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Abstract

The polar precursor method is widely considered to be the most robust physically motivated method to predict the
amplitude of an upcoming solar cycle. It uses indicators of the magnetic field concentrated near the poles around
the sunspot minimum. Here, we present an extensive analysis of the performance of various such predictors, based
on both observational data (Wilcox Solar Observatory (WSO) magnetograms, Mount Wilson Observatory polar
faculae counts, and Pulkovo A(t) index) and outputs (polar cap magnetic flux and global dipole moment) of various
existing flux transport dynamo models. We calculate Pearson correlation coefficients (r) of the predictors with the
next cycle amplitude as a function of time measured from several solar cycle landmarks: setting r= 0.8 as a lower
limit for acceptable predictions, we find that observations and models alike indicate that the earliest time when the
polar predictor can be safely used is 4 yr after the polar field reversal. This is typically 2–3 yr before the solar
minimum and about 7 yr before the predicted maximum, considerably extending the usual temporal scope of the
polar precursor method. Reevaluating the predictors another 3 yr later, at the time of the solar minimum, further
increases the correlation level to r 0.9. As an illustration of the result, we determine the predicted amplitude of
Cycle 25 based on the value of the WSO polar field at the now official minimum date of 2019 December as
126± 3. A forecast based on the value in early 2017, 4 yr after the polar reversal would have only differed from
this final prediction by 3.1± 14.7%.

Unified Astronomy Thesaurus concepts: Solar cycle (1487); Solar dynamo (2001); Solar magnetic fields (1503);
Sunspot cycle (1650)

1. Introduction

The Sun’s magnetic field increases and decreases in time
with a polarity reversal every 11 yr. This cycle of magnetic
field is widely studied using the sunspot number and areas as
they are the signatures of the strong field and are available for a
longer duration than the direct observations of the surface
magnetic field, which have been available in the form of
synoptic maps only since around 1955. The strength of the
solar magnetic field, however, varies from cycle to cycle in an
irregular manner (Hathaway 2015). The Maunder minimum, an
extended period of weaker field, is an extreme example of such
irregular behavior. It is this variable magnetic field that drives
the fluctuations of the solar wind and terrestrial space weather,
which may have hazardous effects on human activities that
depend on the stability of our magnetospheric environment
(space missions, satellites, telecommunications, etc.). To assess
and prevent those risks, reliable predictions of future solar
activity are now more than ever essential.5

Many attempts have been made to predict an upcoming solar
cycle based on the extrapolation of the time series of some
proxy of solar activity. However, most of the time, they
produce diverging results (Pesnell 2012).

Predictions of the solar cycle based on dynamo theory have
also been made (Petrovay 2020). In most dynamo models, the
polar magnetic field is a natural predictor of the following cycle.
Indeed, there is considerable evidence that the solar dynamo is a
magnetohydrodynamical αω-dynamo (Charbonneau 2010) where

the strong toroidal field, manifest in the form of sunspots, is
generated by the winding up of a weaker poloidal magnetic field
by differential rotation. This windup is essentially a linear process;
hence, the amplitude of a solar cycle is expected to be proportional
to the amplitude of the poloidal field around the start of the cycle.
As this poloidal field is strongly concentrated to the poles, the
amplitude of the polar surface magnetic field is a plausible
measure of its amplitude.
Following this idea, Schatten et al. (1978) used the polar field

strength at the solar minimum to make the first prediction of the
sunspot number during Cycle 21. Later, this idea was validated by
many authors using different proxies of the polar field, such as the
aa-index, polar faculae, and active networks (Makarov et al. 1989;
Choudhuri et al. 2007; Jiang et al. 2007; Wang & Sheeley 2009;
Kitchatinov & Olemskoy 2011; Muñoz-Jaramillo et al. 2013;
Priyal et al. 2014). Furthermore, surface flux transport (SFT)
models, which provide the evolution of the surface radial field by
utilizing the observed bipolar magnetic regions (BMRs) and large-
scale flows have also been used to predict the amplitude of an
upcoming solar cycle (Iijima et al. 2017; Jiang et al. 2018; Upton
& Hathaway 2018). As a whole, predictions based on these polar
precursors tend to yield much more consistent results than time
series methods, and there is now wide consensus that this is the
most robust physically motivated method to predict the amplitude
of an upcoming solar cycle.
However, when applying polar precursor methods, a variety

of choices need to be made regarding the measures or proxies
of the poloidal field to use, and the exact time at which they are
evaluated. The purpose of the present work is to make a
systematic analysis of the performance of various such
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predictors and determine a temporal window when their
evaluation is optimal. Some of the questions we address are:
is it the polar field at the time of its peak value that best
determines the strength of the next cycle or is it at a different
time? Is there an acceptable window over which we can use the
polar field data to make a prediction? Do we need to wait until
the activity minimum to make a reliable prediction of the next
cycle?

In Section 2 these questions are considered on the basis of
the available observational data. This analysis leads to some
interesting findings, the most important of which is that the
temporal scope of the polar precursor method is longer than
generally thought: reliable predictions can be made already 4 yr
after the reversal of the Sun’s polar magnetic field, that is on
average 3 yr before the minimum and 7 yr before the next
maximum. This significant extension of the temporal scope of
the polar precursor method is potentially highly relevant for
solar cycle prediction efforts.

As, however, it is based on observational data covering only
a limited number of solar cycles, the statistical robustness of
this result may reveal as being somewhat doubtful. Hence, in
Section 3 we extend our analysis to some dynamo models that
have been calibrated to represent reasonably well the observed
spatiotemporal variation of solar activity. As in these models a
higher number of cycles can be simulated, in this case the size
of the statistical sample is not a concern. On the other hand, the
three dynamo models considered are different in their
construction and in the parameter range where they operate,
so a direct comparison of the models with each other or with
the real Sun is questionable. Hence, we focus here only on
those results where all models agree with each other and the
observations, and consider these as robust and independent of
model details.

