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Abstract

Consistency checks of Lambda cold dark matter (ΛCDM) predictions with current cosmological data sets may
illuminate the types of changes needed to resolve cosmological tensions. To this end, we modify the CLASS
Boltzmann code to create phenomenological amplitudes, similar to the lensing amplitude parameter AL, for the
Sachs–Wolfe, Doppler, early Integrated Sachs–Wolfe (eISW), and polarization contributions to the cosmic
microwave background temperature anisotropy, and then we include these additional amplitudes in fits to the Planck
TT power spectrum. We find that allowing one of these amplitudes to vary at a time results in little improvement over
ΛCDM alone suggesting that each of these physical effects are being correctly accounted for given the current level
of precision. Further, we find that the only pair of phenomenological amplitudes that results in a significant
improvement to the fit to Planck temperature data results from varying the amplitudes of the Sachs–Wolfe and
Doppler effects simultaneously. However, we show that this model is really just refinding the ΛCDM + AL solution.
We test adding our phenomenological amplitudes as well as Neff, YHe, and nrun to ΛCDM + AL and find that none of
these model extensions provide significant improvement over ΛCDM + AL when fitting Planck temperature data.
Finally, we quantify the contributions of both the eISW effect and lensing on the constraint of the physical matter
density from Planck temperature data by allowing the phenomenological amplitude from each effect to vary. We find
that these effects play a relatively small role (the uncertainty increases by 3.5% and 16% respectively) suggesting that
the overall photon envelope has the greatest constraining power.

Unified Astronomy Thesaurus concepts: Observational cosmology (1146); Cosmic microwave background
radiation (322); Cosmological parameters (339); Hubble constant (758); Cosmological models (337)

1. Introduction

Lambda cold dark matter (ΛCDM) is the standard model of
cosmology because with only six parameters, it successfully
explains a wide range of cosmological and astrophysical
phenomena. However, in recent years, tensions have emerged
between the preferred values of cosmological parameters resulting
from fits to cosmological data sets assuming the ΛCDM model
and direct measurements of those cosmological parameters. In
particular, there is a 4.4σ tension in the preferred value of the
Hubble constant, H0, between the cosmological distance ladder
measurement by SH0ES, H0=74.02±1.42 km s−1Mpc−1

(Riess et al. 2019), and the inferred value from the most precise
measurements to date of the cosmic microwave background
(CMB) provided by Planck, H0=67.37±0.54 km s−1Mpc−1

(Planck Collaboration et al. 2020a).
The H0 tension can be divided into a discordance between the

preferred values by early universe observations assuming ΛCDM
and direct measurements in the late universe. While this tension is
usually expressed as a disagreement between Planck and the
cosmological distance ladder, Addison et al. (2018) show that a
similar discordance is found when combining baryon acoustic
oscillation (BAO) data with Planck CMB measurements, CMB
measurements from experiments other than Planck, or with
primordial deuterium abundances using no CMB anisotropy data
(see also, e.g., Aubourg et al. 2015; Cuceu et al. 2019; eBOSS
Collaboration et al. 2020).

On the late universe side, this tension persists even if different
calibrators are used for the cosmological distance ladder (Huang
et al. 2020). Using the tip of the red giant branch as a calibrator
results in H0=69.6±1.9 km s−1Mpc−1 (Freedman et al. 2019),
but Yuan et al. (2019) argue that this analysis overestimates the
Large Magellanic Cloud extinction and instead determine

H0=72.4±2.0 km s−1Mpc−1. Completely independent of
the cosmological distance ladder, strong gravitational lensing
time delays by H0 lenses in COSMOGRAIL’s Wellspring
(H0LiCOW) determine H0=73.3± 1.7 km s−1Mpc−1, which
is in 3.9σ tension withPlanck (Wong et al. 2020).
Because the H0 tension exists between multiple data sets and

breaks down by cosmological epoch instead of observational
technique, it is unlikely to be resolved by an underestimated or
unmodeled systematic, suggesting the need for physics beyond
the standard model of cosmology. Finding extensions to
LCDM that resolve the Hubble tension yet stay consistent
with the multitude of cosmological data sets is challenging
(see, e.g., Knox & Millea 2020). For example, it has been
proposed that incorporating a form of dark energy that
comprises about 10% of the energy density of the universe
around matter-radiation equality and then decays away before
recombination can alleviate the H0 tension (Lin et al. 2019;
Poulin et al. 2019; Berghaus & Karwal 2020). However, fitting
these current early dark energy models to Planck data results in
an increase in the cold dark matter density that is disfavored by
large-scale structure measurements (D’Amico et al. 2020; Hill
et al. 2020; Ivanov et al. 2020).
In the absence of a clear theoretical direction, it can be useful

to perform consistency checks of LCDM predictions with
current data sets to determine what kinds of changes to the
standard model are necessary or even allowed (see, e.g., Kable
et al. 2020; Motloch 2020). It has been shown that in addition to
the H0 tension with direct measurements, Planck data prefers a
2–3σ larger value of s= WS 0.3m8 8 , which measures matter
clustering, than weak lensing experiments (Abbott et al. 2018;
Hildebrandt et al. 2020; Joudaki et al. 2018; Hikage et al. 2019)
and clustering abundance surveys (e.g., Lin & Ishak 2017;
McCarthy et al. 2018).
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Additionally, there is a ∼2.5σ tension between the preferred
values of parameters like the physical cold dark matter density,
ωc, for Planck TTℓ�1000 and Planck TTℓ>1000 (or
similarly for Planck TTℓ�800 and Planck TTℓ>800),
which can be resolved by allowing the amplitude of the lensing
contribution to the CMB TT power spectra to vary (e.g.,
Addison et al. 2016; Planck Collaboration et al. 2020a). This is
done by extending LCDM to include a phenomenological
amplitude, AL, which rescales the amplitude of the lensing
power spectrum as

Y YC A C , 1ℓ L ℓ ( )

where AL has a physical value of 1 (Calabrese et al. 2008). The
combined Planck TT, TE, and EE power spectra prefer AL>1
at 2.8σ, which is driven largely by an improvement to the fit for
multipoles 1100�ℓ�2000 in the Planck TT power spec-
trum, though there is also improvement to the fit for Planck
TTℓ<30 (Planck Collaboration et al. 2020a). However, the
lensing power spectrum reconstructed from higher-order
statistics of the Planck maps is in good agreement with
standard LCDM predictions (e.g., Planck Collaboration et al.
2020b; Simard et al. 2018; Motloch & Hu 2020). Moreover, the
South Pole Telescope Polarimeter (SPTpol) TE and EE power
spectra prefer AL<1 at 1.4σ, and the Atacama Cosmology
Telescope (ACT) DR4 is consistent with AL=1 within 1σ
(Henning et al. 2018; Aiola et al. 2020). While the Planck TT
power spectrum prefers greater peak smoothing consistent with
AL>1, other cosmological data sets disfavor changing the
physical amount of lensing.

