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Abstract

The Deep Convolutional Neural Networks (DCNNs) have been a popular tool for image generation and
restoration. In this work, we applied DCNNs to the problem of inpainting non-Gaussian astrophysical signal, in the
context of Galactic diffuse emissions at the millimetric and submillimetric regimes, specifically Synchrotron and
Thermal Dust emissions. Both signals are affected by contamination at small angular scales due to extragalactic
radio sources (the former) and dusty star-forming galaxies (the latter). We compare the performance of the standard
diffusive inpainting with that of two novel methodologies relying on DCNNs, namely Generative Adversarial
Networks and Deep-Prior. We show that the methods based on the DCNNs are able to reproduce the statistical
properties of the ground-truth signal more consistently with a higher confidence level. The Python Inpainter for
Cosmological and AStrophysical SOurces (PICASSO) is a package encoding a suite of inpainting methods
described in this work and has been made publicly available at http://giuspugl.github.io/picasso/.

Unified Astronomy Thesaurus concepts: Cosmic microwave background radiation (322); Extragalactic radio
sources (508); Convolutional neural networks (1938); Interstellar synchrotron emission (856); Dust continuum
emission (412)

1. Introduction

Over the last few years, the use of machine-learning techniques
has become increasingly popular in analyzing scientific data. In
particular, the use of the Deep Convolutional Neural Networks
(DCNNs) has opened a wide range of interesting applications
(Mustafa et al. 2017; Rodríguez et al. 2018; Caldeira et al. 2019;
Krachmalnicoff & Tomasi 2019; Perraudin et al. 2019; Aylor
et al. 2020; Farsian et al. 2020).

In this work, we investigate how the problem of estimating
and reconstructing missing or masked regions of observations
can be better solved using DCNNs. These techniques have
been widely used for image restoration and face completion
and in principle can be similarly applied to generate semantic
content for astrophysical signals.

In particular, we focus on the case of the reconstructing
polarized signal emitted in the radio and submillimeter regimes:
(i) at n  60 GHz, where the emission is mostly dominated by
Galactic synchrotron, described by a power law b ~ -3synch

(Krachmalnicoff et al. 2018), (ii) at n  150 GHz where most
of the polarization is due to the thermal Galactic dust grains
aligning with the Galactic magnetic field, described by a
modified blackbody law (Planck Collaboration et al. 2020).
Emission coming from molecules (like carbon monoxide) and
from anomalous microwave emission are expected to be
polarized at this regime of frequencies, although their degree of
polarization is expected to be lower (a few percent, for details,
see Puglisi et al. 2017; Dickinson et al. 2018) compared to that
of dust and synchrotron (about 10%).

At n< <80 110 GHz, the cosmic microwave background
(CMB) polarization has a nonnegligible contribution especially at
high Galactic latitudes. A reliable assessment of both synchrotron
and dust polarized emissions in the two regimes (i) and (ii) is
critical to separate the Galactic contamination in CMB

measurements and further detect the divergence-less pattern in
the CMB polarization called B-mode. CMB B-modes, at degree
angular scales, are directly related to the imprint of a stochastic
background of gravitational waves produced during the infla-
tionary phase of our universe, commonly referred as tensorial
anisotropies. To date, primordial B-modes have not yet been
detected and the latest upper limits have been provided by Sayre
et al. (2020), Adachi et al. (2019), and BICEP2 Collaboration et al.
(2018). Future experiments aim at better characterizing diffuse
polarized emission from our own Galaxy with high-sensitivity
measurements (Carlstrom et al. 2019; The Simons Observatory
Collaboration et al. 2019).
At the arcminute angular scales, B-modes are sourced by the

gravitational lensing of large-scale structures, which deflect the
CMB scalar polarization anisotropies into the so-called lensing
B-modes (see the latest constraints in Sayre et al. 2020;
POLARBEAR Collaboration et al. 2017; Louis et al. 2017). At
these scales, extragalactic radio sources and star-forming galaxies
are the major polarized contaminants. The majority of these
contaminants mostly appears as bright and unresolved point
sources in a typical CMB map (the latest measurements can be
found in Gupta et al. 2019; Datta et al. 2019). Puglisi et al. (2018)
have shown that hundreds of polarized sources will be detected by
the forthcoming experiments given the expected nominal
sensitivity and the observation sky fraction (~10% 30%– ). Hence
an aggressive masking may be applied on maps surveyed by the
forthcoming CMB experiments, preventing a high-resolution
Galactic foreground template as well as a reliable analysis
involving high-order estimators beyond the two-point correlation
function. Reconstructing signals in the masking area to fill the
missing data is done to ameliorate these issues, a procedure
sometimes referred to as inpainting (used in, e.g., Starck et al.
(2013)).
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In this work, three different methodologies are tested to
inpaint maps at the locations of extragalactic point sources.
Two of the inpainting techniques involve generative DCNNs.
We compare the DCNNs inpainting performances with the
standard diffusive inpainting approach used in Bucher et al.
(2016), which is simply filling the missing pixel with the
average value of its nearest-neighbors.

We organize the paper as follows. In Section 2, we present
the three inpainting methodologies adopted in this work.
Section 3 describes the data used for training and validation
purposes. Finally, Section 4 includes the results achieved by
inpainting on simulations (Section 4.1) and on more realistic
data sets (Section 4.2). Finally, we apply our inpainting method
to the map of the S-band Polarization All Sky Survey (SPASS;
Carretti et al. 2019) at several source locations (Section 4.3)
and demonstrate that we robustly recover the background
signal.

2. Methods of Inpainting

Inpainting algorithms can be divided into two main groups:
(i) diffusive-based methods and (ii) learning-based methods
that rely on training DCNNs to fill the missing pixels with the
predictions learned from a training data set. We choose three
inpainting techniques from both groups: Section 2.1 describes a
diffusive-based method from group (i), and Sections 2.2 and
2.3 present methods from group (ii).

