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Abstract

In a previous paper, we computed the energy density and the nonlinear energy cascade rate for transverse kink
waves using Elsässer variables. In this paper, we focus on the standing kink waves, which are impulsively excited
in coronal loops by external perturbations. We present an analytical calculation to compute the damping time due
to the nonlinear development of the Kelvin–Helmholtz instability. The main result is that the damping time is
inversely proportional to the oscillation amplitude. We compare the damping times from our formula with the
results of numerical simulations and observations. In both cases we find a reasonably good match. The comparison
with the simulations shows that the nonlinear damping dominates in the high amplitude regime, while the low
amplitude regime shows damping by resonant absorption. In the comparison with the observations, we find a
power law inversely proportional to the amplitude η−1 as an outer envelope for our Monte Carlo data points.

Unified Astronomy Thesaurus concepts: Solar physics (1476); Solar coronal waves (1995); Solar corona (1483);
Magnetohydrodynamics (1964); Solar active regions (1974); Solar coronal loops (1485); Solar coronal
heating (1989)

1. Introduction

Magnetohydrodynamic (MHD) waves are ubiquitously present
in the solar atmosphere and magnetosphere (Nakariakov et al.
2016). A particular kind of MHD waves are the transverse kink
waves in coronal loops. They have been observed for more than
two decades (Nakariakov et al. 1999; Schrijver et al. 1999;
Aschwanden et al. 1999). These transverse waves are attractive to
observe and model for two reasons: (1) they can be used for
coronal seismology with the aim of estimating physical
parameters in coronal loops (e.g., Pascoe & De Moortel 2014;
Magyar & Van Doorsselaere 2018; Pascoe et al. 2018, see also the
review by Nakariakov & Kolotkov 2020), and (2) they could play
a role in heating the corona (e.g., De Moortel & Pascoe 2012;
Terradas & Arregui 2018; Karampelas et al. 2019; Pagano & De
Moortel 2019; Hillier et al. 2020, see also the reviews by
Arregui 2015; Van Doorsselaere et al. 2020b).

In this work, we focus on standing transverse waves in
coronal loops. Nowadays, we understand that these come in two
flavors. On the one hand, there are decayless oscillations, as
discovered by Wang (2011), Tian et al. (2012), and Nisticò et al.
(2013). These have no apparent external excitation source and
many researchers presume they are driven (possibly at the
footpoints; Karampelas et al. 2017; Karampelas & Van Door-
sselaere 2018; Afanasyev et al. 2020) to maintain the quasi-
steady amplitude. It was shown observationally that their period
scales with the loop length (Anfinogentov et al. 2015),
conclusively showing that these are also standing waves. On
the other hand, there are transverse waves in coronal loops that
are impulsively excited by a flare (Aschwanden & Schrijver
2011) or low coronal eruption (Zimovets & Nakariakov 2015).
These oscillations show an initial displacement from their
equilibrium position by the external exciter, after which the
coronal loop apparently freely oscillates with its natural
frequency showing a strong damping.

In this work, we will consider the damping of the impulsively
excited transverse waves, and leave the decayless waves aside
for now.
For the early observations of impulsively excited standing

kink waves, their strong damping was interpreted as damping in
terms of resonant absorption (Ruderman & Roberts 2002;
Goossens et al. 2002). This phenomenon is an ideal damping
mechanism (Terradas et al. 2006) that converts the observed,
large-scale, coherent transverse motions over time into localized,
incoherent motions around the resonant layer (Soler et al. 2013;
Goossens et al. 2014), which are hard to observe, resulting in an
apparent damping. Resonant absorption is a damping that works
in linearized MHD, leading to damping with exponential
behavior that is independent of the amplitude of the wave
(see, e.g., Goossens et al. 1992).
In recent years, it was found that the situation is more

