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Abstract

The primary method for inferring the stellar mass (M*) of a galaxy is through spectral energy distribution (SED)
modeling. However, the technique rests on assumptions such as the galaxy star formation history (SFH) and dust
attenuation law that can severely impact the accuracy of derived physical properties from SED modeling. Here we
examine the effect that the assumed SFH has on the stellar properties inferred from SED fitting by ground-truthing
them against mock observations of high-resolution cosmological hydrodynamic galaxy formation simulations.
Classically, SFHs are modeled with simplified parameterized functional forms, but these forms are unlikely to
capture the true diversity of galaxy SFHs and may impose systematic biases with underreported uncertainties on
results. We demonstrate that flexible nonparametric SFHs outperform traditional parametric forms in capturing
variations in galaxy SFHs and, as a result, lead to significantly improved stellar masses in SED fitting. We find a
decrease in the average bias of 0.4 dex with a delayed-τ model to a bias under 0.1 dex for the nonparametric model,
though this is heavily dependent on the choice of prior for the nonparametric model. Similarly, using
nonparametric SFHs in SED fitting results in increased accuracy in recovered galaxy star formation rates and
stellar ages.

Unified Astronomy Thesaurus concepts: Astronomy data modeling (1859); Hydrodynamical simulations (767);
Stellar masses (1614); Galaxy properties (615); Spectral energy distribution (2129); Radiative transfer
simulations (1967)

1. Introduction

The ability to accurately infer the physical properties of
galaxies is critical for our understanding of galaxy formation
and evolution. Modeling the ultraviolet (UV) to infrared (IR)
spectral energy distributions (SEDs) of galaxies is one of the
main methodologies used to derive the physical properties of
galaxies, such as the stellar mass (M*), star formation rate
(SFR), and stellar age. These techniques, pioneered by Tinsley
(1968), Spinrad & Taylor (1971), and Faber (1972), have seen
an explosion of interest and activity as space-based missions
such as Galaxy Evolution Explorer (GALEX) and the Hubble
Space Telescope (HST) have opened up UV and optical
wavelengths for galaxies near and far, respectively. Similarly,
advances in IR and submillimeter detector technology have
opened up IR windows that provide constraints for SED
models that consider energy balance between UV/optical
photons and thermal IR emission from dust.

The abundance of panchromatic data available has spurred
the development of many SED modeling codes (e.g., CIGALE,
Boquien et al. 2019; FAST, Kriek et al. 2009, 2018; MAGPHYS,
da Cunha et al. 2008) that were developed to estimate physical
properties from observed broadband data. These codes rely on
models describing the stellar populations, nebular emission,
and dust content in the galaxy, along with an optimization
method to fit the SED and return the resulting physical
parameters.

The basic components in an SED model include information
about stellar populations—the stellar initial mass function (IMF),
stellar isochrones and spectral templates, and star formation
history (SFH)—along with emission from nebular regions and
active galactic nuclei (AGNs), dust emission, and attenuation
from dust. The robustness of an SED model and our ability to
accurately recover physical properties of a galaxy depend on our
confidence in each model component to accurately capture the
complexity of the many physical processes that occur in a galaxy
(see, e.g., Conroy 2013, for an in-depth review).
Despite the widespread use of SED modeling by the

observational galaxy community, it remains difficult to
establish the efficacy of the technique owing to the many
weakly constrained components and relative lack of ground
truth (see Mobasher et al. 2015; see also reviews by
Conroy 2013; Walcher et al. 2011). Indeed, some efforts have
emerged in recent years to provide such a ground truth in the
context of extensive comparisons between SED modeling
codes (e.g., Hunt et al. 2019) or comparisons between input
mock SEDs drawn from known physical proprieties and the
output properties from SED modeling. Examples of the latter
context range from testing on a library of SEDs from an
empirical mock catalog (Mobasher et al. 2015; Leja et al.
2019a) to SED modeling of idealized galaxies (Hayward &
Smith 2015) and galaxies from a cosmological simulation (Iyer
& Gawiser 2017; Katsianis et al. 2020).
One of the more influential yet poorly constrained

components of SED fitting is the assumed form of the SFH
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(e.g., Ocvirk et al. 2006; Iyer & Gawiser 2017; Carnall et al.
2019). The most common models for SFHs are parameterized
by a simple functional form, and the parameters varied in the
SED fit describe that functional form. Hereafter we refer
to these as “parametric” SFHs. Examples include the τ and
delayed-τ models, which model the SFH as exponentially
declining with some characteristic e-folding time. Although
these models describe the SFHs of galaxies in a closed box
(i.e., isolated with no inflow of pristine gas) where gas forms
stars with constant star formation efficiency, the restricted
nature of the functional forms does not match the diversity of
true galaxy SFHs (Gallagher et al. 1984; Sandage 1986; Lee
et al. 2009; Oemler et al. 2013; Simha et al. 2014; Diemer
et al. 2017). Carnall et al. (2019) have shown that the cosmic
SFR densities (CSFRDs) inferred from delayed-τ SFH fits to
galaxies from the GAMA survey (Driver et al. 2011) are
incompatible with the CSFRDs predicted by the Universe-
Machine (Behroozi et al. 2019). Leja et al. (2019b) found that
the backward-evolved stellar mass functions (SMFs) inferred
from SED fits to galaxies from the 3D-HST survey using a
delayed-τ SFH model are in tension with observed SMFs at
z=3. The assumed SFH and associated priors can also
strongly bias the inferred physical properties of galaxies
(Simha et al. 2014; Acquaviva et al. 2015; Salmon et al. 2015;
Ciesla et al. 2017; Iyer & Gawiser 2017; Carnall et al. 2019;
Curtis-Lake et al. 2020). For instance, Michałowski et al.
(2012) found that the assumed SFH model had the largest
impact out of all other SED model components on the stellar
masses inferred for observations of submillimeter galaxies
(SMGs). Similarly, Dudzevičiūtė et al. (2020) found that the
average difference between the stellar masses predicted
by the MAGPHYS SED model and the true stellar masses for
galaxies from the EAGLE cosmological simulation was close
to 0.5 dex. This bias, attributed to the assumed SFH module,
is consistent with the earlier results of Michałowski et al.
(2012).