In this paper, we create phenomenological amplitudes
analogous to AL for the early integrated Sachs–Wolfe (eISW),
Sachs–Wolfe, Doppler, and polarization effects,1 which all
source the CMB temperature anisotropy. We fit these new
phenomenological amplitudes to Planck data to determine if
there are any deviations from standard LCDM favored by
Planck. In this way, we deconstruct the TT power spectrum
into its constituent sources, which provides a test for where
potential model extensions are allowed or are necessary. While
scaling these physical effects can affect the CMB TE power
spectrum, we choose to fit only the Planck TT power spectrum
as we are primarily interested in quantifying deviations from
LCDM predictions in the temperature anisotropy, which is
already known to have internal differences in the preferred
LCDM parameter values between Planck TT ℓ 800 and
Planck TTℓ>800. The Planck Collaboration performed a
similar exercise and found that these phenomenological
amplitudes are consistent with expectations (see Footnote 30
of Planck Collaboration et al. 2020a). We quantify this
consistency and extend the analysis to include combinations
of the phenomenological amplitudes.

There is a well-known degeneracy in the CMB temperature
data between the scalar amplitude, As, and the optical depth, τ.
This degeneracy is broken by the reionization bump measured
byℓ 20 EE data (see, e.g., Figure 8 in Planck Collaboration
et al. 2020c). For all cases in this paper, we include a Gaussian
prior of τ=0.0506±0.0086 to account for the constraint
from Planck Lowℓ EE data as described by Planck

Collaboration et al. (2020a). We tested the impact of changing
both the mean value and width of the Gaussian prior on τ and
found that our conclusions were insensitive to these changes.
This paper is organized as follows. In Section 2 we define

the phenomenological amplitudes for the eISW, SW, Doppler,
and polarization effects and discuss how each phenomenolo-
gical amplitude affects the TT power spectrum. In Section 3 we
show the constraints provided by the Planck 2018 TT power
spectrum when we allow one or more of the phenomenological
amplitudes to vary. In Section 4 we test possible extensions to
LCDM + AL to determine where if any further improvement in
the fit can be found. Finally in Section 5, we provide
conclusions.

2. The Phenomenological Amplitudes

2.1. Definitions of Phenomenological Amplitudes

In this section, we define the phenomenological amplitudes
that we will use for the rest of the paper. The perturbation away
from a blackbody spectrum of the CMB photon distribution,

dQ º T T , can be quantified by integrating the various
cosmological perturbations along the path of the photons. This
distribution can be expanded in terms of spherical Bessel
functions, jℓ, and wavenumbers, k, for a given perturbation as
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following Dodelson (2003). In this equation, η is conformal
time, τ is the optical depth at a given conformal time,
h tº - t-g e( )  is the visibility function, Ψ is the Newtonian

potential, Φ is the spatial perturbation to the metric, vb is the
velocity of the baryons, and Π is the polarization tensor.
The visibility function is a probability density of the

conformal time when a CMB photon last scattered, so it is
sharply peaked around recombination. This in turn means that
the first, second, and fourth terms are sourced primarily at the
surface of last scattering while the third term is sourced at all
points along the way.
The first term accounts for the Sachs–Wolfe effect, which is

the relative redshifting or blueshifting of CMB photons as they
leave the last scattering surface due to fluctuations in the size of
the gravitational potential wells. The second term accounts for
the Doppler shifting of CMB photons moving toward or away
from the observer along the line of sight. The third term is the
contribution of the ISW effect. Much like the Sachs–Wolfe
effect, this quantifies the redshifting and blueshifting of CMB
photons as they climb out of and fall into gravitational potential
wells; however, in this case the size of the potential wells
decays because of either radiation in the early universe or dark
energy in the late universe. The final term is the CMB
polarization contribution to the CMB temperature anisotropy.
This results from the directional dependence of Compton

1 Note that this polarization effect refers to the the contribution to the total
intensity that is sourced by CMB polarization. We define this in more detail in
Section 2.

2

The Astrophysical Journal, 905:164 (13pp), 2020 December 20 Kable, Addison, & Bennett



scattering and the coupling of the CMB polarization to
the quadrupole moment of Θ, which is discussed by Hu &
Sugiyama (1996).

In Equation (2), we have defined phenomenological ampli-
tudes for each of these effects. We adopt the same convention as
Hou et al. (2013) where the phenomenological amplitudes scale
the sources of the photon distribution. Additionally, we define

h =f z A A, eISW eISW( ( ) ) , when z > 30 and unity for z�30 as
was done in Hou et al. (2013). We could additionally define a
phenomenological amplitude to account for the late time ISW
effect, but we find that this is too poorly constrained by the CMB
data to provide a meaningful test.