2.1. Nearest-neighbors

One of the simplest inpainting methods is the diffusive
inpainting described in Bucher et al. (2016), which has been
adopted in Ade et al. (2014, 2016). In this method, each
masked pixel is iteratively filled with the mean value of its
nearest-neighbor pixels, being often referred to as the nearest-
neighbors (NN) in the image reconstruction algorithm.

The iterative procedure can be performed in two ways. (i) The
Gauss-Seidel method, which computes the average of neighbors at
the current iteration. As a consequence, the pixels near the
boundary are updated in earlier iterations while pixels near the
center of the inpainting regions require several iterations. (ii) The
Jacobi method, which estimates the average value from a buffer of
pixel values at the previous iteration. Bucher et al. (2016) found
that ~ 103( ) iterations were needed to inpaint ~ ¢10 areas on a
map with~ ¢2 pixel size. Although Bucher et al. (2016) found that
both methods did not impact the quality of the inpainted results,
the Gauss-Seidel method achieves faster convergence than the
Jacobi method. We therefore adopted the former method as
suggested by Bucher et al. (2016).

2.2. Deep-Prior

Deep-Prior (DP; Ulyanov et al. 2020) is the first methodology
encoding DCNNs we use in this work. The fundamental
assumption of DP is that the information required to reconstruct
an image are essentially encoded in the input image itself (which
might be already corrupted, noisy or with missing pixels) and in
the network architecture used for the reconstruction. It has the
peculiarity of being an untrained network and the inpainting
procedure can be summarized as follows: (i) process the image to
be inpainted through the convolutional layers for several iterations
(usually more than 1000), (ii) fit for the neural network parameters
(or weights), and (iii) evaluate a loss function for a given set of
parameters. Ulyanov et al. (2020) proposed several loss functions
specifically related to the task to be performed (e.g., super-
resolution, inpainting, and denoising).
Inpainting can be formalized as an image generating procedure,

qf , mapping from the so-called latent space m into the feature
spacen, with = ´n N Npix pix being the size of the input images
and with parameters θ. Generative networks take as an input a
random vector z, known as the prior and outputs an image
= qx f z˜ ( ) given z and the parameterization. Generally, the whole

network architecture is symmetric and can be structured into two
main parts: an encoder, which represents the input into a lower
dimensional space and a decoder meant to do the opposite,
upsample from the low dimensional space to the original
input one.
We therefore build the DP architecture by following the

prescription given in Ulyanov et al. (2020) for the task of
inpainting,5 and building a U-Net type architecture sketched in
Figure 1 and summarized in Tables 1 and 2.
The optimal set of parameters q* is obtained minimizing the

loss function given a ground-truth image x0, with missing

Figure 1. Sketch of the DP architecture. This U-Net type architecture consists of a series of convolutional blocks: the encoder and the decoder blocks. The inputs first
pass the encoder blocks for down-sampling, and then are up-sampled through the decoder blocks for the final outputs. Further details of the architecture and
parameters can be found in Table 1.

Table 1
Architecture for DP Network as Described in Ulyanov et al. (2020)

Deep-Prior Network

nd [16, 32, 64, 128, 128, 128]
kd [3, 3, 3, 3, 3, 3]
nu [128, 128, 128, 64, 32, 16 ]
ku [5, 5, 5, 5, 5, 5]

Note. n n,u d correspond to, respectively, the number of upsampling and down-
sampling filters, k k,d u correspond to the kernel sizes.

5 Further details can be found in supplementary material, https://dmitryulyanov.
github.io/deep_image_prior.
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pixels correspondent to a binary mask m (with 0 in the masked
region and 1 elsewhere):

= -qE x x f z x m, , 10 0
2* *( ) ( ( ) ) ( )  

with = qx f z* * ( ) being the output of the inpainting reconstruc-
tion procedure and ethe Hadamard’s product. The minimiza-
tion process of Equation (1) is performed with the gradient
descent algorithm. Notice that this loss function does not
depend on the values of the missing pixels, but only on the
features outside the mask where the ground-truth is known.

2.2.1. Deep-Prior Architecture

The architecture of DP is sketched in Figure 1, the network
read the inputs are 128×128 images of Galactic foreground
maps and they are processed through a series of six
convolutional blocks aimed at down-sampling the images
(with a kernel size of kd=3) and an increasing number of
channels, nd (ranging from 16 to 128). Each block includes two
convolutional layers, respectively, with stride s=1 and s=2
followed by the application of the Leaky Residual Exponential
Linear Unit (LeakyRELU) activation, with a learning rate
parameter of a = 0.1LR . At the end of each down-sampling
block there is another convolutional layer with stride s=1
followed by another LeakyRELU. The decoder blocks follow
the exact symmetry of the encoder ones and differ only in the
kernel size adopted ku=5 . The structure of each upsampling
block include a convolution layer and LeakyRELU repeated
twice and terminates with an upsampling layer increasing the
size of the output by a factor of 2. In total, the DP network has
4,237,441 parameters. The whole architecture is implemented
using the Keras6 package with TensorFlow backend7

2.3. Generative Adversarial Networks with Contextual
Attention

Generative Adversarial Networks (GAN; Goodfellow et al.
2014) is a popular machine-learning algorithm useful in several
contexts, especially in image reconstruction. The overall GAN
framework can be synthesized as an adversarial interplay
between two networks, a generator, G, and a discriminator, D.
G is trained to generate fake samples that resemble the training
set, and D is responsible for judging whether a given sample is
generated by G or is a real image that belongs to the training
set. The loss of the network is designed such that G will get
penalized for producing images that look fake (statistically
deviating from the training set), and D will get penalized for
misjudging the originality of the images. The two networks are

then trained until the generator is able to generate good quality
images and the discriminator cannot tell if they are generated
or not.
In the context of image reconstruction, GAN seeks for

