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Abstract

We study the propagation of a Newtonian shock in a spherically symmetric, homologously expanding ejecta. We
focus on media with a steep power-law density profile of the form ρ∝ t−3v−α, with α> 5, where v is the velocity
of the expanding medium and t is time. Such profiles are expected in the leading edge of supernovae ejecta and
sub-relativistic outflows from binary neutron star mergers. We find that such shocks always accelerate in the lab
frame and lose causal contact with the bulk of the driver gas, owing to the steep density profile. However, the
prolonged shock evolution exhibits two distinct pathways: In one, the shock strength diminishes with time until the
shock eventually dies out. In the other, the shock strength steadily increases, and the solution approaches the self-
similar solution that a shock is a static medium. By mapping the parameter space of shock solutions, we find that
the evolutionary pathways are dictated by α and by the initial ratio between the shock velocity and the local
upstream velocity. We find that for α< ωc (ωc≈ 8), the shock always decays, and that for α> ωc, the shock may
decay or grow stronger depending on the initial value of the velocity ratio. These two branches bifurcate from a
self-similar solution derived analytically for a constant velocity ratio. We analyze properties of the solutions that
may have an impact on the observational signatures of such systems, and assess the conditions required for
decaying shocks to break out from a finite medium.

Unified Astronomy Thesaurus concepts: Shocks (2086); Hydrodynamics (1963); Astrophysical fluid dynamics
(101); Gravitational wave sources (677); Core-collapse supernovae (304); Supernova dynamics (1664); Gamma-
ray bursts (629)

1. Introduction

The strong explosion problem, consisting of a shock driven into
an external medium by a sudden release of energy, has been
broadly studied. Particular attention has been given to shock
propagation in spherically symmetric, power-law density profiles,
for which asymptotic self-similar solutions can be found.
Solutions of this kind are relevant to diverse phenomena, where
the initial conditions have been forgotten, and the symmetry of the
problem is close to spherical. Such phenomena include a wide
range of explosions and eruptions of stellar systems and are
ubiquitous in astrophysics.

In most astrophysical systems, the medium into which the
shock propagates is at rest. However, there are cases wherein a
shock may be driven into an expanding medium. One example
is a class of various types of super-luminous supernovae (for
review see Gal-Yam 2019), for which a plausible scenario is
the injection of energy by a central engine, conceivably a
magnetar or an accreting black hole, into an expanding
supernova remnant (e.g., Kasen & Bildsten 2010). Another
example is the merger of a binary neutron star. Here, a
considerable amount of mass is ejected during the merger, just
prior to the formation of a compact engine at the center of the
system (see Nakar 2019 for a review). The central engine
expels a narrowly collimated, relativistic jet that interacts with
the ejecta, and it is possible that it also generates a much wider
wind that drives a quasi-spherical shock into the ejecta (e.g.,
Beloborodov et al. 2020).

The outflow into which the shock is driven in these scenarios
expands homologously with a gradient of velocities; that is,
every mass element propagates with a constant velocity, v, such
that at any given radius r= vt, where t is the time elapsed since
the outflow was ejected. In the inner slower parts of the outflow,
the density gradient is relatively shallow; however, at the leading

front, the gradient can be very steep. For instance, in supernovae
the structure of the ejecta is dictated by the density profile of the
pre-supernova static progenitor envelope, which is very steep
near the stellar edge, decreasing roughly as a power law of the
distance from the edge. The emergence of a spherical shock from
the static envelope following the supernova (SN) explosion
accelerates the matter near the edge of the envelope to high
velocities, ultimately generating an outflow with a velocity
profile of the form ρ∝ v−α above some characteristic velocity of
0.01–0.1c (c is the speed of light), with α≈ 10–12 for typical
stars (e.g., Nakar & Sari 2010). A second shock driven by a
putative central engine that forms following the SN explosion
will propagate in the expanding envelope until reaching the
leading edge, whereupon it will start accelerating in the steep
density gradient. Another example is the structure of the ejecta
from a binary neutron star merger. This structure is not well
resolved currently, yet we know that the bulk of the ejecta is
moving at a velocity of 0.1–0.3c, and numerical simulations as
well as analytic considerations suggest that there is a low-mass
fast tail with a sharp velocity gradient that extends to mildly, and
possibly even ultra-relativistic velocities (e.g., Kyutoku et al.
2014; Radice et al. 2018; Beloborodov et al. 2020). For example,
Hotokezaka et al. (2018) found a fast tail with a velocity profile
that can be approximated over a limited velocity range as a
power law with an index α≈ 10.
The goal of this paper is to study the physics of spherical

shocks that propagate in a steep density gradient, such as those
expected in the ejecta of the supernovae and binary neutron star
mergers. Such shocks can have several interesting observa-
tional signatures. First, if the ejecta is optically thin, then the
shock generates an observable radiation with properties that
reflect the shock velocity and the density gradient. Second, if
the ejecta is sufficiently opaque then the shock is radiation
mediated (see Levinson & Nakar 2020 for a review). If the
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shock is strong enough to cross the ejecta all the way to the
point where its optical depth to the observer drops below c/v,
then the shock breaks out, generating a bright flare (e.g., Kasen
et al. 2016), which is followed by emission of photons that
continuously diffuse out of the expanding envelope to the
observer (known as cooling emission). Finally, a shock that
traverses the ejecta modifies its density profile; this profile, in
turn, affects the observed emission through either absorption or
emission, since the photons that ultimately reach the observer
diffuse through the ejecta before escaping the system. More-
over, if the shocked ejecta encounters an external medium then
the generated emission also depends, among other things, on
the post-shock profile.

Almost all previous studies of the strong explosion problem
have focused on explosions in static media. The solutions for
this problem may be roughly divided into two types, depending
on the density gradient in the medium. If the gradient is shallow
enough, the shock decelerates and stays in causal contact with
the entire region behind it. In that case, the energy associated
with the shock is a conserved quantity of the system. On the
other hand, if the gradient is steep enough, the shock
accelerates and loses causal contact with part of the mass
behind it, and the energy connected to the shock diminishes as
the shock propagates. For a power-law density profile in a static
medium, there exist self-similar solutions in the Newtonian and
the relativistic regimes for both decelerating shocks (e.g.,
Sedov 1946; Von Neumann 1947; Taylor 1950; Blandford &
McKee 1976) and accelerating shocks (Waxman & Shvarts
1993; Sari 2006). The solutions for a shock propagating in an
expanding medium are fundamentally different since the
existence of two characteristic velocities—that of the ejecta
just ahead of the shock, and that of the shock itself—breaks,
quite generally, the self-similarity of the system.