As we conclude in Section 4, the possibility to predict an
upcoming cycle on the basis of a measure of the poloidal field 4
yr after the observed time of polar reversal is found to be one
such robust result. To illustrate the result, in the Conclusions
we also compare predictions of Cycle 25 that could have been
made 4 yr after polar reversal, i.e., in early 2017, to those based
on the polar field amplitude at the now official date (2019
December) for the start of the new cycle.

Throughout the paper, we will use the generic symbolic
notation P for the different predictors (poloidal field measures)
considered, and T for the predicted variable characterizing the
solar activity level (e.g., sunspot area (SSA), sunspot number,
or toroidal field amplitude).

2. Observational Data Analysis

2.1. Data

For observational measures and proxies of the solar poloidal
field P, we consider the polar field strength and global dipole
moment (DM) values derived from Wilcox Solar Observatory
(WSO) magnetic field measurements for the last four cycles
(1974–2019); Mount Wilson Observatory (MWO) polar
faculae counts for the last 10 cycles (1907–2011); and Pulkovo
Observatory A(t) index series for the period of 1915–1999.

The monthly time series of WSO polar magnetic field data,6

smoothed using a Gaussian filter with FWHM= 6 months
(Hathaway et al. 2002), is denoted here by BN(t) and BS(t) for

the Northern and Southern hemispheres, respectively. As a
further possible predictor we also consider the global solar DM
defined as
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the azimuthally averaged field strength. Values of DM(t)
computed using this formula with WSO data for the period of
1976–2017 were kindly provided to us by Jiang et al. (2018).
The polar faculae count is considered a proxy of the polar

field as they share a significant correlation (Sheeley 1991). The
MWO faculae counts used here were determined by Muñoz-
Jaramillo et al. (2012).7

The A(t) index, representing the sum of the intensities of the
dipole and octupole components of the Sun’s large-scale
magnetic field, as reconstructed on the basis of Pulkovo Hα

synoptic maps, was obtained from Makarov et al. (2001). Since
this index does not include the quadrupolar component,
symmetric to the equator, it is expected to scale roughly with
the antisymmetric part of the polar field s, (BN− BS)/2.
To characterize the amplitude of solar cycles, we use the

peak of the distribution of the SSA obtained from the
Greenwich Royal Observatory,8 smoothed using a Gaussian
filter of FWHM= 12 months.

2.2. Solar Cycle Landmarks

We consider two types of landmarks during a solar cycle to
which the time of the evaluation of the precursor P can be
bound: the maxima (or minima) of the smoothed SSA9, from
which we measure backward delays, and the time of reversal
(zero crossing) of the various poloidal field indicators P, from
which we measure forward delays. The relative time shifts
between these landmarks varies from cycle to cycle; their
average values are listed in Table 1 for later reference. We note
that in the polar faculae data, the epochs of polar field reversal
are not available, and thus we take these as the same as the time
of minima of the faculae.

2.3. Correlations in the Observed Data

Scatter plots of the peak values of various measures or
proxies of the poloidal field P against the amplitude of the
following sunspot cycle are shown in Figure 1. We note that
Pearson correlations are given here and throughout this paper.
While the correlation is high in the WSO data (Figure 1(a)),

it is less impressive in faculae data (Figure 1(b)). Particularly,
in the northern hemisphere, the correlation is relatively poor
because of Cycles 16, 18, and 20. Note that faculae counts for
Cycle 16 may be problematic, as already noted by Priyal et al.
(2014). If we exclude only Cycle 16, then the correlation
considerably improves. Figure 1(c) shows that the A(t) index,
available for the longest time interval of all the considered
polar field measures, performs quite well as a predictor. This is
somewhat surprising, given that the index is based on a very
rough reconstruction of the large-scale solar magnetic fields: a
simple two-valued function (+1 or −1, constant in each

6 http://wso.stanford.edu/Polar.html

7 10.7910/DVN/KF96B2
8 https://solarscience.msfc.nasa.gov/greenwch.shtml
9 http://sidc.oma.be/silso/DATA/SN_ms_tot_V2.0.txt
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unipolar zone outlined by the neutral lines reconstructed from
the available Hα synoptic maps).

We note that the time when a given P peaks may differ from
the sunspot cycle minimum by several years. Usually, the P
proxies peak 1–2 yr before the sunspot cycle minimum. Hence,
evaluating Ps at the solar minimum yields somewhat different
values for these correlations, which are nevertheless found to
be similar to the values for the peak Ps shown in Figure 1.
When evaluated at the sunspot minimum, the correlation values
are, respectively for the northern and southern hemispheres,
r= 0.86 (p= 0.14) and r= 0.86 (p= 0.14) for the WSO polar
field data, and r= 0.60 (p= 0.06) and r= 0.66 (p= 0.04) for
the MWO facular data—comparable to those reported in
Muñoz-Jaramillo et al. (2012) from the same facular data.

To proceed toward the main purpose of this analysis, we
now consider the time dependence of these correlations.
Figure 2 shows the correlation coefficient values against time
τ (in years) measured from two different solar cycle landmarks:
backward from the solar maximum and forward from poloidal
field reversal. The curve labeled WSO here shows the WSO
polar field results. For WSO and polar facular data the
correlations are calculated based on a data set consisting of the
hemispheric values of the polar field versus the hemispheric
amplitude of the next cycle, for both hemispheres in the same

Table 1
Relative Time Shifts (in Years) between Different Solar Cycle Landmarks:

Observations and Models

Observations

Shift between

t iSSA,min, to +t iSSA,min, 1 10.83 ± 0.83

t iSSA,min, to t iSSA,max, 4.58 ± 0.81

Faculae PF DM A(t) Index

t iSSA,min, to tp,rev,i 5.01 ± 0.64 4.12 ± 0.36 3.53 ± 0.27 3.55 ± 0.48

t iSSA,max, to t ip,max, 5.93 ± 1.89 4.40 ± 0.99 1.84 ± 0.80 4.85 ± 1.47

-t ip,max, 1 to t iSSA,max, 4.64 ± 1.18 5.78 ± 1.89 7.88 ± 2.43 5.66 ± 1.26

tp,rev,i to t ip,max, 5.76 ± 1.49 5.48 ± 0.74 3.52 ± 1.16 4.96 ± 0.78

tp,rev,i to +t iSSA,min, 1 5.60 ± 1.01 6.81 ± 1.53 7.39 ± 1.34 6.88 ± 0.61

-t ip,max, 1 to +t iSSA,min, 1 10.72 ± 1.45 10.94 ± 2.28 12.92 ± 3.42 12.08 ± 1.28

