty. We also include a global photometric
uncertainty of 0.02 mag arcsec−2 for all surface brightness
values to account for uncertainty in background subtraction,
flux calibration, and global model differences such as center
selection. The curve of growth is computed by integrating the
surface brightness profile. The uncertainty for the curve of
growth at each point is determined by Monte Carlo sampling
many surface brightness profiles (using the uncertainty for each
point) and re-integrating. We then use the half 16–84
interquartile range of the many samples to determine an
uncertainty for each point in the curve of growth.

An ellipticity and position angle profile for each galaxy are
also extracted using AutoProf. The ellipticity values are used to
compute a representative inclination for the outer disk of each
galaxy according to Equation (5). Comparison of our ellipticity
values with those reported in the original PROBES surveys
yields an average ellipticity error, σe, of 0.05, which is used as
the uncertainty for all ellipticity values. Given non-axisym-
metric features in galaxies, we do not estimate ellipticity errors
uniquely for each galaxy. The outer disk ellipticity at
approximately - -23.5 z mag arcsec 2 from each profile is
used to compute the global inclination of a disk galaxy via:

=
-

-
i

q q

q
cos

1
52

2
0
2

0
2

( ) ( )

where q is the axis ratio (b/a); q0 is the galaxy intrinsic
thickness (c/a); a, b, and c, are the principal (semi-)axes of the
galaxy; and i is the galaxy inclination (Hubble 1926). Since q0
cannot be directly measured for each galaxy, a fixed value is
assumed for our sample of q0= 0.13 (Hall et al. 2012). There is
an uncertainty associated with q0 for which many values have
been proposed (Haynes & Giovanelli 1984; Lambas et al.
1992; Mosenkov et al. 2015); we associate an error of 0.05
with q0. This somewhat arbitrary uncertainty value spans the
range of proposed q0 values. The sampling range is restricted to
0.1< q0< 0.23 so as not to reach unphysical values. It also
corresponds to the range proposed in Haynes & Giovanelli
(1984). Inclination plays a critical role in the analysis of galaxy
structure as it is used to correct most of the extracted structural
parameters described in Section 3.3. As such, the choice of q0
can influence the resulting fitted slope and scatter by over 10%,
though more typically of the order of 2%. We consider our
q0= 0.13± 0.05 value close enough to the true thickness for
our purposes, though further study is severely needed.
Our photometry is also corrected for galactic extinction

using the Schlegel et al. (1998) dust map for each of the grz
bands extracted using NED.2 An uncertainty of 0.02 mag is
assumed for all extinction values. We do not apply any K-
correction as all PROBES galaxies are local (z≈ 0).

3.2.3. Distance

Distance is measured through a variety of methods in
PROBES, the most common being Hubble–Lemait̂re flow
distances, but it also includes, in a few cases, surface brightness
fluctuations, the tip of the red giant branch, variable stars,
cluster distances, and supernovae light-curve distance measure-
ments. Redshift-independent distances are mostly used in the
SPARC and Ouellette et al. (2017, hereafter SHIVir) compila-
tions. Secondary distance indicators based on galaxy scaling
relations, such as the TFR, are left out as they form the basis of
the present analysis.
Distance uncertainties are conservatively assumed to be 15%

for Hubble–Lemait̂re flow distances; if more accurate distance
estimates are available in the original survey, those values are used
instead. A subset of the galaxies in Dale et al. (1999) are missing
distance measurements; these and their associated uncertainty
values are supplemented using NED distance measurements and

2 The NASA/IPAC Extragalactic Database (NED) is operated by the Jet
Propulsion Laboratory, California Institute of Technology, under contract with
the National Aeronautics and Space Administration.
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are required for several parameters in Section 3.3, meaning that
the distance uncertainties are correlated for scaling relations
involving these parameters. The ability to effortlessly account for
these correlated uncertainties is a major strength of the Bayesian
intrinsic scatter method.

3.2.4. Morphological Type

Morphological, or Hubble, types are provided for most
original surveys in PROBES. Any missing Hubble types were
supplemented using NED. No uncertainty is associated with
Hubble types as they were mostly used for diagnostic purposes
while developing our analysis, though they do enter into Model
1 of Section 3.4. Hubble types are coded from 0 to 10 as: S0,
Sa, Sab, Sb, Sbc, Sc, Scd, Sd, Sdm, Sm, and Im.

3.3. Extracted Parameters

Once the data have been extracted from the raw observa-
tions, they can be processed into useful parameters. Here, we
present the nine core parameters used in our analysis. In most
descriptions, we include the largest sources of uncertainty,
though these are not handled identically in the classical and
Bayesian regimes. The classical method described in
Section 2.2 only works to first order and does not include
covariances. The equations for classical uncertainty can be

found in Appendix A. The Bayesian method from Section 2.3
propagates uncertainties while fully accounting for nonlinear
functions and covariances between variables. Figure 2 shows
the final results from this data extraction for all combinations of
the studied parameters. The layout of this figure will be used
throughout the paper to present our analysis for all combina-
tions of parameters in our multidimensional study.

3.3.1. R23.5 [kpc]

The galaxy size metric used in this analysis corresponds to
the isophotal -23.5 mag arcsec 2 radius, converted to a physical
radius using the distance for each galaxy. All sizes in this paper
are measured in the z band as described in Section 3.1. This
size metric yields minimal scatter in various scaling relations
(Hall et al. 2012; Graham 2019; Trujillo et al. 2020a).
Incidentally, the radius R23.5 measured at the z band
corresponds to a median stellar density of 6Me pc−2 with a
16–84 quartile range of 4− 10Me pc−2. The 1Me pc−2 radius
advocated for by Trujillo et al. (2020a) thus samples radii larger
than R23.5. Both size metrics produce an equally tight size–
stellar mass relation (Trujillo et al. 2020b). The range of stellar
surface densities for R23.5 also matches closely the predicted
critical gas surface density for star formation in Schaye (2004).
R23.5 is used as the metric at which all other parameters

are measured, except Σ1, which is measured at 1 kpc

Figure 2. PROBES data with parameters in log space computed and corrected as described in this section (Section 3). Every subplot is at the intersection of two
variables. In the lower triangle, scatter plots show each distribution. Along the diagonal, histograms are shown for the given variable. The upper triangle shows a
density plot with four contours drawn evenly in log density. The error bars in the bottom right corner of every non-diagonal subplot represent the median classical
uncertainty (see Appendix A).
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(Section 3.3.6). It is thus essential that the Bayesian intrinsic
scatter model can account for correlated uncertainties, as many
variables share R23.5 at some point in their calculation. R23.5 is
calculated as:

= + +R R D Clog log 3 , 6R10 23.5 10 obs 23.5( ) ( ) ( )

where Robs is the -23.5 mag arcsec 2 isophotal radius in
radians, taken directly from the surface brightness profile. D
is the distance in parsecs, and CR23.5 is the inclination correction
factor (see Section 3.4).

3.3.2. L23.5 [Le]

The total luminosity in the z band, L23.5 integrated to R23.5, is
used as a standard metric for the total brightness of a galaxy.
The luminosity is computed from a curve of growth, which is
itself the integral of a surface brightness profile. Thus, all
uncertainties related to zero-point calibrations and isophote
uncertainties are carried forward. L23.5 is calculated as
described in Equation (7) below:

=
-

+ +L
M m D

Clog
2.5

2 log
10

, 7z
L10 23.5 10 23.5

⎛
⎝

⎞
⎠

( ) ( ) ( )

where Me is the solar absolute magnitude calibration, mz is the
apparent magnitude in the z band at R23.5, and CL23.5 is the
inclination correction factor (see Section 3.4). We adopt L23.5
as our preferred luminosity over other metrics, such as the last
point in the light profile or extrapolating to infinity, both
because it is evaluated at a consistent location in the galaxy
profile and it encompasses most of the total light. For
comparison, the total light evaluated at the last point of the
profile is on average (median) only 0.03 dex greater than L23.5.

3.3.3. V23.5 [km s−1]

The rotation velocity of each galaxy is computed at the R23.5

radius and corrected for inclination with the i1 sin( ) factor and
for redshift broadening with the 1/(1+ z) factor, where z is the
heliocentric velocity of the galaxy divided by the speed of light.
Our measurement of V23.5 uses a fit of the Courteau (1997)
multiparameter model to the observed rotation curve. For
rotation curves that do not extend to R23.5, the fit is extrapolated
out to the required radius. A substantial 62% of the PROBES
rotation curves require extrapolated estimates for V23.5,
although over half of these extrapolations are less than 25%
beyond the last point in the rotation curve. Once extracted, the
velocity is corrected for inclination and redshift broadening as
indicated in Equation (8).

=
-

+
V

V V

i z
log log

sin 1
, 810 23.5 10

obs sys
⎜ ⎟
⎛
⎝

⎞
⎠

( )
( )( )

( )

where Vobs is the observed velocity computed from the
Courteau (1997) model, Vsys is the systematic velocity, which
is one of the model fit parameters, i is the inclination in radians,
and z is the heliocentric redshift. All PROBES galaxies are
relatively nearby, and the respective redshift corrections (and
their uncertainties) are quite small.

3.3.4. g–z [mag]

Colors for PROBES galaxies are computed as the difference
of the g- and z-band magnitudes measured at R23.5 in the DESI-

LIS photometry processed as described in Section 3.1. We
choose g− z color over g− r (which can also be measured
from the DESI-LIS) for its longer baseline and low measure-
ment error. Colors are useful as inputs to color mass-to-light
transformations (Taylor et al. 2011; Conroy 2013; Roediger &
Courteau 2015; Zhang et al. 2017; García-Benito et al. 2019)
and can be used to construct scaling relations on their own. The
g− z colors are calculated as:

- = - + -g z m m C , 9g z g z ( )

where mg is the apparent magnitude in the g band, mz is the
apparent magnitude in the z band, and Cg−z is the inclination
correction factor. While the g- and z-band magnitudes may be
corrected independently first and then have both corrections
added to the color, we have found that the two corrections were
highly correlated. It is therefore more accurate in the classical
framework to use a single correction factor.

3.3.5. M*[Me]

Stellar masses are calculated using the z-band luminosity
(Section 3.3.2) and g− z color (Section 3.3.4) input to the
Roediger & Courteau (2015) color to mass-to-light transforma-
tions (based on the Bruzual & Charlot 2003 stellar population
model). A random error of 0.05 dex is assumed for mass-to-
light transformations (see Section 4.1 of Roediger & Courteau
2015). Errors on color/luminosity measurements are propa-
gated separately. For the mass range of most galaxies in
PROBES, the Roediger & Courteau (2015) mass-to-light
transformations are consistent with other transformations such
as Zhang et al. (2017). Numerous uncertainty factors affect
stellar mass estimates and are described in the luminosity and
color sections (Sections 3.3.2 and 3.3.4). Equation (10)
expresses the stellar mass calculation.

= ¡ -M L g zlog log , 1010 10 23.5*( ) ( ( )) ( )

where ϒ(g− z) is the mass-to-light ratio as a function of the
color g− z. The luminosity and color are taken as the corrected
values in this formula, and no further inclination correction is
needed. The stellar mass is, by construction, highly correlated
with the luminosity and color; this is challenging to adequately
represent in a classical framework.

3.3.6. Σ1 [Me/kpc
−2]

The quantity Σ1 refers to the stellar-mass surface density
within a radius of 1 kpc (Cheung et al. 2012; Fang et al. 2013;
Zolotov et al. 2015; Teimoorinia et al. 2016; Chen et al.
2020b). Our Σ1 values are computed using z-band luminosity
(out to 1 kpc), g− z color (out to 1 kpc), and the Roediger &
Courteau (2015) color to mass-to-light transformations as
detailed in Section 3.3.5. Equation (11) details our stellar-mass
surface density calculation.

p
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-
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where SC 1 is the inclination correction for Σ1, m1,z is the
magnitude within 1 kpc, and -g z 1( ) is the color within 1 kpc.
The determination of the physical radius at 1 kpc requires a
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distance measurement. Distance and mass-to-light transforma-
tion are the most significant sources of uncertainty in Σ1.
Because of their common dependence on distance, Σ1 and R23.5

are strongly correlated even though they are measured at two
different fiducial radii. Obtaining measurements within 1 kpc
requires galaxies to be well resolved; nearly 95% of the
PROBES galaxies have seeing lengths less than 1 kpc, and are
therefore sufficiently resolved for the calculation of Σ1. We
calculate Σ1 for all galaxies even if 1 kpc is not in principle
resolved; the unresolved 5% of the PROBES galaxies shows a
small bias of the order of 0.1 dex in their residuals for some
scaling relations.

