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Abstract

We aim to provide insight into chromospheric spicules by suggesting a new formation mechanism. A magnetic
field boundary condition is imposed, generating an Alfvén wave that shears a magnetic slab and propagates up the
slab. The resulting Lorentz force accelerates material vertically, potentially nonlinearly driving a jet-like feature.
This formation mechanism is applied to take place in a magnetic bright point embedded in the photosphere,
providing motivation to use the simplifying assumption of a zero-β plasma. After deriving an analytical expression
describing the vertical mass flux that constitutes the spicular jet, further understanding is gained by examining a
model example of a magnetic field boundary condition in terms of standard functions. By visualizing the vertical
mass flux through 3D plots, we demonstrate that the jet properties capture the observed properties of
chromospheric spicules during their formation. This vindicates the model and simplifying assumptions used.
Although we do not provide insight into the full evolution of a spicule, we show that the role of Alfvén waves
triggered by shear in fact could be a viable formation mechanism for at least some chromospheric spicules.
Consequently, we provide a starting point for further studies of this formation mechanism, which will lead to a
greater understanding of the vast variety of chromospheric jets.

Unified Astronomy Thesaurus concepts: Solar spicules (1525); Solar chromosphere (1479); Alfven waves (23);
Solar photosphere (1518); Magnetohydrodynamics (1964); Solar physics (1476); The Sun (1693); Solar magnetic
bright points (1984)

Supporting material: animation

1. Introduction

Many studies that investigate solar spicules refer to Secchi’s
pioneering observations from the late 19th century (e.g.,
Roberts 1945; Beckers 1968, 1972; Tsiropoula et al. 2012).
More recently, both numerical and analytical modeling have
been an active area of solar spicular physics research, see
reviews by, e.g., Sterling (2000) and Tsiropoula et al. (2012).
The cross-sectional dimensions of spicules are very close to the
resolution of imaging (De Pontieu et al. 2007; Zaqarashvili &
Erdélyi 2009), meaning their formation and internal structure
are still not understood in great detail. Their high velocities and
dynamic behavior mean that spicules have the capacity to
transfer significant amounts of mass and momentum into the
outer parts of the solar atmosphere. As a result, spicules are
viable candidates for supplying the significant non-thermal
heating of the lower solar atmosphere from chromosphere to
corona (Athay & Holzer 1982; De Pontieu et al. 2011) and
could contribute to the solar wind, the source of which is one of
the most important unanswered questions in solar physics. It is
therefore of great interest and importance to study and
understand solar spicules.

Spicules take the form of jet-like features that travel
from the photosphere, up through the chromosphere and
toward the transition region and the lower solar corona.
Heights of about 7–13 Mm, widths of approximately
0.3–1.5 Mm and lifetimes of roughly 1–10 minutes are given
in a review by Sterling (2000). This same source also provides
good estimates for the velocity of the upward flux of material,

to be a few tens of kilometers per second (many other sources
support these estimates for spicule properties, e.g., Beckers
1972; Zaqarashvili & Erdélyi 2009; Tsiropoula et al. 2012;
Samanta et al. 2019; Aschwanden 2019, chapter 5). Some
observations suggest that speeds can be even higher (e.g.,
Sterling et al. 2010 and Martínez-Sykora et al. 2017 give
velocities up to 150 km s−1), and both heights and widths can
be smaller (e.g., widths of 0.2 Mm and heights of 5 Mm as in
Sterling et al. 2010).
The relatively small sizes and timescales of spicules limit

what can be observed with our current instrumentation.
However, it is expected that the capabilities of the Daniel K.
Inouye Solar Telescope will allow for more detailed observa-
tions and advancement in the understanding of spicules.
Observations of various group structures formed due to the
high number of spicules are discussed by Beckers (1972). The
“wheat field” pattern is an example of a distribution that can
have a width of roughly 140Mm (Lippincott 1957), suggesting
that despite their small size, spicules can have large-scale
impacts on the solar environment.
The apparent ending of a spicule either takes the form of

material falling back through the chromosphere toward the
solar surface, or simply fading from view (Sterling 2000; De
Pontieu et al. 2007; Samanta et al. 2019). However, most of the
material must return to the solar surface as the total outward
flux of mass that spicules produce is much higher than that of
the solar wind (Sterling 2000). It has been suggested that these
highly localized jets may be classified in at least two categories:
either type I or type II, based on their timescales and velocities.
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Although both types of jets share similar features, type II
“spicules” have shorter lifetimes and accelerate material to
higher speeds, making them much more dynamic (De Pontieu
et al. 2007; Tsiropoula et al. 2012; Aschwanden 2019, chapter
5). It is conjectured that these latter rapid jets (also labeled
rapid blue/red excursions—RBEs/RREs—on disk) are gov-
erned by magnetic reconnection, while the traditional Secchi-
type of spicules, which are the subject of our current paper,
may be driven by a number of different physical processes.

The first step to understanding spicules is to understand how
they form. There are multiple formation mechanisms, as
mentioned, that have already been suggested. These include:

1. Granular buffeting: Turbulent motion in granules can
buffet the side of intense flux tubes, which causes
“squeezing” and results in vertical motion of plasma.
Plasma motion driven this way may be interpreted as a
spicule (Roberts 1979). Hollweg (1982) provides a
mathematical analysis of spicule generation by a train
of shock waves, where the physical mechanism that
initially sets up the system is not specified. The author of
this study also suggested that granular buffeting may
provide the initial impulse required for the mechanism to
occur.

