
Two-dimensional Particle-in-cell Simulations of Axisymmetric Black Hole
Magnetospheres

Kouichi Hirotani1 , Ruben Krasnopolsky1 , Hsien Shang (尚賢)1 , Ken-ichi Nishikawa2 , and Michael Watson3,4
1 Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan, Republic of China; hirotani@asiaa.sinica.edu.tw, shang@asiaa.sinica.edu.tw

2 Department of Physics, Chemistry and Mathematics, Alabama A&M University, Huntsville, AL 35811, USA
3 Department of Physics, Fisk University, 1000 17th Avenue North, Nashville, TN 37208, USA

4 University Park Dr, Nashville, TN 37204, USA
Received 2020 July 22; revised 2020 November 26; accepted 2020 December 13; published 2021 February 16

Abstract

We investigate the temporal evolution of an axisymmetric magnetosphere around a rapidly rotating stellar-mass
black hole by applying a two-dimensional particle-in-cell simulation scheme. Adopting homogeneous pair
production and assuming that the mass accretion rate is much less than the Eddington limit, we find that the black
hole’s rotational energy is preferentially extracted from the middle latitudes and that this outward energy flux
exhibits an enhancement that lasts approximately 160 dynamical timescales. It is demonstrated that the
magnetohydrodynamic approximations cannot be justified in such a magnetically dominated magnetosphere
because Ohm’s law completely breaks down and the charge-separated electron–positron plasmas are highly
nonneutral. An implication is given regarding the collimation of relativistic jets.

Unified Astronomy Thesaurus concepts: Kerr black holes (886); Astronomical simulations (1857); Stellar magnetic
fields (1610); General relativity (641)

1. Introduction

It is commonly accepted that every active galaxy harbors a
supermassive black hole (BH) in its center (Ferrarese et al. 1996;
Kormendy & Ho 2013; Larkin & McLaughlin 2016). A likely
mechanism for powering their relativistic jets is the release of the
rotational energy of the BHs (Blandford & Znajek 1977), which is
referred to as the Blandford–Znajek (BZ) process, as demonstrated
by general-relativistic (GR) magnetohydrodynamic (MHD) simu-
lations (Koide et al. 2002; McKinney et al. 2012). In the polar
region of a BH magnetosphere, centrifugal force prevents accretion
toward the rotation axis, and a high vacuum is maintained (Hirose
et al. 2004). In this nearly vacuum BH magnetosphere, electrons
and positrons (e±) are supplied via the collisions of MeV photons
emitted from the equatorial, advection-dominated accretion flow
(ADAF; Ichimaru 1977; Narayan & Yi 1994). Particularly, when
the mass accretion rate is much less than the Eddington rate, the
collisions can no longer sustain a force-free magnetosphere
(Levinson & Rieger 2011). In such a charge-starved magneto-
sphere, an electric field appears along the magnetic field lines. In
this vacuum gap, a portion of the BZ flux is dissipated as particle
acceleration and radiation (Beskin et al. 1992; Hirotani & Okamoto
1998; Neronov & Aharonian 2007; Hirotani & Pu 2016). Such a
highly vacuum BH magnetosphere has been investigated by the
particle-in-cell (PIC) scheme one-dimensionally along a radial
magnetic field line (Chen et al. 2018; Levinson & Cerutti 2018;
Chen & Yuan 2020; Kisaka et al. 2020) and two-dimensionally in
the poloidal plane (Parfrey et al. 2019; Crinquand et al. 2020). In
the present paper, by adopting a fixed magnetic field in the
poloidal plane, we perform a two-dimensional (2D), axisymmetric
PIC simulation around a stellar-mass BH. We will examine the
temporal evolution of the poloidal components of the electric field,
the toroidal component of the magnetic field, and the distribution
functions of the electrons and positrons that are created and
accelerated within the BH magnetosphere.

After describing the background spacetime in Section 2.1, we
consider the initial conditions of the PIC simulation in Section 2.

Then we present the results of our 2D GR PIC simulation in
Section 3, demonstrating that the MHD approximations totally
break down in the vicinity (i.e., at the jet-launching region) of
rotating BHs that accrete plasmas at a much lower rate than the
Eddington rate. In the present paper, we focus on a set of
astrophysical cases, as described in Section 3.5. Code testing
cases, including comparison with exact solutions (e.g., develop-
ment of the electromagnetic field in a plasma-free spacetime or
propagations of charged particles in a fixed electromagnetic
field), have been performed but will be deferred to subsequent
papers. Finally, in Section 4, we discuss the implication of
astrophysical applications to the very long baseline interfero-
metric (VLBI) observations of supermassive BHs in the center of
low-luminosity active galactic nuclei.

2. Stationary Magnetosphere

Let us begin with the stationary solution of the electro-
magnetic fields in a magnetosphere of a rotating BH. We will
use this stationary solution as the initial condition of time-
dependent PIC simulations. Throughout the present paper, we
consider a 2D structure of the BH magnetosphere in which
electrons and positrons are created and accelerated, assuming
axisymmetry with respect to the rotation axis of the BH.

2.1. Background Geometry

Around a rotating, noncharged BH, the background
geometry is described by the Kerr metric (Bardeen 1970). In
the Boyer–Lindquist coordinates (Boyer & Lindquist 1967),
the line element can be expressed as

j j q= + + + +j jj qqds g dt g dtd g d g dr g d2 , 1tt t rr
2 2 2 2 2 ( )

where
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Δ≡ r2− 2Mr+ a2, qS º +r a cos2 2 2 , º + -A r a2 2 2( )
qDa sin2 2 . In Equations (1)–(3), we adopt the geometrized

unit, putting c=G= 1, where c and G denote the speed of
light and the gravitational constant. The horizon radius,

º + -r M M aH
2 2 , is obtained by Δ= 0, where M

corresponds to the gravitational radius. The spin parameter
becomes a=M for a maximally rotating BH and a= 0 for a
nonrotating BH.

2.2. The Zero Angular Momentum Observer

As a fiducial observer, let us introduce the zero angular
momentum observer (ZAMO), who is static in the poloidal
plane (r, θ) but rotates around the BH at the same angular
frequency as the spacetime frame-dragging frequency,
ω≡− gtj/gjj. The tetrad of the ZAMO reads
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denotes the lapse; dτ refers to the ZAMO proper time. The tilde
(˜) represents a ZAMO-measured quantity, and the caret (ˆ)
shows that the component is projected on an orthonormal basis.
At the horizon, we have α= 0, while away from the BH, we
have α= 1. The coordinate bases are defined as

= ¶ = ¶ = ¶ = ¶q q j je e e e, , , . 9t t r r ( )( ) ( ) ( ) ( )

We use the ZAMO to solve the electromagnetic fields in a
stationary magnetosphere (Section 2.3), as well as to present
the current densities (Figures 8 and 9) and the particle
distribution functions (Figures 10 and 11) in a nonstationary
magnetosphere (Section 3).

2.3. Gauss’s and Biot–Savart Laws

To describe the stationary electromagnetic field, we should
simultaneously solve Gauss’s law and the Biot–Savart law. The
expressions of these two laws are derived in Appendix B. For
convenience, we replace the independent variable r with the so-
called “tortoise coordinate,” r*. It is defined by

=
+
D

dr

dr

r a
. 10

2 2
* ( )

In this coordinate, the horizon corresponds to r*→−∞ . At
large distances, dr*/dr→ 1.

What is more, to avoid the singular behavior due to the cscθ
factors in Gauss’s law (Equation (B17)) and the Biot–Savart
law (Equation (B19)) at the poles (i.e., at θ= 0 and π), we

introduce a new meridional variable, qº -y 1 cos . Adopting
this y coordinate, we obtain
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To avoid the change of the type of the second-order partial
differential equation (specifically, the Biot–Savart law) at the
static limit, we replace the electrostatic potential At with
the ZAMO-measured value At̂ . The tetrad of the ZAMO
(Equations (4)–(7)) gives

a w= - jA A A 12t t ( )ˆ

and
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Using At̂ , Aj, r*, and y, the Biot–Savart law (Equation (B19))
can be rewritten as
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It follows that the four highest-order derivative terms of
Equation (14) have definite signs; thus, the Biot–Savart law
now becomes an elliptic type in the entire simulation region
because we adopt a physical observer: the ZAMO.