complicated than simple exponential damping. In simulations,
it was shown that the damping starts with a Gaussian phase first
(Pascoe et al. 2012), which was later confirmed with analytical
calculations (Hood et al. 2013; Ruderman & Terradas 2013).
Gaussian damping was also found in observations (Pascoe et al.
2016) and used for Bayesian seismology (Arregui et al. 2013b;
Pascoe et al. 2017). Nowadays, the general damping profile has
been characterized with numerical simulations (Pascoe et al.
2019).
Despite all this progress, the damping is independent of the

amplitude, and nonlinear effects are not considered.
It was already speculated in the 80s that transverse kink waves

are susceptible to the Kelvin–Helmholtz instability (KHI; Hollweg
& Yang 1988). More recently, it has been confirmed numerically
that standing transverse oscillation lead to the nonlinear
development of the KHI (Terradas et al. 2008), resulting in the
formation of so-called transverse wave induced Kelvin–Helmholtz
rolls (or TWIKH rolls for short; Antolin et al. 2014, 2016; Van
Doorsselaere et al. 2018). Magyar & Van Doorsselaere (2016)
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constructed similar numerical models and investigated in a
parametric study the damping time as a function of the initial
amplitude. They found that low amplitude oscillations indeed
follow the damping by resonant absorption, but that at high
amplitudes the nonlinear damping takes over and a strong
amplitude dependence was found. Physically this can be under-
stood as the cascade of wave energy at large scales to the smaller
scale TWIKH rolls, once again leading to apparent damping.

Also in the meta-analysis of Goddard et al. (2016), which
considered 25 observed transverse loop oscillation events, it was
found that the damping time depends on the oscillation amplitude.
Their initial estimate was that the damping time τ (normalized to
the period P) would have an upper limit of η−1/2, with η being the
displacement amplitude. The study was later extended by
Nechaeva et al. (2019), who collected data over the entire solar
cycle, resulting in more than 200 cases. They found once again a
strong observational dependence of the damping on the amplitude,
and fitted an upper limit for the damping time of τ/P∼ η−0.68.

The nonlinear aspects of kink modes have been considered
in the past, but they were mostly focused on the calculation of
eigenfunction modifications and period changes (Ruderman &
Goossens 2014). For example, Ruderman (2017) found that the
nonlinear effect of kink waves is to generate fluting modes with
azimuthal wavenumber m= 2. This was later confirmed
numerically by Terradas et al. (2018). Moreover, some models
studied the KHI instability criterion in oscillating loops
(Barbulescu et al. 2019; Hillier et al. 2019).

Previously, the evolution of propagating waves and their
energy was modeled by Ruderman et al. (2010). They found
extra damping compared to the linear regime, as a consequence
of the small scale development by the nonlinear effects.
Motivated by the discovery of the uniturbulent regime (Magyar
et al. 2017), the nonlinear evolution of (propagating and
standing) kink waves was recently revisited by Van Door-
sselaere et al. (2020a). They used a formulation in terms of
Elsässer variables to estimate the wave energy density and
turbulent energy cascade rate (similar to common practices in
solar wind modeling; Bruno & Carbone 2013; van der Holst
et al. 2014). They found a damping time for the propagating
wave that was inversely proportional to the amplitude, i.e., η−1.

Here we investigate how the results in Van Doorsselaere et al.
(2020a) extend to standing waves. We compare our results to the
numerical parametric study of Magyar & Van Doorsselaere
(2016) and the observational results of Nechaeva et al. (2019).