Models

2DR1 3DR1 2 × 2DR1

Shift between PF DM PF DM PF DM

t iSSN,min, to

+t iSSN,min, 1

11.12 ± 1.26 L 10.50 ± 0.74 L 10.25 ± 0.93 L

t iSSN,min, to

t iSSN,max,

5.76 ± 0.53 L 5.29 ± 0.47 L 4.92 ± 0.83 L

t iSSN,min, to

tp,rev,i

4.36 ± 0.41 4.96 ± 0.52 5.52 ± 0.47 4.54 ± 1.62 3.10 ± 0.72 2.67 ± 0.67

t iSSN,max, to

t ip,max,

3.98 ± 0.94 4.78 ± 0.96 5.40 ± 1.10 3.71 ± 1.37 2.57 ± 1.52 2.47 ± 1.28

-t ip,max, 1 to

t iSSN,max,

7.14 ± 1.26 6.44 ± 1.24 5.08 ± 0.99 6.79 ± 1.26 7.70 ± 1.52 7.79 ± 1.29

tp,rev,i to
t ip,max,

5.74 ± 1.14 5.62 ± 0.98 5.31 ± 1.05 4.49 ± 1.47 4.38 ± 1.33 4.72 ± 1.12

tp,rev,i to

+t iSSN,min, 1

6.75 ± 1.03 6.26 ± 0.93 4.98 ± 0.55 5.98 ± 1.30 7.14 ± 0.92 7.58 ± 0.73

-t ip,max, 1 to

+t iSSN,min, 1

12.47 ± 1.92 11.86 ± 1.89 10.16 ± 1.09 12.05 ± 1.41 13.02 ± 1.44 13.10 ± 1.24

Note. The number of cycles used in the analysis are 270, 200, and 260, respectively for models 2DR1,
3DR1, and 2 × 2DR1. The symbol “L” indicates that the values are the same as given in the previous
column.

Figure 1. Scatter plot of the peak value of the polar field (or its proxy) vs. the
peak SSA in the following cycle for (a) the WSO polar field and DM (Cycles
21–24), (b) MWO polar faculae (Cycles 14–23), and (c) Pulkovo Observatory
A(t) index (Cycles 15–22). Sunspot areas in (a) and (b) are hemispheric peak
values, while (c) is the peak value of the hemispheric average.
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data set. This effectively doubles the sample size. The curves
obtained are not smooth, presumably due to the limited sample
size (limited number of cycles). Nevertheless, it is apparent that
both panels display a 3–4 yr long plateau where correlation
values are consistently high. This is the reason why no
significant difference was found above, between correlation
levels for predictors evaluated at the cycle minimum or at the
time when they take their peak values.

The plateaus further suggest that the polar precursor may
give reliable predictions at times significantly earlier than the
solar minimum. Indeed, Figure 2(a) shows that WSO magnetic
field data may correctly predict the amplitude of the next cycle
maximum up to 7 yr ahead—that is a few years earlier than
either the cycle minimum or the time when the polar field
measures typically reach their maxima.

While this long temporal range of the polar precursor method
is an important finding, for practical applications the precursor
needs to be evaluated at a time measured forward from an
already known landmark, rather than backward from an as yet

unobserved one. Hence, in Figure 2(b) the correlations are now
plotted against time measured forward from the reversal of the
given poloidal field measure P. It is again apparent that reliable
predictions, at a Pearson correlation level above 0.8, may be
possible already 4 yr after polar reversal, that is on average 3 yr
before cycle minimum.
Regarding the possible choices of precursors P, we see that

polar faculae counts are clearly inferior to other Ps, including
the A(t) index. Note, however, that omitting Cycle 16 can
significantly improve their performance, as discussed above.
The performance of the WSO polar field correlations and of the
global DM are comparable.
These results indicate that the temporal range of the polar

precursor method is longer than is generally thought and that
reliable predictions based on this method can be made 4 yr after
polar reversal, which is, on average, nearly 3 yr earlier than the
cycle minimum and 7 yr before the predicted maximum. In
reality, this temporal range may be even longer and a prediction
may be made even earlier just by seeing how rapidly the polar
field is growing. As shown in the Appendix, there is some
correlation between the rise rate of the polar field and the
amplitude of the next cycle.
As, however, the statistical sample size upon which these

conclusions are based is limited, for further support we turn to
dynamo models that are capable of simulating a larger number
of solar cycles than the few that have been well observed.

3. The Polar Precursor in Solar Dynamo Models

It is now understood that intercycle fluctuations in solar
activity are due to fluctuations in the amplitude of the poloidal
field that serves as a seed for the strong toroidal field in the next
cycle. Fluctuations in the poloidal field, in turn, arise as a
consequence of the stochastic nature of flux emergence that,
upon the action of SFT processes, ultimately gives rise to the
polar fields. This is the so-called Babcock–Leighton mech-
anism. To simulate intercycle variations two approaches are
therefore open: to introduce stochastic variations directly into
the poloidal component of the dynamo equations (Charbonneau
& Dikpati 2000; Karak & Choudhuri 2011; Cameron &
Schüssler 2017; Kitchatinov et al. 2018) or to explicitly
incorporate the stochastic flux emergence process into the
model (Yeates & Muñoz-Jaramillo 2013, Miesch & Dikpati
2014; Lemerle & Charbonneau 2017; Bhowmik & Nandy
2018). By calibrating the numerous parameters of these models
it is possible to tune them to resemble the observed solar cycle
in their behavior, which opens the possibility that assimilating
past observed behavior into the models and considering
future stochastic variations in an ensemble forecast approach,
they may be used for the prediction of upcoming solar cycles.
Some forecasts for Cycle 25 have indeed been presented using
this approach (Bhowmik & Nandy 2018; Labonville et al.
2019).
In this section we use three such models to investigate the

relative merits of different measures of P of the poloidal field as
cycle precursors and their time span. All these models are
kinematic flux transport dynamos and thus the large-scale
flows, such as meridional circulation and differential rotation
are imposed as guided by observations. While the differential
rotation profile is the same in all the models, the meridional
circulation is somewhat different.