2.2. Effects of Varying Phenomenological Amplitudes on
Theory TT Power Spectrum

Before we discuss results of extending LCDM to include
these phenomenological amplitudes when fitting to Planck TT
data, we illustrate the general effects on the TT power spectrum
of varying each of these phenomenological amplitudes. To do
so, we modify the source function in the CLASS Boltzmann
code (Blas et al. 2011; Lesgourgues 2011) to include these new

parameters. In Figure 1, we show the effect on the CMB power
spectrum of changing each of the four phenomenological
amplitudes as well as AL. In each case, we employ a
fiducial cosmology resulting from a Markov Chain Monte
Carlo (MCMC) using Monte Python (Audren et al. 2013;
Brinckmann & Lesgourgues 2018) of Planck 2018 TT data
with a prior of τ=0.0506±0.0086.
Changing ASW has the largest effect on the overall amplitude

of the power spectrum of the parameters varied in Figure 1.
While increasing ASW increases both acoustic peaks and
troughs, it increases the heights of the peaks by a larger
fraction. The effect is stronger on the compression modes (odd
peaks), where the baryon-photon fluid is at the bottom of the
gravitational potential, than the rarefaction modes (even peaks).
Increasing the Sachs–Wolfe effect leads to deeper potentials
allowing for greater compression. Increasing ASW also leads to
a small phase shift toward larger scales.
Increasing ADop also results in an overall increase to the

power spectrum and a small phase shift to larger scales, but
unlike the Sachs–Wolfe effect, it disproportionately impacts the
troughs and even peaks of the power spectrum. In particular,

Figure 1. Impact of varying a range of phenomenological amplitudes, including AL and the phenomenological amplitudes defined in Equation (2), while fixing the
LCDM parameters. We additionally show the ratio of the residual with theLCDM case below each plot. In this paper, we examine the consistency of these amplitudes
with unity as a consistency check of the standard model. If the data show a significant preference for the phenomenological amplitude not equal to unity, then this
gives a clue as to what physics an alternative cosmological model would have to alter to match the data better than LCDM.
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the ratio of the heights of the peaks to troughs decreases as
ADop increases. The Doppler effect is proportional to the baryon
velocity as shown in Equation (2). In the absence of baryon
loading, the baryon velocity would peak when Θo+Ψ=0,
which corresponds to the troughs of the CMB power spectrum
(see, e.g., Section 5.2 of Hu 1995). With the baryon loading,
the baryon velocity still peaks near the troughs and therefore
increasing ADop fills in the troughs. The rarefaction modes get
more power than the compression modes because increasing
the baryon velocity increases the pressure, which makes it
easier for photons to escape the gravity wells.

Changing AeISW primarily affects the first peak, but also
makes small contributions to the higher peaks with a preference
for the odd acoustic peaks. AeISW has the largest effect on the
first acoustic peak because it has the largest effect on modes
that enter the horizon when the universe is dominated by matter
but still has a sizable radiation density (see, e.g., Section 8.6 of
Dodelson 2003). Increasing AeISW causes an increase in power
because it increases the radiation density, which hastens the
decay of the gravity wells. There is also a slight filling in of the
second trough.

Finally, Figure 1 shows that changing APol makes the smallest
change to the amplitude of the power spectrum. Increasing APol
results in a phase shift to smaller scales. This phenomenological
amplitude is coupled to the CMB quadrupole moment, Θ2,
which sources photon diffusion damping (see, e.g., Section 8.4
of Dodelson 2003). Hence, increasing APol results in increased
damping.

3. Results from Varying Phenomenological Amplitudes

In the previous section, we defined phenomenological
amplitudes for the Sachs–Wolfe, eISW, Doppler, and polariza-
tion effects that source the CMB temperature anisotropy. In this
section, we explore how these phenomenological amplitudes
are constrained by the CMB by running MCMC fits on Planck
2018 TT data. To sample the posterior distributions for the
model parameters, we use our modified CLASS Boltzmann
code, which includes the amplitudes defined in Equation (2) as
additional model parameters, and run MCMCs using Monte
Python.

We use the likelihoods for Planck 2018 TT High ℓ Lite
corresponding to 30�ℓ�2508 and Planck 2018 TT Low ℓ

corresponding to ℓ<30 provided by the Planck Collaboration.
We choose to use the Lite likelihoods, where foreground
parameters have already been marginalized over, because we
are not investigating the impact of altering the foreground
model in this work. Hereafter, we will refer to this likelihood as
Planck TT.
For certain models, we also explore splitting the Planck data to

highlight the discrepancy between the parameter posteriors
resulting from sampling Planck TTℓ�800 and Planck TTℓ>
800. We choose to split the Planck data atℓ=800 because this
corresponds to the point where each split of the Planck data has
roughly equivalent constraining power (e.g., Planck Collaboration
LI 2017). We refer to these data split likelihoods as Planck
TTℓ�800 and Planck TTℓ>800, respectively.
Finally, unless otherwise specified, we use a Gelman–Rubin

convergence statistic of R−1=0.05 for the least constrained
parameter to define the point when our MCMC chains have
converged (Gelman & Rubin 1992).

3.1. Fits to ΛCDM Plus One Phenomenological Amplitude

In this subsection, we compare the MCMC fits to Planck TT
assuming LCDM + one phenomenological amplitude to the
MCMC fits to Planck TT assuming LCDM. The results of
these MCMC fits are summarized in Table 1 and Figures 2 and
3. In Table 1, we show that no variations of the phenomen-
ological amplitudes that we introduced in Section 2 are able to
fit Planck TT significantly better than LCDM. Moreover, no
variations of these phenomenological amplitudes are able to
alleviate the H0 tension.
Varying AeISW results in the largest improvement over

standard LCDM of these new phenomenological amplitudes.
Nevertheless, this variation results in a <2σ shift in the
posterior distribution for AeISW away from the fiducial value of
1. Moreover, the difference in χ2 found by adding AeISW

corresponds to a probability to exceed (PTE) of 0.13 further
indicating that including AeISW is not a significant model
improvement over LCDM. Considering that we tested four
model extensions to standard LCDM, it is not surprising that
one of them resulted in a >1σ improvement to the fit.
To understand where this minor improvement is coming

from, we fit LCDM + AeISW to Planck TT but excluded
multipolesℓ<30 and found that the preference for AeISW>1

Table 1
Mean Values and 68% Credible Intervals for Standard LCDM and for LCDM Plus One Phenomenological Amplitude Variation for the MCMC Chains Fit to

Planck TT

Parameter LCDM +AL +ASW +ADop +AeISW +APol

H0 67.00±0.93 69.11±1.20 67.41±1.03 66.90±1.02 66.55±0.96 67.41±1.27
w*100 b 2.213±0.022 2.265±0.029 2.226±0.027 2.210±0.030 2.170±0.035 2.225±0.033

ωc 0.1205±0.0021 0.1164±0.0025 0.1198±0.0022 0.1206±0.0022 0.1206±0.0021 0.1206±0.0021
t-A e10 s