2. Earlier Results

In Van Doorsselaere et al. (2020a), the simplest model for a
magnetic field-aligned, overdense cylinder was considered (uni-
form magnetic field B, internal/external density ρi/e). There the
transverse kink waves are mathematically described by Bessel
functions, leading to the usual dispersion relation (Zaitsev &
Stepanov 1975; Wentzel 1979; Edwin & Roberts 1983). Van
Doorsselaere et al. (2020a) found the expressions for the energy
density w in standing or propagating kink waves in the thin-tube
limit δ= kzR= 1, where kz is the longitudinal wavenumber and R

is the radius of the loop. In that approximation, the radial Bessel
eigenfunctions ( ) r for the total pressure perturbation ¢P reduce to
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Elsässer variables
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for the perturbations, where v and b are the velocity and magnetic
field perturbation and the+ (−) represent the downward (upward)
traveling Alfvén wave in a uniform medium. Their expressions for
the associated energy density to these Elsässer variables for kink
waves are given in their Equations (52) and (53) as
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In these expressions, subscripts i/e correspond to the internal
and exterior region, the oscillation frequency is ω, the Alfvén
frequency ωA is related to the Alfvén speed VA through
ωA= kzVA. In these formulae, the top line corresponds to the
standing wave, while the bottom line corresponds to propagat-
ing waves, as indicated.
As explained in Van Doorsselaere et al. (2020a), the energy

cascade rate is given by
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They found that the dominant contribution to the energy
cascade rate is due to
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because these are the only terms that have a contribution at
d = k Rz

3 3 3. In this expression, zre is the radial component of the
Elsässer variable in the exterior plasma. Van Doorsselaere et al.
(2020a) computed
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in their Equation (55). To obtain the damping rate for
propagating waves under uniturbulence (Magyar et al. 2017),
Van Doorsselaere et al. (2020a) divided the average energy
density by the average energy cascade rate:
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where the averaging was over the cross-section and period:

⎛
⎝⎜

⎞
⎠⎟ ( )ò ò òj

w
p

á ñ =
p p w¥

 rdr d dt
2

. 9
0 0

2

0

2
2

1 2

Intermediate results by Van Doorsselaere et al. (2020a) are
(their Equation (56)):
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and (their Equations (57)–(58))
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The quantity V denotes the velocity amplitude in the interior
region of the loop.

We can compute from the previous expressions that

Curiously enough, the expression for the standing wave does
not depend on the sign of the Elsässer variable! This probably
means that the damping for the z− is as strong as for z+,
because they are both part of the same standing wave.

3. Nonlinear Damping of Kink Waves

In order to calculate the energy density and energy cascade
rate of the standing kink waves, we extend expression (9) to
also average over the wavelength:
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We sum the contributions of both Elsässer components in both
the interior and exterior regions:
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which is half the energy of a propagating wave (Equation (59)
in Van Doorsselaere et al. 2020a) with the same amplitude.
This can be understood intuitively, since a standing wave of the
same amplitude as the propagating wave is the superposition of
two propagating waves with half the amplitude. For the energy,
it implies 2× (1/2)2, resulting in the factor of 1/2.
To compute the energy cascade rate, we start from the

intermediate result in Equation (12). It is mathematically
arbitrary to first sum ò± before averaging it (this operation is
noncommutative). However, physically it is preferable to first
compute the total energy cascade rate before averaging it over
space and time. The reason for this is that the standing wave is
operating as a whole: the kink wave contains both the z±

components simultaneously, and their combined damping is
responsible for attenuating the wave. Thus, both quantities
must be summed first before averaging over space and time.
Even though we think it is incorrect, we have included the
alternative result (with the averaging first, before the summing)
in the Appendix.
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Continuing from the summed energy cascade rates in
Equation (5), we have subsequently:
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We use the approximate expression for the kink frequency
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with ζ= ρi/ρe. In this equation, the last equality is only valid if
the magnetic field is uniform. We can then further simplify the
energy cascade rate to
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Somewhat surprisingly,5 this expression does not tend to 0 as
ζ→ 1, in contrast to the damping of propagating waves by
uniturbulence (Equation (58) of Van Doorsselaere et al. 2020a).
This agrees with the findings of Howson et al. (2019) that the

nonlinear damping by KHI also works in a coronal loop model
with a uniform density but varying magnetic field.
Now we can find the expression for the damping time by