3.3.7. Mdyn [Me]

We compute the total mass out to R23.5 using the observed
rotation curves corrected for inclination. Equation (12)
expresses the total mass calculation, which is simply a
combination of results from Equation (8) and Equation (6)
using the virial theorem (Binney & Tremaine 2008),

=M
V R

G
log log , 1210 dyn 10

23.5
2

23.5
⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )

where G is the gravitational constant (all other quantities are as
defined above). As would be expected, the total mass is highly
correlated with velocity and radius; however, it is also
correlated with other variables such as luminosity (and stellar
mass) since they share distance as a large source of uncertainty.
The Bayesian uncertainty method (Section 2.3) is especially
well suited to handle strong correlations of this kind, such as
those that arise in the context of the stellar mass–halo mass
relation (Section 5.6).

3.3.8. jdyn [kpc km s−1]

The dynamical angular momentum of a galaxy is a
conserved quantity (in isolation), making it an effective lens
into the history of galaxy formation. The specific angular
momentum jdyn= Jdyn/Mdyn removes the trivial correlation
between mass and angular momentum, allowing the physical
relationship between these parameters to be studied more
directly.

The specific angular momentum, jdyn, is computed out to
R23.5 by integrating the velocity profile found by fitting the
Courteau (1997) multiparameter model. The use of a model,
instead of interpolating between galaxy velocity measurements,
is more robust to noise, though some angular momentum
information may be lost. Note that the largest deviations from
the Courteau (1997) model occur near the center of the galaxy
where contributions to angular momentum are suppressed by a
factor of R, so ultimately the model’s favorable behavior
against noise produces more accurate angular momentum
measures.

The expression for specific angular momentum is shown in
Equation (13):

ò= -j
V r r

G
dr Mlog log log , 13

R

10 dyn 10
0

3

10 dyn
23.5

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )

where V(r) is the rotational velocity as a function of radius,
corrected for inclination and redshift as in Section 3.3.3. R23.5

and Mdyn are as described in Sections 3.3.1 and 3.3.7,
respectively. Note that we only use deprojected quantities in
this formula and no further inclination correction is required.
Because the angular momentum profiles do not level off at
R23.5, our profiles are sensitive to the choice of cutoff radius.
Therefore, our results describe the angular momentum within
R23.5 and not the total angular momentum.

3.3.9. j∗[kpc km s−1]

The stellar specific angular momentum is computed by
integrating the stellar surface density and velocity out to R23.5.
As in Section 3.3.8, the Courteau (1997) multiparameter model
is used to infer the velocity component. Thanks to the fine
sampling and high S/N of our photometry, we can forgo any
model fitting and use the interpolated stellar surface density
profile (I(r)ϒ(r)) directly from our isophotal fitting solution.
The stellar angular momentum in our analysis is calculated in
Equation (14) as follows:

ò
p

= ¡ +j
M

I r r V r r dr Clog log
2

,

14

R

J10 10
0

2
23.5

*
*

*
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⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )
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where I(r) is the intensity as a function of radius, and ϒ(r) is the
mass-to-light ratio as a function of radius (we use the same
transformations as in Section 3.3.5). CJ*

is the inclination
correction factor. The R23.5 term in the integral is the corrected
quantity from Section 3.3.1, and the correction factor CJ*

is
assumed to only correct for the inclination dependence of the
intensity profile I(r) and the mass-to-light profile ϒ(r). As with
jdyn, the stellar angular momentum profiles do not converge
within R23.5 and thus do not represent the total stellar angular
momentum.

3.4. Inclination Corrections

Most galaxy structural parameters, detailed in Section 3.3,
show some degree of correlation with inclination. Any
parameter correlation with inclination is undesirable as
fundamental galaxy properties should not depend on their
apparent orientation and projection on the sky. In the case of
V23.5, this dependence can be counteracted by dividing by

isin ;( ) for other parameters, the transformation is not so trivial.
There are three primary sources of inclination dependence:

(i) projection (geometric effect) on the sky; (ii) radiative
transfer through the distribution of dust and gas in a galaxy,
and (iii) stellar population distributions (or really any other
spatially varying quantity). Projection effects can often be
handled analytically, for example, in the case of surface
brightness (Byun et al. 1994). The brightness (or intensity per
unit area) of an ideal galaxy taken as a transparent infinite slab
will increase with inclination relative to face-on orientation
since it is being projected through a larger length of the slab.
The increased brightness could be corrected by multiplying the
linear flux by icos( ) in order to recover the face-on value from
any inclination (Holmberg 1958; Giovanelli et al. 1994).
However, galaxies are not ideal transparent slabs; instead, they
have complex dust, gas, and stellar structures whose nature and
distribution may vary from galaxy to galaxy. We have
attempted to correct surface brightnesses (and thus all
subsequent extracted parameters) with a pure geometric
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correction of - i2.5 log cos10( ( )). However, this yielded larger
scatter estimates for many of our scaling relations. Clearly,
more than simple geometric corrections are at play. A more
generalized transformation is required to model these effects.

The ideal form of a generalized inclination correction model
is unknown, though many variations have been tried since at
least Holmberg (1958) who used a cosec function. The most
common approach takes the form detailed in Giovanelli et al.
(1994) and included as Model 0 in Table 1 (Burstein et al.
1991; Han 1992; Willick et al. 1995; Tully et al. 1998; Shao
et al. 2007; Graham &Worley 2008; Unterborn & Ryden 2008;
Cho & Park 2009; Maller et al. 2009; Masters et al. 2010;
Devour & Bell 2016, 2017, 2019). Other forms have been
explored as well (Möllenhoff et al. 2006; Driver et al.
2007, 2008; Shao et al. 2007; Tempel et al. 2010; Yip et al.
2010; Xiao et al. 2012; Kourkchi et al. 2019). The two
common parameterizations of inclination dependence rely on a
function of either the axial ratio, b/a, or the inclination i (from
Equation (5)). The latter accounts for the thickness of the disk
via a (poorly constrained) flattening parameter q0= c/a, while
the former does not. Dust-free images of edge-on galaxies
show that the values q0 are clearly nonzero and so our modest
assumed value (q0= 0.13; Hall et al. 2012) should provide a
closer approximation to the truth. The factors αi, γi in Table 1
encapsulate our ignorance about the exact nature of the
obscuration in a galaxy as a function of inclination. The nature
of obscuration may vary with disk thickness, dust distribution,
disk features, and other unknown factors in a galaxy. As such,
the coefficients may change for different galaxy types. Han
(1992) divided their sample into Hubble type bins before
computing their correction factor; however, later studies have
used other techniques. Tully et al. (1998) divided galaxies into
magnitude bins then used the TFR to reformat the correction
factor γ as a function of velocity (see also Willick et al. 1997).
Driver et al. (2007, 2008) and Masters et al. (2010) separated
galaxies into “bulgy” and “disky” groups in order to compute
their γ. Maller et al. (2009) tried two subdivision techniques,
one based on magnitude and the other based on Sérsic index,
while Cho & Park’s (2009) corrections used concentration
index as a representation of morphology. In their related series
of papers, Devour & Bell (2016, 2017, 2019) exploited a two-
dimensional space of magnitude and color in infrared bands.
The above works establish a consensus that inclination
corrections depend on some notion of galaxy “families” with
similar properties. However, the range of techniques speaks to
the difficulty of finding parameters that are not themselves
inclination dependent.

To generalize the concept of inclination correction, we consider
a general model C that expresses an extracted parameters
dependence on inclination. The model may depend on any
galactic parameter, in principle, though we restrict our considera-
tion to inclination, velocity, morphological type, and concentra-
tion as these are (mostly) independent of inclination themselves.
We can then determine an inclination correction by fitting X=C
(i, V23.5, T, C28) where X is the extracted parameter (Section 3.3), i
is inclination, V23.5 is the rotation velocity, T is morphological
type, and C28 is the light concentration index. The fit is performed
with a least-squares regression, then the inclination correction
is taken to be: C(0, V23.5, T, C28)− C(i, V23.5, T, C28), which
corrects to a face-on value.3 Any term in the model that does not
depend on inclination will ultimately be absent from the
correction and is only used for the sake of fitting. For clarity,
the coefficients for these “absent” terms are labeled with α.
We considered several models to describe inclination

correlations; four such models are listed in Table 1 for
comparison. Model 0 is a base case where all galaxies are
considered, without regard to subdivision by “family.”Model 1
divides galaxies into bins by morphological type and fits the
coefficients αT, γT for each bin. This represents the simplest
notion of inclination correction family. Model 2 allows the
coefficient on ilog cos10( ( )) to be a function of velocity (now
expressed as γ1, γ2). Note that Tully et al. (1998) fit coefficients
to the residuals of a color–magnitude fit, while we fit the
coefficients directly to the extracted parameter. Tully et al.
(1998) used the color - ¢B K , and the dependence of ¢K on
inclination was assumed to be negligible. Model 4 is inspired
by Maller et al. (2009), who used infrared wavelength
photometry and Sérsic indices. However, the TFR indicates
that magnitude in any band (and especially infrared bands) is a
tight function of velocity, and so we use it in its stead.
Similarly, instead of the Sérsic index, we prefer using the
model-independent light concentration index C28. Maller et al.
(2009) fitted their data with their Equation (6) for nearly face-
on galaxies, and then fitted the residuals with their α
coefficients from Equation (9) using a χ2 minimization. Our
Model 4 encodes this two-step residual fitting into a single
operation, though it gives no explicit preference to near face-on
galaxies at any point. Table 2 lists the coefficients fitted to the
models in Table 1.
After fitting the various models, we examined their effects on

our suite of galaxy scaling relations. Figure 3 shows the variation

Table 1
Inclination Correction Models

Index Model Inspiration
(1) (2) (3)

0 a g= +C i ilog cos0 0 10( ) ( ( )) Giovanelli et al. (1994)
1 a g= +C i T i, log cosT T 10( ) ( ( ))[ ] [ ] Han (1992)

2 a g g a= + + +C i V V i V, log log cos log23.5 1 1 2 10 23.5 10 2 10 23.5( ) ( ( )) ( ( )) ( ) Tully et al. (1998)
3 a g g g

a a

= + + +

+ +

C i V C V C i

V C

, , log log cos

log

23.5 28 3 3 4 10 23.5 5 28 10

3 10 23.5 4 28

( ) ( ( ) ) ( ( ))

( )

Maller et al. (2009)

Note. Column (1) indexes the inclination correction models. Column (2) gives the model. Column (3) lists the literature source that inspired the correction model. Note
that our model may differ from the quoted source, but is conceptually related (see the text for more details). A subscript T means that the parameter changes with
morphological type.

3 Internal extinction is still present in face-on systems. Its correction would
require a wavelength-dependent radiative transfer code. Such a treatment is
beyond the scope of the present study.
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of the scatter and slope with each correction model. Only relations
involving parameters that were directly inclination-corrected, and
velocity, are included for clarity. Relations not included in the
figure showed similar variability with the inclination correction
model. Applied to our data, these techniques had mixed effects on
our scaling relations, alternately increasing and decreasing the
slope/scatter of many scaling relations. Ideally, an accurate model
should yield a broad scatter reduction for an ensemble of scaling
relations. The only model that fits this description is Model 0,
which has no notion of galaxy “families” despite the broad range
of PROBES galactic properties. Thus our analysis will use Model
0 for projection correction throughout, even though the true
correction likely depends on some notion of galaxy family. Our
data are likely not sensitive enough to reveal the nature of
(putative) galaxy families.

Figure 3 also reveals the challenging nature of inclination
corrections and the power of examining many scaling relations
simultaneously. This figure shows that any inclination correc-
tion model does confer a reduced scatter in some cases and an
increased scatter in others. An inclination correction scheme
based on the examination of a single scaling relation could
easily map to non-intrinsic quantities.