Previous studies on shock propagation in expanding media
have focused on the interaction of a pulsar wind or a magnetar
wind with the bulk of the mass of a supernova remnant
(Chevalier 1984; Jun 1998; Suzuki & Maeda 2017). This is
different than the problem considered here since the density
gradient is shallow, α< 3, meaning the pulsar wind continu-
ously injects energy into the region, which is causally connected
to the shock at all times. Under these conditions, for self-similar
ejecta, there exist self-similar solutions that describe a double-
shock (forward/reverse shock) system.

In this paper we study a different evolutionary regime. First,
we are interested in the propagation of the shock in the steep
density gradient tail leading the ejecta. Second, we mainly
consider the evolution of a shock driven by a sudden explosion
(i.e., instantaneous energy injection into the ejecta), although
we show that under a wide range of conditions our solutions are
also applicable to a continuous energy injection by a fast wind.
To be more specific, we consider the problem of a shock
propagating in a homologously expanding, spherically sym-
metric medium, with a density profile described by a power law
of the form ρej∝ v−α, with α> 5. We focus on Newtonian
shock dynamics, and an ideal equation of state with an
adiabatic index, γ, of 4

3
and 5

3
.

As will be discussed later on, the distinction between
accelerating and decelerating shocks is not useful in the case
considered here, since all of the shocks in the regime we study
are accelerating in the lab frame. The key feature that
distinguishes between different types of shocks is the ratio
between the shock velocity and the local upstream velocity. We

identify two families: one in which this ratio increases
monotonically and one in which it decreases monotonically.
Shocks that belong to the first family have a steadily increasing
strength during their evolution, and are henceforth termed
growing shocks, whereas the evolution of shocks that belong to
the second family, henceforth termed decaying shocks,
approaches at some point a phase during which their strength
diminishes over time until they completely die out.
Our analysis indicates that for a density profile with α< ωc

(ωc; 8.22 for g = 4

3
, and ωc; 7.69 for g = 5

3
), the shock

wave always decays, while for a steeper density profile, the
family of solutions has a bifurcation point separating branches
of growing shocks and of decaying shocks, depending on the
density gradient and the initial velocity ratio between the shock
and the local upstream (i.e., the ejecta just in front of the
shock). We find a semi-analytic self-similar solution that
separates these two branches, and show that it is unstable. We
then use numerical simulations to map the family of solutions
and use its results to find a full analytic description for the
shock trajectory. Finally, we discuss aspects that can affect the
observational signature of such shocks, particularly the altered
density profile remaining behind the shock, and estimate the
explosion energy required for decaying shocks to break out of a
finite medium.
We proceed as follows: in Section 2 we revisit relevant

existing solutions in a static medium. In Section 3 we consider
shock propagation in an expanding medium and, drawing on
the static solution, show that there is a critical value of α below
which all shocks decay, and above which two branches of
solutions exist: one of growing shocks and another of decaying
shocks, depending on the initial shock velocity. These regimes
are separated by a self-similar solution, obtained semi-
analytically in Section 3.1, in which the ratio between the
shock velocity and the velocity of the moving medium at the
shock location is constant. In Section 3.2, we derive the density
profile remaining after the passage of the shock. In Section 3.3
we present numerical verification for our earlier analysis, and
quantitative solutions for the shock propagation. Relying on
results from the simulations, in Section 3.4 we find full analytic
expressions that describe the shock trajectory. We proceed by
analyzing the conditions for the shock to break out of the ejecta
and produce a bright breakout emission in Section 3.5. In
Section 4 we discuss the applicability of our solution to a shock
driven by a fast wind, and in Section 5 we summarize our
results.

2. Shock Propagation in a Static Medium

Before proceeding with the characterization of spherical
shock solutions in an expanding medium, let us examine first
the existing solutions of a blast wave propagating in a static
medium. In these solutions, the setup is as follows; A spherical
shock is driven into a spherically symmetric medium by a
sudden release of energy in some small region at the center.
This medium is assumed to be cold ideal gas with an adiabatic
index γ, and outside some small region at the center, the
density has a power-law profile, ρ= Kr−ω, where r is the
radius and K and ω are constants. The asymptotic solutions for
this set of problems are self-similar, taking the form  = dR AR ,
where R is the shock radius, A is a constant, and the value of δ
depends in the general case on the power-law index ω and the
adiabatic index γ.

2
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For a given value of γ, the qualitative solution depends on the
steepness of the density profile and can be divided into several
regimes. For ω< 3 the evolution of the shock wave follows
the Sedov–Von Neumann–Taylor solution (Sedov 1946; Von
Neumann 1947; Taylor 1950). The shock decelerates and stays
in causal contact with the entire deposited energy and can
be described by a self-similar solution of the first type. Energy
conservation considerations, and dimensional analysis are sufficient
to conclude that d = - w-3

2
.

For ω� ωg(γ) (where ωg; 3.13 for g = 4

3
, and ωg; 3.26 for

g = 5

3
), there exists a second type self-similar solution, originally

derived by Waxman & Shvarts (1993). In this solution the shock
accelerates, i.e., δ> 0, thereby losing causal contact with the bulk
of the energy. The value of δ (from here on denoted δWS) should
be found numerically. As we will see below, δWS= 1 is a critical
value for the family of solutions of shocks propagating in
expanding media. In a static media with γ= 4/3 this value is
obtained for ωc; 8.22 (for g w= , 7.69c

5

3
).

Since the adiabatic index γ� 1, a gap exists between the two
solutions. Inside this gap, additional second type self-similar
solutions with δ= 0 exist, describing shock waves with a
constant velocity (Gruzinov 2003; Kushnir & Waxman 2010).