dividing the energy density (Equation (17)) by the energy
cascade rate (Equation (24)), using the same method as in Van
Doorsselaere et al. (2020a)
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Here a= η/R is the relative displacement amplitude, i.e., the
ratio of the displacement η compared to the loop radius R. The
strongest damping occurs for ζ= 1 and is equal to

t = =
p

P
a

a
1

1.1520

96
. For an infinitely dense loop or

vacuum exterior ζ→∞ , the damping saturates with a
maximum of t p= »P a a10 5.64 . The full graph of τ
is shown in Figure 1.
The damping time τ computes how fast the kink wave

energy is cascaded to smaller scales. This formula considers the
inertial regime of the turbulent cascade (see Figure 10 of Van
Doorsselaere et al. 2020b), which is an ideal MHD process. In
this turbulent cascade, the energy dissipation rate does not
depend on the scale of the eddies, resulting in a power law
behavior (see Kolmogorov or Iroshnikov–Kraichnan scaling).
Once the turbulent eddies enter the dissipative range, the
energy cascade rate will take a different form (which does
depend on the dissipation coefficients) and also have a different
power law slope.
The analogy with damping by resonant absorption is clear.

The damping in resonant absorption is occurring also in ideal
MHD. The details of viscous/resistive damping of the resonant

Figure 1. The damping time aτ/P due to nonlinearity for a standing kink wave
as a function of the density contrast ζ, using Equation (25).

Figure 2. The damping times τ as a function of initial oscillation amplitude V/
VAi (or equivalently η in the top horizontal axis). The points correspond to the
results of Magyar & Van Doorsselaere (2016), with the color showing different
l/R as displayed in the legend. The full purple line shows the results of
Equation (25). The horizontal red and orange lines are the damping times from
resonant absorption (Equation (26)), with the appropriate l/R as indicated in
the legend. The dashed purple line is the harmonic average of the resonant
damping time for l/R = 0.1 and the nonlinear damping time. For completeness,
the damping time with the alternative method in the Appendix (Equation (A4))
is shown with the full green line, and the harmonic average is shown with the
dashed green line.

5 Perhaps it is even more surprising that the largest prime number below 100
would occur in the mathematical description of a physical phenomenon!
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Alfvén modes is different, and not needed to find the resonant
damping rate (see Equation (26)). In a sense, resonant
absorption is a cascade to smaller radial wavenumbers (albeit
independent of the amplitude), reinforcing the analogy with the
nonlinear damping (Equation (25)), which represents a cascade
in the radial and azimuthal wavenumber.

4. Comparison to Simulations

Here we compare the results for the damping time
(Equation (25)) to those of Magyar & Van Doorsselaere
(2016). In that work, 3D simulations were performed of
standing kink waves, of which the amplitude and scale of the
inhomogeneous layer l/R was varied in a parameter study. The
authors found that the damping is determined by resonant
absorption for small amplitudes. In this regime, the damping is
independent of the wave amplitude (Goossens et al. 1992).
However, in the high amplitude regime, they found that the
damping was caused by the nonlinear evolution of the kink
mode, namely the formation of the KHI (Terradas et al. 2008).
They considered a loop with an Alfvén speed of
VAi= 0.6 Mm s−1, radius of R= 1.5 Mm, and density contrast
of ζ= 5. They considered for the amplitude parameter of the
initial velocity perturbation the values V= {0.005, 0.01, 0.02,
0.035, 0.05}VAi, given in terms of the internal Alfvén speed.
Their results for the damping times as shown in their Figure
6 are displayed as dots in Figure 2, for three different values of
the thickness of the inhomogeneous layer between the interior
and exterior regions l/R= {0, 0.1, 0.33}.

On their data points, we overplot a few lines. The purple line
corresponds to the damping time computed with the formula
Equation (25), which was derived for l/R= 0. The orange and
red horizontal lines are the expected damping times from the
thin-tube, thin-boundary limit in resonant absorption (Ruder-
man & Roberts 2002) using a sinusoidal density profile in the
inhomogenous layer:

( )t
p

z
z

=
+
-P

R

l

2 1

1
, 26RA

for the parameters used in the Magyar & Van Doorsselaere
(2016) simulations.