9 2 1.8847±0.0140 1.8658±0.0156 1.904±0.027 1.886±0.022 1.873±0.0165 1.8836±0.0147
ns 0.9634±0.0057 0.9751±0.0072 0.9666±0.0067 0.9631±0.0058 0.9713±0.0077 0.9657±0.0077
Anew L 1.259±0.099 0.9909±0.0100 0.9984±0.0126 1.064±0.042 1.16±0.31

W hm
2 0.1426±0.0020 0.1390±0.0023 0.1421±0.0020 0.1427±0.0020 0.1423±0.0020 0.1428±0.0020

Wm 0.3179±0.0132 0.2915±0.0148 0.3129±0.0141 0.3186±0.0139 0.3217±0.0134 0.3147±0.0148
s8 0.8130±0.0097 0.7933±0.0120 0.8147±0.0099 0.8136±0.0114 0.8144±0.0097 0.8145±0.0102

χ2 229.50 221.45 228.59 229.49 227.24 229.18
c c-LCDM

2 2 0 8.5 0.91 0.01 2.26 0.32

Note. For definitions of the phenomenological amplitudes see Section 2. We use a prior of τ=0.0506±0.0086.
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was reduced to < 0.5σ. This suggests that the primary
improvement over LCDM when fitting LCDM + AeISW to
Planck TT comes from multipolesℓ<30. In particular, we
find that the TT power spectrum resulting from the best-fit
cosmology for LCDM + AeISW has less power than standard
LCDM forℓ<30 when fit to Planck TT, which allows this
model to fit the well-known deficit of power atℓ<30 in
WMAP and Planck TT data (Bennett et al. 2013; Planck
Collaboration et al. 2020a). When AeISW is allowed to vary,

Planck TT prefers a decrease in the preferred value of As and an
increase in the preferred value of ns, which results in a
reduction in power forℓ<30 for the the best-fit TT power
spectrum.
From Table 1, we see that the improvement found byLCDM +

AeISW over standard LCDM is primarily compensated by a 0.043
shift downward in the value of w*100 b (100 times the physical
baryon density), which corresponds to almost twice the original
uncertainty. On a related note, the uncertainty of the baryon density

Figure 2. Posterior comparisons of LCDM vs. LCDM + ASW and LCDM + ADop fits to Planck TT are shown. Neither phenomenological amplitude results in a
significant increase in the preferred value of H0 nor a deviation of the phenomenological amplitude from the fiducial value of 1. For ωb, ωc, and ns, varying the
phenomenological amplitudes keeps the LCDM degeneracy directions intact, but there is a clear change to the degeneracy directions involving Ase

−2τ. There is a
difference in the sign of the degeneracy direction between ASW and ADop and the cosmological parameters. This is because increasing ASW disproportionately adds
more power to the odd peaks and ADop disproportionately adds more power to the even peaks. In all cases a prior of t = 0.0506 0.0086 was used.
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when varying the amplitude of the eISW effect increases by
roughly 60%, which illuminates how powerful the relative peak
heights, and in particular the height of the first acoustic peak, are in
constraining the physical baryon density.

After AL and AeISW, allowing ASW to vary results in the next
most significant improvement over just LCDM, which can be
seen by the approximately 1σ shift in the value of ASW from the
fiducial value of unity. While the uncertainties on the LCDM
parameters increase, such as the near doubling of the uncertainty

of t-A es
2 , most parameter shifts are <0.5σ. Adding ADop to

LCDM when fitting Planck TT results in a <0.5σ shift of the
posterior distribution of ADop from the fiducial value of unity.
From a phenomenological perspective, these tests provide no
significant evidence for an improvement over LCDM by solely
modifying the monopole or dipole contributions to the CMB
photon distribution.
The LCDM + APol fit to Planck TT generally results in no

substantial shifts in the central value of the posteriors. The

Figure 3. Posterior comparisons of LCDM vs. LCDM +AL, LCDM +AeISW, and LCDM +APol fits to Planck TT. The Planck TT data prefer AeISW>1 at >1σ and
AL>1 at >2σ. Note that varying either of these two phenomenological amplitudes tends to shift the baryon density, ωb, in opposite directions as seen by the
orthogonal degeneracy directions. Varying APol results in significant degradation in the overall LCDM parameter precision, which can be seen most clearly in the
greater than 30% increase in the error in H0 and the 50% increase in the error on ωb. In all cases a prior of τ=0.0506±0.0086 was used.
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largest such shift is a 0.41 km s−1 Mpc−1 shift upward in the
mean value of H0. Nevertheless there are substantial increases
in the uncertainties of the parameters over the LCDM case. In
particular, note that the uncertainties of H0 and ωb increase by
roughly 35% and 50%, respectively, over the LCDM case. This
highlights the importance of the polarization effect even when
determining parameters from the TT spectrum.

In Figure 2 we compare the two-dimensional posterior
distributions for LCDM + either ASW or ADop to the LCDM
case. The correlations between either ASW or ADop and the
LCDM parameters have an opposite sign for these two models
because these phenomenological amplitudes disproportionately
add power to either odd or even acoustic peaks of the power
spectrum as discussed in Section 2. For example, increasing
ASW disproportionately adds power to the odd peaks which
must then be compensated by decreasing the baryon density. In
contrast, increasing ADop disproportionately adds power to even
peaks, which must then be compensated for by increasing the
baryon density. In Figure 3, we show the constraints for
LCDM and LCDM + one of AL, AeISW, or APol. In all of these
cases, the size of the contours increase dramatically
overLCDM, which should be contrasted with the relatively
minor changes when varying either ASW or ADop.

In summary, these tests show that LCDM is able to correctly
account for the Sachs–Wolfe, eISW, Doppler, and polarization
effects measured by Planck with the known caveat that there is
an internal tension in the Planck data between lowℓ and highℓ,
which can be relieved by allowing a parameter like AL to vary.
Because the cosmological parameters do not shift much when
the amplitudes for the Sachs–Wolfe, Doppler, eISW, or
polarization effects are varied, the parameter constraints from
these physical processes are internally consistent. Finally we
note that even when allowing the amplitudes for any one of the
physical effects that source the CMB temperature anisotropy to
vary, Planck TT is still able to place strong constraints on the
LCDM parameters.