2. Magnetic reconnection: Magnetic field lines break and
reconnect into lower energy configurations, releasing vast
amounts of kinetic energy that may even power large-
scale eruptions, e.g., solar flares (Innes et al. 1997). It is
therefore natural to expect that magnetic reconnection can
generate smaller-scale dynamic motions of plasma as
well, and some studies suggest that the thinner, more
rapid jets (i.e., type II) are formed by this mechanism (De
Pontieu et al. 2007; Sterling et al. 2010; Tsiropoula et al.
2012). However, even slower and wider spicules may
also be generated by reconnection (as shown by, e.g.,
Samanta et al. 2019).

3. Global solar acoustic modes. Lower atmospheric shocks
may also gain energy from the global solar acoustic p-
mode oscillations and can accelerate material to form
spicules (De Pontieu et al. 2004). De Pontieu et al. (2007)
and Tsiropoula et al. (2012) suggest that this formation
mechanism is associated with spicules, especially those
with speeds at the lower end of the spicule propagation
spectrum. A numerical investigation of shock wave-
driven jets is given by Heggland et al. (2007), with their
results showing a number of matching similarities with
observations.

4. Ion–neutral collisions. It was suggested by Haerendel
(1992) that damping of Alfvén waves by ion–neutral
collisions could create a drag force, causing material to
be lifted. Using an analytical model, De Pontieu &
Haerendel (1998) built on these ideas, concluding that a
spicule could be formed and sustained through this
mechanism. This formation process was studied further
by both James & Erdélyi (2002) and James et al. (2003),
who numerically solved the fully nonlinear, dissipative
1.5D magnetohydrodynamic (MHD) equations, where
waves were generated through a continuous sinusoidal
driver. Their conclusions were that although the simula-
tions produce features resembling spicules, the dominant
formation process is due to the shocks that appear as a
consequence of the interaction of forward propagating
and reflected waves. This led the authors to question

whether the ion–neutral collision mechanism could
contribute to the production of spicules. It was suggested
by James et al. (2003) that this formation mechanism may
contribute to the generation of spicules by heating the
environment before another process takes over, as many
previous spicule models have struggled with low
temperatures. Further investigation was conducted by
Martínez-Sykora et al. (2017) through 2.5D MHD
simulations, and the ion–neutral collisions were found
to be critical in the formation process of the spicules.

From a physical point of view, all the above formation
mechanisms may be split into two distinct categories: wave-
driven or reconnection-driven. Both mechanisms can produce
localized solar jets with properties consistent with observations
of some spicules, while there are also observations that rule out
one of the mechanisms for certain spicules. Therefore, the
question of spicule formation remains open and it is
conjectured that a number of jet formation mechanisms may
operate in the lower solar atmosphere.
Here, we note that the study by Hollweg (1971) has

addressed a somewhat similar problem but with a different
methodology. He employed a perturbation method under
similar overall assumptions and discussed the velocity and
density perturbations in an infinite plasma. We emphasize the
differences between our study and that of Hollweg (1971), with
our equilibrium system differing from theirs, along with the
application of this method to a new context, that of solar
spicules. As mentioned above, the study by Hollweg (1982),
building on the work of Hollweg et al. (1982), suggests
spicules may be formed by the propagation of nonlinear Alfvén
waves in a gravitationally stratified atmosphere. The mech-
anism described in that work suggests that the propagating
Alfvén waves lead to the formation of shocks in the chromo-
sphere. As the shocks pass through the transition region, they
cause perturbations in the velocity that may match some of the
observed properties of spicules. Although we do not rule out
here that this shock formation mechanism may play some role
in spicule formation, we will show that Alfvén waves can lead
to the formation of jets, and matching observed properties of
spicules, even without the formation of shocks. We also
emphasize that Hollweg (1982) provides a numerical analysis,
whereas here we provide an analytical study; both methods are
critical to understanding the phenomenon of solar spicules.
A more recent theoretical model for the formation of spicules

was proposed by Goodman (2012), where the driving
mechanism for the vertical acceleration of plasma is the
Lorentz force. This is a popular mechanism for other
astrophysical jets on a variety of scales (see, e.g., Shibata &
Uchida 1985, 1986a, 1986b; Kudoh & Shibata 1997; Vlahakis
& Königl 2001; Smith 2012, chapter 9). In the study by
Goodman (2012), the current density is specified using space-
and timescales closely related to type II “spicules,” and the
velocity of the plasma is derived using the momentum
equation. Unfortunately, the author overlooked another impor-
tant MHD equation, and the proposed solution does not even
satisfy the induction equation. Consequently, the study by
Goodman (2012) does not apply to an MHD system and is not
a feasible model for the formation of solar spicules. Therefore
the modeling has to be revisited and a self-consistent
mathematical approach may be desired.
Here, we take inspiration from Goodman (2012) for the

physical concepts, and Jess et al. (2009) for the observational
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aspects, who observed torsional Aflvén waves in magnetic
bright points (MBPs; see discussion of MBPs below). We now
provide a new model for spicule formation, driven by a Lorentz
force, which occurs due to the nonlinear presence of Alfvén
waves. The Alfvén waves apply a shearing motion, causing
material to be “dragged,” as they progress along the field lines
nonlinearly. Various other studies provide further motivation to
conduct this investigation. For example, observational aspects
of photospheric swirls were investigated by Liu et al. (2019),
who provided evidence suggesting that swirls can generate
Alfvén pulses. This aligns with the physical model presented
here, and similar pulses could provide the required shearing
motion to generate solar spicules. In addition to this, through
MHD simulations, Matsumoto & Shibata (2010) investigated
photospheric granular motions that generate Alfvén waves, and
suggested they could contribute to the formation of spicules.