From this graph, it can be seen that the purple line captures
the behavior of the damping quite well in the region of high
amplitude, apart from a vertical offset. The latter offset could
be explained by the shortcomings of the present analytical

model that was derived under the assumption that l/R= 0.
Another transition region from the interior to the exterior of the
loop could easily alter the constant prefactor ( p20 ) of the
nonlinear damping, as it also does for resonant absorption
(Soler et al. 2013).
Another shortcoming is that the nonlinear damping does not

capture well the apparent saturation that occurs for small
amplitudes. To address this, the dashed purple line shows the
harmonic average of the nonlinear damping and the damping
by resonant absorption. In the dashed line, we have taken
1/τ= 1/τRA+ 1/τNL, where we take τNL from Equation (25).
A better correspondence with the numerical simulation points
is indeed found. However, we still cannot match the observed
inflection point in the simulation data. Consider the damping
time’s dependence on the wave amplitude a. For resonant
absorption, we know τRA∼C, while for the nonlinear
damping, we know τNL∼D/a. Then, τ∼ CD/(aC+D). This
is a rational function. Since both C and D are positive, it will
have a pole at a< 0. Beyond this, it is a monotonically
decreasing section of the hyperbola. Thus, with the harmonic
average it is always impossible to obtain an inflection point in
this case.
In taking the harmonic average, we have assumed that the

nonlinear damping and resonant absorption operate indepen-
dently from each other. However, it may be possible that the
interaction between these damping mechanisms is more
complicated (e.g., TWIKH rolls lengthen the resonant layer),
and then a better fit could be obtained.
For completeness, the result obtained in the Appendix (in

particular Equation (A4)) is also shown in Figure 2 in green,
and its harmonic average is shown by dashed green lines.

5. Matching with Observations

In this section, we investigate how the theory fits with data
of damping of standing loop oscillations. We use the catalog
mentioned in Nechaeva et al. (2019), and displayed as green
stars in Figure 3. To generate the data points from our
analytical theory, we follow the approach of Verwichte et al.
(2013). They performed a Monte Carlo simulation for the
resonant damping τRA and period P in which the loop
parameters are drawn randomly from given distributions. Here
we use the same procedure in order to study how τ/P depends
on the amplitude η.

Figure 3. Scatter plot of the quality factor τ/P vs. the amplitude η for the data of Nechaeva et al. (2019) in green stars. Monte Carlo simulation of damping of kink
waves in our current model with purple dots (left panel: only nonlinear damping, right panel: harmonic average of nonlinear damping and resonant absorption). The
dotted line shows the possible outer envelope with η−1 we obtained in this work and the dashed line shows the outer envelope η−.68 as determined by Nechaeva
et al. (2019).
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We take 5000 realizations of oscillating coronal loops. We
take the following as random variables for each loop:

1. the density contrast ζ is drawn from a uniform
distribution [1, 9.5], where the latter value for zmax is
taken from Verwichte et al. (2013),

2. the thickness of the inhomogeneous layer l/R is drawn
from a uniform distribution [0, 2],

3. the amplitude η is drawn from a uniform distribution
between [0.2, 30]Mm, as suggested from the data, and

4. the radius R is uniformly drawn from a distribution
between [0.5, 5]Mm.

All of these distributions are very crude. In principle, we could
take the more advanced Bayesian inferences of Pascoe et al.
(2018), but at this stage we have chosen to keep the results as
simple as possible. Moreover, we have not taken into account
projection effects on the oscillation amplitude, which would
push down the horizontal scale by the cosine of the viewing
angle.

For each randomly generated loop, we have plotted the
nonlinear damping time τ/P in the left panel of Figure 3, while
the right panel shows the harmonic average of the nonlinear
damping time and resonant absorption, following the results of
Section 4.