Figure 2. Pearson’s correlation coefficient = T t P tCorr ,max[ ( ) ( )] between the
peak SSA, T at the maximum of the next cycle, and polar field measures P(t) as
a function of time (a) measured backward from the cycle maximum:

t= -t tmax , (b) measured forward from the reversal of P: trev + τ. Vertical
lines indicate the average positions of other cycle landmarks in the given plot,
with the same color coding as the associated curves. (a) Black dots: cycle
minimum T iSSA,min, , dashed lines: time shift from the time of the maximum
of |P| to the next cycle maximum -T Ti ip,max, 1 SSA,max, . (b) Dashed lines: time
shift from the reversal of P to the cycle minimum -T Ti ip,rev, 1 SSA,min, .
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One model, Surya (Chatterjee et al. 2004) belongs to the first
class mentioned above, with stochastic fluctuations introduced
directly to the polar field, while the other two models, Surface
Flux Transport and Babcock–Leighton (STABLE; Karak &
Miesch 2017) and 2× 2D (Lemerle & Charbonneau 2017)
explicitly incorporate randomized individual active region
sources.

Before discussing each model individually, it is instructive to
consider how they fare in reproducing the observed time shifts
between solar cycle landmarks. These time shifts are listed in
Table 1 (to be compared with the observed values above),
while the time profiles of some of the relevant precursors and
activity indicators are shown in Figure 3. A closer comparison
between the model outputs and the observations leads to a
somewhat disappointing conclusion: despite their respective
calibration to specific characteristics of solar observations,
many of the relative phases and time shifts presented in Table 1
are not properly reproduced by any of the three models.

To start with, none of the models reproduce enough
asymmetry in its cycle profiles: maxima fall at a phase of
0.48–0.52 in contrast to the observed value of 0.42. The timing
of polar field reversals is also out of phase. In Surya 2DR1, the
polar field reverses earlier than the DM (Figure 3(b)), in
contrast to observations. In STABLE 3DR1 the average time of
the reversal is too late by more than a year and its timing,
especially for the DM, shows very wide haphazard intercycle
variations. In the 2× 2D model the reversal is about a year
earlier than observed and tends to fall in the middle of the
rising phase of the cycle.

The reason for these discrepancies is mainly that the
calibration of the models to observations is usually judged by
a (quantitative or qualitative) agreement between the observed
and modeled shapes of the activity butterfly diagram and of the
supersynoptic map of the poloidal field evolution. As the polar
areas cover a small fraction of the solar surface, they do not
weigh much in such comparisons; and a comparison to
temporal profiles of activity is often not impelled (see also
Petrovay & Talafha 2019).

Facing these irregularities we embark in our study of the
performance of polar precursors in dynamo models with
reserve. What we are looking for is whether, despite their
imperfect optimizations, their simplifications, their physical
differences, and the different parameter regimes in which they
operate, there are any features where the behavior of possible
polar precursors agrees in all the models and observations.

3.1. Surya Dynamo Model

Surya is an axisymmetric dynamo model in which equations
for the poloidal and toroidal fields are solved numerically.
Diffusivity for the poloidal magnetic field in the whole
convection zone (CZ) is 3× 1012 cm2 s−1. In contrast, below
the radius of 0.975Re the diffusivity for the toroidal component
is reduced to 4× 1010 cm2 s−1. While a detailed model was
presented in Chatterjee et al. (2004), over the years some
parameters have been changed in order to make a closer
comparison with observations (Karak 2010; Hazra et al. 2015;
Karak et al. 2018). For the present study we use the version of
the code that was used in Karak & Choudhuri (2011).

The basic Surya model tends to produce a regular magnetic
cycle. However, the variations in the Babcock–Leighton
process and meridional flow can produce variations in the
magnetic cycle. Karak & Choudhuri (2011) showed that a

combination of 100% fluctuations with a coherence time of 1
month in the Babcock–Leighton α and 30% in the meridional
flow with a coherence time of 30 yr could produce variations in
the solar cycle comparable to that seen in the observed solar
cycle and successfully explain the Waldmeier effect. We
perform a first run with this combination of fluctuations,
labeled 2DR1. We then perform two more runs for comparison:
run 2DR2 is identical to 2DR1 but with the strength of the
Babcock–Leighton α increased by a factor 2; and run 2DR3 is

Figure 3. Time series of some predictors P (blue and black) and predicted
activity indicators T (red). (a) Observations; (b) Surya 2DR1 model; (c)
STABLE 3DR1 model; (d) 2 × 2DR1 model. Some example intervals used for
the determination of the rise and decay rates (see the Appendix) of P are
marked. Rise and decay rates in cycle n are defined as (P2(n) − P1(n))/(t2
(n) − t1(n)) and (P4(n) − P3(n))/(t4(n) − t3(n)), respectively.
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identical to 2DR1 but with the diffusivity of the poloidal field
reduced by half.

Activity level T in the model is characterized by the toroidal
flux at 10°� latitude� 30° at r= 0.71Re. For the precursor P,
the polar cap flux (PF) (surface flux poleward of latitude 75°)
and the global DM are considered. The time variation of the
correlation between P and T is displayed in Figure 4.

While the low diffusivity run 2DR3 is clearly off, it is seen
that the run 2DR2, with an elevated poloidal source term,
actually produces higher correlations than the reference case
2DR1. In 2DR2, both the PF and DM are found to be good
predictors of the upcoming cycle amplitude, while in 2DR1 for
the DM this is only true when time is measured from the
reversal. Nevertheless, the PF and DM are found to be very
good predictors of an upcoming solar maximum right from the
time of reversal (panel (b)) for both runs, with optimal
performance of the predictor reached around the cycle
minimum.