In Section 3, two mechanisms will be described where a
Lorentz force causes vertical acceleration of material. The first
is direct vertical acceleration, and the second comes from the
horizontal component of the Lorentz force, which causes
squeezing and consequently vertical mass flux. The second of
these mechanisms is ruled out in the context investigated here
due to the zero-β approximation. Similar concepts were
investigated by Martínez-Sykora et al. (2011) through numer-
ical simulations, and the authors concluded that squeezing of
chromospheric material leads to a vertical pressure gradient
which propels the spicule.

We approach the formation of spicules using the regular
perturbation method applied to the MHD equations describing
motion in a magnetic slab model. Both a magnetic field and
velocity shear are applied at the base of the slab, leading to
propagation of Alfvén waves and consequently a field-aligned
nonlinear flux of mass. The driving magnetic and velocity
fields are applied at first order in the perturbations, and the
effects and formation of the jet-like features will be obtained at
second order as a result of the Lorentz force, which has a
nonzero field-aligned component. Under a wide range of forms
of the shear, a jet-like feature that resembles a spicule may be
formed.

In this work, here, only the formation mechanism will be
considered, and the subsequent full evolution of the jet will not
be addressed. This is largely because gravity, and therefore
density stratification, are ignored. In order to consider the full
evolution of the generated jet as a model for a spicule, gravity
would need to be taken into account along with the back
reaction of Alfvén waves. These would be effects of third-order
perturbations and would complicate the calculations consider-
ably, therefore, at this stage, such an analysis will not be
included. The aim here is simply to demonstrate the viability of
jet formation due to the presence of Alfvén waves in a
structured MHD waveguide.

Spicules are observed to travel upward through the chromo-
sphere, therefore they are likely be formed below, at or close to
the photosphere. In particular, spicular jets are observed to
emerge from regions close to MBPs (Suematsu et al.
1982, 1995). Here we model this process by considering these
MBPs as a magnetic slab, which is a good model for elongated
MBPs (see Berger et al. 1995 and Zsámberger et al. 2018). We
assume no external magnetism and use the zero-β approx-
imation in the slab to simplify the problem. The first of the
simplifications is justified as there are significant reductions in
the strength of the field when moving from inside to outside of

the MBP. MBPs are observed in the intergranular lanes, with
magnetic fields of kilogauss order, whereas the surrounding
photosphere has field strengths of only a few Gauss (Keys et al.
2013; Liu et al. 2018).
To justify the use of the zero-β approximation, consider the

study by Hewitt et al. (2014) who used 3D MHD simulations to
investigate the plasma properties inside MBPs, and the results
showed the plasma-β to be small. As an explicit example,
consider the properties of MBP2 given in Figure A1 of that
paper, at time 300 s. The plasma-β can be calculated simply
as β≈0.35, suggesting that β = 1 is possible. A model of a
photospheric MBP was given by Shelyag et al. (2010), where
the Alfvén speed was greater than the sound speed inside the
MBP, again suggesting β can be taken to be small. This
matches the intuitive idea that the plasma-β must be small in an
MBP due to their intense magnetic fields, coupled with their
reduced kinetic pressure, which results in their eponymous
brightness (Keys et al. 2013).
During the mathematical analysis, we find that the zero-β

approximation removes any effects that the boundaries of the
slab may have on the vertical mass flux. Consequently, we lose
one of the two contributing mechanisms, which is the
squeezing of the slab leading to vertical mass flux, as discussed
in Section 3. We point out that this approximation may limit
application, and therefore we cannot analyze this second
mechanism aiding jet formation in the present model. However,
the approximation highlights the simplicity of the suggested
formation mechanism; the external forces on the slab are not
necessary and a jet can be formed directly from the dragging of
material as the Alfvén waves propagate vertically.
In Section 2, we present the mathematical analysis of the

formation mechanism using small perturbations. By specifying
a driving magnetic field that applies a shear to the slab, an
equation for the mass flux along the direction of the field lines
is derived. The magnetic field is driven for a finite time, and is
then reduced to zero, in order to determine how such a driver
pushes mass upward. We start the analysis with the model
description, outline the mathematical consequences of the
physical simplifications, and then proceed to derive the
equations that demonstrate the characteristic properties of the
jet. Next, in Section 3, the physical argument behind the jet
formation process is investigated. Here, the outlined mathema-
tical ideas are put into context by assuming the mechanism
takes place in an MBP. In Section 4, in order to demonstrate the
entire concept, a targeted example of an Alfvén pulse is given,
and the resulting field-aligned (i.e., vertical) mass flux is
calculated. Some illustrations of the mass flux are also provided
to aid the reader. We conclude in Section 5, with a critical
discussion of the results, address the limitations of our method,
and outline where the analytical study of spicule modeling may
go in the future.

2. Mathematical Analysis of the Formation Mechanism

In this section, the mathematical modeling of the formation
of a jet-like structure is considered, before it is put into physical
context in Section 3. Consider a three-dimensional inviscid
plasma split into three regions in the x-direction and unbounded
in the y-direction. Consider the shear to take place at z=0, and
assume the slab is infinite for z>0. The internal region
(|x|�x0), referred to as “the slab,” has a width in the x-
direction of 2x0, as shown in Figure 1. Throughout this work,
assume the subscript j takes the value j=0 and j=e for the
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internal and external regions, respectively. Assume the back-
ground equilibrium magnetic field is in the vertical (positive z)
direction, and the background state in each region is
homogeneous, with equilibrium pressure, temperature, density,
and magnetic field strength given by pj, Tj, ρj, and Bj,
respectively. Define the Alfvén speed and sound speed in
the region denoted by j as r m=v BAj j j

2 2
0 and g r=c pj j j

2 ,
respectively, where μ0 is the magnetic permeability of free
space and γ is the adiabatic index. All quantities will be
assumed independent of y in order to simplify the analysis.
Consequently, instead of generating a jet that is finite in the y-
direction, this mechanism will drive an infinite sheet of jet(s).
To generate a jet which is localized in the y-direction we must
consider a more general case. However, this would be a rather
complex problem. Therefore, this general case will not be
considered here. The simplifications of a zero-β plasma in the
internal region and the removal of the external magnetic field
will be made at a later stage, in order to find simple analytical
results. These simplifications do limit the physics that the
model can capture, however, the aim is merely to demonstrate
that a jet (i.e., spicule mimicking lower solar atmospheric
structuring) can be formed, and so this model is sufficient.

