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Abstract

The standard deviation of the initial values of the nondimensional Kerr parameter a* of primordial black holes
(PBHs) that formed in the radiation-dominated phase of the universe is estimated to the first order of perturbation
for the narrow power spectrum. Evaluating the angular momentum at turnaround based on linearly extrapolated
transfer functions and peak theory, we obtain the expression ( )á ñ ´ - -a M M4.0 10 H

2 3 1 3
*

[ ( ( ) ( ))]g b- - ´ - -M1 1 0.072 log 1.3 10H
2

10 0
15 1 , where MH, β0(MH), and γ are the mass within the

Hubble horizon at the horizon entry of the overdense region, the fraction of the universe which collapsed to PBHs
at the scale ofMH, and a quantity that characterizes the width of the power spectrum, respectively. This implies that
for M;MH, the higher the probability of the PBH formation, the larger the standard deviation of the spins, while
PBHs of M=MH that formed through near-critical collapse may have larger spins than those of M;MH. In
comparison to the previous estimate, the new estimate has an explicit dependence on the ratio M/MH and no direct
dependence on the current dark matter density. On the other hand, it suggests that the first-order effect can be
numerically comparable to the second-order one.

Unified Astronomy Thesaurus concepts: Primordial black holes (1292)

1. Introduction

Recently, primordial black holes (PBHs) have been
intensively investigated not only as a realistic candidate for
dark matter (Carr et al. 2010, 2016, 2017, 2020) but also as a
possible origin of black holes of tens of solar masses that are
the source of gravitational waves detected by LIGO and Virgo
(Nakamura et al. 1997; Bird et al. 2016; Sasaki et al. 2016;
Clesse & García-Bellido 2017; Raidal et al. 2017). Various
mechanisms generating PBHs have been proposed. Among
them, we will focus on PBHs formed as a result of the collapse
of the primordial cosmological perturbation. After inflation
generates perturbations at super-horizon scales, the scales
successively enter the Hubble horizon in the radiation-
dominated phase and the perturbations can collapse to form
PBHs if the amplitude of the perturbation exceeds some
threshold value. The threshold values have been studied in
terms of d̄H , the density perturbation averaged over the
overdense region at horizon entry (Carr 1975; Polnarev &
Musco 2007; Musco et al. 2009; Harada et al. 2013, 2015;
Musco & Miller 2013), although this is currently discussed in a
more sophisticated way based on the compaction function
(Shibata & Sasaki 1999; Germani & Musco 2019; Musco 2019;
Escrivà 2020; Escrivà et al. 2020) and peak theory (Yoo et al.
2018, 2021). Roughly speaking, the mass of the PBH is given
by the mass MH contained within the Hubble horizon at the
time of horizon entry t, where MH∼ c3t/G, although for the
near-critical case ¯ ¯d dH H,th, the scaling law

(¯ ¯ )d dµ - bM MH H H,th with β; 0.36 implies the formation
of PBHs of M=MH (Niemeyer & Jedamzik 1999; Musco
et al. 2009; Musco & Miller 2013).

Thanks to the uniqueness theorem, isolated stationary black
holes in vacuum are perfectly characterized by two parameters,

the mass M and the spin angular momentum S. Alternatively,
we can use the nondimensional spin angular momentum
a* = Sc/GM2. The statistical distribution of the spins is a key
probe into the origin of black holes. In the gravitational-wave
observation of binary black holes by LIGO and Virgo, the
effective spin parameter χeff can be measured. Up to now, the
observed data for most binary black holes have been consistent
with χeff= 0 (Abbott et al. 2019), although there are some
exceptions (Abbott et al. 2020).
PBHs may have changed their spins from their initial values.

PBHs have evaporated away through Hawking radiation if their
masses are smaller than∼1015 g. The spin of the black hole
enhances the Hawking radiation and deforms its spectrum. A
spinning black hole decreases its nondimensional Kerr
parameter ≔ ·a aa* * * through the Hawking radiation,
while a black hole much more massive than∼1015 g does
not significantly change a* through the Hawking radiation
(Page 1976; Arbey et al. 2020; Dasgupta et al. 2020). PBHs
change their spins very little in the radiation-dominated phase
(Chiba & Yokoyama 2017), while it is proposed that mass
accretion could change the spin of black holes in some
cosmological scenarios (e.g., De Luca et al. 2020).
In this paper, we investigate the initial values of the spins of

PBHs. Recently, this issue has been discussed by many authors
from different points of view (Chiba & Yokoyama 2017;
Harada et al. 2017; De Luca et al. 2019; He & Suyama 2019;
Mirbabayi et al. 2020). Among them, De Luca et al. (2019)
apply Heavens & Peacockʼs (1988) approach to the first-order
effect of perturbation and give a clear expression,

s̃ gá ñ ~ W -a 1H
2

dm
2

* /π, where Ωdm, s̃H , and

≔g á ñ á ñk k2 4 are the current ratio of the dark matter
component to the critical density, the standard deviation of the
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density perturbation at horizon entry of the inverse wavenum-
ber, and a quantity that characterizes the width of the power
spectrum, respectively. In this paper, we apply the same
approach to this issue but reach a different result. This paper is
organized as follows. In Section 2, we define the angular
momentum and give its expression to the first order of
perturbation in the region that collapses to a PBH. In Section 3,
we estimate the angular momentum at the turnaround under the
assumption of a narrow spectrum. In Section 4, we estimate the
nondimensional Kerr parameter of the PBH. Section 5 is
devoted to the summary and a discussion, in particular in
comparison to previous works. We use units in which c= 1 in
this paper.