3.5. Bayesian Error Budget

In the Bayesian formalism, all measurements with uncer-
tainties are randomly sampled and refit with the above analysis
methods. As a result, a simplistic uncertainty propagation as
shown in Appendix A is not possible; instead, the movement of
a point can only be traced when a given variable is perturbed.
Figure 4 shows the effect of every source of uncertainty in our
analysis for a single galaxy. A similar figure could be produced
for every galaxy and there would be some variability in the

figures as sources of error change in relative significance;
however, UGC 12521 exhibits many typical features.
Since the Bayesian method works by resampling all

measurements and then recomputing all variables, some
variables did not neatly map into Figure 4. Velocity is
determined by fitting a rotation curve comprising many
measurements that are typically all individually resampled.
To produce a clear signal, we instead increased/decreased all
of the velocities by 2σ. This is unlikely to occur in a true
random sampling scenario; the velocity uncertainty in the
figure is thus a worst-case scenario. The surface brightness
profile data were also adjusted in the same direction by 2σ
causing the whole profile to shift (in proportion to the surface
brightness (SB) uncertainty), again making this a worst-case
scenario for the amount of shift in Figure 4. To account for the
systematic velocity uncertainty, the profiles were adjusted after
fitting the Courteau (1997) multiparameter model. A systemic

Table 2
Inclination Correction Coefficients

Model Coefficient L23.5 g − z R23.5 Σ1 j*
(1) (2) (3) (4) (5) (6) (7)

0 α0 10.40 0.91 1.08 8.87 2.91
0 γ0 0.33 −0.49 −0.15 0.06 −0.72
1 α[0−3] 10.46 0.97 1.09 9.06 2.91
1 γ[0−3] −0.10 −0.58 −0.31 −0.30 −0.96
1 α[4] 10.61 0.92 1.17 9.05 3.04
1 γ[4] 0.48 −0.51 −0.07 0.13 −0.63
1 α[5] 10.39 0.89 1.09 8.72 2.93
1 γ[5] 0.59 −0.51 −0.02 0.10 −0.51
1 α[6] 10.45 0.88 1.16 8.67 3.06
1 γ[6] 0.89 −0.26 0.16 0.35 −0.25
1 α[7−10] 9.91 0.79 0.84 8.48 2.56
1 γ[7−10] 0.08 −0.27 −0.41 0.44 −1.12
2 α1 4.29 −0.65 −1.34 2.63 −1.59
2 γ1 1.48 1.54 −0.02 3.24 −1.86
2 γ2 −0.58 −0.95 −0.08 −1.51 0.49
3 α2 4.29 −0.65 −1.34 2.63 −1.59
3 α3 1.58 −0.43 0.69 −0.04 0.40
3 α4 1.18 1.13 0.40 2.84 1.63
3 γ3 1.48 1.54 −0.02 3.24 −1.86
3 γ4 −0.89 −0.44 −0.39 0.55 0.61
3 γ5 0.31 −0.50 0.31 −2.06 −0.12

Note. Fitted coefficients for all models in Table 1. Column (1) is the model
index. Column (2) lists the coefficient from Table 1 being fit. Columns (3)–(7)
give the coefficient values for each corrected parameter.

Figure 3. Comparison of scatters and slopes for inclination correction models
from Table 1. The scatter (top) and slope (bottom) on the y-axis correspond to
the scaling relations on the x-axis. For clarity, only scaling relations including
inclination-corrected quantities are shown, as well as velocity. Most scatters are
in dex, though any relations with g − z as the y-variable is in units of
magnitude. Model 3 is not shown for relations where the scatter/slope is too
large.
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velocity shift prior to fitting the model would be canceled by
the fitting routine.

Figure 4 shows that all scaling relations have some correlated
uncertainties, as well as the relative scatter dependencies for each
relation. Distance is typically the dominant source of error.
Photometric zero-point, mass-to-light ratio, velocity, and axial
ratio are also significant contributors. Curvature can also be seen
in some scaling relations (i.e., the j* versus g− z relation); the
proper error propagation for those can only be captured in the
Bayesian analysis.

Anticorrelated errors, such as those in most relations
involving j* and the axis ratio q, contribute to a scatter
increase in a manner that cannot be ascertained by classical
analysis. The fits in each panel also show that correlated
distance errors (and other correlated sources of error) are often
closely, but not entirely, aligned with a scaling relation.
Because correlated error vectors would not perfectly slide along
the relation, a classical analysis would under(over)estimate
intrinsic scatter if distance errors are included (excluded).

3.6. Data Quality Cuts

Various data cuts were applied for quality control. Tests in
Appendix B suggest that quality cuts based on parameter
uncertainty do not bias intrinsic scatter measurements, while cuts
based on deviations from a relation (often referred to as “sigma
clipping”) drastically bias scatter measurements. Our fitting

method (described in Section 4.1) is also robust to quality cuts;
note that sigma clipping is never used in our analysis, even as part
of our fitting procedure. Further tests on our fitting routine and
intrinsic scatter estimators were performed for a variety of data
modifications. The fitting algorithm is robust to realistic sampling
biases (e.g., magnitude limited data), covariant observational
uncertainties, and slightly incorrect estimates of observational
uncertainty. See Appendix B for more details.
Table 3 lists the cuts for the removal of a galaxy from our

analysis. Multiple cuts may remove the same galaxy so the
totals given for each cut cannot be simply added together. Note
as well that some cuts may not remove galaxies from the
analysis; however, they may be used for the Bayesian intrinsic
scatter calculations if the random sampling generates a
pathological galaxy sample.
Starting with 1396 galaxies, we apply our data quality cuts to

give 1152 high-quality galaxy samples. Note that we apply our
Bayesian analysis to the full original sample, and simulate the
effect of our data quality cuts. This means that some galaxies
may enter into our Bayesian intrinsic scatter calculation if they
are close to the edge of a data quality cut.

4. Results

4.1. Scaling Relation Fits

Before evaluating the scatter around a scaling relation, we
must first fit linear relations to all parameter combinations.

Figure 4. Representation of major sources of uncertainty in galaxy scaling relations. This demonstration applies to the typical galaxy, UGC 12521 (Courteau 1997).
Formatted similarly to Figure 2, the intersection of any two variables gives the corresponding scaling relation. The black solid line is the scaling relation fit as
presented in Table 4, while the black dashed lines give the 1σ forward scatter from Table 5. The legend indicates different sources of uncertainty, namely the distance,
D; axial ratio, q = b/a; stellar mass-to-light ratio, ϒ = M*/L; observed rotational velocity, Vobs; projection correction, Cx (all corrections considered simultaneously);
photometric zero-point, m0; recessional velocity, Vsys; surface brightness, μ; and disk flattening parameter, q0 = c/a. Colored bars represent 2σ perturbations for every
variable shown in the legend. Each variable is adjusted one at a time to show its effect in isolation. All subplots represent a window 0.6 dex across; the g − z parameter
is converted to dex for comparison with other parameters. Note that the specific features in each relation are expected to change for every galaxy.
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However, the choice of regression model can significantly
impact the resulting fitted parameters. For the study of galaxy
scaling relations, both axes have heteroscedastic uncertainty
(often covariant uncertainty) and neither can be considered an
independent variable. Furthermore, a nonzero intrinsic scatter is
expected to be present in each scaling relation.

Fits are performed using the BCES bisector algorithm of
Akritas & Bershady (1996). These are presented in Table 4,
which is organized like Figure 2. The BCES bisector algorithm
can model covariant heteroscedastic uncertainties, which we
extract from our Bayesian error analysis. All scaling relations
appear in the table twice to account for forward and inverse
relations, though the fits are performed with a BCES bisector
and so the forward and inverse fits are compatible. The first
column and first row are analogous to axes of a plot, and so for
any value in the table, one can look at the column header to get
the x-axis and the row variable to get the y-axis. The
uncertainties presented here include only random errors
computed from the Bayesian method and so correspond to
the posterior. They do not account for the systematic errors that
result from galaxy sample selection or the choice of model. As
will be seen in Section 5, systematic errors are the dominant
source of discrepancies when scaling relation fits from
independent studies are inter-compared.

The resulting fits include a large number of known scaling
relations. These include relations such as stellar mass–
luminosity that are too strongly correlated to be used for
testing galaxy formation models. While our values agree well
with the literature (see Section 5), there is a great variety in
intercepts due to parameter choices making their comparison
more challenging.

4.2. Intrinsic Scatter of Scaling Relations

The intrinsic scatters for all scaling relations under
consideration are given in Table 5 in a format similar to
Table 4. All scatters are reported as the forward scatter for each
parameter combination. Observed scatters (σo) are computed as
half the 15.9%–84.1% quartile range of the residuals, which is
similar to a standard deviation except more robust to outliers.

Bayesian scatters (σb) are computed following Sections 2.3 and
2.4 with uncertainty determined from the posterior. Classical
scatters (σc) are computed following Section 2.2 with
uncertainty determined by the bootstrap method and taking
the 15.9% to 84.1% quartiles to get asymmetric uncertainties.
Combining Tables 4 and 5 yields an orthogonal scatter via

s s= + m1orthogonal forward
2 . The Bayesian intrinsic ortho-

gonal scatter can be used to determine the tightest relation for
each variable; however, some tight relations can be considered
trivial if the variables depend on each other. The relations
V23.5−Mdyn, R23.5−Mdyn, (g− z)−M*, (g− z)−Σ1, and
L23.5−M* are deemed trivial in that sense. The tightest
relations for each parameter are then found to be: V23.5− M*;
R23.5− L23.5, j*, jdyn; L23.5− V23.5, R23.5, jdyn;Σ1− V23.5;
(g− z)− V23.5;M*− V23.5;Mdyn− jdyn; j*− R23.5; and jdyn−
V23.5, R23.5, L23.5, Mdyn, with some parameters having multiple
equally tight relations. It is perhaps not surprising that the TFR
and stellar TFR are on the list of tightest relations. However,
the other tight relations on this list also warrant a closer
examination.
Another interesting aspect of Table 5 is the fraction of total

scatter, which is intrinsic. The intrinsic scatter fraction is
computed in quadrature as s s=f intrinsic

2
total
2 where our

Bayesian results are used for the intrinsic scatter. Most
relations have intrinsic scatters ranging from 70% to 90%,
with a few relations spanning greater extremes. The
R23.5− L23.5, R23.5− jdyn, and V23.5− g− z relations, also
found in our list of tightest scaling relations, have nearly
100% intrinsic scatter, making them ideally suited for
comparisons with galaxy formation models.
To facilitate intuitive comparisons between scaling relations,

Figure 5 presents the slope data from Table 4 and the scatter
data from Table 5 graphically. The scatters are represented by
ellipticity, which is set to the orthogonal scatter; thus, the
forward and inverse versions of each relation are represented
by an ellipse of the same thickness. All axes are in dex except
g− z, which is expressed in magnitude; the latter is converted
into dex (dividing by 2.5) before plotting to allow for better
visual comparison. Σ1 generally produces the broadest
relations, though it does have a tight nontrivial relationship
with g− z.
The orange dashed lines represent cases where the classical

intrinsic scatter is negative, as is seen in several cases. Most of
these negative classical intrinsic scatter relations display a large
covariance caused by one axis being strongly dependent on the
other, the V23.5−Mdyn, R23.5−Mdyn, and L23.5−M* relations
being the clearest examples. Other cases where the classical
uncertainty is negative are due to a shared variable that dominates
the uncertainty in each axis, such as the R23.5− L23.5, R23.5−M*,
and L23.5− jdyn relations. These are all cases where the shared
distance uncertainty dominates the covariance, rather than the
dependence of one variable on the other. While the possibility of a
negative intrinsic scatter is a problematic aspect of a classical
analysis, this can sometimes be rectified by identifying the shared
uncertainty and simply omitting it from an uncertainty propaga-
tion. More sinister are cases where the covariance is not strong
enough to cause a negative intrinsic scatter and may remain
unnoticed. For example, all of the variables in this analysis share a
covariance with inclination due to the internal extinction
corrections (see Section 3.4; the rotational velocity correction
also involves i1 sin( )).

Table 3
Data Quality Cuts

Variable Units X � X � σ � N-removed
(1) (2) (3) (4) (5) (6)

D dex L L 0.1 65
i deg 30 80 10 118
R23.5 dex −1 2 0.15 23
L23.5 dex 6.5 12 0.3 28
V23.5 dex 0.8 3 0.1 53
g − z mag −0.5 2 0.2 37
M* dex 7 12 0.4 34
Σ1 dex 6 10.5 0.4 22
Mdyn dex 6 13 0.2 76
j* dex 0 4.5 0.4 61
jdyn dex 1 4 0.3 82

Note. Variables in Column (1) are described in Sections 3.3 and 3.2. Column
(2) indicates the units of the (log/linear) limits. Columns (3) and (4) give a
lower and upper bound for each variable. Column (5) gives an upper bound on
uncertainty. Column (6) reports the number of galaxies cut from PROBES by
limits on that variable, though some galaxies may be removed on account of
multiple constraints. No value/limit is set for the distance measurements.
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Several qualitative results become apparent upon inspection
of Table 5 and Figure 5. Foremost is that the Bayesian intrinsic
scatters tend to be larger than the classical estimates. This
general result comes from the ability of the Bayesian method to
account for covariant uncertainties, which Figure 4 shows are
very common. All parameters, except V23.5 and g− z, depend
on distance and gain much of their observational uncertainty
from distance errors; any relation with two distance-dependent
parameters will thus have a large source of correlated error,
which Appendix B shows as a critical point of failure for the
classical method. Without exception, inclination is a covariant
source of uncertainty in all scaling relations studied in this
work; though its effect is smaller than distance uncertainty,
Appendix B indicates that even a small covariance can impact
classical error propagations. These covariant sources of error
contribute less scatter to a relation than the naive classical
method assumes. Therefore, the Bayesian method ultimately
returns a higher intrinsic scatter value. The effect is most
pronounced for M*, Mdyn, j*, and jdyn where nearly all classical
intrinsic scatter measurements for their scaling relations return
negative values. This is not too surprising as these are
composite quantities that depend on many factors and so have
many source of error to combine.