Some conclusions about the physics of the model versus the
real Sun may also be drawn from these plots. The fact that
the correlation in panel (a) becomes strong for about τ> 4 yr in

the first two runs suggests that the polar field needs at least 4 yr
to be transported to the base of the CZ and produce a toroidal
field for the next cycle. Keeping in mind the diffusivity of the
poloidal field (3×1012 cm2 s−1), the diffusion time for the
poloidal field to reach the base of the CZ from the surface is
4.6 yr. Thus, the delay time in the correlation in Figure 4(a) for
runs 2DR1 and 2DR2 is reasonable. As the average time delay
from polar reversal is around 6 yr, the correlation is already
good very soon after the time of reversal, in contrast to
observations. This suggests that Surya runs 2DR1 and 2DR2
operate in a somewhat more diffusive regime than the solar
dynamo. In agreement with this, the very low diffusivity
run 2DR3 deviates starkly from observations. There is a weak
negative correlation between P and T for τ< 7 yr. Then it
increases to positive values at large τ. This clearly shows that
in this run, the model needs at least about 8 yr for the PF from
the previous cycle to be transported to the deep CZ to produce
strong toroidal flux. The reason for this delay correlation is the
lower diffusivity. In this case, the diffusivity for the poloidal
field is 1.5× 1012 cm2 s−1 and thus the diffusion time is 9.2 yr,
which is double that in runs 2DR1 and 2DR2. This explains the
strong positive correlation in run 2DR3 for τ> 8 yr.

3.2. STABLE Dynamo Model

The STABLE dynamo model was originally developed by
Mark Miesch and his colleagues at the High Altitude
Observatory (Miesch & Dikpati 2014; Miesch & Teweldebir-
han 2016). Later this model was significantly improved by
Karak & Miesch (2017) to make a close connection of the
BMR eruption and evolution on the surface with observations.
The salient features of this model are the following: (i) it is a
full 3D dynamo model in which the induction equation is
solved over the whole solar CZ. Unlike the Surya model, the
turbulent diffusivity for all components of magnetic fields is the
same. The diffusivity has a radial dependent profile such that in
the CZ it has a value of about 1012 cm2 s−1 (4.5× 1012 cm2 s−1

for r> 0.956Re and 1.5× 1012 cm2 s−1 below) and below the
CZ it drops by about four orders of magnitude. The model
includes a radial downward magnetic pumping with a speed of
20 m s−1 in the top 10% of solar radius to mimic the
asymmetric convection. (ii) Timing of the BMR eruption: this
model places a BMR only when certain conditions are satisfied.
First, the magnetic field at the base of the CZ must exceed a
critical field strength. Second, after the first BMR is produced,
the time for the second BMR will be taken from a log-normal
distribution that is obtained from the observations of BMRs.
(iii) Connecting the toroidal field to BMR: the rate of BMR
production is regulated with the strength of the magnetic field
such that when the magnetic field in the base of the CZ is
strong it produces a large number of BMRs. Thus, the delay in
the distribution is regulated by the magnetic field and it is the
only part through which the toroidal field is linked to the BMRs
(and thus the poloidal field) in this model. (iv) While the
magnetic field in the BMR is fixed at 3 kG, the flux is obtained
from the observed distribution. The tilt is obtained from Joy’s
law with a Gaussian scatter around it. A magnetic field-
dependent nonlinear quenching is imposed in the tilt to saturate
the magnetic field in this dynamo model. We note that recently
some evidence of nonlinear quenching in the tilt has been
observed in BMR data (Jha et al. 2020). As shown in Jiang
(2020) and Karak (2020), the observed variation in the latitude
of BMRs provides another nonlinearity to stabilize the

Figure 4. Same as Figure 2, for different parameterizations of the Surya
dynamo model. PF: polar cap flux; DM: global dipole moment. Vertical lines
mark the mean positions of cycle landmarks with the same color coding as the
associated curves. (a) Black dots: cycle minimum T iSSN,min, , dashed lines: time
shift from the time of the maximum of |P| to next cycle maximum

-T Ti ip,max, 1 SSN,max, . (b) Dashed and dotted–dashed lines show the time
shift from reversal of P to the cycle minimum -T Ti ip,rev, 1 SSN,min, ,
respectively, for the DM and polar field.
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magnetic cycles in Babcock–Leighton dynamos. In addition to
the tilt quenching, this nonlinearity also operates in the model
to limit the amplitudes of the magnetic cycles. For further
details of the STABLE dynamo model, we refer the reader to
Sections 2 and 4 of Karak & Miesch (2017).

From the simulation presented in Karak & Miesch (2017),
we take the runs B10, B11, and B13 as listed in their Table 1.
We relabeled them here as 3DR1, 3DR2, and 3DR3,
respectively. In run 3DR1, a Gaussian scatter of zero mean
and σ= 15° is included around Joy’s law, while in run 3DR2,
the scatter is doubled, i.e., σ= 30°. Finally, run 3DR3 is the
same as run 3DR1, except that the diffusivity below the CZ is
made the same as that in the CZ (1.5× 1012 cm2 s−1).

Activity level T in the model is characterized by the total
monthly flux in emerging BMRs. For the precursor P, the PF
(surface flux polewards of latitude 75°) and the global DM are
considered. The time variation of the correlations between P
and T is displayed in Figure 5.

In the reference run 3DR1, both the PF and DM are found to
be very good precursors of the next cycle amplitude over a
broad temporal range starting 7 yr before the predicted
maximum or 4 yr after polar reversal. This agrees well with
observations. One interesting aspect shown in panel (a) is that
the correlation exceeds about 0.8 already at τ∼ 2–3 yr,
implying that the poloidal flux reaches the deep CZ more
quickly in these runs than in the Surya runs. While the

diffusivity in the STABLE model is comparable to that of the
Surya model, a downward magnetic pumping in the top 10% of
the CZ is an additional agent for transporting the poloidal flux
from the surface to the deep CZ. This downward pumping may
help produce a strong correlation as shown in panel (a) even at
small τ (panel (b) at large τ).
Run 3DR2, with increased stochasticity, produces somewhat

lower correlations, as expected. On the other hand, in panel (a)
the agreement with observations is improved for larger values
of τ (a more rapid fall for τ> 7 yr). In run 3DR3, with an
increased diffusivity below the CZ, the time span of the
correlation shortens to less than about 5 yr as shown in panel
(a); nevertheless, in panel (b) a good correlation is still found
4–6 yr after P reversal. This is related to a significant change in
the time shifts between the cycle landmarks (later reversal).
Note that in this case, the DM performs significantly worse as a
precursor than the PF.