3. Shock Propagation in a Homologously Expanding
Medium

Let us examine a spherical shock wave propagating in a
freely expanding spherically symmetric medium with a power-
law density profile of the form:

( )r = a- -Kt v , 1ej
3

where K is some constant and v= v(r, t) is the velocity of the
ejecta. The unshocked ejecta is homologous, implying v= r/t
and that the internal energy of the medium is negligible in
comparison with the kinetic energy, meaning the gas is cold.
We consider only α> 5, so that slow material carries more
energy than faster material. We also assume that the gas is
ideal. We consider adiabatic indices of γ= 4/3, which is
relevant when the shock material is radiation dominated, and
γ= 5/3, appropriate for cases in which the energy in the
shocked matter is dominated by the gas. Our goal is to identify
under which conditions shocks decay and under which
conditions they grow. Once the initial conditions are forgotten,
in addition to the adiabatic index γ and the density power law
α, the shock evolution can only depend on the shock location,
R, the time, t, the shock velocity R, the local upstream velocity
=v R

t
, and the density normalization constant K. From

consideration of dimensional analysis, K cannot be a relevant
parameter, and up to a scaling constant, the shock evolution

must depend only on: γ, α, and on the velocity ratio
 
=R

v

tR

R
.

We thus define:

( )
( )
( )

( )


h º =
R

v R

d R

d t

log

log
, 2

where in the second equality, we invoked a ballistic ejecta with
v(R)= R/t. We further define:

( ) ( ) ( )


d a h º
d R

d R
,

log

log
, 3

In self-similar solutions (both in static and in expanding media),
this index is a constant parameter that is determined in the solution
and depends only on α (it is an eigenvalue of the shock
equations). In the problem that we solve here, where the solutions
are in general not self-similar, the velocity ratio η and, hence, δ(α,
η) vary along the shock trajectory. Nonetheless, δ varies slowly
(over a dynamical time) and can serve to characterize the local
expansion rate of the shock. This enables a comparison to the self-
similar solution in the static medium case. Moreover, if δ(α, η) is
known for every value of η, then the entire evolution of the shock
can be found for every set of initial conditions. To elucidate this
point, we express the evolution of η with time as:

( ) ( )
h

d h= - = - +
d

d t

d R

d R

d R

d t

d

d t

log

log

log

log

log

log

log

log
1 1. 4

R

t

It is now seen that if δ(α, η) is known, then for a given α and an
initial value of η at some time t0, Equation (4) can be integrated
to yield η(t). Then rearranging and integrating Equation (2),
one obtains:

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )ò

h
=

¢
¢

¢R t R t
t

t
dtexp . 5

t

t

0
0

Thus, δ(α, η) is an implicit solution of the shock evolution. We
find it numerically for various values of α and η in Section 3.3,
and find a full analytic expression for it in Section 3.4.
Since there are two characteristic velocities in the problem,

we do not expect to find, in general, self-similar solutions.
However, there are two cases for which self-similar solutions
may exist. The first one is a family of exact solutions derived
for a unique configuration in which the velocity ratio η is
constant along the entire shock trajectory. As we shall show
later, there are values of α for which such solutions exist,
though they are unstable. The second one is approximate
solutions obtained in the limit where the medium velocity v is
negligible (η? 1). These solutions approach the static medium
solution δ(α, η→∞ )= δWS(ω= α). The convergence of these
solutions to the static medium case stems from the fact that
when η→∞, the motion of the ejecta over a dynamical time of
the shock is negligible. The fact that the medium is moving
affects the value of η since neglecting the medium motion over
a dynamical time implies that we can approximate v
(r= R)∝ R. Using this approximation we obtain a simple
formula for the evolution of η in this limit:

( )
 

h h = µ µ d-R

v

R

R
R1: . 61

As we show next, solutions are separated into two types. One
type corresponds to growing shocks, for which η increases
monotonically with time; as η→∞, these solutions approach
asymptotically the Waxman–Shvarts solutions in a static
medium. The second type consists of decaying shocks for
which η declines with time. We find that in all decaying shock
solutions the shock velocity ultimately approaches the local

3
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velocity of the moving medium, viz., ( ) R v R (η→ 1), at
which point the shock dies out. Equivalently, we may classify a
shock as decaying if there exists a mass shell that the shock
will never cross. This condition is different than in the static
case, in which a decaying shock decelerates, and its velocity
approaches zero in the lab frame.

It is worth noting that as viewed in the lab frame, both
decaying and growing shocks accelerate. Also in the local
upstream frame, the distinction between accelerating and
decelerating shocks does not coincide with the distinction
between growing and decaying shocks. For example, a shock
with constant η= ηc> 1 will accelerate in the upstream frame;

( ) ( ( ))  h- = - >R R t R 1 1 0d

dt

d

dt c . Similarly, a decaying
shock with η slightly smaller than ηc will also accelerate in the
local upstream frame.

The evolution of the shock, growing or decaying, is
determined by the sign of h. Examining Equation (4) at the
limit of η→∞ , the sign of h depends solely on the sign
of δ− 1. In this limit δ; δWS; therefore, if δWS> 1, meaning
α> ωc, and η→∞, then h > 0 and shocks grow. If δWS< 1,
which corresponds to α< ωc, then for large values of η, the
shocks decay. In each of these regimes, if the behavior
exhibited for η→∞ does not persist for all values of η (i.e., h
changes sign), then there exists some value of η for which
h = 0, meaning there is a solution with a constant η= ηc. In the
next section we show that when η= ηc, the hydrodynamic
equations admit a self-similar solution. We further show that
such a solution exists only for α� ωc. Hence, for α< ωc,
shocks always decay; that is, for every set of initial conditions,
η declines along the shock trajectory until the shock dies out.

For α> ωc, we find that there is a solution with η= ηc.
Based on our discussion above, we can see that this solution is
unstable, since h > 0 for η> ηc. In our numerical simulations,
we find that over the entire parameter space examined (values
of α between 6 and 14), h < 0 for η< ηc. Thus we conclude
that for1 ηc> 1, the self-similar solutions with η= ηc are
unstable, and they bifurcate into two branches: growing shocks
(η> ηc) and decaying shocks (η< ηc).

To summarize, depending on the value of α, the shock
behavior can be:

α < ωc α � ωc

shock decays η < ηc shock decays
shock decays η = ηc self-similar solution
shock decays η > ηc shock grows

3.1. Self-similar Solutions for the Limiting Case

We seek a self-similar solution where for a given value of α
the ratio between the shock velocity and the local velocity of
the medium is constant along the trajectory of the shock,
η= ηc(α). Before proceeding with the analysis, let us
emphasize some basic properties of the desired solution.