Another noticeable trend in Table 5 is that the 68.3%
credible intervals for the Bayesian intrinsic scatter values are
smaller than the 68.3% confidence intervals for the classical
method. This effect is most significant when the classical
intrinsic scatter estimates approach (or cross) zero. In the
region around zero scatter, classical estimates are more unstable
resulting in the larger uncertainty on the intrinsic scatter. The
behavior of Bayesian intrinsic scatter estimates around zero is

better defined, thanks in part to priors that prevent estimates
from crossing that threshold. Therefore, the Bayesian intrinsic
scatter estimates will be biased high on average. However, they
will also typically be closer to the true value than classical
estimates (this is generally true of Bayesian methods, also see
Appendix B). An inadequate choice of model can also bias
both Bayesian and classical intrinsic scatter estimates. For
instance, a poorly chosen inclination correction model will
typically bias scatter measurements (and therefore intrinsic
scatter estimates) higher than their true value. These systematic
effects are not reflected in the uncertainty ranges in Table 5,
which only shows the random component.
Some specific cases in Figure 5 stand out. The R23.5 and L23.5

versus V23.5 relations and most relations involving color have
similar intrinsic scatter predictions for the Bayesian and
classical analyses. These are the cases where most sources of
uncertainty are not shared between each axis; it is no
coincidence that V23.5 and color are in all such relations as
they are distance independent (which is a major source of
correlated uncertainty). The relation for which these Bayesian
and classical methods disagree is g− z versus j*, which
Figure 4 shows has inclination as a large anticorrelated source
of error. Anticorrelated errors have a stronger impact on the
Bayesian algorithm than the classical method. The Bayesian
algorithm cannot in fact assign a zero intrinsic scatter to a
relation; one would instead have to perform a Bayes factor
analysis to compare the zero and nonzero intrinsic scatter
models. This analysis would operationally be similar to our
intrinsic scatter calculation, but a detailed description is beyond
the scope of this paper.

Table 4
Scaling Relation Fits

Y⧹X V23.5 R23.5 L23.5 Σ1 g − z M* Mdyn j* jdyn

V23.5 m • 0.7550.040
0.019 0.3130.012

0.004 0.2510.002
0.004 0.6400.015

0.004 0.2500.009
0.002 0.3140.004

0.001 0.4720.019
0.004 0.3860.008

0.003

b 1.3850.016
0.050 -1.0590.041

0.128 -0.0250.036
0.021 1.6280.009

0.021 -0.3410.024
0.091 -1.2030.002

0.043 0.8500.007
0.072 1.0880.017

0.031

R23.5 m 1.3250.034
0.074 • 0.4170.004

0.008 0.3430.013
0.021 0.8620.013

0.036 0.3340.004
0.009 0.4180.013

0.020 0.6260.002
0.020 0.5130.012

0.026

b -1.8350.168
0.074 -3.2520.098

0.027 -1.9610.197
0.111 0.3090.046

0.001 -2.3130.101
0.028 -3.4580.223

0.135 -0.7110.078
0.013 -0.3980.075

0.041

L23.5 m 3.1910.042
0.130 2.4010.046

0.021 • 0.7970.020
0.035 1.8620.012

0.054 0.7990.001
0.008 1.0030.016

0.032 1.5030.020
0.027 1.2320.012

0.046

b 3.3790.298
0.086 7.8070.023

0.099 3.3440.328
0.148 8.7380.081

0.043 2.2860.081
0.002 -0.4860.360

0.167 6.0980.162
0.149 6.8520.174

0.008

Σ1 m 3.9800.058
0.027 2.9120.169

0.107 1.2550.053
0.030 • 2.4530.064

0.010 1.0040.035
0.021 1.2570.023

0.002 1.8330.084
0.030 1.5410.036

0.003

b 0.0980.083
0.138 5.7110.076

0.224 -4.1960.290
0.565 6.6620.035

0.103 -1.3420.188
0.384 -4.7820.003

0.257 3.6090.008
0.321 4.4190.055

0.142

g − z m 1.5640.009
0.038 1.1600.046

0.017 0.5370.015
0.003 0.4080.002

0.011 • 0.4110.010
0.002 0.5380.006

0.010 0.8010.017
0.007 0.6540.006

0.012

b -2.5450.088
0.025 -0.3580.007

0.063 -4.6930.040
0.163 -2.7160.108

0.005 -3.2850.019
0.110 -4.9450.107

0.072 -1.4000.052
0.086 -0.9910.047

0.032

M* m 3.9970.039
0.144 2.9940.078

0.034 1.2520.012
0.001 0.9960.021

0.036 2.4310.009
0.062 • 1.2560.014

0.034 1.8780.036
0.022 1.5420.007

0.049

b 1.3630.330
0.081 6.9240.013

0.135 -2.8610.001
0.128 1.3370.349

0.161 7.9850.090
0.036 -3.4670.373

0.144 4.7820.173
0.216 5.7170.192

0.028

Mdyn m 3.1880.003
0.040 2.3910.111

0.070 0.9970.031
0.016 0.7960.001

0.015 1.8580.035
0.022 0.7960.021

0.009 • 1.4970.052
0.010 1.2280.016

0.015

b 3.8340.092
0.003 8.2660.066

0.132 0.4840.156
0.332 3.8040.142

0.006 9.1900.038
0.045 2.7610.079

0.224 6.5620.023
0.201 7.3130.057

0.058

j* m 2.1210.017
0.088 1.5980.049

0.004 0.6660.012
0.009 0.5460.009

0.026 1.2490.011
0.028 0.5330.006

0.011 0.6680.004
0.024 • 0.8200.010

0.023

b -1.8020.228
0.010 1.1360.030

0.093 -4.0580.141
0.167 -1.9690.274

0.040 1.7480.081
0.061 -2.5470.156

0.117 -4.3820.287
0.025 0.5020.113

0.010

jdyn m 2.5900.020
0.054 1.9480.096

0.046 0.8110.029
0.008 0.6490.001

0.016 1.5280.027
0.015 0.6480.020

0.003 0.8140.010
0.011 1.2190.034

0.015 •

b -2.8190.139
0.063 0.7740.059

0.101 -5.5600.051
0.333 -2.8670.160

0.040 1.5140.040
0.048 -3.7070.003

0.229 -5.9540.126
0.116 -0.6120.004

0.151

Note. This table is formatted like Figure 2 with results for each relation at the intersection of two variables. The first column gives the y-axis parameter for each scaling
relation. The second column gives the linear fit parameters where the fit is of the form: Y = mX + b. Reading across a row gives every parameter option as the x-
variable. The diagonal cells are left blank. Parameter uncertainties are determined by Monte Carlo sampling.
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Figure 5 shows a comparison of many scaling relations by
orthogonal scatter. One can read across a row of the figure and
see all cases with a single variable as the y-axis. A discussion of
the generalized applications of these relations, as standard
candles for instance, is beyond the scope of this paper, though
the format of Figure 5 is conducive to exploring new
relationships.

These broad trends indicate the necessity of using Bayesian
intrinsic scatter measurements instead of classical techniques.
Differences between the two methods extend beyond the trivial
second-order effect, but involve systematic and significant
departures. We examine specific scaling relations more closely
in Section 5, and compare our results to the literature.

5. Discussion

This section presents a comparison of some of our results
with literature values. This exercise demands special attention
since structural parameters are rarely measured in matching
fashion from study to study. In Table 6 we present our literature
comparisons for a few well-studied scaling relations as a subset

of those relations presented in Tables 4 and 5. Whenever
possible, we perform a unit conversion to units used in our
analysis (for example L Llog10( [ ]) instead of magnitudes),
detailing our transformations in the relevant subsection when
these are nontrivial. Bandpass transformations were not
applied; instead, we report the published values and indicate
the wavelengths in which the linear fit parameters were
originally measured. Some parameters, such as luminosity,
size, and color, will be greatly affected by the choice of
bandpass; others, such as stellar mass, central stellar surface
density, and stellar angular momentum, are in principle
bandpass independent. However, systematic errors due to the
choice of mass-to-light transformations may exist. Comparing
scaling relations based on bandpass-dependent quantities, such
as the TFR, for different studies thus requires additional care.
Coupled with our analysis technique to evaluate intrinsic

scatters, we can achieve higher precision in our estimates than
previous (individual) analyses have allowed. However, each
relation deserves individual attention in order to fully realize its
connection with galaxy formation and evolutionary models.
This section focuses on empirical (observational) results;