3.3. 2 × 2D Dynamo Model

The 2× 2D hybrid solar dynamo model of Lemerle &
Charbonneau (2017) is also described in detail in several recent
publications (e.g., Nagy et al. 2017); hence, only its most
salient features will be summarized here. The model is built by
coupling a 2D SFT module and a 2D axisymmetric flux
transport dynamo (FTD) module that run concurrently.
Through the evolving distribution of its internal toroidal field,
the FTD module provides the new BMR emergences required
by the SFT. In parallel, the SFT module takes care of the
spatiotemporal evolution of the surface radial magnetic field
and the buildup of the global DM. The zonally averaged
surface magnetic field is continuously fed to the internal FTD
module via its outer boundary condition. The probability of
new emergences per unit time and per latitudinal coordinate is
set through an emergence function determined by the strength
and spatial distribution of the internal magnetic field. This
emergence function contains a lower threshold as well, below
which the seed magnetic field is considered too small to be
amplified and trigger new emergences. When a new BMR
emerges in the model, its flux, tilt, and separation are drawn
from statistical distributions built from observations of solar
cycle 21 (Wang & Sheeley 1989): a log-normal distribution for
the flux, a Joy’s law for the tilt with Gaussian scatter dependent
on the flux, and similarly for the bipole separation. The only
amplitude-limiting nonlinearity in the model is a tilt quenching
that depends on the amplitude of the source toroidal field. The
model was calibrated to observed butterfly diagrams and
surface supersynoptic maps as described in Lemerle et al.
(2015) and Lemerle & Charbonneau (2017). The optimal
surface diffusivity was found to be 6× 1012 cm2 s−1 and the
CZ diffusivity 1× 1012 cm2 s−1, with an overall profile given
by the method of Dikpati & Charbonneau (1999). Further
parameters of the model are summarized in Table 1 of Lemerle
& Charbonneau (2017). We use this optimized setup for the run
2× 2DR1 described here. A run 2× 2DR2, at half the tilt
scatter, and a run 2× 2DR3, with tilt and separation scatter
entirely turned off, are also analyzed for comparison. In all
three cases, sequences of 260 synthetic cycles are used.
Activity level T in the model is characterized by the total

monthly number of emerging BMRs. For the precursor P the
PF (surface flux polewards of latitude 70°) and the global DM
are considered. The time variation of the correlation between P
and T is displayed in Figure 6.

Figure 5. Same as Figure 4, for different parameterizations of the STABLE
dynamo model.
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It is noteworthy that in the reference case (R1) only the
global DM performs truly well as a precursor. Reducing
stochasticity, as in runs R2 and R3, improves the predictive
skill of the polar fields, but the DM still remains a better
predictor, especially at early times. Correlations with the
hemispherically averaged value of the polar field (not shown
here) were found to follow a similar trend, so a difference in
hemispherical coupling between the model and the real Sun
does not explain the poorer performance of the polar fields with
respect to the DM. The better predictive skill of the DM must
then be related to the importance of fields at lower latitudes,
possibly related to the overly dense concentration of the surface
flux near the poles, due to the use of a high-latitude peaking
latitudinal flow in the last optimized version of the 2× 2D
model. This incoherence between the FTD and SFT optimiza-
tions was noticed in Lemerle & Charbonneau (2017) and still
needs revisiting.

In the DM correlations, a short plateau is again seen in panel
(a), indicating that the DM is a good precursor of the next cycle
when evaluated 5–8 yr before the next cycle maximum
(roughly between the DM peak and the cycle minimum). This
agrees well with observations, with the extra year in the
temporal range attributable to the later peak amplitude (near the
symmetric cycle shape).

Similarly, as shown in panel (b) the DM is found to be a
good precursor of the next cycle amplitude 5–7 yr following its

reversal. It should be taken into account that the reversal in this
model is more than a year earlier than observed; hence, the
cycle phase when acceptable predictions become possible is
comparable to the observed range (which was acceptable for
τ 4 yr after the polar field reversal). Note also that the low
correlations in the early years after the DM reversal (panel (b))
are also coherent with observations. Before τ≈ 5 yr, not
enough flux has reached the high latitudes to determine the
faithfulness of the next cycle, in the observed Sun and
especially in this highly stochastic model.
As for the rising rate of the polar fields with respect to the

amplitude of the next cycle, the results are presented in the
Appendix; Table 4 indicate that all models show some medium
to high correlations, which are similar or higher than
observations for the 2D and 3D models, but lower for the
2× 2D model. The correlations of the decay rate with
amplitude are presented in the Appendix; Table 5 show high
values similar to the observations for the polar fields of the 2D
and 3D models, and for the DM of the 2× 2D model.

4. Conclusions

We have presented an extensive analysis of the performance
of various measures of the amplitude of the solar poloidal field
as precursors of an upcoming solar cycle, based on both
observational data and on the outputs of various existing FTD
models. We calculated correlation coefficients of the predictors
with the next cycle amplitude as a function of time measured
from several solar cycle landmarks. Setting a Pearson
correlation level of r= 0.8 as a lower limit for acceptable
predictions, the observations indicate that the earliest time
when the polar predictor can be safely used is 4 yr after polar
field reversal. This is typically 2–3 yr before the solar minimum
and about 7 yr before the predicted maximum, considerably
extending the temporal scope of the polar precursor method.
Some correlation between the rise rate of the polar field with
the next cycle amplitude gives an indication that the temporal
scope of the precursor may be even longer in the Sun. From the
observational record, the polar magnetic field, A(t) index, and
global DM are found to perform roughly equally well.
As the statistical sample upon which these conclusions are

based is limited to a few well observed solar cycles, for further
support of these findings we turned to dynamo models
calibrated to realistically represent the observed solar cycle.
The three models considered differ greatly in terms of their
physical backgrounds and in the parameter regimes in which
they operate. They all involve significant simplifications, and
unfortunately, all show obvious offsets in their relative phases
and timings of characteristic solar cycle landmarks.
Nevertheless, all three models being of the self-consistent