First, as discussed above, such a solution exists only for
α> ωc and it is unstable. Second from Equation (4) we see that
for η= ηc that is constant, d = =h

h
-

const
1c

c
. Therefore,

( ) = dR AR . 7

Note that δ is always smaller than 1, and monotonically
increases with ηc, approaching 1 for ηc→∞ . When ηc→∞ ,
the self-similar solution coincides with the static case solution,
in which δWS= 1 is obtained for α= ωc, therefore, ηc→∞ as
α] ωc, where the tilted arrow denotes that the limit is from
above. It is important to realize that in case of an expanding
medium, the local density gradient traversed by the shock is not
a power law with index α, but rather an effective density
gradient that depends on the original power law as well as the
shock velocity. By taking the logarithm of Equation (1) and
then differentiating it with respect to ( )Rlog , we obtain the
effective local density power law seen by the shock:

( ) ( ) ( )w
r

a a a
a
h

º - = - - = -
-d

d R

R

Rt

log

log
3

3
. 8eff

Note that since α> 3, the shock samples a weaker density
profile than the one measured in the lab frame; ωeff< α.
Plugging ηc into Equation (8), we find that the effective density
profile seen by the shock is given by w d ad= - + =3 3eff

const.
Expressing the ejecta density at the shock location in terms

of the constants defined above we have

( ) ( )r = = w-r R BR , 9ej
eff

where B= K((1− δ)A)3−α. We now proceed by defining a
similarity variable x = r

R
. Writing the flow fields behind the

shock in terms of the similarity variable and the shock velocity
R, the shock structure is not time dependent, and has a single
length scale R:

( ) ( )
( ) ( )
( ) ( ) ( )



x x
x x

r x

=

=
= w-

v r t R U

c r t R C
r t BR H

, ,

, ,
, , 10

s

eff

here cs is the speed of sound.
For the self-similar system, Equations (7) and (10), the

hydrodynamic equations for an adiabatic flow,

( ) ( ) ( )r¶ + ¶ + ¶ =v
r

r vln
1

0, 11t r r2
2

⎛
⎝⎜

⎞
⎠⎟( ) ( )

r
r
g

¶ + ¶ + ¶ =v v
c1

0, 12t r r
s
2

( ) ( )
r

¶ + ¶ =
g-

v
c

0, 13t r
s
2

1

reduce to a differential equation and a quadrature:

( )
( )

( )=
D
D

dU

dC

U C

U C

,

,
, 141

2

( ) ( )
( )

x x
=

D
D

=
D
D

dU

d

dC

dln
or

ln
, 151 2

where:

( ) ( )D = - -C U1 , 162 2

⎛
⎝⎜

⎞
⎠⎟( )( )

( )

d
d w

g
D = - - - - +

-
U U U C U1 1 3

2
,

17

1
2 eff

1 In our self-similar solution, we verify that ηc(α) > 1 at least for
every α � 20.

4

The Astrophysical Journal, 907:113 (11pp), 2021 February 1 Govreen-Segal, Nakar, & Levinson



⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

[( )( )

( ) ( )
( )

( )

d

d
d

d g w
g

D = - - -

-
-

- + +
+ -

-
-

C U U

U U
U

C

1 1

1

2
2 2

2 1

2 1
1 ,

18

2

eff 2

and H is given implicitly by

( ) ( ) ( )x x- =g l l l- + -H C U1 const, 191 2 3

with ( )l = d g w
w

+ -
-

2 1

3
eff

eff
.

To solve these equations, boundary conditions at the shock
front ξ= 1 are needed. The boundary conditions U(1), C(1),
and H(1) are obtained from the Rankine–Hugoniot Jump
conditions (we use subscript “1”[“2”] for upstream [down-
stream] quantities),

( ) ( ) ( ) r r- = -R v R v , 201 1 2 2

( ) ( ) ( ) r
r
g

r
r
g

- - = - -v R v
c

v R v
c

, 21s s
1 1 1

1 ,1
2

2 2 2
2 ,2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( ) ( )







r
g

r
g

r
g

r
g

- +
-

-

= - +
-

-

R v
v c c R

R v
v c c R

2 1

2 1
, 22

e
s s

s s

1
1
2

,1
2

1 ,1
2

2 2
2
2

,2
2

2 ,2
2

1

and read:

( ) ( )( ) ( )g d
g

=
+ - -

+
U 1

2 1 1

1
, 23

( )
( )

( )
g g
g

d=
-

+
C 1

2 1

1
, 24

( ) ( )g
g

=
+
-

H 1
1

1
. 25

For solutions to exist and be single-valued, they must pass
the sonic point Δ= 0 at the singularity Δ1=Δ2= 0. This
fixes δ for every value of α. This point is given implicitly by
the following equations, and it can be verified that Δ1, Δ2

vanish identically.

( )= -C U1 , 26

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )d

d w
g

- - = - +
-

U U U U1 1 3
2

. 27eff

To find the eigenvalue δ for a given setup (i.e., given values
of α and γ), we numerically integrate Equation (14) and one of
the equations in Equation (15) starting from the boundary
conditions at the shock front (Equations (23), (24)), and search
for the value of δ for which the solution passes through the
sonic point. The dependence of δ on α obtained from the family
of self-similar solutions (for which η= ηc) are shown in
Figure 1. The value of ηc as a function of α is shown Figure 2.
It shows that, as expected, ηc→∞when ω] ωc and on the
other end ηc→ 1 for large values of α. The drop in ηc is very
sharp where already for α= 10 we obtain ηc≈ 3 for both
adiabatic indices that we consider.