2.1. Driving the Jet

The regular perturbation method will be used to isolate the
effect of propagation of Alfvén waves on jet formation.
Consequently, a governing equation for the z (i.e., field-
aligned, vertical) component of the velocity perturbation will
be derived. This equation, then, has a simple relation to the
vertical mass flux. Let ε be the ratio of the strength of the
magnetic field perturbation to the strength of the background
magnetic field, in the internal region. As we assume the
perturbations are much smaller than the equilibrium quantities,
we deduce that ε is a small parameter, and we assume the
following functional form for all the variables in the problem:

å e= +
=

¥

f x z t f f x z t, , , , . 1j
i

i
i

1

( ) ( ) ( )

Recall that for |x|<x0, we have j=0 and for |x|>x0, j=e.
The subscript j is only included for the equilibrium quantities,
as these quantities depend on the region of x that is under
consideration, but are locally constant within each given

region. Using this subscript allows the equilibrium quantities to
be written without x-dependence, and a solution to the problem
can considered separately in each region. The functions fi,
which are the coefficients of the powers of ε in the summation
of Equation (1), are written without the subscript j because they
simply depend on x and so there is no need to identify more
explicitly which region of x is under consideration for these
functions.
Assume that there is no background bulk flow initially,

giving vxj=vyj=vzj=0. The assumption that the back-
ground magnetic field is given by Bj=Bjez gives Bxj=
Byj=0. Additionally, since we know that the Alfvén waves
decouple from the other wave perturbations in the currently
employed geometry, we can isolate these waves by taking
p1=ρ1=vz1=vx1=Bx1=Bz1=0. The functional forms
given in Equation (1) will be used to derive equations at each
order of ε, up to and including second order. We therefore
ignore terms of order ε3 or smaller. We explicitly write the
variables up to second order as

e e e e= = + =v v v v v v v, , , 2x x y y y z z
2

2 1
2

2
2

2 ( )

e r r e r= + = +p p p , , 3j j
2

2
2

2 ( )

e e e e= = + = +B B B B B B B B, , . 4x x y y y z j z
2

2 1
2

2
2

2 ( )

The ideal MHD equations are (see, e.g., Goedbloed &
Poedts 2004, chapter 4)

r
m

= - - ´  ´
v

B B
D

Dt
p

1
, 5

0

( ) ( )

r
r

¶
¶

+  =v
t

0, 6· ( ) ( )

r
=

g

D

Dt

p
0, 7

⎛
⎝⎜

⎞
⎠⎟ ( )

¶
¶

=  ´ ´ =
B

v B B
t

, along with 0 , 8( ) ( · ) ( )

where ρ, p, B, and v are the density, pressure, magnetic field,
and velocity, respectively. The functional forms of the
quantities given in Equations (2)–(4) will be substituted into

Figure 1. Visualization of the equilibrium magnetic slab. The magnetic field is indicated by the red lines.
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the ideal magnetohydrodynamic (MHD) equations, and
equations at each order of perturbation will be obtained.

2.1.1. ε0 Order

At ε0 order the MHD equations are trivially satisfied. We
require pressure balance across the boundaries in order for the
equilibrium to be stable:

m m
+ = +p

B
p

B

2 2
. 9e

e
0

0
2

0

2

0

( )

2.1.2. ε1 Order

At ε1 order, most of the equations are satisfied trivially, and
the following relations can be derived for vy1 and By1:

r
m

¶

¶
=

¶

¶

¶

¶
=

¶

¶

v

t

B B

z

B

t
B

v

z
, . 10j

y j y y
j

y1

0

1 1 1 ( )

Using these equations we can derive the wave equation for both
vy1 and By1,

¶

¶
=

¶

¶

¶

¶
=

¶

¶

v

t
v

v

z

B

t
v

B

z
, , 11

y
Aj

y y
Aj

y
2

1

2
2

2
1

2

2
1

2
2

2
1

2
( )

which have the well-known Alfvén wave solutions.

2.1.3. ε2 Order

Using the ideal MHD equations, and collecting terms at ε2

order gives the following set of equations:

r
m
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¶
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Note that Equation (20) is not strictly a governing equation but
is derived from the solenoidal constraint.

We observe that Equations (13) and (18) decouple from the
rest of the system, and as vy2 and By2 are not the quantities of
interest, we ignore these equations. By combining the
remaining equations, one can derive fourth-order differential
equations for the quantities vx2 and vz2. Although we aim to

find a solution for vz2, the vertical velocity of plasma, it makes
more sense to use the fourth-order differential equation for vx2
as boundary conditions at the interface of the slab need to be
applied, and these boundary conditions will be in terms of vx2.
The governing differential equation for vx2 can be simplified
using Fourier and Laplace transforms, and a solution for vx2 in
Fourier/Laplace space can be found. Building on this, a
relation is deduced then between vx2 and vz2 in this space, and
the attention is focused on the vertical velocity vz2. To find the
solution from here in the real physical space, inverse Fourier
and Laplace transforms are needed and difficulties arise due to
poles of the counterpart of vz2 in Fourier/Laplace space. Due to
these rather challenging mathematical difficulties, we leave this
very cumbersome though rigorous and elegant approach for a
later study (also discussed in Section 5). Instead, we simplify
the system further using the zero-beta approximation. Here, we
aim to simply demonstrate that this jet formation mechanism
can exist, i.e., to make the point that Alfvén waves can drive
the spicular jet formation, and so the simplification is justified.
Consider the internal region −x0�x�x0, so that j=0.