Parametric SFHs with more flexibility have also been
explored in the literature (e.g., Papovich et al. 2011; Simha
et al. 2014; Ciesla et al. 2017; Carnall et al. 2018). One
example is the lognormal parameterization, which has been
shown to reproduce the evolution of the cosmic SFR history
(Gladders et al. 2013) and provide a reasonable match to the
Illustris galaxy SFHs (Diemer et al. 2017). However, the
lognormal parameterization still suffers from stellar age biases
similar to the simpler parametric forms (Ciesla et al. 2017; Iyer
& Gawiser 2017; Carnall et al. 2019; Leja et al. 2019a). This
happens because the SFH is constrained to either have recent
star formation or have a population of old stars (Leja et al.
2019a)—a consequence of the inflexible mathematical form.
Moreover, Diemer et al. (2017) fit a lognormal SFH directly to
the SFHs of the Illustris galaxies instead of via SED modeling,
where all galaxy properties must be inferred simultaneously;
thus, biases such as outshining (Papovich et al. 2001) did not
affect the fit.

An alternative to the parametric models described above
are nonparametric forms. Nonparametric SFH models, defined
as models that do not explicitly assume a functional form,
have been shown to have the flexibility to reproduce the
variation in SFHs seen in observations and galaxy formation
simulations. Examples include models sampled from a diverse
basis of analytical SFH models (Iyer & Gawiser 2017), flexible
piecewise linear functions in time (Reichardt et al. 2001;

Heavens et al. 2004; Tojeiro et al. 2007; Kelson 2014; Leja
et al. 2017, 2019a; Morishita et al. 2019), models drawn from
simulations or semianalytical models (SAMs; Brammer et al.
2008; Pacifici et al. 2012, 2016; Zhang et al. 2017), and models
utilizing machine-learning methods (Iyer et al. 2019; Lovell
et al. 2019). Most early implementations of nonparametric SED
fitting methods relied on spectroscopic data, but models like
those presented in Iyer & Gawiser (2017) and Leja et al. (2017)
have been shown to produce reasonable results with broadband
data only.
While ground-truth tests of parametric SFHs have generally

found poor agreement with both real and simulated SFHs, the
opposite is typically true for nonparametric models. Focusing
on results from broadband SEDs, Iyer et al. (2019) validated
the reconstruction of SFHs using Gaussian processes with a
sample of galaxies from the Santa Cruz SAMs and the MUFASA
hydrodynamical cosmological simulation and found good
agreement between the mock galaxy SFHs and the SFHs
reconstructed from Gaussian processes. Leja et al. (2019b)
demonstrated that galaxies selected from the 3D-HST photo-
metry catalog (Skelton et al. 2014) were inferred to be
systematically more massive and older when modeled with the
nonparametric SFHs in PROSPECTOR compared to previously
published results using parametric SFHs. However, extensive
tests and ground-truthing of the results from SED fitting have
lacked in ground-truth sample technique (as in the case of, e.g.,
Leja et al. 2019a, where the mock galaxy SFHs used to
generate synthetic SEDs were relatively simple), sample size,
or a combination of both (as in the case of, e.g., Hayward &
Smith 2015, where just two scenarios of simplified idealized
simulated galaxies were used).
Thus, in this paper we advance our understanding of the

efficacy of SED modeling by fitting nonparametric SFH models
to mock SEDs generated from 3D radiative transfer on a large
galaxy sample from a hydrodynamical cosmological simula-
tion. First, we focus on the impact of the assumed SFH on the
stellar masses and other galaxy properties inferred from SED
fitting by isolating the SED fits from dust. Specifically, we fix
the dust-to-stellar geometries in our radiative transfer calcula-
tions and match that geometry in our SED fits to effectively
obtain the baseline uncertainties on the inferred galaxy
properties that can be attributed to just the assumed form of
the SFH model. This is distinguished from previous observa-
tionally based studies, where all components of the SED model
are necessarily tested at once. In other words, we ignore the
uncertainty from other model components to first understand
the biases and uncertainties imposed by just the SFH model.
While the main goal of this paper is to isolate the impact of
galaxy SFHs on SED fitting techniques, specifically to ground-
truth the efficacy of various SFH models, we then briefly
generalize these results by rerunning our dust radiative transfer
using the intrinsic dust-to-stellar geometries and dust properties
from the simulations.
The paper is organized as follows: In Section 2 we describe

our numerical methods (including cosmological simulations,
radiative transfer, and SED fitting). In Section 3 we describe
the results of the SED fitting through comparisons to the true
values from the simulations. In Section 4 we discuss the results,
the possible origins of fitting failures, and the inclusion of
realistic dust in the mock SEDs. In Section 5 we conclude and
propose a pathway toward improving our dust models to better
accommodate realistic galaxies in SED fitting.
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2. Numerical Methods

2.1. Overview

For this analysis, we fit the SEDs of galaxies from a
cosmological hydrodynamical simulation to determine the
robustness of stellar masses estimated from SED modeling.
The simulated galaxy SEDs are generated with post-processing
radiative transfer that propagates the intrinsic stellar SEDs
through dust in the interstellar medium (ISM).

We fit these mock SEDs using the Bayesian inference code
PROSPECTOR. We “observe” the mock SEDs in the same
broadband filters for all galaxies and use the same models for
stellar metallicity and dust attenuation when fitting, so that the
only difference between the results shown below originates
from differences in the assumed SFH model in the SED fit. In
the remainder of this section, we describe these methods in
more detail.

2.2. The SIMBA Galaxy Formation Model

We first need a population of model galaxies to generate the
SEDs from. For this, we use the SIMBA cosmological
simulation, described in full in Davé et al. (2019). Briefly,
SIMBA is the descendant of the simulation suite MUFASA and
relies on GIZMOʼs meshless finite mass hydrodynamics. New
subresolution prescriptions for stellar and AGN feedback, as
well as black hole growth, have enabled SIMBA to accurately
reproduce observables like the galaxy SMF and the star-
forming main sequence. SIMBA additionally includes an on-the-
fly self-consistent model for the formation, growth, and
destruction of dust that reproduces both the z=0 dust mass
function and the scaling between the dust-to-gas ratio and
metallicity (Li et al. 2019).