2. Angular Momentum

2.1. Definition

We follow De Luca et al. (2019) for the definition of angular
momentum. If the spacetime admits a Killing vector field fi

a,
which is tangent to a spacelike hypersurface and generates a
spatial rotation on it, the angular momentum Si(Σ) contained in
the region Σ on the spacelike hypersurface can be defined as a
conserved charge in terms of the integral on the boundary ∂Σ
as (Wald 1984)

( ) ≔ ( ) ( )

( )
ò òp

f
p

fS  =- S
¶S S
S

G G
R n d

1

16

1

8
1

i abcd
c

i
d ab

a i b

where na is the unit vector normal to Σ. Using the Einstein
equation Gab= 8πTab, Equation (1) transforms to

( ) ( )ò fS = - S
S

S T n d .i
ab

a i b

Let us use the 3+1 decomposition of the spacetime

( ) ( )( ) ( )a h g b h b h= - + + +ds d a t dx d dx d . 2ij
i i j j2 2 2 2

We assume that the matter field is given by a single perfect
fluid described by

( ) ( )r= + +T u u p g u u , 3ab a b ab a b

where ua is the four-velocity of the fluid element and that the
background spacetime is given by a flat Friedmann–Lemaître–
Robertson–Walker (FLRW) spacetime, in which the line
element is written in the conformally flat form:

( )h= - + + +ds a d dx dy dz .2 2 2 2 2 2

We can naturally define fi
a, the generator of spatial rotation

with respect to the peak of the density perturbation at x= xpk,
as

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )f d= -

¶
¶

 x x
x

.i
a

ijk pk
j kl

l

a

To the first order of perturbation from the flat FLRW
spacetime, we find

( ) ( ) ( ) ( )òrS = + - -
S

S w a x x v v d x1i b ijk pk
j

pk
k4 3

in the gauge with β k= 0, where v i ≔ u i/u0, and we have
assumed the equation of state p=wρ. The region Σ should be
taken as the region that will collapse into a black hole.
Although the determination of Σ is a nontrivial task, following

Heavens & Peacock (1988) and De Luca et al. (2019), we
assume

{ ∣ ( ) } ( )d dS = >x x f . 4pk

We truncate the Taylor-series expansion of δ around the peak
at the second order as

( ) ( )d d z+ - -x x x x
1

2
,pk ij pk

i
pk

j

where

≔z
d¶

¶ ¶ =x x
.

x x
ij i j

2

pk

This truncation is justified provided that physical quantities do
not change so steeply within Σ. Adjusting the x-, y-, and z-axes
to the principal ones, we obtain

(( ) ) ( ) åd d s l- -
=

x x
1

2
, 5pk

i
i pk

i
2

1

3
2

where σj and λi are defined in Appendix A. Equations (4) and
(5) imply that Σ is given by an ellipsoid with the three axes
given by

s
s l

n=
-

a
f

2
1

,i
i

2 0

2

where we have defined ν≔ δpk/σ0.
Taking the truncated Taylor-series expansion of v− vpk at

x= xpk,

( )- -v v v x x ,i
pk
i

j
i

pk
j

we find

( ) ( ) ( ) ( )

( ) ( )
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r

S + - -

= +
S
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Here we concentrate on a growing mode of linear scalar
perturbation, which is briefly summarized in Appendix B.
According to peak theory (Bardeen et al. 1986; Heavens &
Peacock 1988), which is briefly introduced in Appendix A, the
distribution of the nondiagonal components of vij is indepen-
dent of that of the trace-free part of J jl. Then, we obtain

( )á ñ = á ñS S S s s , 7i
i

e
i

eiref

where

( ) ( ) ( )( ) ( )h r h= + -S w a g f R1 1 , 8bref
4 5 2 5

*
⎛
⎝⎜

⎞
⎠⎟ ( ˜ ˜ ˜ ) ( )p n

g
a a a=

L
- -s v v v

16 2

135 3

1
, , , 9e

5 2

1 23 2 13 3 12

2
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and R* and γ are defined in Appendix A. The quantity γ must
satisfy 0� γ� 1, and we can usually assume 0.8 γ� 1 for
PBH formation (De Luca et al. 2019). The function g(η) is
defined by