coherency between generated and existing pixels by adopting a
convolutional encoder-decoder generator network (similar to
the one described in Section 2.2). As a result, one of the biggest
advantages of using GAN based methods is that they are less
affected by problems observed in simple convolutional
networks such as boundary artifacts and blurry textures,
making the reconstructed images inconsistent with the
surrounding regions (Iizuka et al. 2017; Yu and Koltun 2015).
Recently, Yu et al. (2018) presented a novel generative

inpainting procedure based on GAN with an extra-branch in the
architecture aiming at providing more coherence in the
reconstructed area given features in the uncorrupted regions
of the image, referred to here as the contextual attention branch.
The proposed generator network can be then structured into
two stages: a coarse reconstruction stage, which employs a
generator built with an encoder-decoder architecture trained to
inpaint the missing region, and a refinement stage aimed at
improving the generator with local and global features
estimated with contextual attention. The first stage, the coarse
stage, is based on an encoder-decoder network to roughly
generate the content in the missing region. The second stage,
the refinement stage, is organized into two parallel convolu-
tional pathways both fed with the output of the coarse stage,
i.e., the full image with an approximated content in the missing
region. One of the two branches aims at hallucinating novel
contents in the missing region in order to better refine the
content inside the mask by injecting smaller scale features. The
other branch encodes the contextual attention to enhance spatial
coherency of the local features inside the masked area with the
global features. To better visualize how the contextual attention
works, we report in Figure 3 an example of inpainting with
GAN and the attention map related to this case. The attention
map helps to identify which regions of the input image the
contextual attention focuses on in order to refine the corrupted
image.
The output of the refinement stage is then combined and fed

to a single decoder for the final inpainting output. Both the
coarse and refinement stages of the generator network are
trained end-to-end with reconstruction losses. We follow the
prescriptions in Yu et al. (2018) and adopt a weighted sum of
pixel-wise ℓ1 loss to train explicitly the coarse and the
refinement networks. For the discriminator, we adopted two
Wasserstein GAN (WGAN) adversarial losses (Arjovsky et al.
2017) aimed at evaluating separately the global and local
features of the generated images.

Table 2
Sequence of Layers Encoded in the ith Encoder and Decoder Block Adopted for DP

Encoder Block s Parameters Decoder Block s Parameters

Conv2D 1 ´ ´ ´k i k i n i 1d d d[ ] [ ] [ ] Conv2D 1 ´ ´ ´k i k i n i 1u u u[ ] [ ] [ ]
Conv2D 2 ´ ´ ´k i k i n i 1d d d[ ] [ ] [ ] LeakyRELU a = 0.1LR

LeakyRELU a = 0.1LR Conv2D 1 ´ ´ ´k i k i n i 1u u u[ ] [ ] [ ]
Conv2D 1 ´ ´ ´k i k i n i 1d d d[ ] [ ] [ ] LeakyRELU a = 0.1LR

LeakyRELU a = 0.1LR UpSampling2D = 2, 2( )size

Note. s refers to the stride size.

6 https://keras.io/api/
7 https://www.tensorflow.org/
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2.3.1. GAN Architecture

The overall architecture used in generative inpainting is
shown in Figure 2 (details for convolutional layers can be
found in Table 3). Moreover, we choose to adopt the same
hyperparameters in setting the network as the one provided in
Yu et al. (2018). Each convolutional layer is implemented by
using mirror padding, without batch normalization and with
Exponential Linear Units (ELUs; Clevert et al. 2015) activation
functions. We summarize into four subnetworks the GAN
implementation in this work:

1. Inpainting networkperforms the coarse stage of the
Generator network, and presents an encoder-decoder
architecture made of 16 blocks of convolutional layers.
For the down-sampling part, we choose k=3 for all the
kernels, except for the first one (k= 5), and set the stride to
s=2 only for the second and fourth convolutional block
(for the rest s= 1). Starting from the sixth to the ninth block
dilation is also applied to the convolution with an increasing
dilation rate from 2 to 16. The application of dilations aims
at capturing more global features from the input without
increasing the size of parameters. The upsampling part
encodes two upsampling layers after the twelfth and the
fourteenth block, for all the convolutions we choose ku=5
and su=1. The number of channels are reported in Table 3.

2. Contextual attention branch is aimed at refining the
coarsely inpainted image output from the previous
network. This branch has a very similar architecture as
the inpainting one with the main difference that it is made
of two parallel encoders concatenated to a single decoder.
One of the encoders estimates the contextual attention. In
this branch, the attention map (Figure 3) is estimated. The
architecture details are listed in Table 3 and we refer to
L1 and L2 for the two encoders.

3. Local and global critics in the Discriminator network aim
at labeling whether the inpainted image is coherent inside
and outside the masked area. Both critics are made of four
blocks with k=5 and s=2 and with an increasing
number of channels n from 64 to 512 (256) for the local
(global) network. The last convolution is linked onto a
fully connected layer and to the WGAN loss function.

3. Data and Simulations

In this study, we mainly focus on inpainting maps of
two emissions in the microwave regimes: i.e.,synchrotron and
thermal dust. These two foreground components contaminate the
CMB polarization measurements and need to be modeled both at
large and small angular scales for foreground removal. Since
the statistical properties of Galactic foregrounds are highly

Figure 2. Sketch of the GAN architecture with contextual attention implemented in this work. The Generator network consists of a coarse and a refinement stage,
which, respectively, produce a rough and refined reconstruction of the corrupted image. The input of the Discriminator coincides with the output of the refinement
stage. Both Generator and Discriminator are trained end-to-end together. Further details of the network architecture and parameters can be found in Table 3.