The zero-β approximation provides the simplification that
kinetic pressure is ignored. Consequently, p0=0 and in this
region p2=0. Under the assumption that By1 can be
determined from the first-order equation, Equation (14) gives
a simple equation for vz2,

r
m

¶
¶

= -
¶
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v

t
B

B

z

1
. 21z

y
y
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0
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⎞
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2.2. Derivation of Mass Flux

2.2.1. Summary of Equations and Boundary Conditions

The equations that will be used for the solution are
Equation (10), with j=0 and Equation (21). It is easy to see
from these equations that the solution for the vertical velocity,
vz2, in the internal region, is independent of the external region
under the simplifications made here. For that reason, the rest of
the analysis will only consider this internal region, i.e., we
assume x ä [−x0, x0] and j=0.
In order to solve Equations (10) and (21) for vz2, appropriate

boundary or initial conditions must be imposed. Although a
velocity shear may make more sense intuitively from a physical
perspective, imposing a condition on By1 is equivalent from an
Alfvén wave perspective. It is pointed out by Equation (27) that
there is a simple relation between By1 and vy1, so it is easy to
extract the intuitive idea of a velocity shear from the magnetic
field shear. Consider the following:

1. Let By1 be given at z=0 by

= =  
B x t B x t

B x t t T
, 0, ,

, , 0 ,
0, otherwise.

22y
T

1 *
*⎧⎨⎩( ) ( ) ( ) ( )

This means that the magnetic field is driven for a
characteristic time T and then it is “switched off.” Ensuring
that By1 and B* will be continuous functions of t gives

= =B x B x T, 0 , 0T T* *( ) ( ) . At this stage, we also assume
that there is no external magnetic field, meaning Be=0 and
for |x|>x0 we have By1=0. To ensure that By1 is
continuous we then have B

*

(x0,t)=B
*

(−x0,t)=0. This
ensures that there are no magnetic forces applied to the slab
from the external region.
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2. The general solution for By1 is a superposition of two
counter-propagating waves, from Equation (10). Here, we
ignore the wave that propagates in the negative z-
direction, toward the subsurface regions of the Sun.

3. At t=0, for all z>0, assume vz2=0, i.e., there is
initially no perturbed velocity in the z-direction.

2.2.2. Solution for By1

Consider the following Elsässer variables:

= R v
v

B
B , 23y

A
y1

0

0
1 ( )

then rearranging gives

= + = -+ - + -v R R B
B

v
R R

1

2
,

2
. 24y y

A
1 1

0

0
( ) ( ) ( )

Now, by using Equation (10), differential equations for R± are
found,
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¶
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¶
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R
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, , 25A A0 0 ( )

and the solutions are of the form

= + = -+ + - -R R t z v R R t z v, . 26A A0 0( ) ( ) ( )

The condition that we ignore the wave that propagates
backward from infinity (condition 2) immediately shows that
R+=0, and so Equation (24) gives

= - = --R
v B

B
v

v B

B

2
, . 27

A y
y

A y0 1

0
1

0 1

0
( )

The second of these equalities shows there is a simple relation
between By1 and vy1. Equation (25) then gives a simple first-
order differential equation for By1,
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¶
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Applying condition 1 above, given by Equation (22), the
solution for By1 takes a simple form,

= -

= - - 

B x z t B x t z v

B x t z v t z v T

, , ,

, , 0 ,
0, otherwise.
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2.2.3. Solution for vz2

Equation (21) is a simple differential equation for vz2, and by
applying the relation given by Equation (28) we find
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Using the last equality and integrating with respect to t, the
solution is found as follows:

r m
= +v

v
B C x z

1

2
, , 31z

A
y2

0 0 0
1

2 ( ) ( )

where C is an arbitrary function of integration. Now, consider
By1 at t=0 using Equation (29),

= -

= - - 

B x z B x z v

B x z v z v T

, , 0 ,

, , 0 ,
0, otherwise.

32

y A

T A A
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0 0

*
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( ) ( )

Observe that for positive z, −z/vA0<0 and so By1(x,z,0)=
0. Condition 3 also imposes that for positive z, vz2(x,z,0)=0,
and so using this in Equation (31) gives C(x,z)=0.
Finally, substituting this result into Equation (31) along with

Equation (29) gives the solution for vz2,

r m
= -

=
- -
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0, otherwise.
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2.2.4. Field-aligned Mass Flux

The mass flux (or equivalently the momentum density) Φ is
defined as Φ=ρv, where ρ and v are the density and velocity
of the plasma, respectively. Consider the z-component of Φ in
the same way as the other quantities using Equation (1). Using
the form of ρ and vz given by Equations (2) and (3) gives (recall
that we use the equations with j= 0 corresponding to the
internal region)

r e r e e e r eF = + + = +v O v O . 34z z z0
2

2
2

2
3 2

0 2
3( )( ) ( ) ( ) ( )

Now, define Φ=ρ0vz2, which is the leading component of the
field-aligned (vertical) mass flux. Using Equation (33) we can
simply write down the equation for Φ as

m
F = -

=
- -

m
 

v
B x t z v

B x t z v t z v T

1

2
,

, , 0 ,

0, otherwise.
35
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0 0

2
0

1

2
2

0 0
A0 0

*

*⎪

⎪

⎧
⎨
⎩

( )

( )
( )

This solution for the vertical plasma flux shows that a jet-like
feature can exist as a consequence of applying a shear
perturbation to the base of the magnetic slab, which then
propagates upward as dragged by an Alfvén wave. By
specifying the initial magnetic field (B*), it is now possible to
capture some observational features of spicules, suggesting that
this jet formation mechanism could be a viable and feasible
source of solar spicules. An example will be given in Section 4
to demonstrate this.