( ( )) ( ) ( ˜ ) ( )h há ñ = á ñv g v 11l
k

l
k2 2 2

for all (k,l), where ṽl
k is time independent and defined in

Equation (A3).6

2.2. Long-wavelength Solutions and Near-spherical
Approximation

Motivated by inflationary cosmology, we consider cosmo-
logical long-wavelength solutions as initial data at η= ηinit, in
which the density perturbation in the constant mean curvature
(CMC) slicing is written in terms of the curvature perturbation
ζ in the uniform-density slicing as follows (Harada et al. 2015):

( )d
p r

= - Dz z-

a
e e

1

2
, 12

b
CMC 2

5 2 2

where Δ≔ δ ij∂i∂j and ζ is defined as γij= e−2 ζδij in the
uniform-density slicing. We assume that the density perturba-
tion is appropriately smoothed at scales smaller than the one
under consideration. (See, e.g., Yoo et al. 2018, 2021;
Young 2019; Tokeshi et al. 2020 for the possible dependence
on the choice of window functions.)

To make the situation clear, we will apply peak theory to this
density perturbation field. For ν? 1, peak theory implies that
the density perturbation is nearly spherical near the peak with
λi= (γν/3)(1+ òi) (Bardeen et al. 1986; Heavens & Pea-
cock 1988), where òi=O(1/(γν)), and hence we obtain

( ) ( ) s
s

= -a r f6 1 . 13i f
0

1

That is, the region Σ is nearly spherical, and the deviation
appears on the order of 1/ν.

In the following, we assume w= 1/3 and without loss of
generality take xpk= 0. Linearizing Equation (12), we obtain

( )d z= D
a H

2

3
. 14

b
CMC 2 2

Therefore, we find

( )òs h= z
+dk

k
k P k

4

9
,j

j2
init
4 4 2

where we have assumed that ζk(0) obeys a homogeneous
Gaussian distribution with

( ) ( ) ( ) ( )∣ ( )∣z z p d zá ñ = - ¢¢ k k0 0 2 0k k k
3 3 2*

and the power spectrum Pζ(k) is defined
as ( ) ≔ ∣ ( )∣ ( )z pzP k k 0 2k

3 2 2 .

As for the velocity gradient field, from Equation (B1), we
have

⎛
⎝⎜

⎞
⎠⎟( ) ≔ ( )

( )
( ) ( )·òh h

p
h

¶
¶

=x x
k

v
v

x

d k k

k
v e, ,

2
. 15k

k x
j
i

i

j

i
j i

3

3

Therefore, we obtain the following expression for g(η),

( ) ( ) ( ) ( )òh h= zg
dk

k
k T k P k

4

9
, , 16v

2 2 2

where Tv(k, η) is a transfer function for vk(η) defined in
Appendix B, and we have used ˜ ˜á ñ =v v 1j

i
i
j as seen in

Equation (A1).

3. Estimate of the Angular Momentum

3.1. Narrow Power Spectrum

In general, we cannot expect a simple expression for g(η)
because it is obtained by a convolution of different modes with
different time dependences. In Heavens & Peacock (1988), this
is possible because the growth rate function is homogeneous at
subhorizon scales in the Einstein–de Sitter universe. In De
Luca et al. (2019), they implicitly assume that the perturbation
of some single k effectively determines the angular momentum
of the region Σ. Here, we assume the same assumption as in De
Luca et al. (2019). This is possible if we assume the power
spectrum has a narrow peak at k= k0 so that

( ) ( ) s d -z zP k k k k .2
0 0

Then, Equation (14) implies

( )s h sz+k
2

3
, 17j

j
init
2

0
2

and therefore γ; 1. In this case, from Equation (16), we can
obtain

( ) ∣ ( )∣ ( )h h szg k T k
2

3
, . 18v0 0

In a more general case, k0 is identified with k, which dominates
the integral on the right-hand side of Equation (16).
According to peak theory, in the case of a narrow power

spectrum, the most probable profile is given by a sinc function
(Bardeen et al. 1986; Yoo et al. 2018), that is,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
d h d h y z h z h y

y

= =

=

r rr r

r
k r

k r

, , , ,

sin
.

pk pkCMC

0

0

Then, we can replace the harmonic function Y with ψ(r). We
identify δpk(η) with ( )d hkCMC, 0 in Equation (B2). From
Equation (14), we obtain

( ) ( ( )) ( ( )) ( )d h z z- = -x D
2

3
0 ,

4 3

3
0 , 19k k kCMC,

2
0 0 0

where x= k0η and D is defined in Appendix B.
6 In Heavens & Peacock (1988) and De Luca et al. (2019), the condition

( ) ( ) ˜h h=v g vl
k

l
k is assumed.