Table 3
Architecture and Parameters Used for GAN as Described in Yu et al. (2018)

Inpainting Network Contextual-attention Branch

nd [32,64,64,128,128,128,128 L1:[32,64,64,128,128,128,128]
128,128,128,128,128] L2:[128,128]

kd [5,3,3,3,3,3,3,3,3,3,3] L1:[5,3,3,3,3,3], L2:[3,3]
sd [1,2,1,2,1,1,1,1,1,1,1] L1:[1,2,1,2,1,1], L2:[1,1]
D [1,1,1,1,1,2,4,8,16,1,1]
nu [128,64,64,32,16] [128,64,64,32,16]
ku [5,5,5,5,5] [5,5,5,5,5]
su [1,1,1,1,1] [1,1,1,1,1]
Local WGAN Global WGAN
n [64,128,256,512] [64,128,256,256]
k [5,5,5,5] [5,5,5,5]
s [2,2,2,2] [2,2,2,2]

Note. For each network, we indicate with n k s, , , respectively, the number of channels, the kernel size, and the stride size. In particular, for the inpainting and
contextual attention networks we label with d (u) the sizes for the down-sampling (upsampling) of filters. D refers to the dilation rate. L1 and L2 in the contextual-
attention column refer to the two parallel encoders in the refinement stage.
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non-Gaussian, an interesting application of DCNNs is to
reconstruct images with complex, non-Gaussian features. In
contrast, traditional inpainting methods used in CMB studies
such as the Gaussian Constrained Inpainting methods (Hoffman
& Ribak 1991; Bucher & Louis 2012) assume that the
background is a Gaussian field, making it incapable of capturing
the non-Gaussianity in the foregrounds.

Both Galactic foregrounds, unpolarized and polarized emis-
sions data (respectively, encoded in the brightness temperature, T,
and Stokes parameters Q and U maps) are simulated using the
PySM package (Thorne et al. 2017) and will be described below
in Sections 3.1 and 3.2.

3.1. Galactic Synchrotron

For the synchrotron data, we consider SPASS (Carretti et al.
2019) which observed the Southern sky (d < - 1 ) at 2.3 GHz
with an 8.9 arcmin full width at half maximum (FWHM). The
methodology used to generate the intensity and polarization maps
are described in Carretti et al. (2019). 98.6% of the pixels in the Q
and U SPASS maps have signal-to-noise ratio (SNR)>3, making
these maps a promising synchrotron polarization template
(Krachmalnicoff et al. 2018). Lamee et al. (2016) cross-matched
the extragalactic radio quasars (mostly steep spectrum sources)
detected by SPASS with the ones detected by the NRAO/VLA
Sky Survey (NVSS; Condon et al. 1998), at 1.4 GHz and released
a polarization catalog with 533 bright sources in the overlapping
area of the two surveys. However, because the SPASS T, Q, and
U maps are filled with radio sources, an assessment on the map
level to the smallest angular scales is essentially compromised by
the point-source bias. Therefore, masking and inpainting these
sources provide an overall benefit in fully exploiting the angular
scales probed by SPASS.

In order to inpaint the SPASS map, we first create a simulated
training data set, which will be used for training the GAN
(training set) and for evaluating the quality of the reconstructions
(testing set). We therefore simulate SPASS synchrotron-only
TQU maps at the SPASS frequency with s1 PySM model. This
model is one of the most representative since it parameterizes the
synchrotron power-law emission with a spatially varying spectral
index. Maps are pixelized on a HEALPix8 (Górski et al. 2005;
Zonca et al. 2019) nside=2048 grid convolved with an 8 9
FWHM beam.

3.2. Thermal Dust

We use the thermal dust maps at 353 and 857 GHz from
the third Planck public release.9 Both frequency maps are

dominated by the thermal dust emission emitted by our own
Galaxy and encode contribution from cosmic infrared back-
ground (CIB). We choose the 353 GHz frequency channel
in order to test the inpainting techniques on both dust
temperature and polarization maps. Because the 857 GHz
channel is not polarization sensitive, we use this channel to
assess how the different SNR and different CIB contribution
affect inpainting reconstructions in total intensity. At these
frequencies, the emission is dominated by star-forming
galaxies, and blazars are expected to have minor contribution
to the total intensity.
We build the training set by simulating TQU Thermal

dust maps at 353 GHz with the d1 PySM model, which
describes the modified blackbody emission law with a spectral
index and a temperature, both spatially varying. Maps are
simulated on a nside=2048 grid and convolved with a 5′
FWHM beam, similarly to the one in the Planck 353 GHz
observations.
Furthermore, since the pixel values of the maps are rescaled

during the training and inpainting processes, the GAN
reconstruction is not affected by the overall amplitude
of a signal. We will show in Section 4.2 that inpainting
performances do not change as a function of frequency as
long as the brightest signal in the map coincides with the one
used in the training. This independence of frequency is the
reason why we trained the GAN for thermal dust emission
using PySM signal-only simulations with single frequency at
353 GHz.

3.3. The Training Data Set

Both the training and testing data sets are made from the
PySM simulated maps. We forecast with PS4C package10

(Puglisi et al. 2018), the number of sources, Nsrc whose
density fluxes will be detected at 5σ significance above the
sensitivity flux. For a generic large aperture forthcoming CMB
experiment (e.g., The Simons Observatory Collaboration et al.
2019), the forecasted detection is about ~N 30, 000src . We
then generate a point-source mask by randomly extracting Nsrc

locations following a Poisson distribution. We mask the
sources with circular holes centered at the source locations
and with a radius three times larger than the beam FWHM size
(namely 26 7 and 15′, respectively, for synchrotron and
dust maps).
Both masked and unmasked maps are then split into ´3 3 deg2

square tiles, composed of 128×128 pixels with resolution closer
to the HEALPix one (i.e.,∼1 5 at nside=2048). We finally
build the training set for the GAN network by combining 45, 000
images from square patches extracted equally from T, Q, and U
maps. The remaining 5000 images are used for validation and 500
for testing.

4. Results

Figures 4, 5, and 6 show examples of maps extracted from
the test set and reconstructed with the three methods outlined in
Section 2. We estimate the minimum and maximum values of
each ground-truth image to rescale it (together with the
respective inpainted ones) to 0, 1[ ] with the MinMax normal-
ization. This rescaling forces the generated maps to have the
same range as the test ones, so the differences between the

Figure 3. Visualization of an inpainting contextual-attention map. The colors
in the color coding indicate the portion of the whole image the neural network
has focused on in order to inpaint a given pixel location in the masked area. In
this particular example, most of the pixels are inpainted by GAN by looking at
the upper and lower left region of the image.