We employ a box with 25/h Mpc side length with 5123

particles, resulting in a baryon mass resolution of 1.4 × 106 Me.
To identify galaxies, we have employed a modified version of
CAESAR9 (Thompson 2014). We focus on the z=0 snapshot,
in which there are ∼1600 galaxies identified with a minimum
of 32 bound star particles with a 6D friends-of-friends galaxy
finder. The choice of 32 star particles is motivated by the mass
resolution of this simulation. These galaxies lie within a mass
range of 4.4×107−1.4×1012 Me.

2.3. Dust Radiative Transfer

We use the 3D radiative transfer code POWDERDAY10

(Narayanan et al. 2020) to construct the synthetic SEDs by first
generating with FSPS (Conroy et al. 2009; Conroy &
Gunn 2010) the dust-free SEDs for the star particles within
each cell using the stellar ages and metallicities as returned
from the cosmological simulations. For these, we assume a
Kroupa (2002) stellar IMF and the MIST stellar isochrones
(Paxton et al. 2011; Choi et al. 2016; Dotter 2016).

Traditionally, POWDERDAY then propagates the emission from
these stars through the diffuse dusty ISM using HYPERION as the
dust radiative transfer solver (Robitaille 2011; Robitaille et al.
2012). However, this then imposes the uncertainty of the diverse
attenuation laws that vary from galaxy to galaxy on our SED fits
(Narayanan et al. 2018a, 2018b; Salim & Narayanan 2020). We
therefore abandon the diffuse dust in our POWDERDAY radiative

transfer simulations and instead employ a dust screen surround-
ing all stars. This is akin to how PROSPECTOR treats dust
obscuration and therefore allows us to isolate the impact of the
galaxy SFH on our SED fits. In the dust screen setup for
POWDERDAY, we assume a uniform dust screen around all stars
with an optical depth of τuniform=0.7. Younger stars (<10Myr
old) have an additional assumed source of extinction from their
birth clouds that have an optical depth of τBC=0.7. This fiducial
dust screen model ensures an apples-to-apples comparison
between the creation of the SEDs and the technique used to fit
them. We then generalize this comparison in Section 4.4, where
we rerun our dust radiative transfer with POWDERDAY using the
intrinsic dust-to-stellar geometries and dust properties from the
simulations.
The result of the POWDERDAY radiative transfer is the UV

−far-IR spectrum for each galaxy. We extract model photo-
metry from these dust spectra, selecting 25 bands from the
GALEX far-UV filter at 1542Å through the Herschel SPIRE
band at 500 μm as shown in Figure 1 and Table 1. The SED
coverage is comparable to galaxies in, e.g., the CANDELS
GOOD-S field (Guo et al. 2013). And while SED coverage
necessarily impacts the accuracy of galaxy properties inferred
from SED fitting, we leave an in-depth investigation into these
factors to a future work. Further, we fixed uncertainties to 3%
of the flux value, since the aim of this study is to analyze not
the effect of photometric uncertainties but rather the systema-
tics that arise from the use of various SFH models.

2.4. SED Fitting

In order to model the mock SEDs generated by POWDER-
DAY, we use the Bayesian inference code PROSPECTOR11 (Leja
et al. 2017, 2019a). PROSPECTOR derives galaxy physical
properties using stellar population synthesis evolved with dust

Figure 1. Example POWDERDAY mock SED with “observed” photometric
bands highlighted, spanning from GALEX far-UV to Herschel SPIRE, totaling
25 bands, resulting in almost complete coverage across all wavelength regimes.
All galaxies are observed with the same filters, and photometric errors are fixed
at 3%. Photometry is “observed” for each filter and convolved over the filter
bandwidth. We ignore near-IR photometry, spanning from ∼2 to 20 μm, to
avoid dependence on the ultrasmall grain size fractions chosen for the
POWDERDAY calculations.

9 https://github.com/dnarayanan/caesar
10 https://github.com/dnarayanan/powderday 11 https://github.com/bd-j/prospector
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within the framework of FSPS. POWDERDAY and PROSPECTOR
rely on the same spectral libraries, IMF, and stellar isochrones
within FSPS. And though the assumptions made when modeling
stellar spectra, especially concerning the impact of late stellar
evolutionary stages on a galaxy’s SED, are important and the
physical parameters derived from SED can be greatly
influenced by these assumptions (e.g., Santini et al. 2015;
Mobasher et al. 2015), this exploration is ultimately outside the
scope of this paper, as we are focusing on the targeted question
of understanding the impact of the assumed SFH on derived
stellar masses. Additionally, the use of the fiducial dust screen
model enables the subsequent SED fitting procedures and
results to be isolated from assumptions about the dust
attenuation model. In other words, the models described below
will vary owing to assumptions about the SFH only, effectively
isolating our results to the differences between these models
and providing a baseline uncertainty estimate arising from just
the SFH model.

PROSPECTOR uses a Bayesian inference framework via
DYNESTY nested sampling (Speagle 2020) to fit the observed
SEDs and provide posterior distribution functions (PDFs) for
physical parameters such as stellar mass, stellar metallicity, and
SFR. The power of DYNESTY lies in its ability to efficiently
sample multimodel distributions and have well-defined stop-
ping criteria based on evaluations of Bayesian evidence
ensuring model convergence. Below we describe the SED
model components and their prior distributions, which are
summarized in Table 2. Because DYNESTY is based on
Bayesian inference, all results in our analysis are sampled
from the resulting PDF from the nested sampling iterations (as
opposed to so-called “best-fit” parameters quoted by a χ2

minimization algorithm), with uncertainties quoted as the 16th
through 84th percentiles of the posterior distributions.