3
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3.2. PBH Formation Threshold

Under the truncated Taylor-series expansion, because the
initial density perturbation profile is given by

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )d h d h -r k r, 1

1

6
,k kCMC, init CMC, init 0

2
0 0

the compaction function CCMC(η, r) in the CMC slicing is
given in the long-wavelength limit by

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

( ) ≔ ( )

( ) ( ) ( ( ))

h
d

h

z- -

C r
M

ar
r

k r k r

, ,

1

3
1

1

10
0 ,k

CMC init init

0
2

0
2

0

where δM is the mass excess. This is independent of ηinit. It
takes a maximum value Cmax at r= rm, where

( ( ))z= - = -C r k
5

6
0 , 5 .k mmax 0

1
0

The threshold value ofCmax for the PBH formation is known to
– C 0.38 0.42 2 5max from fully nonlinear numerical

simulations, and this is fairly stable against different profiles
of Gaussian-function or sinc-function shape (Shibata &
Sasaki 1999; Harada et al. 2015; Germani & Musco 2019;
Musco 2019). Using the threshold value C 2 5max , we can
identify the threshold values for other variables as

( ) z -0 12 25k0
or D 16 3 25. For this value of ( )z 0k0

,

we can calculate the density perturbation d̄H averaged over the
overdense region with the radius = -r k60 0

1 in the long-
wavelength limit at horizon entry ηinit= ηH, which we define
(aH)(ηH)r0= 1. The result is the following:

¯ ¯ ( ) · ( ) ( ( )) d d z= - =aHr k r
2

5

2

3
0

96

125
0.768.H k0

2
0 0

2
0

This is fairly consistent with the numerical value ;0.63–0.84
in the CMC slicing, which is obtained by converting the
threshold value ;0.42–0.56 in the comoving slicing obtained
in fully nonlinear numerical simulations for the Gaussian-
function- or sinc-function-shaped profiles (Polnarev &
Musco 2007; Musco & Miller 2013; Harada et al. 2015;
Germani & Musco 2019; Musco 2019). Although the long-
wavelength limit is only approximately valid at η= ηH, it is
useful and conventional to use d̄H obtained in the extrapolation
of the long-wavelength limit to ηinit= ηH to refer to the
amplitude of the density perturbation. Alternatively, one can
use the curvature perturbation ( )z 0k0

for which the threshold
and standard deviation are given by;−12/25 and σζ,
respectively. From now on, if we set ηinit= ηH in
Equation (17), we denote σ0 by σH. Then, we find

s s= z4 .H

Using this notation, from Equation (18), we find

( ) ∣ ( )∣ ( )h h sg T k k
1

6
, . 20v H0 0

We should note that because d̄ , the density perturbation
averaged over the overdense region, is given by ¯ ( )d d2 5 pk,

we find

¯
¯n

d
s

d
s

n= =
5

2

5

2
,

pk H

H0

where we have defined n̄ as ¯ ¯n d s= H H .

3.3. Decoupling from the Cosmological Expansion

In De Luca et al. (2019), the angular momentum of the
region Σ at the horizon entry of the inverse wavenumber is
identified with the initial spin angular momentum of the black
hole by arguing that turnaround occurs immediately after the
horizon entry. This might result in misestimating the
nondimensional spin parameter because the angular momentum
increases and the mass decreases in time during the
cosmological expansion. Here, we will estimate the angular
momentum of the black hole by that of the region Σ at
turnaround, after which the evolution of the region decouples
from the cosmological expansion, and the mass and the angular
momentum of the collapsing region should be approximately
conserved. However, it is not a trivial task to determine this
moment. Strictly speaking, turnaround is beyond the regime of
linear perturbation. However, because it can be regarded as still
being in a quasi-linear regime, we should be able to apply an
extrapolation of linear perturbation theory. We here identify the
condition δCMC; 1 in the CMC slicing as the decoupling
condition because this implies that the local density perturba-
tion becomes so large that the expansion should be about to
turn around.
To go beyond the turnaround, CMC slicing will not be

appropriate because the maximum expansion means a vanish-
ing mean curvature, while there exists a far region where the
mean curvature is nonvanishing due to Hubble expansion. To
avoid this difficulty, we will shift to the conformal Newtonian
gauge. It is expected that the dynamics should fit a usual
Newtonian picture later. For this reason, we evaluate Tv(ηta) in
Equation (16) for vCN, the velocity perturbation in the
conformal Newtonian gauge at the decoupling from the
cosmological expansion.
In Figure 1, we can see that the turnaround occurs at

x= xta; 2.14 for =D 16 3 25. The value of the transfer
function at the turnaround x= xta is calculated to give

( ) ( )
( )

h =
F

T k
v x

,
0

0.622,v
k

0 ta
CN ta

CN

0

where we have used ( )  -v x 0.199CN ta . Thus, from
Equation (20), the value of ( )hgCN ta is given by

( ) h sg k0.104 .HCN ta 0

Although there is some ambiguity in the choice of the
decoupling condition and the gauge condition, it will not
change the estimate by orders of magnitude as seen from
Figure 1 if we choose xta between ;1.5 and ;3.