Gauss’s law (Equation (B17)) can also be rewritten with
respect to aAt̂ and Aj. Multiplying D +r a2 2 2[ ( )] on both
sides, we obtain

a a
w

q a
x

q
q

a
x

q
w q w

x

pr

S
¶
¶

+
¶
¶

-
D
+ S

¶
¶

¶

+
D
+ S

¶
¶

+
D
+ S

+ - DS
¶
¶

+
D
+ S

- ¶ + D
¶

¶

+ =
D
+

j

x
j

j

A A

r
D

A

r

A

r a

A

r

A

r a

A

r a
r a A a

A

r a
A a

A

D A
r a

sin

2 cos
sin

2 sin
cos

4 ,

19

t t
r

t

t

2

2

2 1 2 2 2

2

2 2 2 2

2

2

2 2 2 3
2 2 2 2

2

2 2 2 2
2

0 2 2

2

* * *

⎛
⎝⎜

⎞
⎠⎟

( ) ( )
( )

( )

( )
( )

( )
[( ) ] ( )

( )
[ ( ) · ]

( )

ˆ ˆ

ˆ

ˆ

where

w q w

w

q
q w

º
D
+ S

-D ¶ - ¶

+ - - D¶
D
S

¶

-
S

+ -
DS

¶

x

x

D
A

r a

r M
A

r a
A

a

sin

2 ln

2 cos
sin 20

r

r r

0 2 2 2 2
2 2 2

2 2 2 2

⎜ ⎟

⎧⎨⎩
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

( )
( ) ( )

( ) ( )

( ) ( )

and

º-
+ S

´ - - D¶
+
S

D
A

r a

r M
r a A

2 ln . 21r

1 2 2 2

2 2⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )

( ) ( ) ( )

Note that the ∂2Aj/∂r*
2 and ∂2Aj/∂ξ

2 terms vanish in
Equation (19).

2.4. Boundary Conditions

We search for the stationary solution that satisfies Gauss’s
law (Equation (19)) and the Biot–Savart law (Equation (14)).
To this end, we must impose boundary conditions on aAt̂ and
Aj or, equivalently, on At and Aj. In the present paper, we
solve these two equations in the first and fourth quadrants of
the poloidal plane (r, θ). The region is bordered by

1. the polar boundaries at θ= 0 (north polar axis) and θ= π
(south polar axis),

2. the inner boundary at r= rH, and
3. the outer boundary at r= rout, where rout? rg≡

GMc−2=M.

In this subsection, we describe the boundary conditions at these
three boundaries.
At the northern and southern polar boundaries, we impose

Eθ= ∂θAt= 0, that is, a Neumann condition on At. We also
impose B θ∝ Fjr=−∂rAj= 0. Thus, we put Aj= 0 at θ= 0
and π and measure the magnetic flux function Aj from the
rotation axis.
At the inner boundary, we impose E ·B= 0 and Fjr= 0,

where Fr θ= 0 is assumed at t= 0. For instance, in the ZAMO,
these conditions constrain that both the radial component of the
electric field and the meridional component of the magnetic
field vanish at the inner boundary.
At the outer boundary (r= rout?M), we impose E ·B∝

(∂rAt)(∂θAj)− (∂θAt)(∂rAj)= 0 and ∂rAj= 0, the latter of
which comes from the assumption of a split-monopole
magnetic field, Jjeq∝ r−4. Thus, in the present paper, we
impose the Neumann condition, ∂rAt= 0. However, in general,
if we impose the magnetic field direction, ∂rAj/∂θAj (e.g., if
we adopt a paraboloidal magnetic field; Blandford & Znajek
1977, hereafter BZ77), E ·B= 0 constrains the direction of the

=A constantt surface at the outer boundary.

2.5. Disk Toroidal Current

We assume that the plasmas in an ADAF produce a toroidal
current Jjeq= Ceqr

−4 near the equator all the way to the horizon
within the colatitudes 87° < θ< 93°; outside of this equatorial
region, Jjeq= 0 is assumed. For a slowly rotating BH, this disk
current produces a split-monopole magnetic field (BZ77).
The normalization factor Ceq is adjusted so that the

meridionally averaged, ZAMO-measured radial magnetic field
strength at r= 2M,

ò
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may match a fraction of the equipartition field strength (Yuan
& Narayan 2014),
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which is obtained if there is an equipartition between the
magnetic field energy density and the plasma internal energy
density; the alpha viscous parameter is assumed to be 0.3. The
dimensionless accretion rate m is defined by

ºm
M

M
, 24

Edd
( )


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where M denotes the mass accretion rate. The Eddington
accretion rate is defined by

h
º = ´ -M

L

c
M1.39 10 g s , 25Edd

Edd

eff
2

19
1

1 ( )

where LEdd denotes the Eddington luminosity; the conversion
efficiency is assumed to be ηeff= 0.1.
In the present paper, we adopt a relatively small mass

accretion rate, = ´ -m 2.25 10 4 , and 〈Br(2M)〉= Beq(2M).

2.6. Stationary Solution

In the present paper, we consider a 10 M☉ BH, M1≡M/
(10Me)= 1, and solve Equations (14) and (19) iteratively in
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the region rH< r� 20M and 0� θ� π. The solved electro-
magnetic fields are presented in Figure 1. In each panel, solid
black curves show the equi-Aj contours, which indicate the
poloidal magnetic field lines for a distant static observer if
a= 0. We superpose =E B B r M2eq

2· [ ( )] , whose values are
indicated in the color code. The left and right panels correspond
to the cases of a= 0 and 0.9M, respectively.

In the left panel, E ·B= 0 holds everywhere; thus, the
background color is entirely white. It follows that the poloidal
magnetic field becomes radial for a slowly rotating BH when
Jjeq∝ r−4, which is consistent with the analytical conclusion
(Blandford & Znajek 1977; McKinney & Narayan 2007).
Because of a= 0, there is no magnetic field–aligned electric
field, EP; thus, Aj is solved only from the Biot–Savart law.

However, as the BH spins up (i.e., if a≠ 0), the right panel
shows that a nonvanishing EP arises due to the relative rotational
motion of the magnetic field lines with respect to the spacetime.
At the same time, the equi-Aj lines deviate from a radial shape,
as the solid curves indicate. For a rapidly rotating case,
a= 0.9M, the magnetic field lines are laterally pushed toward
the rotation axis in the ergosphere (Tanabe & Nagataki 2008;
Tchekhovskoy et al. 2010). Note that the magnetosphere is
assumed to be a vacuum in the present analysis, while it is force-
free (i.e., plasma-filled) in Blandford & Znajek (1977), Tanabe
& Nagataki (2008), and Tchekhovskoy et al. (2010). To examine
how the magnetic field lines are actually deformed for a physical
observer, we adopt the ZAMO and plot in Figure 2 the radial

(Br˜ ˆ; left panel) and meridional ( qB̃
ˆ
; right panel) components of

the magnetic field, where their explicit expressions are given by

Equations (A12) and (A13). It shows that qB∣ ˜ ∣
ˆ
is kept below Br∣ ˜ ∣ˆ ,

except for the equatorial region, where Br˜ ˆ vanishes by
symmetry. To compare with slowly rotating cases, we adopt
the same power law in the disk current, Jjeq∝ r−4, for all cases of

a. To avoid a substantial qB∣ ˜ ∣
ˆ
in the lower-latitude ergosphere, we

could adopt another functional form of Jjeq for a≠ 0; however,
such fine-tuning is out of the scope of the present paper.
We assume a positive Jjeq; thus, Fθj (i.e., the radial

component of the magnetic field) is positive (or negative) in
the northern (or southern) hemisphere. Accordingly, a positive
(or negative) sign of E ·B indicates that the electric field points
outward in the northern (or southern) hemisphere. Thus, as
plasmas are created (via photon–photon collisions) near the
horizon, r< 2M, electrons (or positrons) are accelerated inward
(or outward) in both hemispheres in this stationary solution.
Such accelerated electrons and positrons produce electric
currents in the magnetosphere whose poloidal components
modify the poloidal electric field through Ampere’s law. In the
next section, we will focus on the temporal evolution of the
electromagnetic fields and the particle distribution functions
starting from the initial conditions described in this section.

3. The PIC Scheme

Let us look briefly at the collisionless nature of the plasmas
in Section 3.1 before turning to a closer examination of the
temporal evolution of the BH magnetosphere in the rest of this
section.