2.4.1. Star Formation History

PROSPECTOR includes several models for a galaxy’s SFH,
including the commonly used delayed-τ model, along with
flexible nonparametric models. The nonparametric models are
constrained by priors that either can enforce continuity (i.e., the
SFH is smooth rather than bursty) or allow for episodes of star
formation bursts. We show the prior probability distribution for
one such model in Figure 2. As a means for comparison, we
considered three simple parametric SFHs, an example of which
is also shown as a prior probability distribution in the left panel
of Figure 2. All SFH models used in this analysis are described
in depth in Carnall et al. (2019) and Leja et al. (2019a), while
we provide a more top-level view here. Three commonly used
parametric models are considered (delayed-τ, delayed-τ with a
burst component, and a constant SFR across time), as well as a
nonparametric SFH model.
Delayed-τ: the delayed-τ model is an exponentially declin-

ing SFH, parameterized by the e-folding time that is informed
by a log-uniform prior. The free parameters for this model
also include the stellar mass formed by the galaxy and the
maximum age of the stellar population.
Delayed-τ + burst: this is the same as above but including a

random burst of star formation. During a burst, some fraction of
mass is formed in an instantaneous burst of star formation.
Constant: the constant SFH model is set to a uniform value

for all times. These are often used for modeling star-forming
galaxies at high redshift.
Nonparametric: the nonparametric SFHs as implemented in

PROSPECTOR fit for the fractional stellar mass formed in a
particular time bin, independent of the total mass formed (i.e.,
the shape of the SFH is separate from the normalization). For
this model, the marginal probability distribution on the specific
SFR (sSFR) in each bin follows a Dirichlet prior centered on a
constant SFR(t). The time bins can be adjusted in both number
and size by the user but remain fixed during the fit. An
additional parameter, called the concentration parameter, is
required to specify the prior and controls the concentration of
stellar mass formation across time bins. Lower concentration
values (∼0.2) result in more bursty SFHs, while higher values
(∼1.0) result in smoother SFHs. We chose a value of 0.7 to
allow for short-timescale variations in the SFH, though we
briefly explore the impact of this prior choice in Appendix A.
We also choose 10 time bins spaced logarithmically in time
motivated by Ocvirk et al. (2006), who found that the ability to
distinguish separate stellar populations is proportional to their
difference in age in logarithmic time. The last two bins do not
follow this prescription and instead span the previous 100Myr
and 100–300Myr, allowing for a minimally young population
of stars. The choices for this model are motivated largely by the
the impact of each choice on the priors for sSFR and stellar
age: priors that are too narrow in inferred property space can
result in biased estimates, while priors that are too wide can
hinder model convergence. Though this model depends on the
choice of time bins, as shown in Appendix A of Leja et al.
(2019a) and our Appendix A, the stellar masses inferred from
this model are robust against perturbations in the number and
spacing of time bins, while the assumed prior on the fractional

Table 1
Table of the 25 Filters Used to Extract Photometry from the Synthetic

POWDERDAY Spectra

Instrument Filter Effective Wavelength (Å)

GALEX Far-UV 1549
Near-UV 2304

HST/WFC3 F275W 2720
F336W 3359
F475W 4732
F555W 5234
F606W 5780
F814W 7977
F105W 10431
F110W 11203
F125W 12364
F140W 13735
F160W 15279

SDSS u 3594
g 4640
r 6122
i 7439
z 8897

Spitzer/MIPS 24 μm 232096
Herschel/PACS Blue 689247

Green 979036
Red 1539451

Herschel/SPIRE PSW 2428393
PMW 3408992
PLW 4822635

Note. Broadband fluxes are assigned a 3% fractional uncertainty.
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masses has a much larger impact. We will refer to this model as
“nonparametric” throughout our following analysis.

2.4.2. Metallicity and Dust

Dust and metallicity also significantly impact the SED of a
galaxy. Below we describe the models for each component.
The same models and parameter prior distributions are used for
each of the SFH model fits.

Metallicity: Following Leja et al. (2019b), we use a prior on
the stellar metallicities as a modified version of the stellar mass
−stellar metallicity relationship from z=0 Sloan Digital Sky
Survey (SDSS) data (Gallazzi et al. 2005). In practice, FSPS,
and subsequently PROSPECTOR, will effectively assume a
uniform metallicity across the galaxy for all time, constrained
by the stellar mass−stellar metallicity relation. This is in
contrast to the metallicity and chemical enrichment history
present in the SIMBA simulation and PROSPECTOR stellar
SEDs, where each star particle in a galaxy has an individual
metallicity that contributes to the galaxy’s overall enrichment
history. This complexity has yet to be implemented in most
SED fitting codes, in part due to the degeneracies arising
between metallicity, dust, and stellar age.

Dust emission: Constrained by energy balance, where the
thermal emission from dust in the far-IR is assumed to be equal
to the stellar light absorbed by dust (da Cunha et al. 2008), dust
emission is modeled following Draine & Li (2007), which
describes dust emission using three parameters: Umin, which is
the the minimum radiation field strength in units of the MW
value, qPAH, which is the mass fraction of dust in polycyclic
aromatic hydrocarbon (PAH) form, and γ, which is the fraction
of dust in high radiation fields. Umin and γ are allowed to vary
in the fits, but the PAH mass fraction is fixed to the true value
(5.86%) because the synthetic PAH spectra are not sampled.
Dust attenuation: The dust attenuation model is fixed to

match the POWDERDAY dust screen model. Thus, the SEDs
have a uniform dust component with an optical depth of 0.7
affecting all stars and a birth cloud dust component affecting
young stars (less than 10Myr old) with an optical depth of 0.7.