4. Estimate of the Nondimensional Kerr Parameter

4.1. Estimate of Aref

Let us estimate the reference spin value at turnaround:

( )
( ) [ ]( )( )

( )h
h r h

= =
-

A
S

GM

a g f R

GM

1
, 21

b
ref ta

ref ta

ta
2

4

3
4

CN ta
5 2 5

ta
2

*

4
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where the black hole mass M is identified with the mass within
the region Σ at turnaround,

( )( ) ·r h p=M a r
4

3
.b fta

3
ta

3

This is different from MH, which we define to be the mass
within the horizon at the horizon entry of the overdense region.
The condition for the horizon entry H−1(ηH)= ar0 implies
ηH= r0 or =x 6 . Because a(η)∝ η, we have

( )
( )
h
h

h
= =

a

a r

x

6
.

H

ta ta

0

ta

Using ρba
3∝ a−1, we find

( ) -M
x

f M
6

1 .Hta
ta

3 2

Using Equation (20) and 2GMH= a(ηH)r0, we obtain a simple
expression:

( ) ( ) ∣ ( )∣ ( )h
p

h s- -A x f T k
1

24 3
1 , . 22v Href ta ta

2 1 2
0 taCN

4.2. Estimate of a*

As for the distribution of se, we just quote the result of
Heavens & Peacock (1988) with the correction by De Luca
et al. (2019). For the large ν limit, if we define h by

≔ · p
g n

g= -s ss h
2

5
1 ,e e e

9 2

6
2

the probability distribution of h is approximately given by

( ) [
( ) ( ) ]
 - -

- -
P h dh h

h h dh

exp 2.37 4.12 ln

1.53 ln 0.13 ln .2 3

P(h) takes a maximum at h; 0.178, while á ñh 0.4192 .
Using

( ∣ ) ( )n =P s ds P h
dh

ds
ds ,e e

e
e

we have


g

g n
á ñ

-
s 5.96

1
.e

2
2

6

Putting a= Arefse=Ch, we have

( ) ( )= - -P a da P C a C da.a
1 1

From the above argument and the equation

( )há ñ = á ña A s ,e
2

ref ta
2

*
we find the expression for the initial spin of PBHs for γ; 1:

( ) ( )

( )


p

h s g ná ñ - -- -a x f T k
5.96

24 3
1 , 1 .

23

v H
2

ta
2 1 2

0 ta
2 1

CN*

Putting xta= 2.14, ( )h =T k , 0.622v 0 taCN , ¯ ¯d ns=H H ,
( ) ¯n n= 5 2 , and ¯ d 0.768H , we find

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) g

n
á ñ ´ - -- -

-
a f3.90 10 1 1

8
242 3 1 2 2

2

*

for the PBH mass

( ) ( ) -M f M1.14 1 . 25H
3 2

Eliminating f from Equations (24) and (25), we obtain the
following simple expression:

⎜ ⎟
⎛
⎝⎜

⎞
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⎛
⎝

⎞
⎠ ( ) g
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. 26

H

2 3
1 3

2
2

*

Although f or M is a free parameter in the present scheme,
numerical simulations strongly suggest M;MH except for the
near-critical case in which M=MH (Musco & Miller 2013;
Escrivà 2020). If we put M=MH, γ= 0.85, and ν= 8, the
above expression yields á ñ ´ -a 2.14 102 3

* . Therefore, we

conclude that ( )á ñ = -a O 102 3
* or even smaller for M;MH.

Let us now discuss small PBHs formed in the near-critical
case. In this case, only a small fraction of PBHs are produced
through critical collapse, while the rest have M∼MH. There-
fore, we should fix ν at the scale of MH. Using Equation (26),
for example, we find á ñ ´ -a 2.14 102 2

* for M= 10−3MH,

Figure 1. The functions vCMC, δCMC, and in the CMC slicing and dCN, vCN, and Φ in the conformal Newtonian gauge are plotted for =D 16 3 25 as functions of
x = kη. We can see that δCMC gets larger than unity at x ; 2.14, at which  -v 0.199CN .
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γ= 0.85, and n̄ = 8. It also strongly suggests that the angular
momentum will play an important role and may significantly
suppress the formation of PBHs of M 10−8MH, for
which á ñ a 12

* .

4.3. Implications

Because our expression is given in terms of ν, the initial spin
directly depends on the fraction β0(MH) of the universe that
collapsed into black holes. If we use the Press–Schechter
approximation as a rough estimate of β0(MH) (Carr 1975),

⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥( ) ¯

¯
b

p n p
s
d

d

s
= -n-M e

2 1 2 2

5
exp

5

2 2
,H

H

H

H

H
0

th

2

,th

2
,th

2

2
th
2

we find a simple expression

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )

 g

b

á ñ ´ -

´ -
´

-
-

-

-

a
M

M

M

4.01 10 1

1 0.072 log
1.3 10

,

H

H

2 3
1 3

2

10
0

15

1

*

where ν is identified with νth and a weak dependence on νth in
the logarithm is ignored. For simplicity, let us concentrate on
PBHs of M;MH. Using the relation between β0(M) and
fPBH(M) (Carr et al. 2010),

⎛
⎝⎜

⎞
⎠⎟( ) ( ) bW
-

f M M
M

10
10 g

,dm PBH
18

0 15

1 2

we further obtain

⎡
⎣⎢

⎤
⎦⎥( )( )

( )

( )



g

á ñ ´

´
-

+ - -

-

-

a 4.01 10

1

1 0.036 21 2 log log
.