3.1. Collisionless Plasmas

Denoting the density of a pair plasma with n±= κnGJ, we
can express the collision frequency as

n k s~ n c, 26c GJ ( )

where σ refers to the collisional cross section, and

w pºn B ce4 27GJ H ( ) ( )

denotes the Goldreich–Julian (GJ) number density, which is
rotationally induced; e denotes the charge on the electron. If the
plasma density is comparable to the GJ value, κ becomes of the
order of unity.
Let us evaluate the cross section by σ∼ πlc

2, where lc denotes
the typical impact parameter. Equating the potential and kinetic

Figure 1. Stationary equi-Aj contours (solid black curves) and the distribution of
E · B/Beq(2M)2 (color) on the poloidal plane (r, θ). The equatorial current
density is assumed to depend on r as Jjeq ∝ r−4. The ordinate represents the
distance along the rotational axis of the BH, while the abscissa represents the
distance qr sin from the rotation axis. Both axes show lengths in the Boyer–
Lindquist coordinates normalized by the gravitational radius, rg = GMc−2 =M.
The equatorial plane corresponds to the ordinate of zero. The black filled circle
shows the BH. The left panel shows the equi-Aj contours when a = 0, in which
case the solid curves denote the magnetic field lines measured by a distant static
observer. For a = 0, no electric fields arise along the magnetic field lines; thus,
the background color is entirely white. The right panel shows the case of
a = 0.9M. The amplitude of E · B increases with increasing a because the frame-
dragging effect increases with increasing BH spin, a.

Figure 2. Poloidal magnetic field measured in the ZAMO at t = 0 for a = 0.9M.
The abscissa and ordinate are the same as Figure 1, but the BH vicinity is closed
up. The left and right panels show B ZAMOr ( )ˆ and qB ZAMO( )ˆ , respectively, in
Gauss.
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energies, we find e2/lc∼ (γ− 1)mec
2. Then, combining it with

Equation (26), we obtain

n
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~
n e

m c
, 28c

GJ
4

2
e

2 3
( )

where γ ? 1 is assumed. On the other hand, the gyrofrequency
is given by

n
pg

=
eB

m c2
. 29B

e
( )

We thus obtain

n
n

p k
g

~
a

M

r

r4
, 30c

B

0

H
( )

where r0≡ e2/(mec
2) denotes the classical electron radius.

Since r0/rH∼ 10−19M1
−1 holds, we can conclude that the

collision frequency is much less than the gyrofrequency, and
that the assumption of collisionless plasmas in the PIC scheme
is justified. This conclusion comes solely from the fact that the
GJ density corresponds to a high vacuum in BH or pulsar
magnetospheres.

It should be noted that Ohm’s law, which is necessary to
close the system of equations in MHD, requires that many
collisions take place within a single gyration. However,
Equation (30) shows that this assumption cannot be justified
in a BH magnetosphere unless the plasma density greatly
exceeds the GJ value. In the present paper, we thus construct
the electric current from the actual motion of charged particles,
adopting the PIC scheme. By this method, we can, for instance,
incorporate the currents carried by the drift motion of charged
particles, as well as the anisotropic distribution of the particles’
momenta (e.g., along and perpendicular to the magnetic field
lines).

3.2. The Maxwell Equations

In the present paper, we assume Fjt= 0 throughout the
simulations. Accordingly, together with ∂j= 0 for all of the
quantities, we find ∂tFθj= 0 and ∂tFjr= 0 from Faraday’s
law. Thus, in the present paper, we treat both Br and B θ as
constant in time (and hence unchanged from the initial
condition) and solve the temporal evolution of only Frt, Fθt, and
Fr θ. This assumption of Fjt= 0 is justified as long as the
toroidal currents carried by the simulated particles are small
compared to the stationary, equatorial toroidal current that is
carried by the accreting plasmas.

Under this assumption, Faraday’s and Ampere’s laws give

q
¶
¶

= -
D
S

¶
¶

-
¶
¶

q
qF

t

F

r

F
, 31

r
t rt

2
⎜ ⎟⎛
⎝

⎞
⎠ ( )

q
p

¶
¶

=
S

-
¶
¶

- -qF

t A g
g F J

1
4 , 32rt r r

2 ⎡
⎣⎢

⎤
⎦⎥( ) ( )

p
¶
¶

=
S D

-
-

¶
¶

- -q q qF

t A g r
g F J

1
4 . 33t r

2 ⎡
⎣⎢

⎤
⎦⎥( ) ( )

Replacing the r derivatives with r* derivatives and introducing
the following dependent variables,
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all of which are well behaved at the horizon, we can rewrite the
three Maxwell Equations (31)–(33) into
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All of the coefficients, c1, c2, c3, and c4, are positive definite.
Both c1 and c4 are close to unity in the entire region. However,
c2 = 1 holds near the horizon or pole but c2→ 1 at r ? M in
the lower latitudes. We have c3 = 1 at r ? M and c3≈ 0.25
near the horizon. Note that the singular behavior (i.e., the
polynomial pole) at θ= 0 in Equations (32) and (33) is
eliminated by introducing a new meridional coordinate, y.
To solve these three Maxwell equations (Equations (35)–

(37)), we must impose appropriate boundary conditions that are
consistent with the initial stationary state (Section 2.4). Along
the northern and southern polar axes (i.e., at θ= 0 and θ= π),
we impose

=
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where the quantity within ()t=0 indicates the initial value at
t= 0. At the outer boundary, x= r* = rout, we impose
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Note that we set B= 0 in the entire region at t= 0.

3.3. Particle Equation of Motion

In a highly vacuum BH magnetosphere, charged leptons are
decelerated by the radiation-reaction forces. To include these
forces from the first principles, we must adopt tiny time steps
and consider the force on one part of the charge by the fields of
another part, taking into account retardation within the particle
itself. However, in actual simulations, it is unrealistic to adopt

5

The Astrophysical Journal, 908:88 (19pp), 2021 February 10 Hirotani et al.



such tiny time steps. Thus, as a compromise, we include the
radiation-reaction force as a friction term in the equation of
motion (EOM).

With such a friction term, the EOM can be expressed
as (Thorne & MacDonald 1982; Hughes et al. 1994; Bacchini
et al. 2018)

a a b=- ¶ + ¶ - ¶
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where α is defined by Equation (8), β r= βθ= 0, βj= gtj/
gjj, q/m refers to the charge-to-mass ratio, and
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The Latin indices run over 1, 2, 3. We can evaluate the
radiation-reaction force by the covariant form (Section 17.8 of
Jackson 1962),
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where r0 denotes the classical electron radius, λ denotes the
particle’s proper time, and the Greek indices run over 0, 1, 2, 3.
This radiation-reaction force includes the effects of any kind of
acceleration acting on the particles. For instance, photon
emissions as a result of the acceleration in an electromagnetic
field (e.g., via the synchrocurvature process) and a gravitational
field are included (Appendix D). However, this radiation-
reaction force does not include the effect of inverse-Compton
scattering (ICS), which should be considered separately in
future works.

Definition of the four velocity uμ gives
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For presentation purposes, we can convert ui= dxi/dλ in
terms of the ZAMO-measured spatial velocity, u ĵ , as described
in Appendix A.

We integrate Equations (44) and (47)–(49) in the phase
space with the global time variable t, which corresponds to the
proper time of a distant static observer (i.e., us).

Let us briefly describe the boundary conditions on the
motion of electrons and positrons. Due to the symmetry, we
assume that the particles moving across the polar axis (at θ= 0
or π) will be reflected equatorward with opposite meridional
velocity. Both the inner and outer boundaries are treated as
particle sinks. Thus, when particles move across these two
radial boundaries, they are excluded from the simulation.

3.4. Plasma Supply

In BH magnetospheres, pairs can be supplied via two- and/
or one-photon (i.e., magnetic) pair production processes. In the
present paper, we focus on the former process and consider the
collisions of MeV photons emitted from the equatorial ADAF
via bremsstrahlung. In subsequent papers, we will also consider
the collisions between the gap-emitted (inverse-Compton)
photons and the ADAF-emitted (synchrotron) photons.
The pair supply rate (pairs per second per volume) is given

by

s= gg gN c n , 502 ( )

where σγγ denotes the total cross section of photon–photon pair
production, and nγ denotes the MeV photon density. Adopting
the Newtonian self-similar ADAF model (Mahadevan 1997)
and assuming that the most energetic MeV photons are emitted
within r= 4M, we obtain (Appendix C)
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in cgs units (i.e., in pairs per second per cubic centimeter).
We randomly introduce a macroparticle in each cell at every

time step with probability 1/kcreate= 0.1; that is, particles are
injected in each cell at every kcreate= 10 time steps, on average.
In this case, each created macropositron or -electron has the
electric charge

=  D Dq eN k , 52i t Vcreate ( )

where Δt denotes the interval of each time step, and ΔV is
the invariant volume of each cell. Note that D D =t V

q j p- = - D D Dqg dtdrd d g2 t r holds, where Δr and Δθ

denote the intervals in Boyer–Lindquist radial and meridional
coordinates, both of which are nonuniformly gridded.
In the initial state, there are no macroparticles in any cell. As

the PIC simulation proceeds, the number of macroparticles
increases with t to saturate at a few hundred in each PIC cell, on
average. Here the maximum value of the Courant number is set
to be 0.5 for uniform grid intervals in x= r* and q= -y 1 cos
coordinates. In total, there are about 3× 108 macroparticles in
the entire simulation region.