3.2. ΛCDM + ASW+ADop

In the previous subsection, we showed results for extending
LCDM to include one of the phenomenological amplitudes that
we introduced in Section 2. In this subsection, we discuss

adding pairs of the phenomenological amplitudes. In general,
we find that much like adding one phenomenological
amplitude, adding pairs of phenomenological amplitudes does
not result in either an improved fit to Planck TT or a reduction
in the H0 tension with late universe measurements. We find that
only LCDM + ASW + ADop exhibits a significant improvement
to the fit to Planck TT.
We summarize the results of the MCMC sampling for

LCDM + ASW + ADop to Planck TT in Table 2. With two
parameters, it becomes more complicated to define when there
is a significant shift in the posterior, but ASW and ADop are both
more than 2σ below the fiducial value of unity when
simultaneously allowed to vary. Additionally, the PTE of the
Δχ2 assuming two degrees of freedom is 0.03 indicating a
significant improvement over the LCDM case. Note that
adding both ASW and ADop together results in a significant
improvement over standard LCDM when fitting to Planck TT
because when only one at a time was added there was much
less improvement. Allowing both ASW and ADop to vary
simultaneously does not also increase the Planck TT preferred
value of H0 like when adding AL.
Note that since ASW and ADop appear to be acting in unison,

we should recover approximately the same model if we use a
single phenomenological amplitude to scale both the Sachs–
Wolfe and Doppler effects. Taking a step back, if we had used
a single amplitude to rescale all of the effects that source the
CMB TT anisotropy in Equation (2), then this new phenom-
enological amplitude would have been almost completely
degenerate with As, up to corrections from lensing, when fitting
to Planck TT. In this case, As becomes a proxy for AL because
of how As explicitly enters the equations for lensing (see, e.g.,
Sections 3.1–3.2 of Lewis & Challinor 2006). Varying both
ASW and ADop simultaneously increases the uncertainty of

t-A es
2 by a factor of 4 relative to the LCDM case, which

allows sufficient freedom for As to become a proxy for AL.
Additionally in Table 2, we include the constraints when AeISW

is added to LCDM + ASW + ADop. For this MCMC run, we only
used a convergence criteria of R−1=0.1 because convergence
was difficult to achieve. While this LCDM + ASW + ADop +
AeISW result gives a significant improvement over LCDM with a
PTE of 0.03 assuming a Δχ2 with three degrees of freedom, it is

Table 2
Mean Values and 68% Credible Intervals LCDM Plus One or More Phenomenological Amplitudes for the MCMC Chains Fit to Planck 2018 TT Full ℓ

Parameter +AL +ASW +ADop +AeISW +ASW + ADop +ASW + ADop + AeISW

H0 69.11±1.20 67.41±1.03 66.90±1.02 66.55±0.96 67.52±1.04 68.59±1.46
w*100 b 2.265±0.029 2.226±0.027 2.210±0.030 2.170±0.035 2.180±0.032 2.225±0.054

ωc 0.1164±0.0025 0.1198±0.0022 0.1206±0.0022 0.1206±0.0021 0.1187±0.0023 0.1173±0.0026
t-A e10 s

9 2 1.8658±0.0156 1.904±0.027 1.886±0.022 1.873±0.0165 2.145±0.107 2.32±0.20
ns 0.9751±0.0072 0.9666±0.0067 0.9631±0.0058 0.9713±0.0077 0.9786±0.0084 0.9783±0.0085
AL 1.259±0.099 L L L L L
ASW L 0.9909±0.0100 L L 0.936±0.023 0.903±0.039
ADop L L 0.9984±0.0126 L 0.925±0.029 0.890±0.043
AeISW L L L 1.064±0.042 L 0.929±0.067

W hm
2 0.1390±0.0023 0.1421±0.0020 0.1427±0.0020 0.1423±0.0020 0.1405±0.0022 0.1395±0.0023

Wm 0.2915±0.0148 0.3129±0.0141 0.3186±0.0139 0.3217±0.0134 0.3085±0.0140 0.2972±0.0172
s8 0.7933±0.0120 0.8147±0.0099 0.8136±0.0114 0.8144±0.00978 0.865±0.023 0.891±0.033

c2 221.45 228.59 229.49 227.24 222.53 220.33
c c-LCDM

2 2 8.5 0.91 0.01 2.26 6.97 9.17

Note. For definitions of the phenomenological amplitudes see Section 2. We use a prior of t = 0.0506 0.0086.
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not a significant improvement over LCDM + ASW + ADop with a
PTE of 0.13 assuming one degree of freedom. This improved
Δχ2 is roughly equivalent to the improved Δχ2 when adding
only AeISW to LCDM as shown in Table 1, but note that Planck
TT prefers AeISW<1 for this model to be more in line with
the preferred values for ASW and ADop. While adding AeISW to
LCDM + ASW + ADop does not result in a significant
improvement, there is an increase in the preferred value of H0

similar to the LCDM + AL preferred H0 value.

In Figure 4, we compare the 2D posteriors for the one parameter
extensions,LCDM + ASW, ADop, and AeISW, and the combinations
LCDM + ASW + ADop and LCDM + ASW + ADop + AeISW.
Note the strong degeneracies between the phenomenological
amplitudes and the scalar amplitude when more than one
phenomenological amplitude is varied. Adding AeISW results in a
substantial increase in the degeneracy between the phenomenolo-
gical amplitudes and the scalar amplitude. This, in turn, allows for
parameters like H0 to access a broader parameter space.

Figure 4. Posteriors of LCDM + ASW + ADop + AeISW, LCDM + ASW + ADop, LCDM + ASW, LCDM + ADop, and LCDM + AeISW fits to Planck TT. Including
both ASW and ADop results in a strong degeneracy between the phenomenological amplitudes and t-A es

2 which was not necessarily expected given the posteriors when
only one of them is varied. The model LCDM + +A ASW Dop prefers values for ASW and ADop that deviate from unity by about 2σ. Additionally including AeISW

results in an even stronger degeneracy between the phenomenological amplitudes and As, which notably broadens the allowed parameter space for parameters like H0.
Nevertheless, the result is still consistent with AeISW=1, which suggests that adding AeISW does not result in a significant improvement over LCDM + ASW + ADop.
In all cases there is a prior of τ=0.0506±0.0086.
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In Figure 5, we demonstrate how the Sachs–Wolfe and
Doppler effects work together to rescale the power spectrum by
plotting the quotient of the LCDM + ASW + ADop case to the
LCDM case. In particular note that forℓ>400, the quotient is
flat, up to some wiggles that result from not additionally
rescaling APol. In the middle panel of Figure 5, we show that
the slope in the quotient forℓ<400 results from not also
rescaling the ISW effect. For LCDM + ASW + ADop, it is this
ability to rescale the TT power spectrum on scalesℓ>400 that

degrades the precision of As allowing it to become a proxy for
AL.
Because the degeneracy between ASW, ADop, and As when fitting