After drawing the random numbers and computing the
associated damping times with the nonlinear damping time or
the harmonic average, we have added 50% noise to the
damping rate τ/P to mimic observational constraints. With
this, we mean that we multiply the theoretically obtained
damping rate for the ith loop (τ/P)i with 1+ 0.5ni, where the
noise ni for the ith loop is drawn from the standard normal
distribution N(0, 1). The specific shape of the noise (relative or
absolute) does not have a significant effect on our results.

The results of this Monte Carlo process are shown in
Figure 3. There seems to be a good match between the green
stars and purple dots in a statistical sense. The left panel shows
an overpopulation toward long damping times, but this is
solved in the right panel where the resonant absorption is taken
into account. The lower part of the graph is densely populated
with simulated data points, and this seems to lack in the
observations. However, these points correspond to damping
times τ/P< 1, which are hard to observe, and would rather be
classified as nonoscillatory loops. Therefore, the observational
points are probably biased toward the higher values of τ/P.
Consequently, the discrepancy between the purple points and
the green points for small τ/P is a result of the observa-
tional bias.

Nechaeva et al. (2019) provided a fit for the outer bound of
the data cloud, and found that it was given by η−.68 (shown as a
dashed black line in Figure 3). In contrast, we have overplotted
the outer envelope with an η−1 shape, as was found in our
Equation (25). Indeed, it seems that the η−1 matches better with
the purple simulated points in the left panel. However, moving
to the right panel where resonant absorption is also taken into
account, it is hard to say which power law fits better. Intuitively
speaking, we could say that η−.68 is an observational power law
that results from averaging the η−1 power law of nonlinear
damping and the η0 power law of resonant absorption.

In any case, the data does not seem to contradict the current
theory of nonlinear damping of standing kink oscillations.
However, Figure 5 for the alternative theory also provides a
reasonable match of the data to the theoretical points. Perhaps a

Bayesian model comparison approach (Montes-Solís &
Arregui 2017) could confirm that the data fits better with our
model (based on physical reasoning) than the model in the
Appendix, and this should be investigated in future work.

6. Conclusions

In this paper, we have started from our previous results on
the description of kink waves through Elsässer variables (Van
Doorsselaere et al. 2020a). We have used those results to
compute the energy density and nonlinear energy cascade rate
for standing kink waves. By taking the ratio of those, we have
computed the predicted damping time of standing kink waves
by the nonlinear development of KHI. We found that the
damping time is proportional to the period and has a
complicated dependence on the density contrast, but that the
damping does not vanish for density contrast equal to 1
(density of the loop is the same as the exterior). More
importantly, we found that the damping time is inversely
proportional to the amplitude of the kink oscillation.
It was also found previously in simulations (Magyar & Van

Doorsselaere 2016) and observations (Goddard et al. 2016;
Nechaeva et al. 2019) that the damping of kink waves gets
stronger for increasing amplitude. In this paper, we have
confronted our derived damping time with both the simulation
and observational results.
From the comparison with the simulations of Magyar & Van

Doorsselaere (2016), we found that the nonlinear damping
dominates for high amplitude oscillations, but that resonant
absorption plays the dominant role for low amplitudes. Our
analytical results capture the behavior of the numerical results
reasonably well, maybe aside from a vertical offset, which
could be caused by a difference of the assumed transition layer.
We established that taking the harmonic average of the
resonant absorption damping time and the nonlinear damping
time gives a good match with the overall behavior of the
simulated loops.
We also compared our analytical formula to the results of