3.2. The Far Downstream Density Profile

The passage of the shock alters the distribution of the
pre-shocked outflow velocity. The new distribution may have

a direct impact on the observed signature in cases where
the observed photons diffuse through the shocked medium,
and in cases where the shocked outflow itself generates
radiation by interaction with some external medium. Once
fluid elements cross the shock, they start rarefying, converting
their internal energy to bulk motion. Immediately behind the
shock, the internal energy is at most comparable to the bulk
energy, and therefore after the entire internal energy is
converted to bulk motion, the velocity does not change by
much. Consequently, the velocity in the far downstream, vf, is
roughly the same as the velocity in the immediate down-
stream,  v Rf .
As a result, and given that the shock enhances the density

by a constant factor, the density at the shock location scales
with the shock velocity in the same manner as the density far
behind the shock scales with the terminal velocity, viz.,

 »
r rd

d R

d

d v

log

log

log

log
f

f
. In the static limit (η→∞ ), the pre-shock

density profile is ρ∝ r−α; therefore, ρ(R)∝ R−α. Since
δ= δWS(ω= α), we find ( )r µ - a

dR R WS , and since for a given

fluid element vf≈ v∝ R, we obtain r µ
- a

dvf f
WS . For the general

case of expanding medium, ρ∝ v−α, and


=
h

v R . Therefore,

Figure 1. The dependence of δ on α derived from the self-similar solutions.
When α approaches ωc, δ approaches 1.

Figure 2. ηc as a function of α, as obtained from the self-similar solutions.

5

The Astrophysical Journal, 907:113 (11pp), 2021 February 1 Govreen-Segal, Nakar, & Levinson



( ) r hµ a a-R R and r hµ a a-vf f , where η is evaluated when the
fluid element with vf passes the shock:

( )
r r

a
a
d

h
= = - +

d

d v

d

d R

d

d R

log

log

log

log

log

log
. 28

f

f

In the self-similar case, h h= = constc , and the density profile
far behind the shock is the same as the original density profile,

( )r h h= µ a-vf c f . In accelerating shocks, the second term on
the right-hand side of Equation (28) is positive; hence, the final
density profile will be shallower than the initial profile,
approaching the static limit, ( )r h  ¥ µ a d-vf f

WS. In decay-
ing shocks, the second term is negative, and becomes more
negative as η→ 1 and δ→ 0, so that the profile is steeper than
the initial density profile. Note that in this limit, since the shock
is converging to a fixed location (in a Lagrangian sense) within
the ejecta, the steep density profile zone is confined to a small
section of the ejecta, which was crossed by the shock prior to
its complete decay. A full analytic expression for Equation (28)
is presented in Section 3.4 in Equation (39).

In Figure 3 the dependence of
rd

d v

log

log
f

f
on η (found

numerically) is plotted for different values of α. For growing
shocks, the density profile quickly approaches that of the static
case, and the resulting profiles are similar and not strongly
affected by the initial density profile. For example, when α

changes from 6 to 14, the value of a
dWS

changes roughly from 7
to 10.

3.3. Numerical Simulations

We carried out numerical simulations of spherical shocks
driven into expanding gas. The simulations start with “piston,”
which is used to drive a shock into the expanding ejecta.
Denoting the code units by ρ0, v0, and r0, the unit pressure and
unit time can be expressed as r= =t P v,r

v0 0 0 0
20

0
. The initial

conditions are given by:

⎪

⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

( )
·

( )

r r

r
r

=
<

>

=

=
¢

a

g

-
r r r

r r

P f P

v
r

t

1, 2

, 2

29

i r

r

i
i

i

0

0 0

0

0
0

0

0

where f0= 10−4 for g = 4

3
, f0= 10−6 for g = 5

3
, and ¢t is a

constant measured in time units. The “piston” is created by
pushing dense (ρ(r= 1)= 106ρ0) cold matter through the r= r0
boundary. The piston velocity determines the shock velocity,
and is varied between simulations, in order to scan a range of η
values. An ideal gas equation of state is used, and we carry out
a set of simulations with g = 4

3
and a set of simulations with

g = 5

3
. The shock is tracked from the radius at which it loses

causal contact with the piston, i.e., when the first grid cell that
obeys + <c v R is in the ejecta, and until it is radius increases
by one to two orders of magnitude. We verified that in this
range, if the piston is stopped, the evolution of the shock is not
affected.
Simulations were carried out using the hydrodynamic

module of PLUTO, version 4.2 (Mignone et al. 2007). The
simulations are 1D spherically symmetric, and exploit para-
bolic reconstruction and a third-order Runge–Kutta time
stepping. A uniform grid was used, ranging between r= r0 and
r= (100–1000)r0, with a cell density ranging between 16 and
50 cells per unit length of r0. Convergence was verified for a
simulation with a low grid density (16 cells per unit of r0) by
running four simulations with the same initial conditions: a
simulation with double the grid cells, one with half the grid
cells, and one with a quarter the grid cells. The first two of
these agreed with the simulation used on all parameters used in
the figures.
The shock location and time are collected from each

simulation. Then the ejecta velocity at the shock location is
calculated, and the shock velocity is found by numerical
differentiation. The rest of the variables are derived, and the
simulations are grouped according to the value of α. Note that
for every value of α, there is an overlap in η values between
different simulations. The agreement between different simula-
tions when the values of η overlap is another indication that the
shocks in the simulations have forgotten the initial conditions.
Figures 4 (5) shows the dependence of δ on η and α for

γ= 4/3 (γ= 5/3). The black dashed line marks the self-similar
solution, and divides the parameter plane into two regimes. The
domain under the black line corresponds to shocks that decay
as η drops with time, which are described by trajectories
moving downwards and left with time (toward smaller δ and η).
In the region above the dashed line, shocks move upwards and
to the right with time as they strengthen. This can also be seen
by looking at the derivative of η with respect to the shock
trajectory (Figure 6).

3.4. Full Analytic Expression for the Shock Propagation

Examining Figure 7, it seems that ( ) -d R v

d t

log

log
is linear in

(η− 1), and that the graphs for different values of α share the

Figure 3. Logarithmic derivative of the far downstream density as a function of
η (evaluated when the fluid element with vf has crossed the shock). The values

corresponding to the self-similar solutions, a- =
rd

d v

log

log

f

f
, are marked by

diamonds, and the solid lines mark the analytic expression in Equation (39).
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same intercept. While we do not have an explanation for the
linear behavior seen in the graph, the common intercept that
exists for different values of α is not surprising. As η→ 1, the
shock location does not change much in the Lagrangian sense.
Hence, it is no longer affected by the density profile ahead of it.
All the while, the mass causally connected to the shock
decreases, and the structure it had no longer affects the shock.