Table 5
Scaling Relation Scatters

Y⧹X V23.5 R23.5 L23.5 Σ1 g − z M* Mdyn j* jdyn

σo 0.0960.003
0.003 0.0730.002

0.002 0.0770.002
0.002 0.1190.003

0.004 0.0620.002
0.002 0.0390.001

0.001 0.0800.003
0.002 0.0650.002

0.002

V23.5 σb • 0.0860.002
0.003 0.0560.002

0.002 0.0730.002
0.002 0.1160.002

0.002 0.0480.002
0.002 0.0350.001

0.001 0.0720.002
0.002 0.0570.001

0.002

σc 0.0690.004
0.004 0.0410.004

0.004 0.0400.004
0.004 0.1050.004

0.005 -0.0240.004
0.006 -0.0340.001

0.002 -0.1090.002
0.002 -0.0240.006

0.007

σo 0.1280.004
0.004 0.0630.002

0.003 0.1530.004
0.004 0.2200.006

0.005 0.0990.003
0.002 0.0780.002

0.002 0.0710.002
0.002 0.0640.002

0.002

R23.5 σb 0.1180.003
0.003 • 0.0630.001

0.001 0.1530.003
0.001 0.2100.005

0.005 0.0940.002
0.002 0.0730.002

0.002 0.0570.002
0.002 0.0610.001

0.002

σc 0.0920.005
0.005 -0.0690.001

0.003 0.1150.005
0.006 0.2010.007

0.006 -0.0180.014
0.030 -0.0330.005

0.006 -0.1720.001
0.001 -0.0820.002

0.001

σo 0.2330.007
0.008 0.1520.004

0.007 0.2340.005
0.010 0.4170.015

0.012 0.1150.005
0.002 0.1310.004

0.004 0.1960.007
0.004 0.1100.003

0.003

L23.5 σb 0.1860.006
0.006 0.1520.002

0.001 • 0.2310.004
0.003 0.3920.010

0.009 0.1000.003
0.003 0.1070.004

0.003 0.1590.005
0.005 0.0880.003

0.003

σc 0.1310.012
0.013 -0.1650.003

0.007 0.0790.015
0.025 0.3740.016

0.013 -0.1920.003
0.001 -0.1230.005

0.004 -0.3910.004
0.002 -0.2030.002

0.002

σo 0.3060.008
0.010 0.4470.011

0.012 0.2940.006
0.012 0.3920.012

0.012 0.2310.006
0.005 0.3390.011

0.010 0.4780.022
0.010 0.3360.014

0.007

Σ1 σb 0.2920.007
0.007 0.4230.009

0.010 0.2830.007
0.006 • 0.3630.009

0.008 0.2140.005
0.005 0.3240.007

0.007 0.4360.010
0.010 0.3160.007

0.007

σc 0.1580.016
0.017 0.3360.015

0.017 0.0990.019
0.032 0.2960.015

0.016 -0.1900.007
0.007 0.2300.017

0.015 -0.2610.037
0.019 0.1360.041

0.018

σo 0.1850.005
0.007 0.2550.008

0.006 0.2240.008
0.006 0.1600.005

0.005 0.1640.004
0.007 0.2120.006

0.008 0.2610.010
0.008 0.2250.007

0.006

g − z σb 0.1830.003
0.003 0.2400.005

0.006 0.2100.005
0.005 0.1500.004

0.004 • 0.1540.003
0.004 0.2090.004

0.003 0.2430.006
0.006 0.2110.005

0.005

σc 0.1640.006
0.008 0.2330.008

0.007 0.2010.009
0.007 0.1210.006

0.006 0.1250.005
0.009 0.1940.006

0.008 0.1260.021
0.017 0.1950.008

0.007

σo 0.2480.007
0.009 0.2970.010

0.007 0.1440.006
0.003 0.2300.006

0.005 0.3990.009
0.017 0.1920.007

0.006 0.3060.009
0.009 0.1850.007

0.006

M* σb 0.1990.007
0.006 0.2750.006

0.007 0.1260.003
0.004 0.2200.005

0.005 0.3800.009
0.009 • 0.1700.005

0.004 0.2610.008
0.007 0.1630.004

0.005

σc -0.0950.016
0.026 -0.0530.041

0.092 -0.2400.003
0.002 -0.1900.007

0.007 0.3040.012
0.021 -0.1630.008

0.007 -0.4660.006
0.006 -0.2480.005

0.005

σo 0.1250.003
0.004 0.1850.005

0.006 0.1310.004
0.004 0.2690.009

0.008 0.3940.011
0.014 0.1530.006

0.005 0.1620.006
0.006 0.1020.004

0.002

Mdyn σb 0.1130.003
0.003 0.1680.005

0.004 0.1050.003
0.003 0.2600.006

0.005 0.3860.007
0.007 0.1330.004

0.004 • 0.1390.004
0.004 0.0920.002

0.002

σc -0.1090.004
0.005 -0.0790.012

0.014 -0.1230.005
0.004 0.1830.013

0.012 0.3610.011
0.016 -0.1300.007

0.006 -0.3920.003
0.002 -0.1820.003

0.002

σo 0.1690.007
0.004 0.1140.004

0.004 0.1300.005
0.003 0.2610.012

0.005 0.3260.012
0.011 0.1630.005

0.005 0.1090.004
0.004 0.1060.005

0.003

j* σb 0.1560.004
0.004 0.0900.003

0.003 0.1050.003
0.004 0.2460.006

0.005 0.3050.007
0.008 0.1390.004

0.004 0.0930.003
0.003 • 0.0920.003

0.002

σc -0.2320.005
0.003 -0.2740.002

0.002 -0.2600.002
0.002 -0.1420.020

0.011 0.1580.027
0.021 -0.2480.003

0.003 -0.2620.002
0.002 -0.2800.002

0.001

σo 0.1670.006
0.005 0.1240.005

0.003 0.0900.002
0.003 0.2180.009

0.005 0.3440.010
0.009 0.1200.004

0.004 0.0830.003
0.002 0.1300.006

0.004

jdyn σb 0.1480.004
0.004 0.1150.003

0.003 0.0700.002
0.002 0.2070.005

0.005 0.3220.008
0.007 0.1050.003

0.003 0.0750.002
0.002 0.1100.003

0.003 •

σc -0.0630.015
0.017 -0.1590.004

0.003 -0.1640.002
0.002 0.0880.025

0.012 0.2970.011
0.010 -0.1610.003

0.003 -0.1480.002
0.002 -0.3410.002

0.002

Note. This table is formatted like Figure 2 with results for each relation at the intersection of two variables. Each row gives every possible x-axis combination for a
given y-axis. σo is the observed forward scatter, σb is the Bayesian intrinsic scatter (see Section 2.3), and σc is the classical intrinsic scatter (see Section 2.2).
Uncertainty estimates for σo and σc are determined by bootstrap sampling; for σb, the uncertainty is taken from the posterior as the 68.3% credible interval. The
superscript number is the positive 1σ value, and the subscript is the negative 1σ value. The diagonal cells are left empty.
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detailed comparisons with simulations are beyond the scope of
this paper. The scaling relations examined briefly below set the
stage for more detailed investigations elsewhere.

5.1. TFR: log10(L/[Le])=m log10(V/[km s−1]) + b

The TFR between the rotational velocity, Vrot, and total
luminosity,4 Lλ, of a spiral galaxy has received considerable
attention since its inception (Tully & Fisher 1977; Pierce &
Tully 1992; Strauss & Willick 1995; Mo et al. 1998;
Verheijen 2001; Courteau et al. 2007; Ferrero et al. 2020, to
cite a few). The TFR itself is known to exhibit a wide range of
slopes, intercepts, and scatters, depending on the choice of
wavelength, sample, and analysis techniques. In their original
paper, Tully & Fisher (1977) used photographic photometry
and H I line widths for a sample of 18 galaxies to find a
photographic (B-band equivalent) slope of 2.5± 0.3. Courteau
(1997) used R-band photometry of 304 Sc galaxies and
examined many different measures of velocity with two large
samples, finding a variety of slopes from 2.14± 0.14 up to
2.86± 0.08 and forward scatter measurements ranging from
0.14 to 0.26 depending on the adopted parameters. Later work
by Courteau et al. (2007) revealed only weak correlations of the
TFR residuals with color, morphological type, surface bright-
ness, size, and concentration (see also Zwaan et al. 1995;
Courteau & Rix 1999). In their Appendix, Courteau et al.
(2007) provide theoretical derivations for the TFR slopes,

showing that it can range from three to four depending on
various assumptions.
Verheijen (2001) performed a detailed analysis of the TFR

parameters against sample, velocity metric, and passband
choice, ultimately suggesting that the intrinsic scatter may be
zero. Their use of a classical analysis, which systematically
underestimates the true value, is likely responsible for their low
intrinsic scatter estimate.
The study of 162 spiral galaxies by Pizagno et al. (2007)

focused on the scatter of the TFR given combinations of SDSS
g, r, i, and z photometric bands; three definitions of global
velocity; and variations on extinction corrections, quality flags,
and weighting of data points. They again found that the choice
of bandpass and analysis method had profound effects on the
slope and scatter.
In an attempt to settle one element of this variability, the

study by Hall et al. (2012) examined various reference radii for
the measurement of luminosity and velocity, consistently
finding that the isophotal radius, R23.5, measured at the SB
level of 23.5 i-band mag arcsec−2, yields some of the tightest
velocity, radius, and luminosity (VRL) relations (based on a
forward scatter analysis).
An extensive examination of bandpass effects on the TFR by

Ponomareva et al. (2017) found that 3.6 μm produces the
tightest relation (by orthogonal scatter). Having only 32
galaxies in their sample, random errors were a challenge for
Ponomareva et al. (2017), and they found all wavelengths at, or
longer than, the i band had the same orthogonal scatter to
within 1σ of each other.

Figure 5. This figure is formatted like Figure 2 to visualize the slope data from Table 4 and the scatter data from Table 5. The gray, blue, and orange ellipses represent,
respectively, the total observed scatter (σo), the Bayesian intrinsic scatter (σb), and the classical intrinsic scatter (σc). An orange dashed line through the center implies
a negative classical intrinsic scatter. The thickness of each ellipse is proportional to the orthogonal scatter. Scatters associated with the g − z color are converted to dex
to facilitate the comparison with other variables.

4 The TFR is often expressed in terms of absolute magnitude; in this case a
factor of −2.5 transforms between the slope measurements.
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Table 6
Scaling Relation Literature Comparisons

Source m σo σi Size Velocity Band Fit Method N
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Tully–Fisher relation: = +-L L m V blog log km s10 10
1( [ ]) ( [ ])

This work 3.1910.042
0.130 0.2330.007

0.008 0.1860.006
0.006 L Hα V23.5 z AB96

bisector
1152

Tully & Fisher (1977) 2.5 ± 0.3 L L L H I W B visual 18
Pierce & Tully (1988) 3.14 ± 0.12 0.1 �0.09 L H I W I OLS 26
Courteau (1997) 2.6 ± 0.1 0.2 L L Hα V23 R OLS 304
Verheijen (2001) 4.16 ±0.16 0.12 0.05 ± 0.05 L H I Vflat I IOLS 21
Pizagno et al. (2005) 2.603 ± 0.133 L 0.131 ± 0.015 L Hα V2.2 i OLS+σ 81
McGaugh (2005) 3.48 ± 0.17 0.24 L L H I Vflat B OLS 181
Courteau et al. (2007) 3.44 ± 0.05 0.197 0.13 L Hα V2.2 I ODR 1303
Pizagno et al. (2007) 2.6 ± 0.1 L 0.17 ± 0.02 L Hα V80 z OLS+σ 162
Avila-Reese et al. (2008) 3.83 ± 0.18 0.195 0.188 L H I W K ODR 76
Saintonge & Spekkens (2011) 3.63 ± 0.01 0.22 0.14 L H I W I ODR 3655
Reyes et al. (2011) 3.36 ± 0.14 0.22 0.16 ± 0.03 L Hα V80 z IOLS+σ 189
Hall et al. (2012) 3.66 ± 0.09 0.27 0.15 L H I W i ODR 668
Bradford et al. (2016) 3.40 ± 0.05 0.32 ± 0.01 L L H I W i
Kelly (2007) 930
Ponomareva et al. (2017) 3.25 ± 0.24 0.13 ± 0.09 0.14 ± 0.03 L H I Vflat z ODR 32
Ouellette et al. (2017) 2.85 ± 0.11 0.20 � 0.16 L Hα V23.5 i OLS bisector 46

Stellar Tully–Fisher relation: = +-M M m V blog log km s10 10
1

*( [ ]) ( [ ])

This work 3.9970.039
0.144 0.2480.007

0.009 0.1990.007
0.006 L Hα V23.5 z AB96

bisector
1152

Pizagno et al. (2005) 3.048 ± 0.121 L 0.158 ± 0.021 L Hα V2.2 i OLS+σ 81
Avila-Reese et al. (2008) 3.65 ± 0.16 0.21 0.16 L H I W K ODR 76
Dutton et al. (2010) 3.56 ± 0.04 L 0.18 L Hα V2.2 r OLS ∼160
Reyes et al. (2011) 3.60 ± 0.13 0.20 0.13 ± 0.02 L Hα V80 i OLS+σ 189
Hall et al. (2012) 3.79 ± 0.14 0.305 0.281 L H I W i ODR 668
Bradford et al. (2016) 4.16 ± 0.06 0.32 ± 0.01 L L H I W SDSS
Kelly (2007) 930
Ouellette et al. (2017) 3.99 ± 0.18 0.32 L L Hα V23.5 i OLS bisector 46
Lapi et al. (2018) 3.42 0.08 L L mixed V3.2 I OLS 546
Aquino-Ortíz et al. (2020) 3.22 ± 0.10 0.20 L L mixed Vmax MaNGA AB96 200

Size–velocity relation: = +-R m V blog kpc log km s10 10
1( [ ]) ( [ ])

This work 1.3250.034
0.074 0.1280.004

0.004 0.1180.003
0.003 R23.5 HαV23.5 z AB96

bisector
1152

Courteau et al. (2007) 1.10 ± 0.12 0.17 0.15 R2.2 Hα V2.2 I ODR 1303
Avila-Reese et al. (2008) 1.87 ± 0.30 0.290 0.285 Rd H I W K ODR 76
Saintonge & Spekkens (2011) 1.357 ± 0.004 0.11 0.084 ± 0.001 R23.5 H I W I ODR 3655
Hall et al. (2012) 1.518 ± 0.065 0.152 0.146 R23.5 H I W i ODR 668
Ouellette et al. (2017) 1.1 ± 0.1 0.137 L R23.5 Hα V23.5 i OLS bisector 69
Lapi et al. (2018) 1.04 0.04 L Rd mixed V3.2 I OLS 546

Size–luminosity relation: = +R m L L blog kpc log10 10( [ ]) ( [ ])

This work 0.4170.004
0.008 0.0630.002

0.003 0.0630.001
0.001 R23.5 L z AB96

bisector
1152

Courteau et al. (2007) 0.32 ± 0.01 0.14 0.13 R2.2 L I ODR 1303
Avila-Reese et al. (2008) 0.285 ± 0.033 0.201 0.194 Rd L K ODR 76
Saintonge & Spekkens (2011) 0.413 ± 0.003 0.05 0.034 ± 0.001 R23.5 L I ODR 3655
Hall et al. (2012) 0.401 ± 0.007 0.076 0.060 R23.5 L i ODR 668
N. Arora et al. (2021, in

preparation)
0.36 ± 0.01 0.11 ± 0.01 L R23.5 L z ODR 2500

Size–stellar mass relation: = +R m M M blog kpc log10 10 *( [ ]) ( [ ])

This work 0.3340.004
0.009 0.0990.003

0.002 0.0940.002
0.002 R23.5 L z AB96

bisector
1152

Shen et al. (2003) 0.15/0.4 0.20/0.15 L Re L z OLS 99,786
Pizagno et al. (2005) 0.242 ± 0.030 L 0.142 ± 0.011 Rd L i OLS+σ 81
Fernández Lorenzo et al. (2013) 0.54/0.46/0.35 0.12/0.12/0.12 L Re L SDSS OLS <452
Lange et al. (2015) 0.21 ± 0.02 L L Re L z OLS 6151
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The TFR has been extensively studied, and the works presented
in this section are but a small representation of the total literature.
Still, we have established general consistency between our
analysis and previous, mostly smaller, studies. Some of the above
studies have reported measurements for the intrinsic TFR scatter,
highlighting its importance for extragalactic studies. Rhee (2000)
noted that the true intrinsic scatter is likely larger than classical
estimates. With our method, we can finally quantify the effect of
covariant uncertainties on the intrinsic scatter of the TFR.