3.5. Nonstationary Magnetosphere

It is checked a posteriori (Section 4.2) that the invariant grid
intervals resolve the skin depth,
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at every point at any elapsed time, where the plasma frequency
ωp is computed by the plasma density n± and its mean Lorentz
factor 〈γ〉 as
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For stellar-mass BHs, we obtain
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where γ6≡ 〈γ〉/106, and
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mp denotes the rest mass of the proton.
To resolve the skin depth, lp, most PIC simulations are

performed in one or two dimensions with small ion-to-electron
mass ratios (e.g., Bohdan et al. 2019) covering limited time and
length scales. In the present paper, adopting a heavy electron
mass of me=mp/20, we perform a 2D PIC simulation within
about 10 gravitational radii over the time duration of several
hundred dynamical timescales. We rescale every expression
according to this modified electron mass. Under this assump-
tion of heavy charged leptons, we need about 103 grid points to
fully resolve the skin depth.

On these grounds, we adopt a radial grid of 960 uniform
cells in the range −15.81807< x< 12.82443, which corre-
sponds to 1.46514M< r< 13.68548M, and 1920 uniform cells
in the range q< = - <y0 1 cos 2, which corresponds to
0° < θ< 180°. We present the explicit expression of the
discretized Maxwell equations and the particle EOM in
Appendix E. To construct the electric currents from particle
motion (Appendix F), we adopt the area weighting (Villasenor
& Buneman 1992).

3.5.1. Electromagnetic Fields

We start with the magnetic field–aligned electric field. In
Figure 3, we present the distribution of E B B M2eq

2· [ ( )] . For
M= 10Me and = ´ -m 2.25 10 4 , we obtain Beq(2M)=
1.452× 106 G. The left and right panels show the distribution of
E B B M2eq

2· [ ( )] at t= 0 and 430M, respectively. In the
northern hemisphere, since Fθj> 0 holds, a positive (or negative)
sign of E ·B indicates that an outward (or inward) electric field
arises along the local magnetic field lines. In the same manner, in
the southern hemisphere, it follows from Fθj< 0 that a positive (or
negative) sign of E ·B means an inward (or outward) electric field.

At t= 0, there are no poloidal currents in the magnetosphere
because of the lack of plasmas. Thus, the magnetic field has no

toroidal component. Accordingly, the rotational energy of the
BH is not being extracted. On the other hand, because of the
relative motion of the magnetic field lines with respect to the
spacetime, there appears to be a strong electromagnetic field
along the magnetic field line. The left panel of Figure 3 shows
that such a magnetic field–aligned electric field is exerted in
both hemispheres.
As time elapses, |E ·B| evolves, exerting electric currents in

the magnetosphere. These currents modify the poloidal electric
field through Ampere’s law. For example, at t= 430M in the
northern hemisphere, the right panel shows that a negative
E ·B appears in the higher–middle latitudes, exerting inward
currents there. In the same manner, in the southern hemisphere,
E points inward in the higher–middle latitudes outside the
ergosphere. Note that Fθj changes sign across the equator.
Because of this nearly symmetric distribution of the electric

field between the two hemispheres, electrons (or positrons) are
accelerated outward (or inward) in the higher–middle latitudes
in both hemispheres. In the lower latitudes, however, positrons
(or electrons) are accelerated outward (or inward) by the strong
magnetic field–aligned electric field in both hemispheres. As a
result, currents flow inward in the middle latitudes and outward
in the lower latitudes. For the details of the electric currents, see
Section 3.5.2. Such a pattern of the magnetospheric currents
leads to a positive toroidal magnetic field (∝ Fr θ) in the
northern hemisphere and a negative Fr θ in the southern
hemisphere. Thus, Fr θ vanishes on the equator.
Now let us consider the Poynting flux, or, equivalently, the

BZ flux,
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in the BH vicinity. If it becomes positive, it means that the BH’s
rotational energy is being extracted electromagnetically. In
Figure 4, we plot the temporal evolution of Tem

r
t (t, r, θ) at

r= rH+ 0.25M at four discrete colatitudes as labeled. The
ordinate is normalized by the typical BZ flux, which is analytically
given by Fanalytical≡ LBZ/Sarea, where ò ò q q fºS A d dsinarea .
The BZ power (i.e., the spin-down luminosity) can be estimated to
be
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in the slow-rotating limit, |a|=M, where B⊥ denotes the
average strength of the radial magnetic field. It follows from the
figure that the solution exhibits rapid plasma oscillations, as
reported by Levinson & Cerutti (2018). It also follows that the
simulated BZ flux is consistent with its analytical estimate. See
the supplementary material of Crinquand et al. (2020) for a
consistent discussion between the simulated BZ flux and their
analytical estimates.
It should be noted that the BZ flux increases during the

elapsed time 320M< t< 450M along the middle latitudes,
45°� θ� 75°. During this flux-enhancement phase, the BZ
flux (i.e., the Poynting flux) fluctuates relatively mildly
compared to its amplitude within 45°� θ� 60°. In the present
magnetically dominated magnetosphere, in which the magnetic
energy density dominates the particles’ rest-mass energy
densities, the particles’ energy flux is typically less than 10−7

compared to the Poynting flux; thus, we neglect their
contribution when we consider the energy flux.

Figure 3. Distribution of E · B/Beq(2M)2 on the poloidal plane (r, θ) for
a = 0.9M, B = Beq, and = ´ -m 2.25 10 4 . The left and right panels show the
distribution at t = 0.00 and 430.00GMc−3, respectively. The abscissa and
ordinate are the same as Figure 2. Magnetic surfaces (i.e., constant Aj lines) are
not depicted but are the same as the right panel of Figure 1.
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In Figure 5, we present the angular dependence of the BZ
flux at four elapsed times as labeled. During the flux-
enhancement phase, the BH’s rotational energy is efficiently
extracted from the middle latitudes, 40° < θ< 75° in the
northern hemisphere and 105° > θ> 135° in the southern
hemisphere.

To smear out the variation, we take a moving average with a
period of 5GMc−3 and plot the BZ fluxes in Figure 6. In this

particular figure, we compare the results for three accretion
rates; the top, middle, and bottom panels show the BZ fluxes at

=m 0.000250 , 0.000225, and 0.000200, respectively. We find
that the flux is enhanced for typically 140–180 dynamical
timescales, and that the flux peaks in the middle latitudes
during the enhancement irrespective of the accretion rate, as the
blue dashed (θ= 50°), blue solid (θ= 60°), and black dashed
(θ= 70°) curves indicate in each panel. For example, at θ= 60°

Figure 4. Radial component of the BZ flux as a function of the elapsed time at radius r = rH + 0.25M. The ordinate is normalized by its analytical estimate (see text
for details), while the abscissa is normalized by the dynamical timescale. Each panel shows the BZ flux at discrete colatitudes as labeled.

Figure 5. Radial component of the BZ flux as a function of the colatitude angle, θ. The blue dotted, red solid, black dashed, and green dashed–dotted curves show the
BZ flux at time t = 330.00GMc−3, 380.00GMc−3, 430.00GMc−3, and 480.00GMc−3, respectively.
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in the northern hemisphere (or θ= 120° in the southern
hemisphere), the FWHMs of the moving-averaged flux become
157M and 149M in the northern and southern hemispheres,
respectively, when = ´ -m 2.50 10 4 (as the top two panels
show). They become 136M (northern) and 184M (southern)
when = ´ -m 2.25 10 4 (middle two panels) and 141M
(northern) when = ´ -m 2.00 10 4 (bottom left panel). How-
ever, it is still not possible to measure the FWHM for the
southern hemisphere when = ´ -m 2.00 10 4 (bottom right
panel). The flux distributes more symmetrically between the
northern and southern hemispheres as the accretion rate
increases.