8 https://healpix.sourceforge.io
9 https://pla.esac.esa.int 10 https://gitlab.com/giuse.puglisi/PS4C
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ground-truth and reconstructed map can be spotted more easily.
Notice that we further zoom in on dust maps ( ´1.5 1.5 deg2

crops) to better inspect the inpainted region.

As expected, the inpainting performed with the NN algorithm is
smooth and lacks finer details, making them distinguishable from
the original map.

Figure 4. Thumbnail ´1.5 1.5 deg2 crops for (a) Q and (c) U map predictions of thermal dust. The radius of the reconstructed area (black circle) is 15′. Columns from
left to right show ground-truth maps from the test set, predictions obtained with DP, NN, and GAN, respectively. The colorbar is set to be the same in each row by
MinMax rescaling all the images with the same min and max values of the ground-truth ones. Notice that we further zoom in on the dust maps to better inspect of the
inpainted region (maps are originally ´3 3 deg2). Temperature maps are shown in Figure 6 of the Appendix.
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On the contrary, for the inpainting performed with DP and
GAN, it is harder to point out which one is the ground-truth and
which is the reconstructed maps. Moreover, we note that DP

and GAN are able to reproduce the large-scale features, the
most correlated angular scales, as well as the typical Q/U
pattern for the polarization maps.

Figure 5. Thumbnail ´3 3 deg2 crops for (a) Q and (c) U map predictions of synchrotron emission. The arrangement and the colorbar setting are the same as those in
Figure 4. The radius of the reconstructed area (black circle) is 30′. Temperature maps are shown in Figure 6.
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4.1. Evaluation of Fidelity

We employ several methods used in the literature to assess
the quality of the reconstructed maps quantitatively. First, we

follow the approach from Mustafa et al. (2017) and Aylor et al.
(2020), focusing on evaluating the ability to replicate the
summary statistics of the underlying signal that needs to be

Figure 6. Thumbnail images for (a) dust and (b) synchrotron T maps predictions from the testing set simulated with PySM. The radius of the reconstructed area is
shown as a gray circle.
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reconstructed. Those statistics are based on (i) the pixel
intensity distribution, (ii) the angular power spectra of the two-
point correlation function, and (iii) the first three Minkowski
functionals. We, therefore, consider the inpainting as successful
if it passes these three statistical tests.

The distribution of pixel intensity provides information
about whether the range of pixel values of the ground-truth
maps are reproduced in the generated maps. Figure 7 shows the
histogram of the pixel intensities of 500 generated maps
compared with the corresponding ground-truth maps from the
test set. For the types of foregrounds we consider in this
analysis, the amplitude is strongly directionally dependent.
Therefore, we scale the sample maps with MinMax rescaling to
-1, 1[ ] to reduce the patch-to-patch variation. Although the
differences between the pixel distributions are nearly negli-
gible, we run a Kolmogorov–Smirnov (KS) two-sample test on
each case and assess how likely the distribution of inpainted
images is drawn from the ground-truth distribution. We thus
estimate the empirical distribution function on the pixel
samples from the ground-truth images and from images
inpainted with three methods introduced in Section 2, and
then derive the KS two-sample statistics to test the null
hypothesis. From the KS p-values summarized in Table 4, we
find that >p 0.86 (0.997) for synchrotron (thermal dust) maps
so that we cannot reject the null hypothesis.

In order to check whether the Fourier modes in the ground-
truth are reproduced in the inpainted maps, we additionally
evaluate the power spectra of intensity (TT), and polarization
(EE and BB) maps11 in each flat square map from the test set
and the ones inpainted with the three methods.

Each spectra shown in Figure 8, is estimated with NAMAS-
TER12 (Alonso et al. 2019), binned into equally spaced
multipoles with D =ℓ 450. The maximum multipole is chosen
accordingly to the beam FWHM with whom the signal is
convolved, i.e., =ℓ 4000max for dust and =ℓ 2000max for
synchrotron. The median of the binned power spectra is plotted
at each multipole estimated from the test set including 500
ground-truth maps and corresponding inpainted maps.

The shaded-gray area represents 95% of the power spectra
estimated from the test set and its vertical width indicates how
much the amplitude of the signal can vary at different locations
of the sky (as much as 2 orders of magnitude). The median
power spectra estimated from inpainting the test set are shown
as points, and the area within the dashed lines corresponds to
the 95% of the power spectra. Notice that DP power spectra for
thermal dust tend to systematically depart from the ones
estimated with the test set spectra at >ℓ 2500 scales. On the
contrary, GAN and NN are overall consistent with the spectra
from the ground-truth maps.
To assess more quantitatively that the power spectrum at a

given ℓbin is correctly reproduced, we consider three different
multipole bins. We bootstrap resample 5000 times the
distribution in each bin of 500 spectra and perform the KS
test on the resampled distribution.
Figure 9 shows the distribution of EE spectra for thermal

dust (top) and synchrotron (bottom) and favors GAN as the
method that better resembles the ground-truth distribution, with
KS p-value >0.978 >0.808( ) for dust (synchrotron) spectra.
On the other hand, NN spectra present the lowest p-values of
>0.808 for dust and >0.538 for synchrotron.

In Table 5, we summarize the KS test p-values estimated on
each multipole bin and after having bootstrapped resampled the
TT, EE, and BB spectra 5000 times in each bin. In total, we
account for (3× 9) 27 KS p-values for dust and (3× 5) 15 KS
p-values for synchrotron spectra. Although there are few bins
where the p-value is as low as 0.153, the KS statistics for those
bins is small enough that the null hypothesis cannot be rejected
at a significance level of a > 5%. We therefore conclude that
all three methodologies are able to reproduce angular
correlations of the underlying signal coherently.