3. Results

We fit SEDs for all SFH models described above. The
following sections detail the results of the output of each SED
fit from the fiducial run (i.e., with dust attenuation fixed to the
true model). In general, we find that the commonly used

Table 2
Table of SED Models and Associated Parameters and Prior Distributions for PROSPECTOR SED Fitting

Model Parameters Prior Distribution

Delayed τ Age Uniform(0.01, 13.8) Gyr
τ LogUniform(0.001, 10) Gyr−1

SFH Delayed τ+burst Age, τ As above
Burst time as a fraction of age Uniform(0.5, 1.0) * Age
Burst M* fraction Uniform(0.0, 5.0) * M*

Constant Age As above
Nonparametric M* fraction per time bin (N=10) Dirichlet

Concentration parameter α Fixed at 0.7

M*−Z Gallazzi et al. (2005) Log(M* formed) Uniform(7, 13) M
Stellar metallicity Z* ClippedNormal(−1.9, 0.19)

Dust emission Draine & Li (2007) Minimum radiation field Umin Uniform(0.1, 30)
Warm dust fraction γ Uniform(0.0, 1.0)
PAH mass fraction qPAH Fixed at 5.86%

Dust absorption Fixed dust screen Uniform dust screen opacity τuniform Fixed at 0.7
Birth cloud dust opacity tBC Fixed at 0.7
Power-law index Fixed at −0.7 (uniform) & −1.0 (birth cloud)

Note. All POWDERDAY SEDs are fit four separate times with a different SFH model. Three commonly used parametric SFH models are considered (delayed-τ,
delayed-τ with a burst component, and a constant SFR across time) in addition to a nonparametric SFH model. The dust and stellar mass−stellar metallicity models
are kept the same between runs, though the parameters are allowed to vary.

Figure 2. Left: prior probability distributions for the nonparametric SFH model and the delayed-τ model. Middle: effective prior distribution on the sSFR averaged
over the past 100 Myr. Right: effective prior distribution on the mass-weighted stellar age. The constant SFH mass-weighted age prior is not computed, as this is
simply 0.5×tH.

5

The Astrophysical Journal, 904:33 (17pp), 2020 November 20 Lower et al.



parametric SFHs struggle to reproduce the physical properties
of the SIMBA galaxies, including the stellar mass, mass-
weighted age, and the recent rate of star formation. For
instance, the three parametric models systematically under-
estimate the stellar masses of the SIMBA galaxies by 0.4 dex on
average. The properties mentioned above are directly depen-
dent on the assumed SFH model: the stellar mass is the integral
of the SFH across time (modulo the fraction of stars that now
exist as stellar remnants and mass loss from post-main-
sequence stars) and will depend on the amplitude of the SFH
across time. The mass-weighted age of the galaxy will depend
on the the shape of the SFH, and the SFR depends only on the
SFH over the past 100Myr. We examine the efficacy of each
SFH model to recover the above properties in the following
sections.

3.1. Stellar Mass Recovery

In Figure 3, we examine the impact of the SFH model on the
derived stellar mass (M*) of our galaxies. In the top panel, we
show a comparison between the stellar masses inferred from
the various SFH models described above. The contours show
the delayed-τ, delayed-τ+burst, and constant parametric SFHs,
while the orange points show the distribution of galaxies when
using the flexible nonparametric SFH model. We compare the
derived M* on the y-axis to the true M* on the x-axis. The
derived quantities are the median of the stellar mass PDF for
each galaxy. The stated biases for each model are the average
offset between the inferred stellar mass and the true value. The
scatter is the 1σ standard deviation of this distribution.

The nonparametric models recover the true stellar masses
with significantly better accuracy afforded by the flexibility of
the SFH model. To quantify this, we use two plots to show
the improved accuracy and uncertainty estimates afforded by
the nonparametric model. On the bottom left, we show the
cumulative inferred stellar mass offset for each SFH model.
The stellar masses inferred from the nonparametric model are
all within 0.4 dex of the true stellar mass, compared to the
stellar masses inferred from the τ models, which suffer larger
offsets. On the bottom right, we show the fraction of true stellar
masses contained within the 1σ region of each galaxy stellar
mass posterior, i.e., the true stellar mass falls between the
estimated 16th and 84th mass percentiles. In other words, the
uncertainty quantified by the stellar mass posterior width
includes the true stellar mass. While the stellar mass PDFs
inferred from the nonparametric SFH capture the true stellar
mass for 50% of galaxies, the PDFs from the τ models include
the true stellar mass value for only 20% of galaxies. The other
80% of galaxies have a stellar mass that is offset from the true
value, with error bars that do not capture the true value. Thus,
the reported model uncertainties do not reflect the systematic
biases imposed on the inferred galaxy properties.

These three plots demonstrate the significantly improved
accuracy afforded by the nonparametric SFHs as compared to
the traditional parametric forms. Though M* is traditionally
considered the most robust property derived from SED fitting,
the results here paint a different picture: parametric SFHs fail at
recovering the true stellar mass for a majority of galaxies,
across all stellar mass ranges, even when we fix the dust
attenuation model to be the same in the SED generation and
SED fits. Furthermore, the uncertainties associated with the
inferred physical properties from parametric SFHs tend to be
underreported because the model priors and subsequently

posteriors are highly informative, meaning that stellar masses
inferred from parametric SFH models will be systematically
underestimated with underreported uncertainties (i.e., the
uncertainties do not increase with increasing bias). The average
offset in stellar mass for the nonparametric model is −0.02 dex
with an average uncertainty of 0.11 dex, whereas for the
delayed-τ model these values change to 0.38 and 0.19 dex,
respectively.