3.5.2. Particle Distribution and Currents

We next consider the distribution functions of e± and the
resultant current distribution. Figure 7 shows the densities of

electrons (left) and positrons (middle) at the burst peak,
t= 430M, in log scale. The right panel shows the GJ value at
each point. It follows that both electrons and positrons have
greater densities than the GJ value, particularly in the lower
latitudes. In the polar regions, because of the polarization drift
caused by the varying meridional electric field (and the
constant radial magnetic field), electrons migrate meridionally
to accumulate in θ< 15° and >165°, whereas positrons are in
15° < θ< 20° and 165° > θ> 160° at t∼ 430M. In the lower
latitudes, the leptonic densities attain 107.7 cm−3.
The charged leptons carry electric currents, as depicted in

Figure 8. In the left and right panels, we present the radial and
meridional components of the electric currents at each point in
the ZAMO frame. For a quantity f (r, θ), we plot

=F f fsign lg max , 1 , , 59{ [ (∣ ∣ )] } ( )

Figure 6. Moving-averaged BZ fluxes with a period of 5GMc−3 = 5M for three dimensionless accretion rates, = ´ -m 2.50 10 4 (top), = ´ -m 2.25 10 4 (middle),
and = ´ -m 2.00 10 4 (bottom). The left (or right) panels depict the BZ flux in the northern (or southern) hemisphere. Each curve denotes the BZ flux at colatitude θ
as labeled.
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where sign(a, b)= |a| if b� 0 and=− |a| if b< 0; we set

=f J r̂ and qJ ˆ for the left and right panels, respectively. In the
left panel, the yellow–red regions show that currents flow
inward in the middle latitudes, while the blue–violet regions
show that they flow outward in the lower latitudes. These radial
currents are closed by meridional currents flowing within the
ergosphere, as the right panel shows. For example, in the right
panel, the blue (or red) region in the lower–middle latitudes
within r< 2M in the northern (or southern) hemisphere shows

equatorward meridional currents. Because of this current
closure, it is confirmed that the BZ process is, indeed,
facilitated.
To grasp the current distribution more easily, we plot the

direction and strength of the poloidal currents as red arrows in
Figure 9. The current density is averaged over the area in which
we compute the direction and length of each arrow. In the
figure, the length of the arrows indicates the strength of the
current density in logarithmic scale, as indicated by the right
panel. We can confirm the current pattern discussed in the
foregoing paragraph. It also follows that the averaged currents
mostly flow in the middle and lower latitudes; thus, the low-
density regions in the polar funnels do not essentially affect the
entire structure of the magnetosphere. In this figure, we also
plot the charge density, (n+− n−)/nGJ, in color, where n+ and
n− refer to the positronic and electronic number densities.
Values are plotted using the same method as Figure 8
(Equation (59)). It follows that the real charge density becomes
even greater than the GJ value (right panel of Figure 7), which
indicates that the electron–positron plasmas become highly
nonneutral near the BH.
We next consider the distribution functions of the charged

leptons. The dimensionless distribution functions of e±, n±, are
sliced between the colatitude θ1< θ< θ2,

òg q
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In Figure 10, we present N− and N+ as a function of r* and γ

(i.e., the Lorentz factor) in the left and right columns,
respectively. The range of θ ä [θ1, θ2) increases from the top
to bottom rows as described in the caption. It shows that the
Lorentz factors are saturated at a terminal value at each point.
The terminal value is determined by the balance between the
electrostatic acceleration and the synchrocurvature radiation
drag force. Since |E ·B| significantly increases with decreasing
radius at r* < 0 (or, equivalently, r< 4.1M), particles gain

Figure 7. Densities of electrons (left) and positrons (middle) and the GJ density (right), nGJ, in cm−3 units at t = 430M. Values are plotted in decadic logarithm. The
abscissa and ordinate are the same as Figure 2.

Figure 8. Electric currents measured by the ZAMO in the poloidal plane at
t = 430M. The abscissa and ordinate are the same as Figure 2. The left panel
shows the radial component, J r̂ , while the right panel shows the meridional
component, qJ ˆ

. To plot the values, we take the decadic logarithm of the
absolute value of a quantity, then put the same sign as the quantity. For
example, in the left panel, the value of 106 (or −106) corresponds to an outward
(or inward) current density whose absolute value is -10 statampere cm6 2. In the
same way, in the right panel, a positive (or negative) qJ ˆ

means an equatorward
current in the northern (or southern) hemisphere.
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large kinetic energies inside r< 4M. Nevertheless, by virtue of
the residual magnetic field–aligned electric field, particle
motion is kept relativistic in the entire region. Lorentz factors
attain γ> 104.5 in r* < 1M (or, equivalently, r< 4.7M).

To examine the pitch-angle dependence, in Figure 11, we plot
N±(r*, χ), where the pitch angle χ becomes +1 (or −1) when a
particle is moving outward (or inward) with a very small trans-
magnetic-field momentum and becomes zero when it has no
longitudinal momentum. At r*> 0, particles have small trans-
magnetic-field momenta. However, in the higher–middle
latitudes, θ∼ 40°, the middle panels show that electrons (or
positrons) migrate outward with positive ccos (or inward with
negative ccos ), indicating an inward poloidal current there.
Figures 10 and 11 show that particles are highly relativistic with
nonthermal and anisotropic distribution functions.

4. Discussion

To sum up, we simulated the evolution of a BH magneto-
sphere by a PIC scheme, when a poloidal magnetic field is
sustained by a disk toroidal current and the electron–positron
pair plasmas are steadily supplied homogeneously per invariant
volume basis. Provided that the mass accretion rate is much
less than the Eddington rate, both the electromagnetic fields
and the particle distribution functions exhibit rapid variability.
The rotational energy of the BH is, indeed, extracted via the BZ
process, whose energy flux concentrates in the middle latitudes,
particularly during the flux-enhancement phase that lasts
approximately 160± 20 dynamical timescales. We have
demonstrated that the collision timescale is much longer than

the gyration timescale (i.e., the Ohm’s law cannot be justified),
the pair plasma is highly nonneutral, the particles’ energy
distribution is non-Maxwellian, and the momentum distribution
is anisotropic. Thus, we must discard the MHD approximation
when we consider the jet-launching region around the BH
whose mass accretion rate is highly sub-Eddington.
In this section, we discuss the dominant radiative process in

Section 4.1, the validity of gridding in Section 4.2, a
comparison with other works in Section 4.3, and an implication
for the collimation of VLBI jets in Section 4.4.

4.1. Dominant Radiative Process

Although the synchrocurvature radiation process is incorpo-
rated in the radiative reaction force, F j

rad, ICS is not considered
as a radiation drag. Thus, we have to confirm that the ICS
process is negligible compared with the synchrocurvature
process around stellar-mass BHs accreting at m 1  . Here we
briefly compare the pure curvature, pure synchrotron, and ICS
processes and discuss the dominant process. To make a general
discussion, we adopt the actual electron mass me=mp/1836,
instead of mp/20, in this subsection.
The magnitude of the radiation drag force due to the pure

curvature process is given by
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where ρc refers to the curvature radius of the particle’s center
of gyration, 2M= 2MGc−2 is the Schwarzschild radius, and
γn≡ γ/10n. If this force balances with the electrostatic force,
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we find that the particles saturate at the Lorentz factor,
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where EP,5≡ EP/(10
5 statvolt cm−1).

The magnitude of the radiation drag force due to the pure
synchrotron process is given by
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where r0 denotes the classical electron radius, and χ is the pitch
angle. Equating Equations (62) and (64), we obtain the terminal
Lorentz factor,
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sin

0.1
. 65sync

4
6

1
2 1 2

,5
1 2

⎛
⎝⎜

⎞
⎠⎟ ( )

If γsync< γcurv, the pure synchrotron process dominates
the pure curvature process. If me=mp/1836, we find that the
condition γsync< γcurv is satisfied because

c r
>-B E

M

sin

0.1 2
1 666 ,5

1 4 c
1 2

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

Figure 9. Dimensionless charge density (n+ − n−)/nGJ (color image) and
poloidal electric current (red arrows). The abscissa and ordinate are the same as
Figure 2. The charge density is plotted in linear scale. The green (or yellow)
regions show positive (or negative) dimensionless charge densities. The right
panel shows four example arrow lengths corresponding to the indicated
strengths of the poloidal current densities in statampere cm−2.
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is satisfied by the vast majority of the particles. Put another
way, the synchrocurvature process reduces to the pure
synchrotron process for most of the particles. However, since
we assume heavy electrons in this paper, the increased
gyroradius makes the synchrotron process less efficient; thus,
the radiation drag force is given by the synchrocurvature
process in general for heavy electrons.