LCDM + ASW + ADop breaks down for multipolesℓ<400, we
use fits to Planck TT and Planck TTℓ>800 to illustrate that
LCDM + ASW + ADop is approximately finding theLCDM + AL
solution. In Figure 6, we show the residuals of the theory TT
power spectrum calculated using the best-fit parameters for the
LCDM + AL and LCDM + ASW + ADop fits to both Planck TT
and Planck TT ℓ>800 with the theory TT power spectrum
calculated using the best-fit parameters for theLCDM fit to Planck
TT. Additionally, we include the residual of the measured Planck
TT data with the LCDM fit to Planck TT. To increase the clarity
of the plot, we rebin the Planck TT data using new super bins of
Δ ℓ≈65. Note that there are high levels of correlation, often at the
80% level, between the bins for Plik Lite, which result from
marginalizing over the foregrounds.
Importantly, Figure 6 shows that the residuals forLCDM + AL

and LCDM + ASW + ADop are highly correlated when fit to
Planck TTℓ>800, which emphasizes that these two models are
making the same changes at high ℓ, and it is the lowℓ behavior
that restricts the latter model when fit to Planck TT. For ℓ>1250,
the LCDM + AL fit to Planck TT also becomes highly correlated
to these fits indicating that this is the primary feature of the lensing
solution. Further note that theLCDM + ASW + ADop fit to Planck
TT does fit the oscillatory residual in the Planck data, albeit
without the increased power for multipoles ℓ>1250. This is how
the LCDM + ASW + ADop fit to Planck TT achieves a significant
improvement over LCDM.
In Table 3, we show the results from MCMC runs for

LCDM, LCDM + AL, and LCDM + ASW + ADop fits to Planck
TTℓ� 800 and Planck TTℓ>800. Neither LCDM + AL nor

Figure 5. Top panel: ratio of the TT power spectrum when varying both ASW

and ADop together to the TT power spectrum of standard LCDM. The curves
correspond to all phenomenological amplitudes being set to {0.90, 0.92, 0.94,
0.96, 0.98} from top to bottom. If ASW and ADop act in unison, then, at high ℓ,
they can rescale the power spectrum and allow As to become a proxy for AL,
which results in a significant improvement over LCDM by mimicking the
effect of lensing. Middle panel: when AeISW acts in unison with ASW and ADop

the degeneracy extends to lower multipole moments resulting in a stronger
degeneracy. Bottom panel: the wiggles at high ℓ result from not including APol

in the rescaling.

Figure 6. Residuals of the best-fit TT power spectrum from LCDM + AL and
LCDM + ASW + ADop fits to both Planck TT and Planck TTℓ>800 with the
LCDM fit to Planck TT. We additionally include the residual of the measured
Planck TT data (black) points, but we have rebinned them with Δ ℓ≈65 for
visual clarity. When fit to only Planck TTℓ>800, varying the amplitudes for
the Sachs–Wolfe and Doppler effects results in a similar residual to the LCDM
+ AL residual, which suggests that at high ℓ these two models achieve
approximately the same effect. The LCDM + ASW + ADop fit to Planck TT is
restricted predominantly by the ISW effect breaking the degeneracy between
the ASW, ADop, and As, but it still fits the oscillatory residual in the multipole
range 1250�ℓ�2000, which explains the improved fit to the χ2 over the
LCDM fit to Planck TT. Note that the bins provided by the Planck
collaboration for Plik Lite are highly correlated at high ℓ.
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LCDM + ASW + ADop results in a significantly better fit to the
Planck temperature data when only half of the data are included.
This highlights that the improvement found when allowing either
AL or ASW and ADop to vary is primarily in bringing the two halves
of the Planck power spectrum into better agreement.

Allowing ASW and ADop to vary when fitting to either
Planck TTℓ�800 or Planck TTℓ>800 results in an
increase in the preferred value of H0, though notably the
uncertainty of H0 also increases to be >5 km s−1 Mpc−1. For
Planck TTℓ>800, the uncertainty on H0 increases by a
factor of 3.7 when AL is allowed to vary indicating that lensing
is important in constraining cosmological parameters at high ℓ.

In summary, we find that adding the phenomenological
amplitudes we introduced in Section 2 in pairs does not result
in a significant improvement to the fit to Planck TT over
standard LCDM. The one exception is when the phenomen-
ological amplitudes for the Sachs–Wolfe and Doppler effects
are both allowed to vary, but we show that this solution is
really approximately refinding the LCDM + AL solution by
allowing As to become a proxy for AL. Adding more
phenomenological amplitudes, such as AeISW, can make this
approximation marginally better but does not result in a
significant improvement to the fit to Planck TT.

4. Can Additional Model Freedom Improve over ΛCDM +
AL?

In the previous section we found that none of the
phenomenological amplitudes that we introduced in Section 2
showed any significant deviations from standard LCDM
predictions. Moreover, while we found that combining the
phenomenological amplitudes for the Sachs–Wolfe and
Doppler effects show a ∼2.7σ preference for ASW and ADop

both below unity, we noted that this solution was just refinding
the LCDM + AL solution.

In this section we test some extensions to LCDM + AL to
seek a model extension that better fits Planck TT. In Section 4.1,
we test extending the LCDM + AL model to include the
phenomenological amplitudes that we introduced in Section 2. In
Section 4.2, we test extending theLCDM + AL model to include
one of Neff, nrun, and YHe, which all have effects on the high
multipole moments of the TT power spectrum.