3.2. Star Formation History Recovery

A natural question is how well a given model recovers the
true SFH of a galaxy. In Figure 4, we show a randomly chosen
galaxy’s SFH and compare the recovered SFH for both a
parametric and nonparametric SFH model. For this particular
galaxy, the nonparametric model reasonably matches the true
SFH with the median fit (solid orange line), and with the 1σ
region (orange shaded region) also capturing the stochastic
behavior in the true SFH over short timescales. The median
delayed-τ model, however, fails to match the amplitude of the
true SFH over much of cosmic time, which will result in an
inferred stellar mass that is overestimated. The 1σ region for
the delayed-τ also covers the true SFH but shows the large
dispersion in SFH solutions throughout the fit.
That the nonparametric SFHs are more accurate at recover-

ing the stellar mass of a galaxy is mainly attributed to the fact
that they are significantly more flexible and thus better at
describing the various SFHs seen in the SIMBA galaxy
formation simulation. With only a small number of parameters
describing the width and location of the curve, the three
parametric SFHs (delayed-τ, delayed-τ with a burst comp-
onent, and constant) struggle to match the true SFH for most
galaxies. This will affect not only the stellar masses inferred
from each model but also the stellar ages and SFRs. The two
delayed-τ models struggle to match the true SFHs that rise over
time, as only very large values of τ allow for a slower decline at
late times.
For massive galaxies (M* > M1011 ) at z=0, the

exponential decline of the parametric SFHs can match the true
galaxy SFHs at late times, as these massive galaxies are
typically quenched or quiescent, but only at the expense of
missing the large, extended early periods of star formation and
thus missing out on the bulk of formed stellar mass. The lower-
mass galaxies tend to be bluer, star-forming galaxies with SFHs
ill-suited for the exponential decline at late times, so that the
true SFHs are not well recovered and the stellar mass estimates
will be worse, a point confirmed by Figure 3.
Building on Figure 4, in Figure 5 we compare the offsets

between the inferred SFHs and the true SFHs for all galaxies
again for the nonparametric model and the delayed-τ model.
The solid lines refer to the median offset for the entire galaxy
distribution for each model, while the shaded regions include
the 16th through 84th percentiles. The offsets were calculated
between the median model SFH and the true SFH in 100Myr
intervals over the entire history. The median SFH offsets for
both models are centered around zero for most of cosmic time,
but the delayed-τ model has a much larger dispersion. Iyer &
Gawiser (2017) found similar results to the Dense Basis
nonparametric SFH method for stellar mass, SFR, and stellar
age when fitting mock broadband SEDs from simulations and a
sample of galaxies from CANDELS and comparing these
results using SpeedyMC (Acquaviva et al. 2011, 2015).
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3.3. Ages and Star Formation Rates

The mass-weighted stellar age of a galaxy depends on the
shape of the SFH, and the accuracy of these inferred properties
therefore depends on the model SFH accurately matching the
true galaxy SFH. We show the offsets from the true values for

the mass-weighted stellar ages and SFRs, along with stellar
mass, in Figure 6. The offsets are defined as the difference
between the median inferred value for each property and the
corresponding true value for each galaxy. The M* offsets are
shown in the left panel, alongside the offsets in SFR over the

Figure 3. Top: comparison of inferred stellarM* to true stellarM* of SIMBA-simulated galaxies for all SFH models. The bias is the average offset between the inferred
stellar mass and the true. The scatter is the 1σ standard deviation of this distribution. The masses inferred from the nonparametric SFH are shown in orange. Light-blue
contours show the delayed-τ + burst SFH (a parametric model). The right panel is the same as the left, but green contours are for the constant SFH model and dark-
blue contours show the delayed-τ model. Contour levels for the three parametric models highlight the 16th, 50th, and 84th percentiles. The black dashed line is the 1:1
relation (i.e., the ideal case where the inferred mass perfectly matches the true mass). Bottom left: cumulative fraction of galaxies with inferred M* offsets. The stellar
mass offsets are calculated as the absolute value of the difference between the log(inferred M*) and log(true M*). Bottom right: fraction of true galaxy M* that are
within 1σ of the median inferred M* for each SFH model, where 1σ includes the 16th through 84th percentiles of the stellar mass posteriors. The stellar mass PDFs
inferred from the nonparametric model capture the true stellar mass for more than 50% of galaxies, compared to just 20% for the τ models.
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past 100Myr in the middle panel and the mass-weighted stellar
age in the right panel, derived from the average of the inferred
SFHs over the past 100Myr and the full SFH, respectively.

The nonparametric model shows significantly better fits for
each galaxy property when compared to the parametric models.
The stellar mass is the most robustly inferred property,
followed by the SFR and mass-weighted stellar age. The
parametric models struggle to match all three properties
simultaneously. For example, the constant SFH tends to
capture the late-time SFR of the SIMBA galaxies, but the
mass-weighted stellar ages cannot be accurately derived, as the
age inferred from a constant SFH is just 0.5×tH. All three
parametric models systematically underestimate the stellar
mass and mass-weighted age of all galaxies. This bias is a

consequence of the use of strong priors and the behavior of
these priors when fitting photometry that tends to prefer
younger stellar populations, as shown in Figure 2 and Carnall
et al. (2019) and Leja et al. (2019a). A drawback of the
delayed-τ-like models is the trade-off between correctly
inferring stellar age and SFR for a declining SFH. Unless the
prior space is manipulated to allow for a rising SFR by, e.g.,
allowing for very large τ values (as in the case of, e.g.,
Acquaviva et al. 2011; Ciesla et al. 2017; Aufort et al. 2020),
the SFRs will be biased low. On the other hand, the SFRs may
be correctly inferred if the peak of the SFH is placed relatively
close to the time of observation, but this will occur at the
expense of inferring the correct stellar age.

4. Discussion

On average, the nonparametric SFH model outperforms the
parametric SFHs on all metrics, including recovering the M*,
mass-weighted stellar ages, and late-time SFR of the SIMBA
galaxies. The flexible nonparametric model used here is able to
more accurately infer the physical properties and growth histories
of galaxies from the SIMBA cosmological simulation. The
flexibility of the nonparametric model, compared to the relatively
inflexible parametric models, is twofold: (1) the time resolution
allows the SFH model to describe the shorter-timescale
fluctuations in the galaxy SFH, and (2) the prior on the fractional
SFR in each time bin results in effectively unbiased priors on
sSFR and stellar age. Though the priors on these properties are
not flat, they are unbiased in the sense that the center of the prior
distributions does not prefer high or low values for each property;
the median of the mass-weighted stellar age distribution is
centered on the Madau & Dickinson (2014) estimate of the
median stellar age derived from the CSFRD, while the median
sSFR is centered at ( ) ~ -tlog 1 10.1univ yr−1, which corre-
sponds to a constant SFR. The latter point is in contrast with the τ
models, where younger stellar populations are preferred owing to
the priors imposed on the shape of the SFH.
Moreover, the danger in applying a τ model to a sample of

galaxies lies in the false constraints on galaxy properties
imposed by the SFH priors. This results in biased inferred
galaxy properties with underestimated uncertainties (i.e., the
uncertainties do not increase with bias). In this section, we
discuss the ways in which each SFH model impacts the inferred
galaxy properties and why some models perform better than
others. We also discuss the importance of carefully chosen
priors when fitting SED photometry, for both nonparametric
and parametric SFH models, and briefly discuss how including
diffuse dust in this analysis impacts the inferred stellar masses.