Nechaeva et al. (2019). We have generated random loops in a
Monte Carlo process, by varying the loop radius, loop density
contrast, loop inhomogeneity, and oscillation amplitude. For
these random loops, we have computed the expected nonlinear
damping time. From the comparison of the simulated loops
with the observed loops, we see that there is a good match
between the two data clouds. This includes the upper bound of
the data cloud that is modeled in our case with η−1, where η is
the amplitude of the oscillation.
Continuing on the Monte Carlo process for recreating the

observed data points, our method offers perspective on a
Bayesian inference of loop parameters (see, e.g., Arregui et al.
2013a; Verwichte et al. 2013; Pascoe et al. 2020) by finding the
best statistical match between the two data clouds. This has the
potential to seismologically determine the radii of coronal
loops, the substructure of the loop, their density contrast
distribution, and the oscillation amplitude distribution. We will
investigate the possibilities in a future work.
Further future work is in the numerical verification of the

predicted nonlinear damping rate of kink waves due to the
formation of TWIKH rolls (Equation (25)). In the simulations
of Magyar & Van Doorsselaere (2016), the effects of resonant
damping and nonlinear damping are intermixed, as was shown
in Section 4. However, it is possible to run specialized
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simulations with l/R; 0 to eliminate the influence of resonant
absorption. We plan to run those simulations in the near future.

T.V.D. was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation program (grant agreement No. 724326) and the C1
grant TRACEspace of Internal Funds KU Leuven. The research
benefited greatly from discussions at ISSI-BJ.

Appendix
Nonlinear Damping of Standing Kink Waves: Alternative

Calculations

In Section 3, we have explained that there is no mathematical
preference in the averaging and summing of the two Elsässer
components. We have taken the physically correct approach to
first add the contributions before averaging them and these are
the results we presented in the main text. This is because the
kink wave contains both Elsässer components, which are
damped by both ò± simultaneously. For completeness, we also
list the alternative computations even though we think that
these are incorrect.

Mathematically, the problem is the noncommutativity of the
averaging and summing. We can write down that

⟪ ⟫ ( )= áá + ññ ¹ áá ññ + áá ññ+ - + -     . A1

In the main text of this paper, we have taken the left-hand side
of the inequality sign. Here we consider the right-hand side.

As before, we start from the result in Equation (12). We have
subsequently:
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As in the main text, the damping does not go to 0 as ζ→ 1, also
confirming in this case the results of Howson et al. (2019) that
the nonlinear damping by KHI also works in a uniform density.

Now we can find the expression for the damping time by
dividing the energy by the energy cascade rate, using the same
approach as before:
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Remarkably, the dependence on the density contrast is entirely
different from before. It is shown graphically in Figure 4.

The comparison with the simulated data is shown with the
thin green lines in Figure 2, showing a somewhat better match
with the data. For completeness, we also show in Figure 5 the
simulated data points with the Monte Carlo method of
Section 5. The fit of the simulated data with the observed data
points is somewhat less than in Figure 3, but not enough to
distinguish the two theories, leaving it to physical grounds

alone. Still, we believe this alternative theory in the appendix to
be incorrect.
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1. Introduction

In Van Doorsselaere et al. (2020, 2021) we computed the damping of kink waves due to the development of the Kelvin–Helmholtz
instability (for standing waves) and uniturbulence (for kink waves). For this, we started from the MHD equations:
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written in terms of the perturbed Elsässer variables:
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is the usual Alfvén speed, with background density ρ0, background uniform magnetic field B0 in the z-direction,

velocity perturbation v, magnetic field perturbation b and density perturbation r¢. In the published articles, we proceeded to calculate
the energy density w and turbulent cascade rate ò of kink waves, using expressions for the wave perturbations following Edwin &
Roberts (1983):
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We averaged these expressions over the wavelength, period, and loop cross section to obtain the average energy density 〈w〉 and
average energy cascade rate 〈ò〉. By taking the ratio of those quantities, we obtained the damping time τ:

t =
á ñ
á ñ
w

. 5( )

This equation (and the analytical results of Van Doorsselaere et al. 2020, 2021) is mathematically correct, but the notation is
confusing at best.