We next compare the pure synchrotron process with the ICS.
At a radius r from the central BH, the number density of the
ADAF synchrotron photons is given by Mahadevan (1997),

p n
=N

L

r h c4
, 67ph

sync

2
( )

where hν refers to the energy of the photons emitted from the
ADAF via the synchrotron process. The synchrotron luminos-
ity is given by

= ´ -L M m1.67 10 erg s . 68sync
36

1
1 2 3 2 1 ( )

The typical photon energy is given by Equation (22) of
Mahadevan (1997). Accordingly, we obtain

= ´ -N T M m1.55 10 photons cm , 69ph
20

e,9
5

1
3 ( )

where Te,9 refers to the electron temperature, Te, normalized by
109 K. The ICS drag force per electron (or positron) is given by

s g»F N m c , 70ICS ph KN e
2 ( )

where

s s» +-x x
3

8
ln 2

1

2
71KN T

1⎜ ⎟⎛
⎝

⎞
⎠ ( )

refers to the Klein–Nishina cross section, and x≈ γ holds on
average. We thus have

» ´ -F M mT3.89 10 . 72ICS
10

1 e,9
5 ( )

Figure 10. Lorentz factor dependence of the distribution of electrons (left) and positrons (right) as a function of the dimensionless tortoise coordinate, r*/M, at elapsed
time t = 430M. The colors show the logarithmic value of the dimensionless distribution functions (see text) along discrete colatitudes. The top, middle, and bottom
rows show the distribution function in the meridional range 16°. 606–23°. 568, 37°. 678–41°. 432, and 57°. 235–60°. 034, respectively.
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We thus obtain

g
c - - - -B M m T

sin

0.1
10 . 735

2
6

2
2

1
1 1

e,9
5 5⎜ ⎟⎛

⎝
⎞
⎠ ( ) 

On these grounds, we obtain Fsync? Fcurv? FICS for the
actual electron mass. Note that the Lorentz factor will increase
with decreasing electron mass. However, for heavy electrons,
energy transfer efficiency increases due to their greater mass
ratio to protons. Thus, ICS may not be negligible even for
stellar-mass BHs. However, we neglected ICS in this paper,
considering a future extension to smaller electron masses.

In short, for the actual electron mass, it is possible that the
ICS process is negligible compared to the synchrocurvature
process when we consider stellar-mass BHs in a quiescent
state. However, for supermassive BHs, we generally obtain
FICS> Fcurv? Fsync because of the large curvature radius and
weak magnetic field strength (Hirotani et al. 2016) for the
actual electron mass.

4.2. Grid Interval versus Skin Depth

Let us compare the invariant grid interval º rg

D º D Dqq qg gmax ,s rr r( ) with the skin depth, lp
(Equation (53)), where Δr and Δθ denote the interval in r
and θ coordinates, respectively. Representative values of the
dimensionless function ò(r, θ) are presented in Table 1.
Because of a constant qDqsin gridding, Δθ increases with
decreasing qsin . Note that the dimensionless grid interval ò is
defined independently from the BH mass.

Figure 11. Similar to Figure 10 but showing the pitch-angle dependence of the distribution functions of electrons (left) and positrons (right) at t = 430M. The colors
show the logarithmic value of the dimensionless distribution functions within the same meridional range as Figure 10.

Table 1
Invariant Grid Interval, ò(r, θ) = Δs/rg

r/rg θ = 2°. 62 29°. 0 60°. 0 90°. 0

8.507 0.2762 0.0262 0.0261 0.0260
4.099 0.1355 0.0217 0.0215 0.0214
2.021 0.0714 0.0122 0.0117 0.0114
1.471 0.0557 0.0036 0.0028 0.0026
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Adopting heavy electrons, me=mp/20, and normalizing the
skin depth with rg, we obtain

g= -l

r
n3.4 , 74

p

g
5 5

1 1 2( ) ( )

where γν≡ 〈γ〉/10ν and nν≡ n±/10
ν; 〈γ〉 denotes the average

Lorentz factor. The highest-density region appears in the lower
latitudes at r< 4M, i.e., at r*<− 0.25M. In this region,
n< 107.7 cm−3 and 〈γ〉> 104.7; thus, we obtain lp> 0.108rg>
5Δs there. Other regions have greater skin depth. Accordingly, the
skin depth can be resolved at every point (and, in fact, at every
time step) during the PIC simulation, although it is marginal when
lp∼ 5Δs happens at the flux peak.

4.3. Comparison with Previous Works

Let us compare the present work with two recent works
on 2D GR PIC simulations (Parfrey et al. 2019; Crinquand
et al. 2020).

First, we discuss the difference with Parfrey et al. (2019).
Ignoring radiative transfer and instead considering an injection of
pairs whose rate is proportional to the local magnetic field–aligned
electric field, they performed 2D GR PIC simulations of the
magnetosphere of an extremely rotating BH with a= 0.999M.
The BH mass is not explicitly specified in their paper but is
presumably supermassive. They adopted an extremely small
magnetic field strength to emphasize the Penrose process, an
energy-extraction mechanism from rotating BHs when particles
fall onto the horizon with negative energies measured at infinity.
Particles were created in the reconnecting current sheet on the
equatorial plane. The magnetization parameter was 2000; that is,
the magnetosphere was still magnetically dominated. Magnetic
field configuration is initially Wald’s vacuum solution, which is
produced by a toroidal ring current flowing on the equatorial plane
at large distances. Then the field lines are bent back toward the
BH to penetrate the horizon. For M87*, their dimensionless
magnetic field strength, =B 100

3˜ , corresponds to the actual
strength, = ~ -B B m c er 100 e

2
g

9˜ ( ) G, which is about 10−11

times smaller than what is observed (Event Horizon Telescope
Collaboration et al. 2019). Under this condition, they found that
the charged leptons created in the current sheet plunge onto the
horizon with negative energies as a result of the interaction with
the electromagnetic field, and that the Penrose process contributes
to the extraction of the energy and angular momentum from a
maximally rotating BH.

In the present paper, on the other hand, we consider a stellar-
mass BH. In this case, we can resolve the skin depth with a
realistic magnetic field strength, B= Beq. Accordingly, the
magnetization parameter becomes of the order of 107; thus, we
did not mention the particle contribution on the energy
extraction from a rotating BH. Nevertheless, the particle
energy flux does become negative in our simulation as well;
thus, the Penrose process is indeed working, although their
contribution is negligible. We assume a homogeneous and
constant plasma supply in the present work, which forms a
contrast to Parfrey et al. (2019), who considered pair creation in
the reconnecting current sheet. The magnetic field is assumed
to be fixed on the poloidal plane during the simulation in the
present paper.

Second, let us discuss the difference with Crinquand et al.
(2020). In their 2D GR PIC code, implementing ICS and
photon–photon pair production self-consistently, they solved

the PIC equations together with the radiative transfer equation.
Electron–positron pair plasmas are supplied in response to gap
opening. They presumed supermassive BHs. In this case, ICS
dominates the pure curvature radiation (Hirotani et al. 2016),
where the particle’s pitch angles become small enough due to
the ICS and continuous acceleration along the magnetic field
lines (Beskin et al. 1992). Thus, their treatment, which takes
account of only the ICS as radiative processes, can be justified.
Crinquand et al. (2020) assumed a true monopole magnetic
field whose radial component points outward in the entire
magnetosphere. Accordingly, no current sheets appear in their
solution. Electric currents flow inward (or outward) in the
northern (or southern) hemisphere, leading to a negative Fr θ in
the entire magnetosphere. Since Eθ= Fθt> 0 holds in both
hemispheres, the resultant Poynting flux is also positive in both
hemispheres. In their Zelton code, they solved all six
components of the electromagnetic fields, computing the
evolution of Fjt from the toroidal component of the current
density Jj that is constructed from the azimuthal motion of the
charged particles.
In the present paper, on the other hand, instead of solving the

radiative transfer equation, we simply adopt a uniform and
constant pair production in the particle source term. We
consider a stellar-mass BH, in which case the synchrocurvature
process becomes nonnegligible compared to ICS (Hirotani
et al. 2016). We assume a split-monopole magnetic field whose
radial component is positive (or negative) in the northern (or
southern) hemisphere. Accordingly, a current sheet appears on
the equator. Electric currents flow inward in the higher latitudes
in both hemispheres and outward in the lower latitudes, leading
to a negative (or positive) Fr θ in the northern (or southern)
hemisphere and a positive BZ flux in both hemispheres, as
discussed in Section 3.5.1.
Let us briefly point out the limitation of the present analysis.