Under the conjecture that this expression is indeed linear,

( ) ( ) ( )


h
-

= - -
d R v

d t
a b

log

log
1 , 30

we proceed by finding δ(η), η(t), and R(t). The main results of
this derivation are summarized here; for the complete details,
please see the Appendix. We start by simplifying Equation (30)

to the following form:

( ) ( )( ) ( )h
h

-
= - - -

d

d t
a b

log 1

log
1 1 . 31

Before solving this equation to find the explicit dependence of
η on time, we recall the equation for h (Equation (4)), and
comparing the two, we find:

( )( ( ) ) ( )d
h d h

h
=

- - - +b1 1 1
, 32WS

2

where a= δWS was determined by examining the limit η→∞ ,
δ→ δWS. Returning to Equation (31), for δWS> 1, when
η= ηc, the left-hand side of the equation must vanish. Hence,
we find b= (ηc− 1)(δWS− 1). Plugging in the values from the
semi-analytical solution, we find that b; 0.75 for γ= 4/3, and
b; 1 for γ= 5/3. Note that b is positive, which means that for

Figure 4. Dependence of δ on η for γ = 4

3
and different values of α. The values

from the numerical simulations are marked by dots, and the solid line marks the
analytic expression presented in Equation (32). The black dashed line marks
the values of the self-similar solutions. This line crosses α = 9, 10, 12, 14 > ωc

dividing each curve into two regimes, decaying shocks below, and growing
shocks above. Shocks with α = 6, 8 < ωc are always below the line and thus
are always decaying.

Figure 5. Same as Figure 4 for γ = 5

3
. Here ωc ; 7.69. Thus curves for α = 8,

10, 12, 14 > ωc cross the black lack dashed line that marks the self-similar
solutions and divides each curve into two regimes, decaying shocks below, and
growing shocks above. Shocks with α = 6, 7 < ωc are always below the line
and thus are always decaying

Figure 6. Dependence of hd

d R

log

log
on η for different α plotted in colored dots.

Note that for α = 6, 8, hd

d R

log

log
is always negative, and the shock decays, while

for α = 9, 10, 12, 14, there is a region in which the shock becomes stronger
and grows and a region where the shock becomes weaker and decays. The
black-framed markers denote the semi-analytical value of ηc, and the solid lines
show the analytic expression derived in Section 3.4.

Figure 7. Dependence of ( ) -d R v

d t

log

log
on η − 1 for γ = 4

3
and different values of

α. This figure shows that the relation between these two parameters is linear
and that lines for different values of α have the same intercept.
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every α there exists a regime of η values for which h < 0, and
shocks decay.

When the left-hand side does not vanish, by solving this
ODE we find:

( )( )

( )
( )h

h

s
= +

-

-

-
b

b t
1

1
, 33

i
t

t

b

i

where ti is set as the time at which η= ηi, and

⎜ ⎟⎛
⎝

⎞
⎠( )( ) ( )( )s d h= - - -

-
t 1 1 1i

t

t

b

WS
i

. Plugging in


h = Rt

R
,

we may integrate to find:
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where Ri= R(t= ti). Examining ( )R t ,
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we can see that for δWS> 1, the shock grows if the solution
passes through the singularity b− σ(t)= 0, meaning

h+ <
d -

1b
i1WS
. In this case, the shock will diverge in finite

time:

⎛
⎝⎜

⎞
⎠⎟( ) ( )

h
h h

 ¥ =
-
-

t R t
1

, 36i
i

i c

b
1

where we used b= (δWS− 1)(ηc− 1).
For dissipating shocks, regardless of whether δWS is larger or

smaller than unity, taking the limit t→∞ , we find that the
velocity approached by the shock is:

⎧
⎨
⎪⎪

⎩
⎪⎪
( )

( )
( )( )( )

d

d
=

¹

=
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h¥
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i

i
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1
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Relying on our previous results, we can also find:

(( )( ) ) ( )h h
h

d h=
-

- - -
d

d R
b

log

log

1
1 1 , 38

2 WS

which is plotted in Figure 6 alongside the solution from the
simulations. This expression can be used to derive the far

downstream density profile described in Equation (28).

( )
( )

r r
a

h
h d

= = -
- + -

d

d v

d

d R b

log

log

log

log 1 1
, 39

f

f WS

which is plotted in Figure 3.
For convenience, we summarize the values of a= δWS and b

in the following table:

a = δWS

α γ = 4/3 γ = 5/3

6 0.6 0.6
7 0.8 0.9
8 0.9 1
9 1.2 1.3
10 1.3 1.5
12 1.6 1.9
14 2.1 2.3

b

0.75 1

3.5. Shock Breakout

When the shock breaks out, the radiation trapped within the
shock is released to the observer, emitting a bright flare. This
happens when the optical depth to the observer drops below
t » c

v
. It is therefore interesting to understand in which

systems a shock will break out and in which it will die out
before reaching the breakout radius.
For a growing shock, the answer is simple, as it will always

break out eventually. For decaying shocks, the answer is far
more complex since some will die out at a radius for which the
optical depth to infinity is still larger than c

v
, while others will

break out. For a given decaying shock, the condition for
breakout depends on the optical depth of the medium at the
mortality radius, and, therefore, it has to be calculated for each
system separately. However, since every outflow has a
maximal expansion velocity, vmax, we can address the question
of what are the conditions required for a decaying shock to
reach vmax, in which case it is guaranteed that it will break out
successfully. It turns out that for a given α, the criterion for
reaching vmax depends on two dimensionless parameters: (1)
the ratio between the explosion energy and the outflow energy,
E Eexp ej, and (2) the ratio between the maximal ejecta velocity
and the velocity at the onset of the steep density gradient tail
(i.e., the velocity that carries most of the ejecta energy), v vmax 0.
Figure 8 shows the minimal energy ratio needed for a shock

to reach vmax and break out of the ejecta. The curves were
calculated as follows. The shock that is released at the center of
the ejecta starts decaying as it traverses the shallow part of the
ejecta, and its velocity at the onset of the steep density gradient
zone can be approximated by E m2 exp ej . Here we use the
facts that in the shallow region, the energy that is in causal
contact with the shock is conserved and that the contribution of
the steep part to the ejecta mass is negligible. The total ejecta
energy can be approximated by »E m v 2ej ej 0

2 . Therefore, the
shock starts its accelerating phase, where the unshocked ejecta

velocity is v0, with h » E

E
exp

ej
. The value of v

v
max

0
is then found

numerically by integrating
h

dv

d
, starting at v0, and finding vmax
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where η→ 1. When examining Figure 8, it can be seen, first,
that as expected for α> ωc, where shocks with η> ηc are not
decaying, the value of E Eexp ej that guarantees the breakout
converges to a finite value, ηc(α)

2, when  ¥v vmax 0 .
Second, in most systems, the ratio v vmax 0 is not very large.
For example, in an SN explosion of an extended star such as a
red supergiant, »v v 5max 0 while in an SN explosion of a
compact Wolf-Rayet star, »v v 20max 0 (e.g., Nakar &
Sari 2010). This implies that an energy ratio of

»E E 10exp ej guarantees a breakout in such systems.