Babcock–Leighton type, they do produce the strong correla-
tions expected between the poloidal field of an ongoing cycle
and the following cycle amplitude. The stronger the correla-
tions, the more deterministic is the model. In this sense, the
Surya model allows for very early predictions, meaning that the
stochastic emergence process plays only a small role in the late
phases of the cycle; at the other end, the highly stochastic
2× 2D model is much more restrictive in its predictive
window. The real Sun likely lies somewhere in that interval.
Thus, where all the models agree, there is a good indicator of
some robust feature. Our analysis of the precursor value and
temporal range of the PF and DM in the models has shown that

Figure 6. Same as Figure 4, for the 2 × 2D dynamo model.
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our main conclusion regarding the possibility of using the polar
field or the DM as a precursor 4 yr after polar reversal holds
in all of them. This supports the robustness of our main
observational finding.

The temporal sequence and intervals between cycle land-
marks are known to correlate with the cycle amplitude (the
Waldmeier effect being an obvious example). This raises
the possibility that for cycles stronger or weaker than average
the time horizon τ for which reliable prediction are possible at
t= tp,rev+ τ may show a systematic deviation from the typical
value of 4 yr deduced here. This issue could in principle be
addressed by splitting the sample of cycles into subsamples
according to strength and looking for systematic differences.
The small size of the observational data set, however, does not
allow statistically meaningful inferences from such small
samples. In the case of models, sample size restrictions do
not arise, but as discussed in Section 3 above, the temporal
sequence and spacing of cycle landmarks in these models do
not represent observed solar cycles faithfully enough to give
credit to inferences regarding such finer points as a possible
amplitude dependence of the prediction horizon. Thus, at
present it is not possible to exclude the possibility of an
amplitude dependence in the result.

To illustrate our main conclusion, we use WSO polar field
measurements from 2017 March (4 yr after the polar reversal in
Cycle 24) to predict the amplitude of the upcoming Cycle 25.
For this purpose, linear regressions between the smoothed
WSO polar field and peak sunspot area are used. Using
hemispherically separated data we arrive at a prediction10 of
399.45± 105.05 (north) and 744.38± 137.31 (south), while
using (BN− BS)/2 as a predictor the total peak sunspot area is
predicted as 553.29± 166.63. This translates to a peak sunspot
“number” of 120± 25, based on a linear regression
( = +SSN 0.152SSA 36.565) between the sunspot number
(Version 211) versus sunspot area.

Cycle 25 is now officially considered by Sunspot Index and
Long-term Solar Observations to have started in 2019
December. Using the predictor values at this epoch, a similar
linear regression analysis yields the following updated predic-
tions for the hemispheric peak sunspot areas: 663.71± 91.62
(north), 523.94± 82.27 (south). Again based on (BN− BS)/2,
the total peak sunspot area is predicted to be 589.11± 21.84.
(This translates to a peak sunspot number of 126± 3). We note
that in these regression analyses, we obtained only three
complete cycles; the WSO data for Cycle 20 was not complete.
For the calculation of the prediction error, we have take the
standard deviations in the slope and intercept of the linear
regression based on the Bayesian probabilistic approach using
Python’s Pymc3 routine. We also note that the error in the latter
prediction based on the minima of (BN− BS)/2 is very small
because all three data points lie almost on a straight line,
however, this did not happen in the prediction based on
(BN− BS)/2 at 4 yr after the reversal.

It is thus apparent that the prediction made 3 yr earlier, that is
4 yr after the polar reversal, already yields a good
approximation to the final forecast. Solar cycle 25 is predicted

to be similar to or only slightly stronger than the previous
cycle.
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Appendix
Rise and Decay Rates of the Polar Field as Cycle Precursors

Following a reversal, the observed polar field tends to
increase at a fast rate to reach a plateau lasting until the next
solar minimum (see Figure 3). This suggests that the level of
this plateau, and hence the predictor value 4 yr after reversal
might be anticipated based on the rate of this initial rise (or
even the rate of the decay of the opposite polarity polar field
before the reversal). This might push the temporal scope of the
polar precursor even further back in time. Indeed, Petrovay
et al. (2018) found that the rate at which the “rush to the pole”
feature in coronal green line supersynoptic maps tends to the
poles and may be used as a precursor for the time of the next
cycle maximum. Prompted by these considerations, here we
take a closer look at any possible correlations between the rise/
decay rate of the polar field around the reversal and the
amplitude of the next solar maximum.
First we consider the rise rate. The rate can be computed in

different ways and at different times in the rising phase of the
polar field. We consider two points at a separation of ΔT and
define the rate as the difference between the polar fields at these
two points divided byΔT. This is illustrated in Figure 3. As the
bin size of the polar field proxy data is 1 yr, we cannot take ΔT
less than 1 yr. Table 2 shows the correlation coefficients for the
rise rates computed at different times. For two particular
choices of the predictor and the time interval the corresponding
scatter plot is shown in Figure 7 (left). The correlations are
generally unconvincing, although the very limited number of
data points for the WSO measurements does occasionally result
in Pearson correlation values close to one there.
Turning now to the decay rate, it is to be noted that the

starting and end points of the base interval usually fall in the
rise phase of the ongoing cycle. Hence, the “next cycle
maximum” in this case refers to the maximum of the ongoing
cycle, which is indeed found to be well predicted by the decay
rate. This is shown in Figure 7 (right), with the correlation
coefficients listed in Table 3. This correlation, however, is but a
natural consequence of the fact that in a stronger cycle high
rates of flux emergence are already seen in the rise phase, and
the poleward transport of this new flux induces a more rapid
decay of the polar fields left from the previous cycle. This

10 We note that for the hemispheric prediction, a single regression relation is
obtained from the combined data of two hemispheres and then this relation is
used to make the prediction of Cycle 25 from the polar field in the respective
hemisphere.
11 http://www.sidc.be/silso/datafiles
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result has little practical importance, as the correlation values
are generally no better than those of the conventional polar
precursor method and the temporal scope is shorter.