Figure 7. Top: thermal dust pixel intensity distribution of 500 generated maps with NN (diamonds), DP (stars), GAN (circles) compared to 500 maps from test set
(black squares). Bottom: synchrotron pixel intensity distribution. The KS test statistics and the p-values listed in Table 4 indicate that the distribution of inpainted
images are likely to be drawn from the distribution of the test set.

Table 4
p-Value of KS Test Performed on the Pixel Intensity Distribution of Q Maps

Shown in Figure 7

Synchrotron Thermal Dust

NN >0.997 >0.999
DP >0.963 >0.999
GAN >0.861 >0.997

11 Following the decomposition of Q and U maps proposed in Seljak &
Zaldarriaga (1997) and Hu & White (1997).
12 https://github.com/LSSTDESC/NaMaster
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Figure 8. From left to right, TT, EE, and BB power spectra estimated from a sample of 500 thermal dust (top) and synchrotron (bottom) maps. Median power spectra
are shown as black dotted lines for the test set, blue diamonds for NN inpainting, orange stars for DP inpainting, and green circles for GAN inpainting. The gray
shaded area corresponds to 95% of the test set spectra to be compared with 95% of the set of power spectra inpainted with NN, DP, and GAN, respectively, shown as
dashed blue, dashed orange, and dashed green. The spectra are uniformly binned with D =ℓ 450.

Figure 9. Distributions of EE power spectra of thermal dust (top panel) and synchrotron (bottom panel) at three different multipole bins resampled from the power
spectra of 500 images inpainted with NN (diamonds), DP (stars), GAN (circles). We compare them with the resampled EE spectra of test maps (black squares). Error
bars are estimated as the squared root of number of elements in each bin after bootstrap resampling.
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Since the Galactic emission is highly non-Gaussian, it is
essential to evaluate how well the methodologies described
here are able to reproduce the non-Gaussian features. We thus
evaluate the three Minkowski functionals V V V, ,0 1 2 for each
rescaled map (ranging in -1, 1[ ]). The first three Minkowski
functionals are related, respectively, to the area, the perimeter
and the connectivity in an image as a function of a threshold ρ.
The dotted black lines in Figures 10 and 11 show the median
for the three Minkowski functionals (calculated using Mantz
et al. 2008) estimated from 500 samples and evaluated at 10
equally spaced thresholds. Minkowski functionals for inpainted
images are shown in Figures 10 and 11 with the same color
scheme as in Figure 8. We notice that both GAN and NN are
able to fully reproduce the non-Gaussianity of both the
unpolarized and the polarized Galactic emission.

Similar to what is stated above, the Minkowski functionals
estimated on the maps inpainted with DP clearly depart from
the ground-truth especially at intermediate thresholds,
( r- < <0.5 0.5) for the V1 and V2 functionals. This can
point to further investigations for the DP inpaintings especially
for better characterizing the non-Gaussian features and the
small angular scales >ℓ 2500 of both dust and synchrotron
that are not fully captured by the DP network.

4.2. Validation on Real Data

To further test and validate our methodologies, we run tests
on real data, cropping 500 images at random locations from the
Planck maps at 353 and 857 GHz.

Figure 12 shows the ´1.5 1.5 deg2 Planck maps at (a) 353
and (b) 857 GHz. Notice that we deliberately choose two
locations to highlight reconstruction performances at two
different SNR regimes. Closer to the Galactic midplane, the
dust emission is stronger so that SNR is high at both 353 and
857 GHz, e.g., see top panels of Figures 12(a) and (b). On the
contrary, at high Galactic latitudes and at 353 GHz, the SNR
can be lower and noise contribution is clearly noticeable in the
maps, e.g., as in the bottom panel of Figure 12(a). In this case,
the inpainting performances with DP and GAN can be affected
by noise, and the reconstruction area can be visually
distinguished in the square patch.

For a more quantitative assessment, we thus estimate the
summary statistics shown in Section 4.1 and we show the
results in Figure 13.

A clear indication that the thermal dust emission data is
contaminated by instrumental noise can be inferred by
comparing the shapes of Minkowski functionals estimated for
the maps at 353 GHz, with the ones from signal-only

simulations (Figure 4) or from signal-dominated maps
(Figure 13(b)). The morphology of the Minkowski functionals
of the former largely resembles the functionals estimated from
a Gaussian signal. Two possible candidates for the Gaussian
component are (i) Planck instrumental noise, which can be
approximated as white within ~9 deg2 patches, and (ii) CMB
residual emission.
DP inpaintings are the most affected ones in the presence of

the noise at 353 GHz, e.g., notice how the pixel distribution
(top left panel) of Figure 13(a) noticeably departs from the
ground-truth one. However, the KS test p-value performed on
the DP and ground-truth samples is >p 0.536, i.e., not
significantly low enough to reject the null hypothesis that the
two samples are different. On the other hand, inpainting with
GAN and NN does not show any dependence with SNR, as the
performances with these methodologies are essentially similar
to the ones observed with the signal-only simulated maps (e.g.,
Figures 7, 8, and 10).
Finally, we would like to point out that for the case of

inpainting with GAN, we use the weights derived from the
training set composed of signal-only dust TQU simulated
maps. Looking at Figure 13 we notice that GAN is able to
statistically reproduce at 353 GHz the features composed by
signal and noise, indicating that the network has correctly
learned the features related to the intrinsic signal in the
presence of noise, and injects signal plus noise features
statistically coherent with the ones outside the masked area.
However, when the noise is highly dominating in the patch, we
can clearly distinguish smooth artifacts in some cases inpainted
with GAN (see Figure 12(a, bottom)). This is somewhat
expected because GAN is trained on signal-only simulated
images. Further investigations on training GAN with noisy data
are needed, and we will address it in a future work.