4. Applicability to a Shock Driven by a Wind

The solutions derived above are applicable to a strong
(sudden) explosion. There are, however, situations in which
energy is continuously injected into the expanding ejecta, e.g.,
in the case of a continuous magnetar spin-down wind. Here we
show that in many cases our solutions are also applicable for
shocks driven by continuous energy injection.

Consider a fast wind driven into the center of a
homologously expanding spherical ejecta with a density
profile:

⎧⎨⎩ ( )r
k
a

µ
< <

>

k

a

-

- 
v v v
v v v

, 3
, 5

. 400

0

The total mass and energy of the ejecta are carried almost
entirely by the mass with v< v0, such that m(v< v0)≈Mej and
E(v< v0)≈ Eej. At the contact between the wind and the ejecta,
a forward shock and a reverse shock form; the forward shock
traverses the ejecta, and the reverse shock traverses the wind. If
the wind’s energy injection rate is also a power law, then as
long as the forward shock is confined to the shallow density
gradient region (v< v0), the entire reverse-forward shock
evolution has a self-similar solution (Chevalier 1984;
Jun 1998). This solution breaks down at a time t0, defined as
the time at which the forward shock reaches the beginning of
the steep density gradient zone and starts accelerating. A
snapshot from a simulation of such a setup at t> t0 is shown in

Figure 9. As we show below, if the acceleration of the forward
shock is fast enough, then it loses causal contact with the
reverse shock and its evolution is similar to that of a shock
driven by a strong explosion; namely, it propagates according
to our analysis in the previous sections.
First, if the energy injection stops before t0, then the reverse

shock dies as the forward shock accelerates, so the solution is
similar to that of an instantaneous explosion. If energy injection
continues after t0, then the evolution depends on the energy
injection rate. As the forward shock is accelerating in the sharp
density gradient, the deposited wind energy accelerates the
bulk of the ejecta. The question is, “which of the two is
accelerating faster?” For simplicity, we will consider here only
a constant wind energy injection rate, Lw, but the generalization
to any type of injection rate is straightforward. If we assume
that the wind is much faster than the bulk of the ejecta, then the
reverse shock is strong and almost all of the wind energy is
deposited in the bulk of the ejecta, implying that the velocity of
the bulk, vb, satisfies »M v L tb w

1

2 ej
2 . Thus the bulk velocity

evolves as

( )µ µv t r . 41b b
1
2

1
3

This equation shows that as long as δ> 1/3, the forward shock
accelerates faster than the bulk, and the solution we derived for
a strong explosion is applicable. The initial value of δatt0
depends on α and ( )h »t L t Ew0 0 ej and can be read from
Figure 4. It shows that accelerating shocks with α> wc and
η(t0)> ηc almost always have δ> 1/3, and since δ increases
with time, the forward shock will never regain causal contact
with the bulk of the ejecta. In the case of decelerating shocks,
δ> 1/3 for even moderate values of η. For example, η 2 is
enough for α> 8, and η 4 is enough for α> 6. In such cases,
the forward shock will get away from the bulk of the ejecta for
some time until δ drops below 1/3, and the bulk will start

Figure 8. The minimum energy ratio needed for a shock breakout from an
expanding medium of a finite extent. The velocity of the outermost shell is
vmax, the velocity of the ejecta at the onset of the steep density gradient tail is
v0, Eexp is the explosion energy, and Eej is the ejecta energy. If the shock
reaches an optical depth of t = c

R
before reaching the edge of the ejecta, it will

break out earlier.

Figure 9. Two snapshots from a simulation of a shock driven by a continuous
fast wind where the ejecta velocity profile is a broken power law with indices
α = 9, κ = 0. At the time the first snapshot was taken (dashed lines), the
forward shock is accelerating faster than the bulk of the ejecta, even though
η < ηc. In the second snapshot (solid lines), η is smaller, and the shock is
farther away from the bulk. The density, pressure, and velocity are plotted as a
function of the radius. The forward shock, reverse shock, and bulk are
indicated. Note that the bulk of the ejecta is located within the narrow density
peak exhibited in the figure.
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gaining over the shock until it will regain causal contact unless
the wind stops or the forward shock breaks out before that.

Finally, we note that here we considered a 1D spherically
symmetric evolution that ignores the Rayleigh–Taylor instabil-
ity that develops along the contact discontinuity. This
instability does not affect the evolution of the forward shock
unless it grows to the point that the Rayleigh–Taylor fingers
reach this shock. In this case, the shock may become highly
nonspherical by the time it gets to the steep density gradient. In
that case, the shock acceleration during this phase enhances the
asphericity (e.g., Suzuki & Maeda 2017), and our spherical
solution is not applicable.

5. Summary

In this paper we study the propagation of a spherically
symmetric shock in a steep power-law density gradient
(ρej∝ t−3v−α, α> 5) of a homologously expanding medium.
Such a shock may be driven by a strong explosion at the center
of the ejecta or, in some circumstances, by a continuous fast
wind that is driven by a central engine.

We find that although such shocks are always accelerating in
the lab frame, the fate of the shock depends on whether the
ratio between the shock velocity and the ejecta velocity, η,
increases or decreases along the shock trajectory. We show that
the shock solutions are divided into two families: (1) growing
shocks of increasing strength, where η increases monotonically,
that approach asymptotically the Waxman & Shvarts (1993)
solution for a shock in a static medium, and (2) decaying
shocks, where η decreases, that weaken until they completely
die out. The shock evolution depends on two parameters: the
density power-law index α and the initial value of η. For
α< ωc (ωc = 8.22 [7.69] for γ= 4/3 [5/3]), all of the shocks
are decaying, while for α> ωc, there is a critical value,
η= ηc(α), that separates the branches of growing shocks and
decaying shocks. If initially η> ηc, the shock accelerates
relative to the ejecta and η→∞ , while for η< ηc, the velocity
ratio decreases monotonically and η→ 1. For η= ηc(α), we
find an unstable, self-similar solution in which the ratio
between the shock velocity and the velocity of the matter just
upstream of the shock remains constant throughout the
evolution. Thus, the dynamics of shocks in an expanding
medium is vastly different than the dynamics of shocks in a
static medium, for which a converging mass profile (i.e., a
density power-law index of ω> 3) is sufficient to guarantee
that the shock will not decay.