4.1. Parametric Models

All three parametric SFH models considered (constant SFR
across time, delayed-τ exponentially declining SFH, and
delayed-τ with an additional burst component) have been
shown to systematically underestimate the stellar masses of the
SIMBA galaxies. This is true for galaxies of all masses and
sSFRs. We show the stellar mass offsets as a function of galaxy
stellar mass in the top right panel of Figure 7 for the two
delayed-τ models (the constant model is neglected for the sake
of clarity). The solid lines refer to the running median of the
stellar mass offset distribution for each model. The τ models
systematically underestimate the stellar masses by approxi-
mately 0.4 dex for all galaxies. Compared to previous studies

Figure 4. SFH for an example galaxy. The true galaxy SFH is shown in black.
Two of the model SFHs are shown, with the nonparametric shown in orange
and the parametric (delayed-τ) shown in blue. The 50th percentile value is
shown as the solid line, while the shaded regions include the 16th through 84th
percentiles.

Figure 5. Comparison of the SFH residuals normalized by stellar mass of all
galaxies for the nonparametric model and the delayed-τ model across time. The
black dashed line represents the ideal scenario of a perfect match. Offsets were
calculated between the median model SFH and true SFH every 100 Myr across
the entire history. The solid lines refer to the median offset for each model,
while the shaded regions include the 16th through 84th percentiles. The
nonparametric model outperforms the delayed-τ model on average for all
times.
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on the effect of assuming a parametric SFH model (e.g., Pforr
et al. 2013; Carnall et al. 2019), our inferred stellar mass offsets
for the τ models are similar. Pforr et al. (2012) found average
stellar mass offsets of 0.6 dex for mock galaxies at z∼0.5
when reddening effects were considered. Ruling out unrealistic
dust and age solutions lowered these median offsets to 0.2 dex.
Though we could, in principle, apply a correction for the offset
in the τ models, we choose not to do so because such a
correction would depend on the model assumptions made here,
both in the SED fitting procedure and in the SIMBA model, and
because the scatter of the tau stellar mass distributions is
sufficiently large. Our aim of this analysis is not to provide
correction estimates for SED models or to advocate for any one
set of SED models or parameters but to provide ground-truth
tests for these assumptions. Additionally, for real observations,
due to the complex degeneracies in SED fitting, an inaccurately
inferred SFH typically means that the inferred dust, metallicity,

nebular properties, etc., are also wrong. An overall correction
applied to mass is not only dependent on the model
assumptions in this analysis but also ultimately unsatisfactory
because stellar mass is not the only output that depends on an
accurate SFH and would otherwise negatively impact results
inferred for real observations.
The inability of the parametric models to accurately recover

the stellar mass of the SIMBA galaxies is a consequence of the
restrictive nature of these models. We find that unless the
inferred e-folding time is sufficiently large to allow prolonged
star formation, especially at early times, the stellar masses
recovered from these models will be underestimated. A by-eye
analysis of the library of SFHs measured from the SIMBA
simulation shows that the τ and delayed-τ SFH models are a
poor match for a majority of the star-forming galaxy population
at redshift z=0 unless the e-folding time is sufficiently large
(τ ∼ 5 Gyr−1) to model the slow decline of quenching or to

Figure 6. Offsets from the true values of inferred galaxy properties. Properties inferred from the nonparametric model lie much closer to offsets of 0 than the
parametric models. The stated bias for each model is the average offset between the inferred galaxy property and the true value. The scatter is the 1σ standard deviation
of this distribution. Left: inferred stellar mass offsets for each SFH; 13% of galaxies fit with a constant SFR have M* offsets > 1 dex. Middle: same as the left panel,
but for SFR over the past 100 Myr. Right: same as the left and middle panels, but for mass-weighted age. Note that the mass-weighted age for the constant SFH is
0.5×tH, so we neglect plotting this inferred distribution.

Figure 7. Left: binned 1:1 stellar mass comparison including uncertainties for high-mass galaxies. The sizes of the points reflect the number of galaxies in each bin.
The average uncertainties for each mass bin cover the biases for the nonparametric model, while the uncertainties are smaller than the biases for the parametric models
for the highest-mass bins. Top right: stellar mass offset as a function of true stellar mass (left) and metallicity offset (right). Bottom right: inferred SFRs as a function of
inferred metallicities for the delayed-τ and nonparametric SFH models.
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model a rising SFH. This is a consequence of the specific
galaxy formation models implemented in SIMBA but is not
unique to SIMBA or galaxy formation simulations in general.
While a delayed-τ SFH model may match the SFR over time of
an isolated closed-box galaxy (i.e., no gas inflows or outflows
such that star formation is an exponential function of the in situ
gas mass and gas depletion time), it is not flexible enough to
describe the shorter-timescale fluctuations seen in both
simulated and observed SFHs. Flexibility in the form of
additional bursts of SFH or the use of a lognormal model with a
large volume of parameter prior space to sample from, as
presented in Diemer et al. (2017), can result in more accurate
stellar masses but does not remedy the wide dispersion in late-
time SFR and stellar age as discussed below. And though the
photometry inferred from each model is a reasonable fit to the
observed SEDs, the inferred stellar masses differ from the true
values by −0.38 dex on average. Again focusing on the τ
models, the inferred value of τ and the placement of the peak of
the SFH will impact the inferred stellar age and recent SFR.
These models can also underestimate the recent SFR of
the galaxy by several orders of magnitude, evidenced by
Figure 6(b), and severely underestimate the age of the galaxy in
order to match the observed SFR, evidenced by Figure 6(c).
These biases are driven by the strong priors such that the
parametric model is forced between including either recent star
formation or an older population of stars, but not both unless
the model is distorted and forced away from an exponential
decline. The strongly peaked priors are also responsible for the
uncertainties that do not increase in step with biases. We show
in the left panel of Figure 7 a binned 1:1 stellar mass plot,
zoomed in to show galaxies in the highest-mass bins. The size
of the points represents the number of galaxies in each bin. The
uncertainties for a majority of the bins do not compensate for
the large biases seen with either τ model.