3. Physical Description of the Formation Mechanism

Now that the mathematical formulation has been provided,
the ideas will be put in the context of the solar photospheric
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environment. In particular, we discuss the possibility of spicule
formation in MBPs and elaborate on the physical process
where the Lorentz force accelerates the plasma.

Consider the mathematical slab illustrated in Figure 1, and
assume that this represents an MBP embedded in the photo-
sphere. The physical idea here is that the formation occurs
under conditions characteristic of an MBP, and then moves up
through the chromosphere. Also, assume that the slab is aligned
so that z=0 is where the shear is applied and the formation
mechanism begins. Recall that we only consider the formation
mechanism, therefore we only consider photospheric condi-
tions without accounting for a full evolution into the
chromosphere.

Consider briefly the model that is introduced in Section 2,
but for a slab of arbitrary internal plasma-β. Then, there are two
processes that could both contribute to the material that is
accelerated upward to cause the spicule generation. These are:

1. The direct acceleration of material in the vertical direction
due to the vertical component of the Lorentz force.

2. The compression of the magnetic slab due to acceleration
of material inward from the horizontal component of the
Lorentz force (along with mass continuity).

However, due to the simplification that the internal region has
β=0, the second mechanism cannot contribute to the lifting of
mass. This is easily observed through the calculations, as the z-
component of the momentum equation is decoupled from the
mass continuity equation (see Equations (14) and (15)).
Consequently, the first mechanism is the focus of this study,
and it is useful to break it down in more detail.

Recall that both the velocity and magnetic field perturbations
(vy1 and By1) are driven through a boundary condition at z=0,
which relates to plasma motions that may occur in MBPs. In
our model, the driver is active for a finite time T and is
gradually reduced to zero. This boundary condition creates an
Alfvén pulse that then propagates along the field lines into the
higher regions of the chromosphere. The results suggest that a
propagating Alfvén wave could cause the formation of a
plasma jet by dragging material behind it.

The internal region has been assumed to be a zero-β plasma,
and so the kinetic pressure is ignored. Consequently, examining
Equation (5) shows that the z-component of the momentum
equation has only one force, and this is the z-component of the
Lorentz force F=j×B, where B is the magnetic field and
j=(∇×B)/μ0 is the current density. In the current approx-
imation, the regular perturbation method has been used and a
simple calculation shows Fz=−ε2By1∂zBy1/μ0+O(ε3). If the
magnetic field is such that Fz>0, then this mechanism can
accelerate mass to generate and lift a plasma jet.

Now, consider the contribution of the magnetic tension and
pressure forces separately. For the driver of the perturbations
(i.e., ε-order), it is simple to show that the only force is the
magnetic tension force. For the second-order perturbations in
the field-aligned (vertical) direction (i.e., ε2-order), both
magnetic pressure and tension are nonzero. However, the
magnetic tension force is canceled by part of the magnetic
pressure. Consequently, the total force is the remaining
pressure term.

The magnetic slab representing an MBP embedded in the
photosphere has been illustrated in Figure 2, along with the
driving boundary condition and Lorentz force. In this figure,
the boundary magnetic field perturbation has been drawn to

illustrate the shear that will be applied to the slab. If we wanted
to consider a shear in the velocity field as opposed to the
magnetic field, by using Equation (27) it is clear that in order to
plot vy1 instead of By1, it would require a reversal of the blue
arrows.

4. Example

In this section we present an example, where the boundary
condition for the magnetic field By1 is specified explicitly, and a
jet-like feature is generated that captures the properties of a
solar spicule.
The form of the boundary condition we consider here is

p p
=

 
B x t

A t T
, 0,

sin sin , 0 ,

0, otherwise,

36
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x

x
p x

x

q t

T1 0

⎧
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⎩⎪

⎡⎣ ⎤⎦( ) ( )( )

( )

∣ ∣ ∣ ∣

where A, p, q are positive constants. This is valid when x≠0.
Define By1(0,0,t)=0, and observe that By1(x,0,t) is a
continuous function of x at x=0. Observe that this boundary
magnetic field is a continuous function of t, which is localized
and is a continuous function of x as it reduces to zero at the slab
boundaries, where it meets the nonmagnetic region. It also
applies a shear to the magnetic field in the x-direction.

4.1. Vertical Mass Flux

Using Equation (35), it is simple to write down the solution
for the vertical mass flux Φ as follows:

r

p p

F =

=
¢ - - 
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where m¢ =A A v2 A
2

0 0. Figure 3 show the magnitude of F ¢A ,
as a function of non-dimensionalized variables x/x0 and z/x0,
at times t=0.25T,0.5T,and 0.75T. The illustrations are
produced in the region where z is positive and the solution is
nonzero. For these plots, q=0.2 and p=1.5 are selected. The
solution at time t=0 is zero everywhere. After time t=T, it is
simple to illustrate the solution as it is just a translation of the
surface in Figure 3(d) in the positive z-direction. The speed of
translation is vA0 and on the figure this corresponds to a
translation of TvA0/x0 for every characteristic time T, due to the
non-dimensionalization of the variable z.
Figure 4 provides another visualization of the vertical mass

flux, Φ, through a shaded contour map, at time t=0.5T. The
jet-like structure is observed clearly in this figure, and suggests
that a recognizable jet feature is formed even after the driver
has only been active for half of its lifetime. Note that for both
Figures 3 and 4, the axis lengths have been chosen to
qualitatively show that the jet is elongated in the z-direction.
This comes from the small ratio of the slab width (which we
consider to be the width of the MBP) to the vertical extent of
the spicule, which is deduced through observations.
From the illustrations, it is evident that there is a localization of

the upward mass flux, which propagates upward as time advances,
perhaps resembling a spicule. Observations suggest that spicules
can have widths as small as 0.2Mm (Sterling et al. 2010),
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and MBPs can have widths as large as 0.6Mm (Berger et al.
1995). Consequently, it is reasonable to expect spicules to fill
about half of the MBP width. This model matches these
expectations, as when the jet-like feature is fully formed, it fills
about half of the magnetic slab (see Figure 3(d)).