5.2. Stellar Tully–Fisher Relation:
log10(M*/[Me])=mlog10(V/[km s−1]) + b

Two variants of the TFR, the stellar and baryonic TFR
(STFR and BTFR, respectively), involve a correlation between
the rotational velocity and the stellar or total baryonic masses
of a galaxy (McGaugh et al. 2000; Verheijen 2001;
McGaugh 2005; Hall et al. 2012; Bradford et al. 2016;
Ouellette et al. 2017). Note that PROBES has stellar masses,
but gas masses are largely unavailable (at the time of writing);

Table 6
(Continued)

Source m σo σi Size Velocity Band Fit Method N
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Ouellette et al. (2017) 0.34 ± 0.02 0.15 L R23.5 L i OLS bisector 69
Lapi et al. (2018) 0.23 0.05 L Re L I OLS 546
Wu et al. (2020) 0.290.07

0.06 0.2 L Re L F814W L <1550

Trujillo et al. (2020b) 0.318 ± 0.014 0.087 ± 0.005 0.070 ± 0.006 R23.5 L i L 464
N. Arora et al. (2021, in

preparation)
0.38 ± 0.01 0.11 ± 0.01 L R23.5 L z ODR 2433

Stellar-to-halo-mass relation: = +M M m M M blog log10 10 dyn*( [ ]) ( [ ]) 

This work 1.2560.014
0.034 0.1920.007

0.006 0.1700.005
0.004 R23.5 Hα V23.5 z AB96

bisector
1152

Reyes et al. (2011) 1.28 ± 0.06 0.26 0.22 ± 0.02 R80 Hα V80 i OLS+σ 189
Ouellette et al. (2017) 1.27 ± 0.07 0.342 0.31 R23.5 Hα V23.5 i OLS bisector 69
Lapi et al. (2018) 1.08 0.08 L R3.2 mixed V3.2 I OLS 546

Σ1–Stellar mass relation: S = +-M m M M blog kpc log10 1
2

10 *( [ ]) ( [ ]) 

This work 1.0040.035
0.021 0.2310.006

0.005 0.2140.005
0.005 L L z AB96

bisector
1152

Barro et al. (2017) 0.89 ± 0.03 0.25 L L L CANDELS L 1328
Woo & Ellison (2019) 0.86 0.24 L L L i OLS ∼41000
Chen et al. (2020a) 0.93 L L L L MaNGA OLS 3654
N. Arora et al. (2021, in

preparation)
0.96 ± 0.01 0.24 ± 0.01 L L L grz ODR 2433

Specific angular momentum–mass relation: = +-j m M M blog kpc km s log10 dyn
1

10 dyn( [ ]) ( [ ])

This work 0.8140.010
0.011 0.0830.003

0.002 0.0750.002
0.002 R23.5 Hα V23.5 L AB96

bisector
1152

Takase & Kinoshita (1967) 0.79 L L R∞ V∞ L L 18
Zasov & Rubtsova (1989) 0.79 ± 0.08 L L R25 H I W, Vmax L L 34

Specific stellar angular momentum–stellar mass relation: = +-j m M M blog kpc km s log10
1

10* *( [ ]) ( [ ])

This work 0.5330.006
0.011 0.1630.005

0.005 0.1390.004
0.004 R23.5 L z AB96

bisector
1152

Romanowsky & Fall (2012) 0.53 ± 0.05 0.22 L R∞ L r OLS 64
Cortese et al. (2016) 0.80 ± 0.09 0.18 L Re L SAMI RO15 86
Posti et al. (2018) 0.55 L 0.19 Rmax L 3.6μm ODR 92
Lapi et al. (2018) 0.50 0.05 L R3.2 L I OLS 546
Sweet et al. (2018) 0.56 ±0.06 L L >3Re L mixed RO15 91
Mancera Piña et al. (2021) 0.53 ± 0.02 L 0.17 ± 0.01 Rlast L 3.6μm ODR 132

Note. Column (1) gives the literature source of the scaling relation. Column (2) reports the slope and its uncertainty. Columns (3) and (4) give the forward observed
and intrinsic scatter, respectively. In some cases for Columns (2)–(4), the values were transformed from their published value for consistency to ensure uniform units/
meaning. Column (5) gives the choice of size metric, if relevant for that relation. Column (6) gives the velocity metric, if relevant, where “H I W” is the H I line width,
and the velocity subscripts V V V V V, , , ,23.5 2.2 80 flat max, refer to the -23.5 mag arcsec 2 isophotal radius, 2.2 disk scale lengths, 80% of total light, a flat average, and
the maximum radius available, respectively. Column (7) gives the bandpass for each measurement, when relevant. In some cases, the original survey from which the
photometry was taken is indicated instead of a single bandpass. Column (8) gives an indication of the fitting method. This should be taken as a broad category;
see the original article for more information. Where ODR, OLS, IOLS, and OLS + σ refer to orthogonal distance regression, ordinary least-squares regression, inverse
ordinary least-squares regression, and ordinary least-squares with nonzero intrinsic scatter, respectively. Column (9) gives the number of galaxies in each fit. Dots [K]
mean that no data are available. If multiple relations were available from a given source, the most relevant version was selected for comparison (z-band, local universe,
measurements at R23.5, bisector fit, late-type galaxies, etc.). This table cannot properly capture the wealth of information found in the literature. Our quoted slope for
Lapi et al. (2018) uses the derivative at the pivot point of their fit, ultimately using the value “y1” from their Table 1; see the original paper for details.
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therefore, the BTFR is beyond the scope of our reach. For a
comprehensive review of the BTFR, see Bradford et al. (2016).
Here we will only examine the STFR; all STFR values are
presented in Table 6.

An operational advantage of the STFR and BTFR over the
basic TFR is the elimination of bandpass dependencies. In
principle, estimates of the STFR and BTFR should not depend
on the methods used to obtain stellar masses and velocities.
Therefore, it is surprising that the STFR should exhibit as
much, if not more, internal variation in slope and scatter
measures than the TFR. Systematic differences in choices of
mass-to-light transformations may be at play.

Three studies (Hall et al. 2012; Bradford et al. 2016;
Ouellette et al. 2017) have consistent slope measures to ours;
however, their scatter values are considerably larger. Differ-
ences between the STFR and BTFR are mostly seen at low
masses, and sample selection (e.g., yielding varying propor-
tions of low-mass galaxies) may explain these.

5.3. Size–Velocity Relation:
log10(R/[kpc])=mlog10(V/[km s−1]) + b

The size–velocity relation (hereafter RV) is another tight
correlation that can be used as a distance indicator or to
constrain galaxy formation models. The slope of the RV
relation is expected to be near one for dark-matter-dominated
systems (Mo et al. 1998; Courteau et al. 2007). The PROBES
sample includes all of the galaxies studied in Courteau et al.
(2007). Despite this significant overlap, we find a larger slope
and smaller scatter. These differences in RV slope and scatter
result mostly from using disk scale lengths (Courteau et al.
2007) instead of isophotal radii (this study) and the choice of
inclination correction (see Section 3.4).

Saintonge & Spekkens (2011) studied the RV relation for a
large collection of Sc galaxies from the SFI++ sample
(Springob et al. 2007). Despite the close agreement in slopes,
our scatter is considerably larger than theirs. The differences
may stem largely from sample selection, with the PROBES
sample covering a broader range of morphologies, as well as
our velocity measures (V23.5 versus H I line width) and
photometric band passes (z versus I band).

Hall et al. (2012) also explored combinations of velocity,
size, and luminosity for 3041 spiral galaxies with H I line
widths and SDSS imaging. Their analysis considered different
radial definitions, wavelength bands, and sample selection
criteria, finding that structural parameters measured at R23.5 (in
their case for the i band), yield the tightest scaling relations. In
Table 6, we report the results from their highest-quality
“sample D,” which has moderate inclinations and well-
determined distances. For their less restrictive “sample B,”
they find an RV slope of 1.334± 0.046, which matches our
value more closely. Their use of integrated line widths instead
of spatially resolved rotation curves should not significantly
impact the scatter of the TFR (Courteau 1997). However,
resolved rotation curves inform us about the location of the
velocity measurement whereas that spatial information is lost
with line widths. Other potential sources of discrepancy include
the choice of inclination corrections, and their distance
calibration (see Hall et al. 2012, their Figure 19). Addressing
the choice of distance calibration, Hall et al. (2012) found an
RV relation with slope 1.33 and scatter of 0.097. An intrinsic
RV scatter for their study can be inferred by taking their
reported average uncertainties in size (0.03 dex) and velocity

(0.02 dex) and performing a classical error analysis; this yields
an intrinsic scatter of 0.09, which is somewhat lower than our
intrinsic scatter estimate. Since this value agrees with our
classical intrinsic scatter value, the discrepancy is likely due to
expected differences between classical and Bayesian scatter
analyses.
The Lapi et al. (2018) analysis reported forward and inverse

fits to their RV relation. Using the technique from Isobe et al.
(1990), we compute a bisector fit from the forward and inverse
fits in Lapi et al. (2018, Table 1). Their resulting slope is the
shallowest among all reported in Table 6. This discrepancy
may stem from their use of a disk scale length as the size
metric. Courteau et al. (2007) also got a shallower slope and
used disk scale lengths as their size metric. The remarkably
small scatter of Lapi et al. (2018) is likely connected to their
use of stacked profiles.

5.4. Size–Luminosity Relation: log10(R/[kpc])=m
log10(L/[Le]) + b

The size–luminosity relation (hereafter RL) has the interest-
ing property that both axes are proportional to distance, and
therefore distance errors will not significantly contribute to
scatter. Although useless as a distance indicator, the residuals
of the RL relation may offer useful comparisons with galaxy
formation models without the nuisance of distance uncertainty
(Crain et al. 2015).
There is a clear bimodality in RL results, with Courteau et al.

(2007) and Avila-Reese et al. (2008) getting shallow slopes and
larger scatters than the other studies. The use of disk scale
lengths as the fiducial size metric in these two studies is the
most likely source of discrepancy. Sample size (e.g., Avila-
Reese et al. 2008) can also be a factor. Studies that use R23.5 as
their size metric show relative agreement, though classical
treatments (Saintonge & Spekkens 2011; Hall et al. 2012)
underestimate the intrinsic scatter.
While Hall et al. (2012) did not compute an RL intrinsic

scatter directly, this can be inferred from their reported
observational uncertainties. Their reported measurement errors
for luminosity and size of 0.09 dex and 0.03 dex, respectively,
imply an intrinsic scatter of 0.06 based on a classical analysis.
Since our data and parameter extraction techniques are similar,
the scatter difference is likely due to adopting a classical
computation methodology. The classical analysis cannot
account for covariances such as the shared effect of a
photometric zero-point uncertainty (a positive fluctuation
would increase both the luminosity and the size), the shared
effect from distance uncertainties, and the shared effect of
inclination uncertainties. With so many shared variables, a
classical analysis of the intrinsic scatter in the RL relation is not
possible without considering extra covariant terms.
The RL relation is an ideal testbed for the validation of

intrinsic scatter analyses as the variables are strongly
correlated, yet the relation itself is nontrivial. The scatter of
this relation offers insight into the cosmic diversity of observed
galaxies while minimizing the influence of observational
uncertainties. In fact, our Bayesian analysis finds that
essentially all of the RL scatter is intrinsic as uncertainty
contributions are small. It is also a highly reproducible relation,
with our results and those of Saintonge & Spekkens (2011) and
Hall et al. (2012) being quite similar.
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5.5. Size–Stellar Mass Relation: log10(R/[kpc])=m
log10(M*/[Me]) + b

The size–stellar mass (hereafter RM*) relation probes several
aspects of galactic models including star formation history,
angular momentum distribution, and coupling with the dark
matter halo. Given the dependence of R and M* on distance,
this scaling relation cannot be used as a distance estimator.
However, a distinct advantage of the RM* relation over the
related RL relation is the expected independence of M* on
bandpass, making it simpler to compare across observational
and numerical studies. As stated previously, the choice of size
metric acutely impacts the shape and scatter of the related
scaling relations. Studies based on R23.5 produce tighter RM*
relations than other size metrics, and yield slopes consistent
with ours (∼0.33), while those using Rd or Re consistently get
shallower slopes (∼0.25). Moreover, the intrinsic scatter from
Pizagno et al. (2005) is almost twice our value. While Trujillo
et al. (2020b) used R23.5, their intrinsic scatter is slightly
smaller than ours, as expected for a classical analysis. As
previously stated, Lapi et al. (2018) reported a tight RM*
relation, despite using Re, as a result of their stacking method.
The explanation for the larger scatter found by Ouellette et al.
(2017) could include small sample size and cluster environment
(most other studies sample field environments).