Unlike the Zelton code, we solved only three of the six
components of the electromagnetic fields in the present paper,
putting Fjt= 0, and hence ∂tFθj= ∂tFjr= 0 throughout the
simulation, as the first step. If the local physics (as supposed in
recent 1D GR PIC simulations) does not significantly affect the
entire structure of the magnetosphere, such an assumption of a
fixed poloidal magnetic field could be justified. However, when
we apply the present 2D method to a global magnetosphere,
toroidal currents carried by the charged leptons at each position
can alter the entire magnetic field configuration on the poloidal
plane. Thus, in the same manner as in recent 1D models
(Levinson & Cerutti 2018; Chen & Yuan 2020; Kisaka et al.
2020), we must draw attention to the limitation of Fjt= 0. In the
next paper, we will extend our analysis to the case Fjt≠ 0,
constructing Jj at each position from the actual motion of the
charged leptons and solving all six components of the
electromagnetic fields.

4.4. Implication for Supermassive BHs

Let us finally discuss what can be expected if the present
results obtained for stellar-mass BHs can be applied to
supermassive BHs. We have demonstrated that the BH’s
rotational energy is efficiently extracted along the magnetic
field lines that cross the event horizon in the middle latitudes.
Let us discuss an implication of this result on the formation of
limb-brightened jets. It has been revealed by the VLBA
observations in 15–43 GHz that the innermost region of the
M87 jet exhibits a limb-brightened structure (Junor et al. 1999;
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Kovalev et al. 2007; Ly et al. 2007; Hada et al. 2011, 2013;
Walker et al. 2018). At 86 GHz, this limb-brightened structure
is already well developed at 0.15 mas from the VLBI core,
where the corresponding apparent opening angle becomes
approximately 100° (Hada et al. 2016). If a relatively large
viewing angle of θview∼ 30° is adopted (Ly et al. 2007; Hada
et al. 2016), the jet has a deprojected opening angle χopen∼ 50°
at the deprojected distance z= 84GMc−2. However, if a smaller
viewing angle, θview∼ 17°, is adopted (Biretta et al. 1999;
Wang & Zhou 2009; Perlman et al. 2011; Nakamura & Meier
2014; Mertens et al. 2016; Walker et al. 2018), we obtain
χopen∼ 30° at z= 108GMc−2.

If a jet begins to collimate outside the outer light surface
(Camenzind 1986), we may assume that the jet is radial within the
distance ζ ϖLC from the rotation axis and becomes paraboloidal
outside of it (Asada & Nakamura 2012; Hada et al. 2013;
Nakamura & Asada 2013; Asada et al. 2016; Nakamura et al.
2018), where ϖLC≡ c/ΩF denotes the typical radius of the outer
light surface. Figure 12 sketches the geometry of this jet
downstream region. Assuming that we observe the jet at the
position (r, θ), we can express ζ in terms of the observables z
and θ=χopen/2 as q zv q q- = -r 1 cos sin 1 cosLC 0 0( ) ( )( ),
which gives

z
v

q
q

q
q

»
-

-
z 1 cos

cos

sin

1 cos
, 75

LC

0

0
( )

where q=z r cos . If ΩF≈ 0.5ωH, a≈ 0.9M gives ϖLC≈
6.4GM/c2. (Note that ΩF=Ftθ/Fθj is not assumed but solved
in the PIC simulation.) If the magnetic field line with the footpoint
angle θ0≈ 60° (or 75°) is brightened at downstream z with a half
opening angle θ=χopen/2, we obtain ζ≈ 2.4 (or ζ≈ 1.8) for

θview= 30° and ζ≈ 1.0 (or ζ≈ 0.78) for θview= 17° using the
86GHz VLBI observations. On these grounds, if the BZ flux
concentrates in the middle latitudes also in the case of
supermassive BHs, it is possible that the M87 jet begins to
collimate slightly outside the outer light surface, typically within a
distance of 2.4ϖLC from the rotation axis, which may become a
good target of the Event Horizon Telescope and GRAVITY.
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Appendix A
ZAMO-measured Quantities

We give the expressions of ZAMO-measured quantities,
which are indicated by a tilde (˜), in this appendix. Using
Equations (4)–(7), we obtain

=
D
S

u u , A1r r ( )ˆ

=
Sq qu u
1

, A2( )ˆ

q=
S

j ju
A

usin ; A3( )ˆ

or, equivalently, their contravariant components become

= ºu u g u , A4r
r

rr
r ( )ˆ

ˆ
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q

qq
qu u g u , A5( )ˆ
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1
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In the same way, the tetrad transformation law gives the
following expressions of the electromagnetic fields in the
ZAMO:
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Figure 12. Schematic picture of the jet downstream region. The jet shape is
assumed to be radial inside the radius r0 and paraboloidal outside of it. The jet
is observed with VLBI at radius r. Both θ and θ0 are measured from the jet axis,
which coincides with the BH’s rotation axis.
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= = - =
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S
q q j
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jF e eB F
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where *F refers to the Maxwell tensor, which is the dual of the
Faraday tensor F. For example, Figure 2 depicts the distribu-
tion of Equations (A12) and (A13) on the poloidal plane. We
could use Equations (A4) and (A5) to compute J r̂ and qJ ˆ ,
which are depicted in Figures 8 and 9. However, in actual
calculations, we compute J r and J θ from Equations (47) and
(48) and convert them into the ZAMO-measured quantities
using the transformation law of the one-form bases that are dual
to the ZAMO’s tetrad, Equations (4)–(7).

Appendix B
Stationary Vacuum Magnetosphere

In this appendix, we formulate the basic equations to solve
the initial stationary electromagnetic fields.

B.1. Gauss’s Law

The inhomogeneous part of the Maxwell equations can be
written as

p
 =m

nm nF
c

J
4

, B1( )

where ∇μ denotes the covariant derivative with respect to
the coordinate variable xμ, F ν μ is the electromagnetic field
strength tensor, and J ν is the four current density. Putting
ν= 0, we obtain Gauss’s law,

pr
-

¶ - =m
m

g
g F

1
4 , B20( ) ( )

where ρ refers to the electric charge density, and
q- = Sg sin . In the Kerr spacetime, we obtain
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At t= 0, we assume a stationary and axisymmetric magneto-
sphere, ∂t= ∂j= 0, to obtain

= - = = ¶F A A A A , B6rt t r r t t r r t, , , ( )

= - = = ¶q q q q qF A A A A , B7t t t t t, , , ( )

= - =j j jF A A 0, B8t t t, , ( )

= - = -¶j j j jF A A A , B9r r r r, , ( )

= - = ¶qj j q q j q jF A A A , B10, , ( )

where Aμ = (At, Ar, Aθ, Aj) denotes the vector potential;
Fμν= ∂μAν−∂νAμ. Note that Frθ,j+ Fθj,r+ Fjr,θ= 0 (i.e.,
∇B= 0) is automatically satisfied.

For an observer whose four velocity is u ν, the electro-
magnetic field components are given by

=m mn
nE F u B11( )
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h=m
n
mrs

rs
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2
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where the completely antisymmetric Levi–Civita tensor density
is defined by

h h h h
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Thus, for a distant static observer whose four velocity is
ξμ= (1, 0, 0, 0), that is, the time-like Killing vector, the electric
field components are obtained by

= = =q q j jE F E F E F, , B15r rt t t ( )

in the Boyer–Lindquist coordinate. The magnetic field becomes
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Substituting Equations (B6), (B7), (B9), and (B10) into
Equation (B2), we obtain Gauss’s law:
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It follows that this Poisson equation contains only At (i.e., the
scalar potential) if the BH is nonrotating (i.e., a= 0). However,
around a rotating BH (i.e., if a≠ 0), Aj comes into Gauss’s
law. We thus need one more differential equation that contains
both At and Aj.

B.2. The Biot–Savart Law

To obtain an independent constraint on At and Aj, we
consider the Biot–Savart law. Putting ν= j in Equation (B1),
we obtain

p
-

¶ - =m
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g
g F
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1 4
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Thus, Equations (B3)–(B10) give
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where c= 1 is used. It follows that this equation contains only
Aj (i.e., the azimuthal component of the vector potential) if
a= 0. However, if a≠ 0, we must simultaneously solve the
two second-order partial differential Equations (B17) and (B19)
for At and Aj.