27

f M M

2 3

2

10 10 10 10 g
PBH

7 15

*

We plot Equation (27) in Figure 2. In this figure, we can see

that the larger fPBH(M) and M are, the larger á ña 2
* . For

example, á ña 2
* of PBHs for M= 50Me and fPBH= 1 is about

3.3 times larger than that for M= 1015 g and fPBH= 10−7.

5. Summary and Discussion

We have applied Heavens & Peacockʼs (1988) approach to
the first-order effect on the spins of PBHs. Although we have
presented numerical values with two or three significant digits,
at present we admit that there is large uncertainty in modeling
PBH formation. Nevertheless, we would like to claim that the
standard deviation of the initial spins is given by

( )á ñ = -a O 102 3
* or even smaller for M;MH based on peak

theory. We have obtained the expression

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
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⎞
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⎡
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⎛
⎝

⎞
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⎤
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g
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g
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-
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-
-

-

-

a
M

M

M

M

M

4.0 10 1
8

4.0 10 1

1 0.072 log
1.3 10

.

H

H

H

2 3
1 3

2 th
2

3
1 3

2

10
0

15

1

*

The above formula also implies that the higher the PBH
formation probability β0(MH), the larger the standard deviation
of the spins. On the other hand, for PBHs of M=MH in the

near-critical case, we find that á ña 2
* can be much larger than

that for PBHs of M;MH.
In comparison to the expression in De Luca et al. (2019), the

new estimate has no overall factor Ωdm, takes critical collapse
into consideration, and gives an explicit expression in terms of
β0(MH). The proof of the nonexistence of the overall factor Ωdm

is delegated to Appendix C. From a physical point of view,
dark matter does not play any role in dynamics well into the
radiation-dominated phase. On the other hand, their assumption
that turnaround occurs almost simultaneously with the horizon
entry is supported if we take the horizon entry not of the
inverse wavenumber but of the radius of the overdense region.
As for the gauge choice, we have taken the conformal
Newtonian gauge to evaluate the angular momentum at
turnaround. If we instead continued taking the CMC slicing
as in De Luca et al. (2019), the estimate would be further
reduced by approximately half as seen in Figure 1.
Here, we would like to compare the present result with PBHs

formed in the matter-dominated phase of the universe. As seen
in this paper, in the radiation-dominated phase, because νth is
large as suggested by the Jeans argument, peak theory implies
that the region Σ is nearly spherical and the effect of tidal
torque is suppressed. In fact, as we can see in Equation (9),
only the trace-free part  jl of J jl enters the expression of the
angular momentum, and we can see that

( ) ( ) ( )ná ñ = -  J J Ojl
jl

jl
jl

1 for large ν and also
g(η)∼ k0σH. In the matter-dominated phase, because νth is
vanishingly small in spherical symmetry, the region Σ can be
far from spherical and the tidal torque can give the large
amount of angular momentum on Σ. Therefore, it is predicted
that the angular momentum within the region Σ is so large that
PBH formation can be strongly suppressed and that the PBHs
formed can have near-extremal spins (Harada et al. 2017). This
suggests that for PBHs that formed in the phase transition at
which the equation of state is softer than the radiation, their

Figure 2. The standard deviation of the initial spins of the PBH, á ña 2
* , as a

function of the PBH mass M with fixed fPBH, where we have assumed that the
PBH mass is equal to the horizon mass, i.e., M = MH and γ = 0.85.
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spins can be larger than those formed in the radiation-
dominated phase.

It would be interesting to remove the assumption of a narrow
power spectrum as the broad mass function of PBHs is
intensively discussed from an observational point of view (Carr
et al. 2016; Carr & Kühnel 2019), although the deviation of γ
from unity might not change the result by orders of magnitude.
Note also that although we have investigated the first-order
effect on the angular momentum, the obtained result is
apparently second order in terms of σH as we can see in
Equations (23) and (24), where ν−1 and n̄-1 are of the order of
σH because the threshold value of the PBH formation for the
perturbation amplitude is of the order of unity. This means that
the first-order effect investigated here might be comparable to
the second-order effect. In fact, in Mirbabayi et al. (2020), the
second-order effect is estimated to be  zá ñ á ña 2 2

* . Finally, it
should be noted that our analysis is based on linear perturbation
theory, which is not completely justified for perturbations that
can generate PBHs. In particular, the behaviors of the solutions
at the final stage of black hole formation are highly nonlinear
and cannot be predicted by linear perturbation theory. Along
this line, the assumption of the conservation of the nondimen-
sional Kerr parameter after the decoupling from the cosmolo-
gical expansion should be confirmed by numerical simulations.
It is clear that further investigations are necessary to answer the
problem of how large PBH spins are.