Fernández Lorenzo et al. (2013) considered morphological
segregation in their analysis, including early-type galaxies. We
have only extracted their slopes for morphologies corresp-
onding to Sb, Sbc, and Sc galaxies as these represent the best
overlap with our samples. Table 6 gives their RM* slopes and
scatters separated by a “/” character. Shen et al. (2003) also
fitted two RM* relations, for low- and high-mass systems (with
a transition mass of ∼1010.5Me). Their use of a circular
(Petrosian) half light radius for the relation however explains
their extreme slopes and large scatter (Hall et al. 2012).

Overall, the small intrinsic scatter of the RM* relation offers
an excellent benchmark for the comparison of observational
and/or numerical studies. However, results and their inter-
pretation depend sensitively on the sample selection function
and the adopted size metric.

5.6. Stellar-to-total-mass Relation: log10(M*/[Me]) = m
log10(Mdyn/[Me]) + b

The stellar-to-total-mass relation (hereafter STMR) plays an
important role in understanding the interplay of baryons and
dark matter; it is studied across a broad range of scales (see,
e.g., Behroozi et al. 2013, for a comparison of several studies).
Note that theoretical studies typically examine the stellar-to-
halo mass relation, while observations are limited to STMRs
within a finite galactocentric radius (Ouellette et al. 2017). The
slope of the STMR changes at a halo-mass scale of ∼1012Me
(Moster et al. 2010), which represents the star formation
efficiency in massive halos. The PROBES sample does not
reach the turnover mass range, and we may fit a single power
law to our data.

Reyes et al. (2011) and Ouellette et al. (2017) both report
STMR slopes that are fully consistent with ours; however, their
scatter and intrinsic scatter values are considerably larger. Both
studies fit small samples, which increases the uncertainty on
their results as a small number of outliers could greatly increase
the observed scatter. In the case of Reyes et al. (2011), the
increased scatter may also be due to their use of R80 as the

radius at which masses are measured, R80 is a variant of the
effective radius that is known to produce broader scaling
relations. In the case of Ouellette et al. (2017), our analysis
techniques are well aligned and so the only other likely
explanation is the environment. The Ouellette et al. (2017)
sample is taken from the Virgo cluster and our sample is a mix
of environments with mostly field galaxies.
Lapi et al. (2018) performed their analysis on stacked data

and found an STMR slope and scatter that are considerably
lower than ours. Differences are likely explained by their use of
stacked data and disk scale length as a size metric.

5.7. Σ1–Stellar Mass Relation: log10(Σ1/[Me kpc−2])=m
log10(M*/[Me]) + b

The Σ1–stellar mass relation is of great interest to the galaxy
formation community. Σ1 has been empirically shown to be
connected with black hole mass, and the transition to a
quenched state (Chen et al. 2020b). Unlike other measures such
as stellar surface density within the effective radius (Σe), Σ1 is
insensitive to mergers (Szomoru et al. 2012; Barro et al. 2017).
Stellar mass is of course sensitive to mergers, and so it is
surprising that Barro et al. (2017) find the slope of the
Σ1–stellar mass relation to be constant as a function of redshift
with a slope of 0.89± 0.03 (though the zero-point does evolve
with time). Our scatter measurements are in close agreement
with those of Barro et al. (2017), who reported a scatter of
roughly 0.25 for their star-forming galaxies sample, where our
value is 0.2310.006

0.005 for a broad range of late-type galaxies.
Woo & Ellison (2019) fit an Σ1 stellar mass and examine the

position of galaxies in the relation and how it is connected to
stellar age, specific star formation rate, and metallicity. Specific
evolutionary modes are indicated by the apparent paths that
galaxies follow in this relation. Fitting only star-forming
galaxies, they find a slope of 0.86, which is somewhat smaller
than our value, though the difference may be attributed to the
use of a least-squares fit on the relation. Their scatter
measurement of 0.24 is, however, in excellent agreement with
our observed scatter.
Chen et al. (2020a) used a large sample of galaxies from the

MaNGA (Bundy et al. 2015) survey to find stellar mass to be
one of the strongest predictors of radial gradients in stellar
population indicators. We find excellent agreement with the
Chen et al. (2020a) Σ1–stellar mass slope of 0.93 for low-mass
galaxies ( <Mlog 10.9510 *( ) ); our reported slope is 1.0040.035

0.021.

5.8. Specific Angular Momentum–Mass Relation:
log10( jdyn/[kpc km s−1])=m log10(Mdyn/[Me]) + b

Dynamical angular momentum Jdyn, like dynamical mass, is
of special interest to galaxy formation studies since it is a
conserved quantity (at least for isolated systems). Angular
momentum is also closely tied to dynamical mass through a
simple theoretical prediction. Assuming a galaxy is a solid
rotating sphere, its moment of inertia will be MR2

5
2 and total

mass is pr=M R4

3
3. Computing the angular momentum gives

J∝M5/3; the specific angular momentum has j∝M2/3

(Crampin & Hoyle 1964). Galaxies are, of course, not solid
rotating spheres, yet this assumption matches several observa-
tional studies, which we discuss below.
The two sources in Table 6 that report the jdyn−Mdyn

relation have slopes that are consistent with ours; their scatter
values are not available. The literature on jdyn−Mdyn relation is
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not as rich as other relations discussed above, perhaps because
of the highly correlated nature of its two variables. Our
Bayesian analysis allows for a full accounting of correlations
and their effect on intrinsic scatter estimates allowing us to
confidently proceed with our analysis. We find a tight relation
with a robust slope considerably steeper than the simple
theoretical predictions above. A possible interpretation is
provided by considering the spin-parameter (λ) and energy
(E) of a collapsing halo. This results in a similar power-law
relation j∝M3/2λ|E|−1/2, though with extra terms (Peebles
1969). If Peebles’s expression represents all relevant para-
meters, then we must have λ|E|−1/2∝M−0.7 to roughly
reproduce the observed relation.

5.9. Specific Stellar Angular Momentum–Stellar Mass
Relation: log10( j*/[kpc km s−1])=m log10(M*/[Me]) + b

The stellar version of the jdyn−Mdyn relation involves the
complexities of baryonic physics. Nevertheless, the uniformity
of empirical results is remarkable (see Table 6) with values for
the slope and scatter consistent with ours.

The relative consistency of slope and scatter estimates is
quite remarkable given the range of size measures, photometric
band passes, and sample sizes used in these various studies.
Lapi et al. (2018) consistently report very small scatters due to
their stacking method. Our intrinsic scatter is also smaller than
those of Posti et al. (2018) and Mancera Piña et al. (2021)
possibly due to anticorrelated errors through the axial ratio (see
Figure 4). Anticorrelated variables make the Bayesian intrinsic
scatter estimates smaller than the classical ones.

Some studies of the j*−M* relation include a third variable
to account for the presence of a bulge (Obreschkow &
Glazebrook 2014; Fall & Romanowsky 2018; Sweet et al.
2018). While our Bayesian intrinsic scatter algorithm is well
suited for an arbitrary number of dimensions, a multidimen-
sional analysis of scaling relations is beyond the scope of this
paper.

5.10. Future Directions

Our analysis has revealed several avenues for future work.
The comparison of our results with other studies makes clear
that sample selection is a major hindrance, as small samples do
not produce reliable results; yet large samples may also exhibit
a range of morphologies, masses, environments, etc. that can
significantly alter final results. Care is required to avoid
sampling and selection bias.

We have also (re)visited inclination corrections and their
substantial effect on the slope and scatter of galaxy scaling
relations. This is discussed in some detail in Section 3.4 and
will undoubtedly require additional attention on many fronts
(empirical, numerical, and theoretical).

Scaling relations also depend sensitively on the choice and
definition of the parameters inherent to the relation itself. Most
notably, the size metric at which quantities are measured can
substantially affect the slope and scatter of the resulting scaling
relations (Courteau 1997; Courteau et al. 2007; Hall et al. 2012;
Bradford et al. 2016; Trujillo et al. 2020a).

Several scaling relations may have more complicated forms
than a single power law, such as the curved STMR, and/or
depend on a third parameter such as morphology, bulge/disk
ratio, or stellar mass. The Bayesian framework presented in
Section 2.3 is uniquely suited to address multidimensional

analyses. Being entirely based on residuals, the Bayesian
method is also well suited for the analysis of intrinsic scatter in
nonlinear and multidimensional scaling relations. Exciting
avenues for future exploration that could benefit from our
Bayesian intrinsic scatter analysis include the evolution of
scaling relation scatter against a reference variable or with
redshift. The same framework could also account for the
changing scatter across a scaling relation, e.g., from the bright
to the fainter end. Being entirely forward modeling and residual
based, our Bayesian intrinsic scatter analysis is powerful and
flexible.

6. Conclusions

We have presented a Bayesian technique for computing
intrinsic scatters of arbitrary scaling relations and demonstrated
its robustness over the classical first-order method. Because the
Bayesian method relies exclusively on forward parameter
calculations, no derivatives or inverse functions are required to
propagate measurement uncertainties. We have explained the
process of estimating Bayesian intrinsic scatters and compared
them with “classical” estimates; the former is typically larger
than the latter.
We have also applied our method to a suite of observed

galaxy scaling relations. For these tests, we use the “PROBES”
heterogeneous compilation of 1396 galaxies with spatially
resolved Hα rotation curves and homogeneous photometry
extracted by us from the DESI-LIS. Our scaling relations are
constructed from all possible combinations of nine structural
parameters for late-type galaxies. The resulting scaling
relations are homogeneously fit using a BCES bisector. Both
Bayesian and classical intrinsic scatter values are then
computed for each relation. The agreement between our slope
and scatter values and the literature is generally good (Table 6).
Our analysis has yielded the following data products and

main results:

1. A robust set of homogeneously fit scaling relations from a
large sample of late-type galaxies covering a broad range
of structural properties (Section 4). This includes tables of
observed, classical, and Bayesian intrinsic scatters
(Table 5), and a detailed comparison with literature
values (Section 5);

2. A code to compute Bayesian intrinsic scatters (Appendix C
and supporting data);

3. An appreciation that Bayesian intrinsic scatters are
typically larger than classical intrinsic scatters, as they
account for parameter covariances and error propagation
through robust fitting techniques (Section 2). Most
relations have intrinsic scatters ranging from 60% to
90% of the total observed value, with a few relations
spanning greater extremes.

4. An appreciation that Bayesian intrinsic scatters are more
robust to biases in the data than classical methods
(Appendix B);

5. An identification that the scatter of R23.5− L23.5,
V23.5− (g− z), and R23.5− jdyn scaling relations is mostly
intrinsic, largely because most observational errors slide
along the scaling relations, making some of these
relations ideally suited for comparisons with galaxy
formation models;

6. An identification of the tightest scaling relations by
intrinsic orthogonal scatter (Section 4.2). For each
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structural parameter, these relations were: V23.5−M*;
R23.5− L23.5, j*, jdyn; L23.5− V23.5, R23.5, jdyn;Σ1− V23.5;
(g− z)− V23.5; M*− V23.5;Mdyn− jdyn; j*− R23.5; and
jdyn− V23.5, R23.5, L23.5, Mdyn, with some parameters
having multiple equally tight relations.

7. A revised discussion on the nature and impact of
projection corrections for galaxy structural parameters
(Section 3.4).