2. Clarification

To justify Equation (5), it is possible to reconsider Equation (1) and take the scalar product with ρz±/2. The motivation for this is
to obtain ò± in the right-hand side. We obtain
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where we have used the notation d

dt
for the derivative copropagating in the frame of reference with the Alfvén speed. Dividing by w±,

we obtain
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If we then say that t~ -w texp( ), then we recover the equation in Van Doorsselaere et al. (2020):

t =




w
. 8( )
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However, normally in the field, it is assumed that one of the linear quantities (such as displacement ξ) is proportional to an
exponentially damped profile:

x t~ -texp . 9d( ) ( )

If this dependence is considered, we find

t~ -w texp 2 , 10d( ) ( )

because w is quadratic in ξ. We would then have

t =




w
2 , 11d ( )

which has a factor of 2 compared to the results presented in Van Doorsselaere et al. (2020, 2021). In reality, it is of course more
complicated, because we know that ξ is not a purely damped exponential, but rather a damped sine wave. Let us say

x t w~ - -t k z texp sin 12zd( ) ( ) ( )

for a propagating wave with wavenumber kz and frequency ω. Now we come back to Equation (6) and we find
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When we average the latter expression over time, the last term will result in 0, because it is an antisymmetric, periodic function. We
are then left with an equivalent equation to Equation (11), namely

t t=
á ñ
á ñ

=


w
2 2 . 15d ( )

So the damping time in observations of the displacement is twice the damping-time formula of the propagating waves in Van
Doorsselaere et al. (2020). For the standing waves, the same formula holds, but then an average over both period and wavelength
needs to be taken.5 This has repercussions for the results of Van Doorsselaere et al. (2021), where the damping-time formula was
directly compared to observations, without the factor 2.

3. Corrections

In Van Doorsselaere et al. (2020), no changes are necessary. However, one needs to be careful in interpreting the calculated
expressions for τ.

For Van Doorsselaere et al. (2021), the figures do change, taking into account the extra factor 2. The vertical axis is now showing
the τd, which corresponds to the observations and what has been previously the standard in the field.

In the replacement figure for the comparison with the simulations (Figure 2), the top panel now shows a weaker correspondence
between the analytical model of Van Doorsselaere et al. (2021) and the numerical model of Magyar & Van Doorsselaere (2016). The

Figure 2. Replacement figure for Figure 2 of Van Doorsselaere et al. (2021). The different data points come from the simulations and the full lines correspond to
damping-time predictions from the theory.

5
5 Note that we do not take the rms average as for the energy cascade rate ò, as
we have done in Van Doorsselaere et al. (2020, 2021). It is not needed here,
because the regular average is different from 0 here.
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reason for this is unclear, and could be related to the differences between the numerical parameters and the used parameters for the
analytical calculations. Moreover, the numerical model of Magyar & Van Doorsselaere (2016) has a nonuniform layer at the edge of
the loop, and this was not incorporated in the analytical model.

For the revised figure of the Monte Carlo simulation (Figure 3), the simulated data points have been generated using the same
random numbers as in Van Doorsselaere et al. (2021), and using the same distributions. The match between the data points and the
simulated data points seems even better with the newer corrected damping times.

For completeness, we have also remade Figure 5 of Van Doorsselaere et al. (2021) and this is shown in Figure 5, which was made
for the damping-time formula in the Appendix, which we believe to be wrong.

This correction presented in this paper also has a potential impact on the results of Arregui (2021).

T.V.D. was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation program (grant agreement No. 724326), the C1 grant TRACEspace of Internal Funds KU Leuven and funding of the
FWO Vlaanderen through a Senior Research Project (G088021N).

Figure 3. Replacement figure for Figure 3 (right panel) in Van Doorsselaere et al. (2021). These simulated data points represent damping times for a random selection
of loops. These are generated with the same random seed as the figure in the published article.

Figure 5. Replacement figure for Figure 5 in Van Doorsselaere et al. (2021). These simulated data points show the randomly generated damping times with the
damping-time formula in the Appendix of Van Doorsselaere et al. (2021).
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