4.3. Inpainting Maps with Point Sources

In this section, we aim at showing real world applications of
the three reconstruction methodologies by inpainting areas in
real maps with extragalactic radio sources.
We consider the TQU SPASS synchrotron map at 2.3

GHz13, and we run a Matched Filter (Marriage et al. 2011) to
detect the brightest polarized sources in the map. We consider
s7 as a threshold for a point-source detection. In particular, we
focus on unresolved point sources (i.e., sources whose
projected solid angle is smaller than the SPASS beam solid
angle) detected at intermediate Galactic latitudes > b 20∣ ∣ . As
a result, 45 polarized sources are detected in the SPASS map,
which is very close to 60, the number forecasted by PS4C with
the adopted SPASS specifications.
Figures 14 and 15 show a selection of images extracted from

the SPASS TQU maps and centered at the coordinates of the
detected sources. The shape and the size of the region to be
inpainted are chosen proportionally to the flux of each source
(see the black circle in Figure 14). However, we expect the
inpainting not to be affected by different shapes and/or sizes of
the masked area as demonstrated in Yu et al. (2018) and
Ulyanov et al. (2020). Moreover, we set the color scale of the
input SPASS map to be the same as the one in the inpainted
maps to highlight the consistency with reconstructed maps. As
expected, images inpainted with GAN are visually injecting

Table 5
p-Value of KS Test Performed on Each Multipole Bin

Synchrotron Thermal Dust

NN >0.306 (2 bins) >0.537 (4 bins)
>0.792 (13 bins) >0.801 (23 bins)

DP >0.538 (5 bins) >0.153 (4 bins)
>0.792 (10 bins) >0.788 (23 bins)

GAN >0.538 (5 bins) >0.153 (3 bins)
>0.792 (10 bins) >0.788 (24 bins)

Note. We combined together TT, EE, and BB spectra, 27 (15) bins in total for
dust (synchrotron).

13 Maps are available online at https://sites.google.com/inaf.it/spass.
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more coherent features and less artifacts with respect to DP
and NN.

Given the presence of the point source at the center of the
patch biasing the evaluation of fidelity with the pixel
distribution and the Minkowski functionals, we estimate the
power spectra from all the sets of maps in order to assess more
quantitatively the quality of the generated maps. We masked
the source with a circular mask with 30′ radius and estimate the

spectra in the area outside the mask. On the other hand, we did
not apply the point-source mask for the power spectra
estimated from the inpainted maps.
We estimate the power spectra as described in the previous

sections. In Figure 16, we show the TT, EE, and BB power
spectra, which indicates all methodologies essentially are able
to reproduce consistently the power spectrum at all angular
scales of the input SPASS masked maps. Moreover, on smaller

Figure 10. From left to right, V V V, ,0 1 2 Minkowski functionals estimated from the test set of 500 thermal dust T, Q, and U maps, respectively, in (a), (b), and (c). We
use the same coloring scheme as in Figure 8: (black dotted) median of the functionals estimated from the test set, 95% of the functionals is shown as a gray shaded
area. Points and dashed lines refer to medians and the 95% interval of the functionals estimated from the sets of inpainted maps with NN (blue diamonds and blue
dashed), DP (orange stars and orange dashed), and GAN (green circles and green dashed).
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angular scales, the power spectra from maps inpainted with
GAN show a lower amplitude tail, possibly implying that
Poissonian bias from undetected point sources is further
reduced (a factor of ∼4 for EE and BB spectra).

5. Code Release

The three inpainting methods have been collected into a
python package, the Python Inpainter for Cosmological and

AStrophysical SOurces (PICASSO github.com/giuspugl/
picasso §). It has been made publicly available together with
a documentation web page.14

We trained GAN separately on dust and synchrotron map
sets.15 The training process for each set took ∼12 hr on a GPU

Figure 11. From left to right, V V V, ,0 1 2 Minkowski functionals estimated from the test set of 500 synchrotron TQU maps, respectively, in (a), (b), and (c). We use the
same coloring scheme as in Figure 8: (black dotted) median of the functionals estimated from the test set, 95% of the functionals is shown as a gray shaded area. Points
and dashed lines refer to medians and 95% interval of the functionals estimated from the sets of inpainted maps with NN (blue diamonds and blue dashed), DP (orange
stars and orange dashed), and GAN (green circles and green dashed).

14 http://giuspugl.github.io/picasso/
15 Training weights can be downloaded from https://bit.ly/2TI6x4o.
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Figure 12. Thumbnail images of Planck temperature maps at (a) 353 and (b) 857 GHz. The radius of the reconstructed area (black circle) is 15′. Two locations are
chosen to highlight different inpainting performances with high and low SNRs of Planck 353 map, respectively, at high Galactic latitude, i.e., =  - l b, 65 . 7, 7( ) ( )
and at low Galactic latitude, i.e., =  - l b, 73 . 3, 37( ) ( ).
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Figure 13. Summary statistics estimated on Planck dust T maps at (a) 353 and (b) 857 GHz.

15

The Astrophysical Journal, 905:143 (19pp), 2020 December 20 Puglisi & Bai



node of SHERLOCK Cluster of Stanford Supercomputing Center
with four interconnected NVIDIA Tesla P40 GPUs.16

Finally, we measure the inpainting speed for each of the
three methods. We performed this benchmark within a GPU

node at NERSC equipped with four interconnected NVIDIA
Tesla –V100 GPUs.17 GAN is the fastest method since fast-
forwarding the trained weights is very quick and it takes
~ ¸4 6 s. Although NN does not involve any DCNN in the

Figure 14. From left to right, input SPASS, DP, NN, and GAN polarization maps inpainted in the 30′ region surrounding the detected point source (black circle). The
range of the input map is chosen to be the same as that of the inpainted ones. Temperature maps are shown in Figure 15.

16 For more details, see https://www.sherlock.stanford.edu. 17 https://docs-dev.nersc.gov/cgpu
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map reconstruction, it iterates over the pixels in the missing
region and it takes ∼15 s per image. A single inpainting with
DP takes ∼30 s, since this is the time spent to minimize the loss
function in Equation (1) over 3000–5000 epochs with gradient
descent.