The model also suggests that there could be an absence of
accelerated material in the center of the slab. Unfortunately,
spicules have sizes very close to the observational spatial
resolution limit (De Pontieu et al. 2007; Zaqarashvili &
Erdélyi 2009), and so measuring the properties of spicules is a
challenge. Detecting whether the upward accelerated material is
present all the way to the center would be almost impossible as
the estimated size of this center is much smaller than the size of
the spicule, and consequently not detectable through observa-
tions at the moment.

Next, consider an Alfvén speed of around 10 km s−1 inside
the MBP, which is an estimate based on the magnetic fields and
densities given by Hewitt et al. (2014), who studied the
evolution of plasma properties in MBPs through simulations (in
particular, take the properties of the studied MBP given in
Figure 1, at time t=300 s). Assume the magnetic field
boundary condition is driven for around 8 minutes (specifically,
take T=500 s). By inspecting Figure 3(d), we see that when
the jet has fully formed, its vertical field-aligned extent is 1 unit
of TvA0. Consequently, we deduce the vertical extent of this
feature to be ≈5Mm. This matches well with the length of
some spicules (Sterling et al. 2010), once again suggesting our
model is consistent with observations.

A comparison between the vertical extent suggested by this
model and the spicule heights found in observations may not be
appropriate as the model only considers the formation of the jet
and not its subsequent evolution. This is because, as the jet
moves into the chromosphere, its longitudinal extent may
evolve due to gravitational effects before it can be observed.
However, we do gain an indication that this mechanism is
viable to generate jets with the dimensions consistent with
observations. Note that the driving time, T, has a direct relation
with the vertical extent and can be constrained in order to
generate a length that agrees with observations. We should
ensure that the driving time is of the correct order of

magnitude, and by comparing to the lifetime of jets, specifying
it to be a few minutes is reasonable (Sterling 2000).
Recall that the mass flux in the field-aligned z-direction, as

discussed in Section 2, is actually Φz=ε2Φ, where ε is the
small parameter used in the perturbation method. This small
parameter would have to be taken into account when analyzing
the amplitude of the mass flux. However, it will not impact the
extent of the feature, as in this model it simply translates
vertically at speed vA0. Even though the amplitude of the mass
flux is small due to the ε2 factor, the mass flux may still be
consistent with chromospheric spicules. This is a consequence
of the stratification of the solar atmosphere; due to the extreme
changes in the density as height above the photosphere is
increased (Haerendel 1992), a small amount of material
accelerated from the photosphere would be significant when
it reached the chromosphere.

5. Discussion

The generation of spicules is still an unsolved and
challenging problem in solar physics, in spite of the highly
important momentum and energy transfer capabilities of these
localized jets. In this work we revisited some of the ideas
presented by Goodman (2012) and built on the premise that a
spicule may be formed due to the Lorentz force, providing a
novel self-consistent analytical study of the concept.
By considering a perturbation theory approach, this work

demonstrates that some of the key properties of chromospheric
jet-like features (with applications to spicules) can be obtained
as a consequence of Alfvén waves, which apply a shear to the
magnetic waveguide, a slab in this case. The resulting upward
flux of mass turns out to be a direct consequence of the field-
aligned propagating Alfvén waves, which drag material
vertically. Because of this, we reemphasize that shock
formation is not needed to cause the jet, meaning the process
here is different to that studied by Hollweg (1971). The
formation mechanism described here is particularly applicable
to MBPs, where spicules are observed to emerge from
(Suematsu et al. 1982, 1995). The proposed mechanism is
put into the context of an MBP embedded in the photosphere,

Figure 2. Illustration of the perturbations inside an MBP, which is represented by a magnetic slab, at time t with 0<t<T. The blue arrows visualize the magnetic
field boundary condition applied at ε order through By1. The red arrows show the z-component of the Lorentz force. There are no labels on the y-axis on this illustration
as the modeling is independent of y. The image of the MBP is adapted from Figure 12 of Liu et al. (2018).
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and it is suggested that the formation process takes place here,
after which the feature will travel up through the chromosphere.

Equations (33) and (35) give the velocity and mass flux,
respectively, and immediately show that there is upward flux of
plasma, which is indicative of a spicule. The equations reveal
that the upward flux of plasma is a direct consequence of the
magnetic field boundary condition. Due to the direction and
spatial dependencies of the driving magnetic field, there is a
nonzero component of the Lorentz force in the positive z-
direction, and this is the force that accelerates plasma to drive
the jet-like feature. Then, by specifying this boundary magnetic
field to shear the slab, we have demonstrated through an
arbitrary but appropriate example that the resulting Alfvén
waves may indeed be the catalyst for jets of plasma to occur.