T.H. is very grateful to B. J. Carr for introducing this
problem to him. T.H. would also like to thank T. Murata, K.
Nakashi, T. Sato, and Y. Watanabe for interesting discussions
on peak theory. The authors would like to thank K. Nakao for
his helpful comment and continuous encouragement. They
would also like to thank the anonymous referee for the
important comments and suggestions. This work was supported
by JSPS KAKENHI grant Nos. JP19H01895 (T.H. and C.Y.),
JP19K03876 (T.H.), JP17H01131 (K.K.), and JP19J12007 (Y.
K.) and MEXT KAKENHI grant Nos. JP19H05114 (K.K.) and
JP20H04750 (K.K.).

Appendix A
Peak Theory

We briefly review peak theory based on Heavens & Peacock
(1988). We treat the following fields as probability variables:

d z
d

z
d

=
¶
¶

=
¶

¶ ¶
=

¶
¶x x x

v
v

x
, , , .i i ij

i j
j
i

i

j

2

The correlations of the above variables are given by
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˜ ˜ ˜
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2

and all other correlations vanish, where

≔
( )

∣ ∣ ( )òs
p

d
kd

k
2
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3
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2
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Putting the eigenvalues of−ζij/σ2 as λ1, λ2, and λ3
(λ1� λ2� λ3), and

( )

( )

˜ ˜ ˜

n d s x l l l x l l

x l l l

= = + + = -
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= = =w v w v w v
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1

2
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2
2 ,

, , ,

0 1 1 2 3 2 1 3

3 1 2 3
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the probability distribution of ν, λ, and w at a peak is given by

( ) ( ) ( )l x l ln n n= -w w wN d d d
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We can see that the distribution of w is independent from other
variables.

Appendix B
Cosmological Linear Perturbations

Here we briefly review the result of cosmological linear
perturbation theory that is necessary for the present paper. We
basically follow the notation of Kodama & Sasaki (1984). We
would like readers to refer to Kodama & Sasaki (1984) or other
reference for the derivation. The scalar, vector, and tensor
harmonic functions Y, Yi, Yij in flat space for scalar
perturbations are defined as follows:

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

∣ ∣ d

d

= = - = - D

= - -

- -Y Ce Y k Y Y k Y Y

k k

k
Y

, ,
1

3

1

3
,

ik x
i i ij ij ij

i j
ij

1 2

2

l
l

where the roman indices are raised and lowered by δ ij and δij,
respectively, and Y satisfies

( )D + =k Y 0.2

The Fourier decomposition of the perturbations is given by

( )
( )

( ) ( ) ( )· ·ò òd h
p

d h d h d h= = -x
k

x x
d

e d e,
2

, , ,k
k x

k
k xi i

3

3
3

and so on. In what follows in this section, we abbreviate δk(η)
as δ and so on. In Equation (2), we write the scalar perturbation
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of the metric tensor as follows:

( )a b g d d= + = - = + +a AY a BY H Y H Y1 , , 2 2 .i i ij ij L ij T ij
2

The trace of the extrinsic curvature of the constant η

hypersurface is written as

( )= + K K Y1 .b g

The perturbed quantities of the perfect fluid are written as

( ) ( )

( )

r r d p= + = + = =Y p p Y v
u

u
vY1 , 1 , .

B1

b b L
i

i
i

0

In the adiabatic process with the p= wρ equation of state, we
have πL= δ. For the scalar perturbation, the infinitesimal
coordinate transformation is given by

¯ ( ) ¯ ( )h h h h= + = +T Y x x L Y, ,j j j

where T and L are arbitrary functions of η. Under this
coordinate transformation, the metric perturbation quantities
transform as follows:

= - - = + +

= - - = +

¢ ¢



A A T T B B L kT

H H
k

n
L T H H kL

, ,

,
,

L L T T

where n is the dimension of the space, ≔ ¢ a a, and the
prime denotes the derivative with respect to η. On the other
hand, matter perturbation quantities transform as follows:

¯ ¯ ( )

¯ ( )

d d

p p

= + ¢ = + +

= + +





v v L n w T

c

w
w T

, 1 ,

3 1 ,L L
s
2

where =c ws
2 is the sound speed. From the above, we can

construct gauge-invariant perturbation quantities corresponding
to δ and V as follows:

( ) ( )dD = + + - = - ¢- -w k v B V v k H3 1 , .T
1 1

From the Einstein equation, we can derive the equations for
the gauge-invariant variables Δ and V. We present the
solutions for the radiation-dominated phase of the universe
below:

⎛
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⎞
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cos ,

3

4

2
1 sin

3

2

cos
,

2

where D is an arbitrary constant, z≔ x 3 , x≔ kη, and a
decaying mode is omitted.