6. Discussion

In the near future, several high-resolution experiments from
the ground, e.g., Simons Observatory, the South Pole
Observatory, and CMB-Stage IV (The Simons Observatory
Collaboration et al. 2019; Carlstrom et al. 2019; Abazajian
et al. 2019), are expected to detect more than 10,000 sources in
total density flux representing a critical contaminant especially
at small angular scales (Puglisi et al. 2018; Naess 2019;
Lagache et al. 2020). This is mostly due to an improvement in
sensitivity and an increase in the footprint area (~40% of the
sky) with respect to the ones that have been surveyed so far.

To mitigate the contamination issue, detected point sources
are usually masked out from the maps. However, a mask
encoding more than 10,000 can result in biasing the two-point
(as well as the higher-order) correlation functions used to
estimate cosmological parameters. Several methodologies have
been proposed in the literature to clean the maps from point
sources, e.g., if the source is unresolved by fitting the beam
profile at the map level (Naess 2019; Datta et al. 2019) as well
as inpainting with several methodologies, not necessarily
involving DCNNs (Bucher & Louis 2012).
On the other hand, point sources contaminate the Galactic

foreground emission especially far from the Galactic midplane
(i.e., at high Galactic latitudes). A mitigation of point-source
contamination in polarized foreground maps at small angular
scales is thus needed in order to de-lens the gravitational
lensing B-mode and assess the amplitude of the primordial
B-mode.

Figure 15. SPASS temperature maps inpainted in the 30′ region surrounding the detected point source (black circle). The range of the input map is chosen to be the
same as that of the inpainted ones.

Figure 16. TT, EE, and BB power spectra estimated on the SPASS map. In this case, the input map encodes a point source located at the center and is masked out
before computing the power spectra. Vice versa, spectra estimated on inpainted maps do not have the mask applied.
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In this work, we inpaint thermal-dust and synchrotron
intensity and polarized emissions in order to deliver point-
source-free foreground template maps. We show that not only
the pixel distribution and two-point correlation function of the
inpainted maps, but also their higher statistic moments
commonly adopted for non-Gaussian maps, i.e., the Minkowski
functionals, are statistically consistent with the ones from the
real data set by means of the KS test. Given the fact that
applications related to the foreground maps mostly involve
maps and spherical harmonic expansions, the statistical tests,
implemented in this work, ensure that the inpainted maps do
not have any bias when compared with the authentic ones
outside the masked area. However, we plan to address in a
future work what is the eventual bias introduced by inpainting
methodology by estimating the bi- and tri-spectrum of angular
correlation.

Finally, both the two DCNN methodologies implemented in
this work are deterministic, meaning that they generate one
single inpainting result for a given corrupted image. This
makes it very hard to perform a c2 analysis on the inpainted
images as the pixel–pixel covariance matrix cannot be defined
with one sole inpainting case. However, a novel methodology
based on DCNN has been proposed by Cai & Wei (2019), the
Pluralistic Image Inpainting GAN (PiiGAN18). The generator
in PiiGAN is designed such that it can generate multiple results
from the contextual semantics of one image allowing us to
perform the c2 analysis on inpainted maps. We devote a future
work to apply PiiGAN for the specific case of Galactic
Foreground inpainting.

7. Summary and Conclusions

In this work, we demonstrate three inpainting methodologies
that can reproduce an underlying non-Gaussian signal without
modifying the overall summary statistics of the signal itself.

The first method (NN) has already been used in the literature
and it is based on diffusing the pixels in the masked area with
the average of nearest-neighbor pixels. We further adopted two
novel techniques relying on DCNNs, namely DP and GAN.
They are first introduced as a tool to inpaint natural images by
the deep-learning community. We validate the three techniques
on simulated data, and test them on a data set with a wide range
of SNRs. In addition, we show a real-life application by
inpainting a map in regions where bright point sources are
detected. To evaluate the quality of inpainted results, we
adopted three summary statistics based on the pixel distribu-
tion, including the angular power spectra, and the first three
Minkowski functionals. We find that all techniques are able to
reproduce the overall summary statistics when applied to
signal-only data.

Inside the masked regions inpainted with NN, the results are
smooth but lack finer details. Generally, because NN averages
the neighboring pixels, a map inpainted with NN sharply
transitions from the area outside the mask with substructures
and noisy pixels to a very smooth one encoding only long and
smooth modes inside the masked area. However, we did not
notice any clear effect or bias due to NN inpainting on the
statistical tests we adopted in this work.

On the other hand, DP reconstructions on images extracted from
signal and noise maps present different Minkowski functionals
with respect to the ground-truth ones. As pointed out at the end of

Section 4.1, this failure case of DP needs to be further investigated
by means of a better tuning of hyperparameters.
GAN has been demonstrated to be promising as it is able to

statistically reproduce signal and noise maps, and it generates
images visually very similar to the ground-truth on signal-
dominated maps. However, we have identified cases where it
fails to produce high fidelity images in noise dominated maps.
We plan to further investigated this in a future work by training
GAN with a more realistic data set including several levels
of SNR.
To our knowledge, this is the first time that GAN has been

used to successfully generate high-resolution intensity and
polarization maps of Galactic foreground polarization maps.
This approach opens up many possibilities of generating
foreground maps using adversarial networks, which overcome
the limitations of existing templates.
In conclusion, we focused this work on Galactic foreground

emission motivated by the challenges in inpainting the non-
Gaussian signal and in dealing with Galactic (and extragalactic)
foregrounds in CMB B-mode polarization studies. For future
work, we plan to apply similar techniques to different non-
Gaussian signals spanning from galaxy weak lensing to HI
data, which are highly affected by foreground emission as well.

The authors are very thankful to Yuuki Omori and Ben
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Alexandre Refregier, Nicoletta Krachmalnicoff, Ioannis Lio-
dakis, and Warren Morningstar for the fruitful discussions and
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