It should be noted that the coefficients of the ∂r
2Aj and ∂θ

2Aj
terms in Equation (B19) change sign at the static limit, where
gtt vanishes. Since the coefficients of these two highest-order
derivative terms change sign with respect to those of the other
two highest-order derivative terms (i.e., the ∂r

2At and ∂θ
2At

terms), the solution diverges during iterations from the inside of
the static limit (i.e., within the so-called “ergosphere”) if we
impose boundary conditions in the same way as standard
elliptic-type partial differential equations. This ill behavior is
incurred because a static observer (with respect to the star)
becomes unphysical within the ergosphere.

There are many ways to overcome this ill behavior. In the
present paper, we solve this issue by adopting the ZAMO as a
physical observer. Using the ZAMO’s tetrad, Equations (4)–(7),
we can replace At with the ZAMO-measured scalar potential, At̂
(Equation (12)), and obtain the two elliptic-type Equations (14)
and (19), which describe the initial electromagnetic fields
at t= 0.

Appendix C
Pair Production Rate

Using the self-similar analytical solution of the Newtonian
ADAF model (Mahadevan 1997), we find that the photons are
emitted at the rate
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by bremsstrahlung, where θe≡ kTe/mec
2 denotes the dimen-

sionless electron temperature. The luminosity of this brems-
strahlung emission can be computed as
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where θ1∼ 60° and θ2∼ 120° denote the upper and lower
boundary colatitudes of the ADAF.

In general, if one photon species (e.g., ADAF bremsstrah-
lung photons or gap-emitted gamma rays) collides with another
photon species (e.g., ADAF bremsstrahlung photons or ADAF
synchrotron photons), the pair production rate is given by
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where dΩγ refers to the photon propagation solid angle,
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denotes the photon–photon absorption coefficient, and
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denotes the photon number flux; Iν, νγ, and μ show the specific
intensity, photon frequency, and cosine of the photon collision
angles, respectively.
In the present case, the two species are the same ADAF

bremsstrahlung photons. Thus, we obtain
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Evaluating the flux with the luminosity by
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2
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where the photon energy can be estimated to be òγ≈ 3θemec
2,

and assuming that the pair production rate is uniform within
r< 4M, we obtain Equation (51), where the relative velocity
factor is evaluated as 1− μ= 0.2, and the pair production cross
section is 20% of the Thomson cross section, σγγ= 0.2σT.

Appendix D
Covariance of the Radiation-reaction Force

We explain here that the radiation-reaction force contains not
only those obtained in a flat space (Cerutti et al. 2012, 2013),

g= - + + ´
v

E E
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( )

in locally homogeneous Ẽ and B̃ fields but also the power of
radiative processes that result from any kind of acceleration. To
find this, we write down Equation (44) in a covariant form,

l
= -G +

m
m
rs

r s m
r

rdu

d
u u

q

m
F u , D2( )

where the friction term is dropped on the right-hand side to
draw the conclusion from the first principles. Both the inertial
(e.g., the centrifugal and Coriolis forces) and gravitational (due
to the spacetime curvature) forces are included in the
connection coefficients, Γμ

ρσ. For example, when a charge (or
its guiding center) moves along a curved magnetic field line in
a flat space, we can introduce a local cylindrical (or polar)
coordinate system whose origin resides at the center of the
curved path of 3D particle motion. In this coordinate, the
Γμ
ρσu

ρuσ term gives the centripetal acceleration, a⊥= c2/Rc,
where Rc refers to the curvature radius of the 3D particle
motion. Since Equation (46) is covariant, the effect of such
curvature radiation is included in any frame of reference.
Accordingly, we can take into account the radiation effects due
to any acceleration. Note that a charged particle does radiate
by gravitational acceleration, irrespective of the frame of
reference.
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In the actual program, we can compute the radiation-reaction
force F j

rad iteratively as follows.
(1) We first set =F 0j

rad and update du j/dλ and du0/dλ= γ
by Equation (44).

(2) Second, we substitute the solved uμ in Equation (46) to
update F j

rad.
(3) Third, we use the updated F j

rad and solve Equation (44)
for uμ again.

(4) We iterate steps 2 and 3 until F j
rad saturates. If we use the

F j
rad obtained in the previous step for each particle and start
from step 3, the number of iterations can be reduced.

Appendix E
Discretization of Basic Equations

We discretize the Maxwell Equations (35)–(37) by adopting
the Yee lattice. Electric field components, E and D, are
evaluated at half-integer time steps, e.g., t± (1/2)Δt, and the
magnetic field component, B, is evaluated at integer time steps
at time t+Δt. Accordingly, Equations (35)–(37) are discre-
tized as follows:
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where the super- and subscripts denote the temporal and spatial
labels, respectively, and the Courant numbers are defined by

n º
D
D

, E4x
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D
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Here Δt denotes the time step,Δx denotes the constant interval of
the radial tortoise coordinate, and qD = Dqsiny denotes the
constant azimuthal grid interval. Denoting the inner and outer
boundary positions as r min

* and r max
* , we obtain D =x

- -r r N 1x
max min
* *( ) ( ), where Nx denotes the number of

radial grids. Since we consider the colatitude range <0
q- <1 cos 2, we obtain Δy= 2/(Ny− 1), where Ny denotes

the number of meridional grids.
As for the Hamilton–Jacobi Equations (44) and (47)–(49),

we evaluate the particle position (r, θ, j) at half-integer
time steps and the momentum (u r, u θ, uj, and γ) at integer
time steps. Namely, particle’s momentum evolves by
(Equation (44))

- = D+ + + +u u F x ut , , , E6n n
t

n n n1 1 2 1 2 1 2( ) ( ) ( )

where Fi represents the right-hand side of Equation (44).

On the other hand, particle’s position evolves by
(Equations (47)–(49))
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The Boyer–Lindquist radial coordinate r can be readily
converted into x= r* by Equation (10), whereas θ is related
to y by q= -y 1 cos .
To find the initial stationary solution, we divide the tortoise

coordinate x uniformly in the range −15.8180< x< 20.0000
and the meridional coordinate y uniformly in the range <0

q= - <y 1 cos 2. Accordingly, the Boyer–Lindquist
coordinates are divided nonuniformly as r1= 1.4651M, r2=
1.4656M, r3= 1.4662M,K,r599= 19.9462M,r600= 20.0000M,
and θ1= 0°, θ2= 2°.6160, θ3= 3°.7000, θ= 4°.5319,K,
θ959= 89°.9104,θ960= 89°.9701,θ961= 90°.0298,K, θ1918=
(180.0000–3.7000)°, θ1919= (180.0000–2.6160)°, θ1920=
180°.0000.
To perform PIC simulations, we must make the radial range

small compared to the stationary case, because the Gauss and
Biot–Savart laws are solved for the toroidal current distribution
within r< 20M, which typically makes the solved poloidal
electromagnetic fields accurate only within r< 14M. The actual
value of the right-hand side (i.e., 14M in this case) depends on
the r dependence of Jjeq. For a split-monopole case, Jjeq∝ r−4,
or a paraboloidal case, Jjeq∝ r−3, the outer radial boundary of
r∼ 14M is conservatively justified. For PIC simulations, we
thus adopt the inner 960 points to restrict the simulation range
within x1=− 15.8180< x< x960= 12.8244 or, equivalently,
r1= 1.4646M< r< r960= 13.6854M. For the meridional coor-
dinate y, we adopt the same gridding as in the stationary case.
We checked that the results change little when we halve the
resolution either in the radial or meridional direction or when
we halve the creation rate 1/kcreate (and hence the number of
particles per cell).

Appendix F
Current Deposit

In our present 2D PIC simulations, we adopt a grid
consisting of rectangles of unit size and place on it unit
rectangular charges, where each unit rectangle grid cell has an
area ΔxΔy (Appendix E). The total number of charges is
assumed to be uniformly distributed over its 2D surface. As a
charge moves, each grid cell boundary sweeps a fraction of the
particle’s unit area surface, getting the electric current flowing
across the boundary. Using this “area weighting” (Villasenor &
Buneman 1992), we sum up the currents carried by individual
particles on each grid boundary.
We should note here that we take account of the particle

motion only in the poloidal plane when we compute the current
density, although the particles’ EOM is solved three-dimension-
ally. Thus, we cannot compute the toroidal current density, Jj,
in our area-weighting method. It follows that the time evolution
of Ej cannot be solved from Ampere’s law. Accordingly, the
evolution of Br or B θ cannot be solved either, because the r and
θ components of the Faraday law contain ∂θEj and ∂rEj,
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respectively. Thus, we are only able to solve the three
components (i.e., B, D, and E) of the electromagnetic field with
Equations (35)–(37) in the present 2D scheme, unless Jj is
constructed from the particle’s toroidal motion by a “volume-
weighting” method, which is outside the scope of the present
paper.
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