4.1. Testing AL Plus One Additional Phenomenological
Amplitude

In this subsection, we add the phenomenological amplitudes
introduced in Section 2 to LCDM + AL and fit to Planck TT.
While the results in Section 3.1 showed no preference for any
of these phenomenological amplitudes alone, Section 3.2
highlights the possibility that multiple phenomenological
amplitudes working together could result in some improvement
to the fit to Planck TT.
The results of adding ASW, ADop, AeISW, or APol to LCDM +

AL when fitting to Planck TT are summarized in Table 4. From
Table 4, it is clear that there is almost no improvement to the χ2

when including these phenomenological amplitudes. Moreover,
none of the posteriors for the phenomenological amplitudes are
more than 1σ away from unity. This is consistent with our
results from Section 3.1 but again highlights that each of these
physical effects are being correctly accounted for.
In Section 3.1, we showed that LCDM + AeISW results in a

minor improvement of 2.26 in the χ2
fit to Planck TT over

LCDM alone. Adding AeISW to LCDM + AL results in almost
no change in the χ2 from the LCDM + AL case nor a significant
shift in the preferred value of AeISW from unity. This suggests
that the changes made by varying AeISW are no longer necessary
when AL is already allowed to vary. This is consistent with the
primary improvement to the fit to Planck TT found in the
LCDM + AeISW model coming from multipolesℓ<30 as
LCDM + AL already makes improvements to fitting these
multipoles. Note that the improvement in the multipole
rangeℓ<30 when LCDM + AL is fit to Planck TT results
from freeing up the constraints on other cosmological parameters
such as allowing the preferred value of As to decrease and the
preferred value of ns to increase.
The model LCDM + AL + AeISW also provides an

exploration into how the physical matter density is constrained
by the CMB TT power spectrum. Knox & Millea (2020) point
out that the physical matter density is predominantly determined
by the overall photon envelope, followed by lensing, and then
finally by the eISW effect. When AL is allowed to vary, the
uncertainty of the physical matter density increases by roughly
16.5% over standard LCDM. Meanwhile, allowing AeISW to
vary results in a 3.5% increase in the uncertainty over
standardLCDM. Allowing AL and AeISW to vary results in a

Table 3
Mean Values and 68% Credible Intervals for LCDM, LCDM +AL, and LCDM + +A ASW Dop MCMC Chains Fits to Planck 2018 TT ℓ 800 and >ℓ 800

Parameter LCDM ℓ 800 AL ℓ 800 +A ASW Dop ℓ 800 LCDM >ℓ 800 AL >ℓ 800 +A ASW Dop >ℓ 800

H0 69.95±1.84 71.1±2.1 73.3±5.0 64.28±1.33 71.0±4.8 69.93±5.3
w*100 b 2.252±0.042 2.283±0.050 2.345±0.111 2.193±0.039 2.387±0.145 2.273±0.145

wc 0.1145±0.0033 0.1128±0.0036 0.1106±0.0068 0.1279±0.0034 0.1152±0.0088 0.1162±0.0106
t-A e10 s

9 2 1.8559±0.0170 1.8477±0.0177 1.80±0.31 1.922±0.021 1.896±0.025 2.59±0.62
ns 0.9756±0.0120 0.9829±0.0137 0.9895±0.0186 0.9489±0.0119 0.9579±0.0134 0.9823±0.037
AL L 1.64±0.53 L L 1.41±0.30 L
ASW L L 1.014±0.073 L L 0.873±0.115
ADop L L 1.045±0.104 L L 0.858±0.142

W hm
2 0.1370±0.0030 0.1355±0.0032 0.1341±0.0053 0.1498±0.0033 0.1390±0.0075 0.1389±0.0099

Wm 0.281±0.021 0.269±0.022 0.255±0.049 0.363±0.023 0.282±0.053 0.292±0.067
s8 0.7858±0.0139 0.7789±0.0150 0.758±0.087 0.8371±0.0124 0.783±0.040 0.923±0.086

c2 95.48 94.04 94.35 123.28 121.10 121.32

Note. For definitions of the phenomenological amplitudes see Section 2. We use a prior of t = 0.0506 0.0086.
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19% increase in the physical matter density over standard
LCDM. This suggests that the overall photon envelope
constrains the physical matter density significantly more than
either lensing or the eISW effect, consistent with Knox & Millea
(2020). However, note that Table 3 shows that allowing AL to
vary results in a 240% increase in the uncertainty of the physical
matter density when only ℓ>800 are included. This highlights
the importance of lensing to constraining the physical matter
density at high ℓ.

Note that LCDM + AL + ADop shows the largest reduction
in the χ2 despite the fact that adding ADop to LCDM resulted in
the smallest change to the χ2. This is accompanied by a 0.92σ
shift downward in preferred value of ADop, both of which
indicate that this is not a significant improvement. The
preferred value of ASW for the model LCDM + AL + ASW

shifts upward by about 0.9σ, comparable to the shift in the
preferred value of ADop. Adding either ASW or ADop to LCDM
+ AL results in either more power to the odd peaks or similarly
less power to the even peaks. In both cases, the preferred value
of AL is able to increase relative to the preferred value of AL

from LCDM + AL fit to Planck TT data.

Allowing both AL and APol to vary results in a negligible shift
in the central values of the posteriors and a negligible
improvement to the χ2 when fitting to Planck TT data. Again,
the most significant effect when allowing APol to vary is an
increase in the uncertainty of parameters such as the 30%
increase in the uncertainty of H0.

4.2. Testing AL Plus One Additional Nonphenomenological
Amplitude

In this subsection we test models for LCDM + AL + one of
Neff, nrun, and YHe. Neff is designed to account for the effective
number of relativistic degrees of freedom well after electron-
positron annihilation. The parameter nrun accounts for possible
linear order deviations from a flat primordial power spectrum
with a spectral tilt given by ns. Finally, the helium fraction, YHe,
affects the free electron density before and during recombina-
tion. All of these parameters added to LCDM + AL could in
principle affect the lowℓ and highℓ consistency.
The results of adding Neff, nrun, or YHe to LCDM + AL when

fitting to Planck TT data are shown in Table 5. From Table 5, it

Table 5
Mean Values and 68% Credible Intervals for LCDM +AL Plus One of Neff , YHe, and nrun for the MCMC Chains Fit to Planck TT