Genuine care is required in order to achieve meaningful
analyses of galaxy scaling relations. As discussed in Section 5,
the parameters associated with any given galaxy scaling
relation depend greatly on sample selection and analysis
methods. Accurate and representative structural parameters of
galaxies, the simultaneous study of multiple scaling relations,
and the derivation of robust measures of intrinsic scatter will
facilitate comparisons with galaxy formation and evolutionary
models. The proper characterization of intrinsic scaling relation
scatters ought to help bridge the gap between observations and
simulations by removing one of the layers that stands
between them.

We wish to acknowledge our Queen’s University colleague
Aaron Vincent for illuminating discussions about Bayesian
statistics and data analysis, as well as the referee for insightful
comments. Special thanks go to Arjun Dey and John
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provided. This research has made use of the NASA/IPAC
Extragalactic Database (NED), which is operated by the Jet
Propulsion Laboratory, California Institute of Technology,
under contract with NASA. We are grateful to the Natural
Sciences and Engineering Research Council of Canada,
Ontario Government, and Queen’s University for support
through various scholarships and grants.

Software: astropy (Price-Whelan et al. 2018), photutils (Bradley
et al. 2019), numpy (Harris et al. 2020), scipy (Jones et al. 2001).

Appendix A
Classical Uncertainty Functions

Here, we report the classical uncertainty functions for all of
the extracted parameters in Section 3.3. These expressions are
determined via Equation (1) and include all sources of
uncertainty from Section 3 for which we could assign a value
and calculate derivatives. Table 7 includes expressions for
uncertainty for all parameters as used in our analysis.
Some variable names appear in Table 7 for the first time and

so we describe them here: σD is the uncertainty on the distance
to a galaxy and appears in many of the relations.
s s s s s- - S, , , , ,C C C C CR L g z g z23.5 23.5 1

and sC j
*
are the uncertainty on

inclination correction factors for the corresponding variables. σSB
is the uncertainty in the surface brightness at the selected radius
(Robs), and ΔSB,R is the local slope of the SB profile at Robs. smz is
the uncertainty on the apparent z-band magnitude, and Δm,R is the
slope of the curve of growth at the isophotal radius Robs. σi is the
inclination uncertainty (propagation through Equation (5) not
shown for clarity), and σz is the redshift uncertainty. sVobs is the
uncertainty on the individual velocity measurement at R23.5, or the
closest point to it. The uncertainty on the systematic velocity sVsys

was determined by fitting rotation curves with alternative methods
(such as an arctan model) and finding typical agreement to within
3 kms−1. This value is used as the systematic velocity uncertainty
for all galaxies. Dm R,g and Dm R,z are the slopes of the g- and z-
band growth curves, respectively. Δϒ,g−z is the slope of the mass-
to-light ratio as a function of color, and σϒ is the uncertainty on the
mass-to-light ratio within Robs set to 0.05 dex (Sec 4.1 of Roediger
& Courteau 2015). Similarly, s¡1 is the uncertainty on the mass-to-
light ratio within 1 kpc. sm z1, is the uncertainty on the magnitude
within 1 kpc. σI is the uncertainty on the intensity at R23.5.

Table 7
Classical Uncertainty Equations

Variable Classical Uncertainty
(1) (2)
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Note. Expressions for classical uncertainty propagation as described in Equation (1). These are computed for all points in each scaling relation and used for the
classical uncertainty propagation in Section 2.2. The variables are described in the text and Section 3.3.
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Appendix B
Testing Data Truncations

Various alterations of the toy model can be made to test the
effects of realistic biases in the data. Truncating the data on an
axis can represent sampling biases. We test the effect of
truncating extreme values on the x-axis by setting a lower
bound to the axis that removes a given percentage of the data
points. Truncating based on uncertainty can represent data
quality cuts, and we test the effect of setting an uncertainty
threshold that removes some percentage of the data. Truncating
based on the residual after fitting a relation can represent sigma
clipping, and we test the effect of removing data points with
large residuals as well. Shown in Figure 6 are tests for the
stability of each method against five types of bias in the data;
each test is performed using 1000 trials of the toy model.
Table 8 gives the five types of biases used in the toy model
data. We compare the relative error between the predicted
intrinsic scatter value and the true value as a function of the
degree of data bias.

Figure 6 makes clear that scatter analyses are adversely
impacted by sigma-clipping methods, since their accuracy and
uncertainty bounds are invalidated. This effect becomes
significant for the both classical and Bayesian algorithms once
as little as 1%–2% of the data are removed. Indeed, sigma
clipping eliminates some of the most informative data points
from the sample; points close to the relation are consistent with
any intrinsic scatter, while those far from the relation that have
small uncertainty can only be explained with a nonzero
intrinsic scatter. Figure 6 also shows that truncations based on
an axis or on uncertainty (as are used in Section 3) have
essentially no effect on either method. We tested truncating up
to 50% of the data, and the relative error only increased slightly
as would be expected with less data to analyze. Finally, we see
that the Bayesian method performs better than the classical

method in the ideal toy model (zero bias) by about 25%. The
difference is even more pronounced if there is some bias to the
data such as correlated errors.
More sinister is the possibility that the observational

uncertainties are themselves incorrect. Perhaps a given
uncertainty is overestimated as the observer wished to present
conservative values, or the uncertainty could be underestimated
due to an unknown factor influencing the data. Whatever the
cause, biased uncertainties can potentially present a significant
barrier to measuring accurate intrinsic scatter values. We test
the effect of modifying the uncertainty quality. We also test the
impact of correlated uncertainties and verify the statement in
Section 2 that the Bayesian algorithm properly handles
correlated uncertainties.
To test for incorrect observational uncertainties, we

randomly selected 50% of the data points and scaled their
uncertainty by some factor, thus considering both inconsistent
data (only half the data is modified) and incorrect uncertainty
values. This scaling is done after each data point is perturbed
by its uncertainty, so the algorithms will only have access to the
scaled (incorrect) values.
To test for correlated uncertainties, an extra uncertainty σz is

added to simultaneously scatter the data in both axes. The
classical method considers each axis separately and so the σz
error will be added in quadrature to both axes, while the
Bayesian technique includes the new uncertainty in its
sampling algorithm as a covariant term.
Figure 6 also shows that both algorithms can handle a small-

scale manipulation to the uncertainty values; however, the
Bayesian algorithm estimate and its uncertainty are consistently
more robust. At 10% scaling, the classical algorithm produces
an essentially meaningless uncertainty range. The test for
covariance in Figure 6 demonstrates, as expected, that the
classical method is negatively impacted by this type of
uncertainty while the Bayesian method handles it smoothly.

Figure 6. Tests on intrinsic scatter estimates, showing the relative error
between each method and the true mock intrinsic scatter value averaged over
1000 trials. Shown are the relative errors for four levels of data manipulation as
given in Table 8; zero indicates no modification to the data. The Bayesian
method consistently performs better than the classical method and is more
robust to data manipulation.

Table 8
Toy Model Modifications

Bias 1 2 3 4
(1) (2) (3) (4) (5)

Quality cuts 0.05 0.10 0.25 0.50
Sampling bias 0.05 0.10 0.25 0.50
Sigma clipping 0.01 0.02 0.03 0.05
Scaled 0.02 0.05 0.10 0.25
Covariance 0.01 0.02 0.05 0.10

Note. Table of data modifications from Figure 6 to test the Bayesian and
classical intrinsic scatter methods. Column (1) indicates the type of bias applied
to the data. Columns (2)–(5) indicate the degree of bias. The numbers in the
table have a different meaning for each bias type. Quality cuts, sampling bias,
and sigma-clipping values refer to the fraction of removed data points. “Scaled”
refers to the factor by which the mock observation uncertainties are scaled
relative to their true value. “Covariance” refers to the degree of extra covariant
scatter introduced to the mock observations (note that the toy model intrinsic
scatter is approximately 0.13 in the same arbitrary units).

22

The Astrophysical Journal, 912:41 (25pp), 2021 May 1 Stone, Courteau, & Arora



Appendix C
Bayesian Intrinsic Scatter Code

Here we present the Bayesian intrinsic scatter code. The
Python code below relies on the public numpy (Harris et al.
2020) and scipy (Jones et al. 2001) packages. The code defines
the function BayesianIntrinsicScatter, which has
several arguments described below.

The argument phi_list is a list object where each element
contains all of the measurement information for a galaxy
(rotation curve, surface brightness profile, distance, etc.) and
the associated uncertainties. The galaxy object (elements of the
phi_list list) may be formatted in any way that is easiest for
the user as the code does not directly interact with them, instead
only passing them to other functions. sigma_max is the
maximum possible intrinsic scatter value for the prior; typically
the total scatter of the scaling relation is used. The two X and Y
arguments are functions that take a phi_list element and
evaluate the X/Y axes of the scaling relation in question. These
functions can return None to indicate that a point has exceeded
a data quality cut and should be ignored. Other than returning
None, no other assumptions are made about the output of X
and Y as they are only passed to user-defined functions.
sample_phi_params is a function that takes no arguments
and returns any parameters that are needed for the sample_
phi function. sample_phi takes parameters from sam-
ple_phi_params and an element from phi_list and
returns the element resampled about its uncertainty values. For
example, the distance measurement would be resampled by a
normal distribution about the original measurement with the
uncertainty as the standard deviation. relation_f is the
function for the scaling relation; it takes as arguments a set of
parameters, an x-axis value, and a y-axis value, then returns the
residual. relation_f_fit takes a list of x-axis values and a
list of y-axis values and returns the set of parameters needed for
relation_f. N_samples is the number of times to sample
the sample_phi function for each galaxy and should be at
least 500 for the posterior to converge. N_sigma is the number
of points to evaluate the intrinsic scatter pdf. sigma_min is
the minimum value at which to evaluate the intrinsic scatter
pdf. nprocs is the number of processors used for the
calculations; this can accelerate the Bayesian intrinsic scatter
measurement. If the speed up is not needed, one can replace the
instances of pool.map with map for the same functionality.
min_pass is the minimum number of evaluations out of
N_samples that do not return None required for a galaxy to
be included in the intrinsic scatter calculation.

While the Bayesian intrinsic scatter calculation is somewhat
more complicated than a classical intrinsic scatter analysis,
there are some distinct advantages. From a coding perspective,
there are only a few functions that need to be defined. The X
and Y functions are effectively already needed to construct the
scaling relation in the first place. The sample_phi function is
relatively simple to construct as it typically only involves
sampling normal distributions. Again the relation_f and
relation_f_fit functions must already be constructed in
order to fit the scaling relation. Contrast this with the classical
error analysis where derivatives must be computed for each
axis as a function of each input value that has an uncertainty.
Once implemented for the first time, the Bayesian intrinsic

scatter calculation is actually easier than the classical analysis,
though it does take longer to compute.

import numpy as np
from scipy.integrate import trapz
from scipy.stats import norm
from functools import partial
from multiprocessing import Pool
def_pdf(r,s):
return np.sum(norm.pdf(r, loc=0, scale=s))

def BayesianIntrinsicScatter(phi_list, sigma_max, X, Y,
sample_phi_params, sample_phi,
relation_f, relation_f_fit,
N_samples=500, N_sigma=100,
sigma_min=0.01, nprocs=4,
min_pass=100):

pool=Pool(nprocs)
# array of values at which to evaluate the intrinsic

scatter pdf
S=np.linspace(sigma_min, sigma_max, N_sigma)
residuals=[[] for n in range(len(phi_list))]
for r in range(N_samples):
params=sample_phi_params()
# Resample galaxy list
sample=pool.map(partial(sample_phi, params),

phi_list)
# Evaluate scaling relation axes
XY=zip(pool.map(X,sample), pool.map(Y,sample),
range(len(phi_list)))
XY=list(filter(lambda xy: not None in xy, XY))
# Fit scaling relation
fit=relation_f_fit(list(xy[0] for xy in XY),
list(xy[1] for xy in XY))
for xy in XY:
# Store scaling relation residual
residuals[xy[2]].append(relation_f(fit, xy[0],

xy[1]))
posteriors=[]
for r in filter(lambda r: len(r) >min_pass, residuals):
# evaluate the intrinsic scatter pdf for this galaxy
pdf=np.array(pool.map(partial(_pdf, r), S))
# normalize pdf to integral 1
posteriors.append(np.log10(pdf/trapz(pdf, S)))

# Take product of single galaxy posteriors and
normalize
P_sigmai=np.sum(posteriors, axis=0)
P_sigmai -=np.max(P_sigmai)
P_sigmai=(10**P_sigmai)/trapz(10**P_sigmai, S)
return S, P_sigmai
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