To make further comparisons to observed spicules, the form
of the shearing magnetic field must be specified, ideally from
observations. The working example presented in Section 4 may
generate a jet-like feature that shares characteristic properties
with spicules at their initial phase of evolution. Some
discussion relating to observations reveals that there are good
aspects to this model, capturing well what is observed for some
spicules. Specifically, the jet-like feature is localized in the
field-aligned vertical direction, and this localization moves
vertically upward as time advances. This can be seen from
Figure 3, along with the movie provided online. In addition, the
jet fills half of the slab which, again, matches the expectations

from observations (Berger et al. 1995; Sterling et al. 2010). The
vertical extent of a spicule is a characterizing feature and has
been estimated here and shown to be of the same order as
observations. However, we emphasize that it is not suggested
to directly compare the vertical extent in the model with that
found in observations. This is because gravitational effects may
change the longitudinal structure of the jet before observations
are made in the chromosphere. Figure 4 provides an additional
illustration to aid in the understanding of the presented ideas,
and is a further qualitative indication that this formation
process may generate jets resembling spicules. The figure
illustrates the mass flux at only half of the characteristic time T,
and suggests a recognizable jet-like feature can be produced,
even before the driving shear has finished acting on the system.

5.1. Limitations

Unfortunately, there are some limitations of this method, and
they should be discussed in order to critically assess why the
model is still applicable. The assumption that there is no y-
dependence in the modeling means that what is obtained is
actually an infinite sheet of jet, as opposed to a localized one.
To generate a finite jet, y-dependence would have to be
addressed, and the analysis would be much more complicated.
This is not a showstopper as we are still able to demonstrate
that the proposed formation mechanism is viable and can
produce a jet-like feature. A y-dependence may be addressed,

Figure 3. Illustrations showing F ¢A given by Equation (37) (with q=0.2 and p=1.5) for various x and z at times (a) t=0.25T, (b) t=0.5T, (c) t=0.75T and (d)
t=T. The dashed black lines represent the interfaces at the edge of the slab. An animated version of this figure is available online. This is a 10 s clip showing F ¢A
between times t=0 and t=2T. The z/x0 axis in the animation is doubled in length in order to observe the surface all the way through to t=2T.

(An animation of this figure is available.)
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e.g., by using the WKB-method that is cumbersome and is
beyond the scope of the current study.

Figure 3 suggests that the jet has an evacuated central region,
with the accelerated material not forming at x=0. This could
be an artifact of the actual model shear, and we may need to
consider a more general case to overcome this issue. However,
this is only a minor problem as spicules themselves are close to
the spatial resolution of observations (De Pontieu et al. 2007;
Zaqarashvili & Erdélyi 2009), and so the evacuated center
would be too small to observe, meaning that our results still do
not contradict observations of spicules.

The model here is only applicable to the initial formation
phase of a jet, not to the subsequent full evolution.
Consequently, we cannot gain insight into the jet as it travels
up through the entire chromosphere. This limitation is most
easily observed through Equation (35), which suggests the jet
would translate toward infinity. If additional factors such as
density stratification, variable temperature, and gravity were
taken into account, along with the back reaction of Alfvén
waves, it may be possible to model the full evolution of a
spicule using the method outlined here. Considering such
features in the modeling would complicate the analysis
considerably, and the third-order perturbations would become
important. Most importantly, it would lead to the jet having a
limited lifetime and only reaching a finite height within the
lower solar atmosphere, before falling back down to the
photosphere due to gravitational stratification.

The limitations of the model discussed above could be used
as an inspiration for a further study. Visualizing the height by
time–distance techniques would provide interesting and
potentially groundbreaking comparison to observations and
numerical simulations, and the aim would be to capture the

observed parabolic paths on these time–distance diagrams
using the proposed model (De Pontieu et al. 2007; Heggland
et al. 2007; Pereira et al. 2014).

5.2. Possibilities of Further Study

Let us now consider briefly the same formation mechanism,
under the same assumptions, apart from the internal region has
arbitrary plasma-β. Returning to Equations (12)–(19), a higher-
order differential equation for vx2 could be derived. To solve this,
we could apply Fourier and Laplace transforms to this equation.
This should be then followed by applying kinematic and
dynamic boundary conditions at x=±x0. Then, using inverse
Fourier and Laplace transforms, an equation for vz2 could be
obtained and the vertical mass flux can be deduced, as discussed
in Section 2. The key issue is the yet unknown way to resolve
the mathematical challenge associated with the inverse Laplace
transform of the leaky waves. This would not be a simple
extension of the zero-β, and is therefore well beyond the scope
of the current study. In this generalization, as well as the direct
acceleration of material, another contribution to the jet formation
would be present due to the x-component of the Lorentz force.
More precisely, the inward accelerated plasma causes the slab to
squeeze, consequently material is accelerated up the slab, in
order to conserve mass (as discussed in Section 3).
Finally, an analog derivation could be made using cylindrical

geometry, where the magnetic flux tube replaces the magnetic
slab. Magnetic flux tubes are the fundamental building blocks for
many solar features, with intense flux tubes responsible for the
observed kilogauss magnetic fields (Ryutova 2015). Flux tubes
are therefore the basic model building blocks for many analytical
or numerical studies in solar physics (see, e.g., Roberts & Webb
(1978) for an analytical wave study using the flux tube model).
The assumption of axial symmetry about the vertical axis in the
flux tube model is equivalent to the assumption of y-independence
used in the magnetic slab model. An advantage of employing the
flux tube model is that a single axially symmetric jet would be
generated as opposed to the jet sheet found in the magnetic slab
model. Conducting this study using both types of geometry allows
us to apply the formation mechanism to a wider range of MBPs.
As well as the elongated MBPs that are discussed in the context of
the slab geometry, we can apply the formation mechanism using
the magnetic flux tube model to the more circularly shaped MBPs
(see Liu et al. 2018 for specific examples of observed MBPs,
taking both elongated and circular shapes). Cylindrical geometry
will be used in a follow-up study to illustrate the jet formation
mechanism, building on the work presented here.
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