For completeness, the corresponding results for the dynamo
models are presented in Tables 4 and 5. These results are in
agreement with the observational findings discussed above.

Table 2
Pearson’s Correlation Coefficients (r) and the p Values Computed between the Rise Rate of the Polar Field/Proxies and the Amplitude

of the Next Cycle Maximum: Observations

Polar Faculae WSO Polar Field A(t) Index DM

Rise Rate r (p) r (p) r (p) r (p)

Computed from North South North South

trev + 1 to trev + 2 0.57 (0.08) 0.28 (0.44) 0.34 (0.78) −0.28 (0.81) 0.18 (0.68) 0.57 (0.61)
trev + 2 to trev + 3 0.19 (0.61) 0.56 (0.09) 0.69 (0.51) 0.99 (0.08) 0.64 (0.04) 0.67 (0.53)
trev+1 to trev + 3 0.47 (0.16) 0.42 (0.23) 0.95 (0.19) 0.01 (0.99) 0.67 (0.07) 0.63 (0.56)
trev to trev + 3 0.51 (0.13) 0.61 (0.06) 0.98 (0.11) 0.98 (0.14) 0.77 (0.02) 0.48 (0.68)

Note. Values in the first column are in years and thus the rates are obtained in year−1.

Figure 7. Scatter plots between the rise rate (left) or decay rate (right), a predictor (top: MWO polar faculae count; bottom: WSO polar field) against the amplitude of
the next cycle maximum. The rates are evaluated from the values taken at trev and trev + 3 (rise) and trev−2 and trev−1 (decay).
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Table 3
Pearson’s Correlation Coefficients (r) and the p Values Computed between the Decay Rate of the Polar Field/Proxies and the

Amplitude of the Next Cycle Maximum: Observations

Polar Faculae WSO Polar Field A(t) Index DM

Decay Rate r (p) r (p) r (p) r (p)

Computed from North South North South

trev − 2 to trev − 1 0.69 (0.04) 0.78 (0.01) 0.71 (0.28) 0.99 (0.00) 0.39 (0.37) 0.75 (0.24)
trev − 3 to trev − 2 0.66 (0.05) 0.67 (0.05) 0.10 (0.89) 0.54 (0.45) 0.63 (0.13) 0.58 (0.42)
trev − 4 to trev − 3 0.29 (0.45) −0.04 (0.90) −0.91 (0.26) −0.02 (0.98) 0.89 (0.01) 0.58 (0.42)
trev − 3 to trev − 1 0.73 (0.02) 0.85 (0.01) 0.62 (0.37) 0.83 (0.16) 0.69 (0.16) 0.66 (0.33)
trev − 4 to trev − 2 0.47 (0.20) 0.32 (0.40) −0.43 (0.71) 0.99 (0.01) 0.94 (0.01) 0.58 (0.42)
trev − 4 to trev − 1 0.60 (0.08) 0.82 (0.01) 0.94 (0.21) 0.99 (0.03) 0.84 (0.02) 0.63 (0.36)

Note. Values in the first column are in years and thus the rates are obtained in year−1.

Table 4
Pearson’s Correlation Coefficients (r) and the p Values Computed between the Rise Rate of the Polar Field/Proxies and the Amplitude of the Next Cycle Maximum:

Models

2DR1 2DR2 2DR3 3DR1 3DR2 3DR3 2 × 2DR1

Rise Rate r (p) r (p) r (p) r (p) r (p) r (p) r (p)

Computed from PF DM PF DM PF DM PF DM PF DM PF DM PF DM

trev + 1 to trev + 2 0.74 0.61 0.83 0.93 0.15 0.13 0.76 0.69 0.60 0.43 0.54 0.50 0.11 0.26
trev + 2 to trev + 3 0.57 0.27 0.66 0.79 0.18 0.16 0.78 0.57 0.59 0.40 0.60 0.49 0.11 0.28
trev + 1 to trev + 3 0.84 0.69 0.91 0.96 0.24 0.28 0.79 0.72 0.63 0.53 0.61 0.62 0.23 0.41
trev + 1 to trev + 4 0.87 0.70 0.89 0.96 0.37 0.37 0.88 0.75 0.72 0.59 0.74 0.60 0.35 0.58

Note. PF and DM are shorthand for the polar flux and axial dipole moment, respectively. Values in the first column are in years and thus the rates are obtained in
year−1.

Table 5
Pearson’s Correlation Coefficients (r) and the p Values Computed between the Decay Rate of the Polar Field/Proxies and the Amplitude of the Next Cycle Maximum:

Models

2DR1 2DR2 2DR3 3DR1 3DR2 3DR3 2 × 2DR1

Decay Rate r (p) r (p) r (p) r (p) r (p) r (p) r (p)

Computed from PF DM PF DM PF DM PF DM PF DM PF DM PF DM

trev − 2 to trev − 1 0.88 0.89 0.83 0.98 0.30 0.64 0.83 0.30 0.60 0.46 0.74 0.37 0.52 0.83
trev − 3 to trev − 2 0.81 0.65 0.67 0.91 0.31 0.58 0.90 0.46 0.72 0.42 0.81 0.37 0.03 0.48
trev − 4 to trev − 3 0.41 0.02 0.24 0.68 0.35 0.49 0.91 0.57 0.80 0.34 0.70 0.41 0.00 −0.03
trev − 3 to trev − 1 0.91 0.89 0.89 0.98 0.34 0.64 0.91 0.47 0.72 0.45 0.82 0.42 0.32 0.79
trev − 4 to trev − 2 0.78 0.48 0.57 0.89 0.42 0.68 0.94 0.59 0.81 0.41 0.81 0.46 −0.04 0.28
trev − 4 to trev − 1 0.91 0.86 0.89 0.97 0.42 0.71 0.95 0.65 0.86 0.46 0.78 0.42 0.13 0.68

Note. Values in the first column are in years and thus the rates are obtained in year−1.
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