In the CMC ( = 0g ) slicing with B= 0, using the above
solutions for Δ(x) and V(x), we can obtain

⎛
⎝⎜

⎞
⎠⎟ ( )d =

+
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z

z

z
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2
2

sin
cos , B2

2

2

( ) ( )= -
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+
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z

z

z
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2

1

2
2

sin
cos , B4

2

where = + H HL T
1

3
. In this gauge, A and  are completely

fixed, while HT and HL are fixed only up to a constant.
In the conformal Newtonian gauge, in which HT= B= 0, we

can obtain

( ) ( ) ( )d =
- + -

D
z z z z z

z
3

2 1 sin 2 cos
, B5

2 2

3

( ) ( )=
- -

v D
z z z z
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3

4

2 sin 2 cos
, B6

2

2

( )F = -
-

D
z z z

z

3

2

sin cos
, B7

3

where HL=−Φ and A=Φ. Thus, all perturbation quantities
are completely fixed in this gauge.
We can define the transfer functions dT CMC, TvCMC, dT CN, and TvCN

as follows:

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

d h h h h
d h h h h

= F = F
= F = F

d

d

T k v T k

T k v T k

, 0 , , 0 ,
, 0 , , 0 ,

v

v

CMC CMC

CN CN
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CN CN

where we can see ( ) ( ) ( ) ( )F = - = - D0 2 3 2 3 0 from
Equations (B4) and (B7). We should note that ( ) ( )z= - 0 0 ,
where ζ is the curvature perturbation in the uniform-density
slicing.

Appendix C
Nonexistence of the Overall Factor Ωdm

Here, we show that the overall factor Ωdm in De Luca et al.ʼs
(2019) expression should be removed. Although their notation
is slightly different from ours, we consistently continue to use
our notation.
In the following, we follow the process of calculation in De

Luca et al. (2019). They estimate the angular momentum at the
horizon entry of the inverse wavenumber, saying that the
turnaround is just after the horizon entry. Their analysis is
confined to the CMC slicing, where ( ˜ ) ( ˜ )h h=g gH HCMC was
estimated to be

( ˜ )
( ˜ )
( ˜ )

˜ ( )h
h
h

s~
d

g
T k

T k
k

,

,
, C1H

v H

H
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0

0
0

CMC

CMC

where k0 is identified with kH in De Luca et al. (2019),
h̃ = -kH 0

1, and s̃H is σ0 at ˜h h= H without the long-wavelength
limit. Although our calculation does not reproduce their
numerical value ∣ ( ˜ ) ( ˜ )∣h h ~dT k T k, , 0.5v H H0 0CMC CMC but gives
a much smaller value;0.0714 at x= 1, this is not the origin of
the factor Ωdm. Because µ - a 1 in the radiation-dominated
era and µ - a 1 2 in the matter-dominated era, they probably
inferred that

( )
( ( ) )
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h

=


a a
, C2eq

0

eq 0
1 2

where we have put a(η0)= a0 and ( )h = 0 0 and η0 is the
present conformal time. This corresponds to Equation (5.4) in
De Luca et al. (2019). Then, using
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and defining M̃H as the mass within the Hubble horizon at
˜h h= H , we find
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Moreover, using
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and identifying the mass of the PBH with M̃H , they reached
their conclusion:
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where ( ˜ ) ˜h s~g k0.5H HCMC 0 ,  -R k3 0
1

* , and 1− f; 1/3
have been used.

In the following, we would like to redo the above estimate
more carefully. Let us keep ( ˜ )hg HCMC as in Equation (C1) and
focus on the factor Ωdm. Using ˜ ( )( )( ˜ )( )p r h= -M a k4 3H b H

3
0

1 3,
we can directly get the following simple estimate:
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where we have used the Friedmann equation only at the
formation of PBHs well in the radiation-dominated era. We can
see that there is no overall factor Ωdm.

Although the above derivation is complete, it might be useful
to trace the calculation in De Luca et al. (2019) in the right
way. Assuming that the energy of the universe consists of
radiation, dark matter, and the cosmological constant, the
Friedmann equation implies

⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝
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⎠
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a
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0
2

rad
0

4

dm
0

3

Moreover, we assume that Ωrad=Ωdm, Ωdm; 0.3, and
ΩΛ; 0.7. Then, we can safely ignore ΩΛ at the matter–
radiation equality η= ηeq, when ρrad= ρdm. This immediately

implies

( )hW
W

=
a

a
.rad

dm

eq

0

Therefore, Equation (C8) implies

( )
( ( ) )

h
h

= W


a a
2 .eq

0

eq 0
1 2 dm

This corrects Equation (C2) or Equation (5.4) in De Luca et al.
(2019). This gives a factor W2 dm on the rightmost side of
Equations (C3) and (C4) and a factor ( )W2 dm

1 4 on the
rightmost side of Equation (C5). Thus, there appears a factor
( )W -2 dm

1 on the rightmost side of Equation (C6), and this W-
dm

1

cancels out the factor Ωdm from ρb. Then, we reach the same
expression as in Equation (C7).
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