Parameter +AL + +A NL eff + +A nL run + +A YL He

H0 69.11±1.20 71.5±3.8 69.14±1.19 69.70±1.49
w*100 b 2.265±0.029 2.293±0.052 2.271±0.031 2.283±0.040

wc 0.1164±0.0025 0.1187±0.0046 0.1164±0.0025 0.1156±0.0027
t-A e10 s

9 2 1.8658±0.0156 1.8770±0.0157 1.8688±0.0165 1.8696±0.0170
ns 0.9751±0.0072 0.987±0.020 0.9744±0.0072 0.9822±0.0122
AL 1.259±0.099 1.302±0.117 1.270±0.099 1.287±0.107
Neff L 3.30±0.40 L L
nrun L L −0.0050±0.0076 L
YHe L L L 0.261±0.020

W hm
2 0.1390±0.0023 0.1415±0.0048 0.1391±0.0023 0.1384±0.0024

Wm 0.2915±0.0148 0.279±0.025 0.2915±0.0147 0.2856±0.0169
s8 0.7933±0.0120 0.7992±0.0157 0.7931±0.0122 0.7936±0.0124

c2 221.45 220.91 221.14 220.99
c c-L +ACDM

2 2
L

0 0.54 0.31 0.46

Note. We use a prior of t = 0.0506 0.0086.

Table 4
Mean Values and 68% Credible Intervals for LCDM +AL Plus One Phenomenological Parameter for the MCMC Chains Fit to Planck 2018 TT Full ℓ

Parameter +AL + +A AL SW + +A AL Dop + +A AL eISW + +A AL Pol

H0 69.11±1.20 69.04±1.20 68.87±1.23 69.02±1.39 69.45±1.55
w*100 b 2.265±0.029 2.259±0.030 2.248±0.035 2.258±0.051 2.274±0.040

wc 0.1164±0.0025 0.1162±0.0025 0.1165±0.0025 0.1164±0.0026 0.1165±0.0025
t-A e10 s

9 2 1.8658±0.0156 1.838±0.036 1.880±0.024 1.8643±0.0169 1.8635±0.0176
ns 0.9751±0.0072 0.9736±0.0073 0.9748±0.0072 0.9761±0.0080 0.9768±0.0090
AL 1.259±0.099 1.329±0.126 1.286±0.105 1.258±0.111 1.263±0.100
Anew L 1.0116±0.0128 0.9874±0.0137 1.009±0.047 1.13±0.36

W hm
2 0.1390±0.0023 0.1388±0.0023 0.1389±0.0023 0.1390±0.0023 0.1392±0.0023

Wm 0.2915±0.0148 0.2917±0.0148 0.2934±0.0151 0.2923±0.0164 0.2892±0.0161
s8 0.7933±0.0120 0.7866±0.0141 0.7973±0.0128 0.7938±0.0129 0.7939±0.0127

c2 221.45 220.98 220.72 221.44 221.40
c c-L +ACDM

2 2
L

0 0.47 0.73 0.01 0.05

Note. For definitions of the phenomenological amplitudes see Section 2. We use a prior of t = 0.0506 0.0086.
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is clear that none of these result in a significant improvement to
the fit. There is an increase of about 2.4 km s−1 Mpc−1 in the
preferred value of H0 when allowing both AL and Neff to vary.
This is accompanied by a roughly 300% increase in the
uncertainty of H0 placing the posterior for H0 within 1σ of the
measured value by the cosmological distance ladder. However,
when the Planck TE and EE power spectra are added to the fit,
the constraint becomes H0=68.1±1.7 km s−1 Mpc−1, which
corresponds to a 2.7σ tension with the distance ladder preferred
value for H0. Therefore, LCDM + AL + Neff is not a plausible
resolution of the Hubble tension.

In this section, we have allowed various additional types of
model freedom but found no substantial improvement over
LCDM + AL; for whatever reason AL does seem to do a very
effective job at relieving internal Planck tension.

5. Conclusions

We test the impact of allowing phenomenological ampli-
tudes for the Sachs–Wolfe, eISW, Doppler, and polarization
effects, which source the CMB temperature anisotropy, to vary
when fitting to the Planck TT power spectrum. We find that
allowing these amplitudes to vary results in only minimal
improvement in the fit over standard LCDM. Moreover, there
are only minimal shifts in the preferred values of the LCDM
parameters when the amplitudes of these physical effects are
varied. We conclude that LCDM correctly accounts for each of
these physical effects.

Additionally, we test allowing multiple of these phenomen-
ological amplitudes to vary simultaneously and find that allowing
ASW and ADop to vary together was the only combination that
results in a significant improvement to the χ2 when fitting to
Planck TT data. However, we also show that allowing these two
phenomenological amplitudes to vary simultaneously results in a
significant degradation of the precision of As, which comes from
the near rescaling of the power spectrum for multipoles ℓ>400
when ASW and ADop are scaled in unison. When only multipoles
ℓ>800 are included in the fit to the Planck TT spectrum,LCDM
+ ASW + ADop produces almost the same power spectrum as
LCDM + AL. We conclude thatLCDM + ASW + ADop is finding
theLCDM + AL solution and therefore does not provide any new
evidence for deviations from LCDM predictions.

From our tests where we vary AL and AeISW both
simultaneously and separately, we quantitatively determine
that the physical matter density is constrained primarily by the
overall photon envelope with smaller contributions from both
lensing and the eISW effect when fitting to Planck TT data.
These findings are in line with Knox & Millea (2020).
However, when only Planck TTℓ>800 data is included,
lensing provides the majority of the constraining power for the
physical matter density.

Finally, we varied both AL and one of Neff, nrun, and YHe and
fit to Planck TT data. All of these parameters impact the TT
power spectrum at high ℓ meaning each of these parameter
extensions provides a test of whether AL is fully able to resolve
the internal tension between Planck TTℓ�800 and Planck
TTℓ>800. We find no significant improvement in the fit over
the LCDM + AL case, which suggests that there is little room
for improvement from each of these effects.

Allowing these phenomenological amplitudes for the
physical effects that source the CMB temperature anisotropy
to vary provides a new test of consistency of each of these
physical effects with LCDM predictions. While none of our

new phenomenological tests provide evidence for deviations in
the predictions made by LCDM, this lack of deviations from
LCDM highlights that LCDM is generally good at describing
the very complex nature of the CMB temperature anisotropy
with the caveat that there is a known Planck internal tension
between ℓ�800 and ℓ>800. These tests suggest that any
new model of cosmology will need to make similar predictions
to LCDM for the Sachs–Wolfe, Doppler, eISW, and polariza-
tion effects.
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