We find ηc(α) by solving the self-similar solution semi-
analytically. Using 1D hydrodynamical numerical simulations,
we verify the qualitative behavior of the solutions described
above using 1D hydrodynamical numerical simulations. While
there is no analytic solution to the entire shock profile in the
general case, we do find a full analytic description for the shock
evolution R(t). This description is found based on the numerical
survey we conduct for the parameter space (η, α), with α
between 6 and 14 (the values expected for supernovae ejecta),
and coincides with the simulations in this space.

One important feature that bears directly on observables of
shocks in expanding media, is the modified density profile
remaining far behind the shock. In particular, it is expected to
govern the properties of the observed emission that diffuses out
through this matter. Examining the altered density profile, we
find that in the case of decaying shocks, the density gradient
steepens after the shock passage. For growing shocks, the

density gradient behind the shock becomes shallower than the
initial density profile of the unshocked ejecta. Interestingly, all
growing shock solutions we examined (with α between 9 and
14) produce a rather similar post-shock density profile with a
power-law index in the range ∼7–8.
Finally, we examined the conditions for the shock to break

out of the ejecta and produce a bright breakout signal. We find
that for typical supernova ejecta, where the maximal velocity of
the outflow is about a factor of ∼10 larger than that of the bulk,
an explosion with energy larger by a factor ∼3–10 than the
ejecta energy is sufficient for a successful shock breakout.

We thank Nuriel Bitton for providing the code used to
visualize the simulations. This research was partially supported
by the Israel Science Foundation grant 1114/17 and by a
European Research Council grant (JetNS).

Appendix
Derivation of the Analytic Solution

Assuming that the linear relation seen in Figure 7 holds, we
denote η− 1= h, and write the relation:
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plugging into (A1), we find:
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We can further simplify, = = hd h
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, and use this

form to compare to Equation (4).
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Rearranging this equation and rewriting it in terms of h, we
obtain:
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1
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2

Examining the limit h→∞ , δ→ δWS, we find that a= δWS.
Returning to Equation (A4), we first require h to vanish for

h= ηc− 1, and find that b= (δWS− 1)(ηc− 1). For nonvanish-
ing h, we may integrate:

⎛
⎝⎜

⎞
⎠⎟

(˜)
(( ) )

( )
( )

ò d

d

=
- -

=-
- -

+

t
dh

h h b

b

h

h b
C

log
1

1
log

1
A6

WS

WS

where t̃ denotes the dimensionless time t,t

t i
i

is the time at

which the initial conditions are given. Requiring that at
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˜ = =t h h1, i, we find that ( )( )= d - -C log h b

h

1 i

i

WS . Taking the

exponent of both sides:

˜ ( )
( )

( )d
d

=
- -

- -
-t

h b

h

h

h b

1

1
A7b i

i

WS

WS

or equivalently:

˜
(˜)

( )
s

=
-

-
h

bh t

b t
, A8i

b

where (˜) ( ) ( ˜ )s d= - - -t h t1 1i
b

WS . We can now use this

equation to find R(t). Replacing


= -h
Rt

R
1,

˜ ˜
(˜)

( )


s
= +

-

-Rt

R

bh t

b t
1 A9i

b

where we use R to denote the derivative of the shock velocity
in terms of the dimensionless time; ˜

 =R dR

dt
. Integrating:

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

( )

( ) ( )
( )

˜
˜ (˜)

˜
( )

˜

( )

ò
s

s

s
d

d

=
¢

+ ¢ - ¢
- ¢

¢

= +
¹

=

d

-

-

-

- -

R

R t

b h t t

b t
dt

t
b

b t t

t

exp
1 1

, 1

exp , 1.

A10

i

t i
b

b

t h

b

1

1
1

WS

1
WS

b
i

WS

Using Equations (A9) and (A10), we can now find ( )R t ,

⎛
⎝⎜

⎞
⎠⎟
⎧
⎨⎪

⎩
⎪⎪

( ) ( )
( )

˜
(˜) ˜

( )˜
(˜)

˜ (˜)

( )


s

d

d

= +
-

= +
¹

=
s

s

-

-

+

-

d

- -

-

-

R
bh t

b t

R

t

R

1

1
, 1

exp , 1.
A11

i
b

i
bh t

b t

b

b t t

t h

b

WS

1
WS

i
b b

b
i

1
WS 1

This equation shows that for growing shocks where
hi> ηc− 1, the initial conditions are such that <

d -
hb

i1WS

and as ( )( )
 -

d -

-
t 1 b

h 1

b

0 WS

1

, the denominator in the first

term approaches zero, and the shock velocity diverges. Thus in
growing shocks, the shock velocity diverges at a finite time. If
δWS� 1 or δWS> 1 and >

d -
hb

1 0
WS

, then the shock is

decaying as evident from the fact that the denominator does
not vanish, and:

⎧
⎨⎪

⎩⎪
( )

( )
( )( )

d

d
=

¹

=

d
¥

- -
d -

R Rlim
, 1

exp , 1,
A12t i

b

b h

h

b

1 WS

WS

i

i

WS

1
WS 1

which marks the velocity of the shell that the shock never
crosses.
Using the results above, we can derive the expression for the

density profile far behind the shock. First,

( )
(( ) ) ( )

h h

h
h

d

=

=

=
+

- +

d

d R

d

d t

d t

d R
d

d t
h

h
h b

log

log

log

log

log

log
1

log

1
1 . A13

2

2 WS

Now plugging the result and the expression for δ into
Equation (28), we obtain:

( )

r
a

a
d

h

a
d

=- +

=-
+

- +

d

d v

d

d R

h

b h

log

log

log

log

1

1
. A14

f

f

WS
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