4.2. Nonparametric Model

Again in the top right panel of Figure 7, we show the stellar
mass offsets for the nonparametric SFH model in orange. This
model, in contrast with the parametric models, achieves much
more accurately inferred stellar masses for galaxies of all
masses. The average stellar mass offset improves from 0.38 dex
with the delayed-τ model to under 0.1 dex for the nonpara-
metric model. We note the increasing trend of the magnitude of
offsets for high-mass galaxies (M* > 1011 Me). However, only
20 galaxies populate this region of stellar mass space, so it is
difficult to draw conclusions about the performance of this
model on high-mass galaxies. We show a zoomed-in 1:1 stellar
mass plot for these galaxies in the left panel of Figure 7.
Though the stellar mass offsets grow for increasing stellar
masses, the uncertainties increase in step for the nonparametric
model.

For the handful of high-mass galaxies in this particular
SIMBA snapshot, star formation has effectively stopped
anywhere between 1 and 4 Gyr ago. To accurately infer the
stellar mass of a galaxy, the model must match the true SFH at
early times when the older stars that dominate the stellar mass
are formed. However, early bursts of star formation, even for
prolonged periods of time, do not leave obvious artifacts on a
galaxy’s SED, so accurately matching the early SFH is difficult
for any SED model. Anecdotally, many of the massive galaxies
from this SIMBA snapshot experienced prolonged periods of
enhanced star formation peaking at ∼100 Me yr−1 around

10–12 Gyr ago that are not recovered well by any star
formation model considered here. This is demonstrated in
Figure 8, where we show the distributions of the average sSFR
over the first 2–4 Gyr for the SIMBA galaxies compared to the
inferred early sSFRs from two of the SFH models. As explored
in Iyer et al. (2019), inferred SFRs from more than a couple
gigayears ago are dominated by the prior set on the SFH rather
than the fit to photometry, as little evidence exists in the
observed SEDs of these early star-forming episodes. This
problem is not unique to PROSPECTOR or the nonparametric
SFH model used here but is found in all models, as SFHs are
only minimally informed by broadband photometry owing to a
lack of SED features left by old stellar populations. The
distribution of early sSFRs inferred from the nonparametric
SFH model is narrowly peaked at log(sSFR) ∼−10.5, so that
galaxies with smaller or larger sSFRs at early times will have
inferred stellar masses that deviate from the true value, as long-
lived stars with solar masses or lower will dominate the stellar
mass content of a galaxy.
For galaxies that are actively star-forming, the problem of

“outshining” will augment the above difficulties, as the massive
stars that are formed recently will outshine the older stellar
populations that dominate a galaxy’s stellar mass such that the

Figure 8. Distributions of the average sSFRs during the first -1.5 4 Gyr . The
true distribution for the SIMBA galaxies is shown by the gray histogram. Top:
nonparametric inferred sSFR posteriors for 300 randomly selected galaxies.
The prior distribution on early sSFR is shown with the bold maroon line.
Bottom: same as the top panel, but for the delayed-τ model. The prior
distribution is shown with the bold light-blue line, with individual posteriors
drawn in dark blue.
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inferred stellar mass will be heavily dependent on the priors
informing the stellar age distribution (e.g., Papovich et al.
2001; Pforr et al. 2012). In other words, the stellar masses
inferred for these systems are dominated by the constraints
from the prior (shown in Figures 2 and 8) in addition to the
constraints from photometry. In both cases, for quiescent and
actively star-forming galaxies, the underlying cause of the
differences in model and true stellar masses is the inability to
capture early, prolonged star formation activity with the
model SFH.

Besides the assumed SFH, assumptions about a galaxy’s
stellar metallicity and the mapping from metallicity to the SED
will also impact the inferred stellar mass. In this analysis, we
used the Gallazzi et al. (2005) stellar mass−stellar metallicity
relation. However, as noted in Section 2.4, this relatively
simplistic model does not entirely capture the growth history
of the SIMBA galaxies, as the simulated star particles have
metallicities that are neither uniform nor static through time.
Though we isolated our results from the inclusion of a
diffuse dust component, in truth our assumptions in this
metallicity model will also impact the stellar masses inferred by
PROSPECTOR. In the top right panel of Figure 7, we show the
stellar mass offsets as a function of the stellar metallicity
offsets. The solid lines refer to the running median of each
distribution. For the sake of comparison, we take the true
galaxy metallicity to be the mass-weighted stellar metallicity
for each galaxy. This way, we have an aggregate metallicity to
compare to the inferred stellar metallicities. We see a strong
inverse correlation between the offset distribution for galaxies
fit with the nonparametric model but not for either parametric
model. This trend is also seen in fits where the stellar
metallicity is not tied to the stellar mass. One explanation for
this is the inability of the uniform and static metallicity model
to recover the distribution in true stellar metallicities. A model
describing the chemical enrichment history of galaxies could be
implemented but would be minimally constrained by broad-
band photometry and most likely highly degenerate with the
SFH and dust model. In the absence of dust, stars with lower
inferred metallicity will have excess UV compared to stars with
higher inferred metallicity. This change in UV light in the SED
can impact both the inferred SFR and, to a lesser degree, the
inferred stellar mass. In Figure 7(c) we see that a trend also
exists between the inferred SFR and metallicity from the
nonparametric model, where generally galaxies with larger
inferred SFRs will have large metallicities. These recent SFR
bins are covariant with metallicity, and allowing freedom in
these, which is not allowed by the tau models, introduces a
covariance with stellar mass that could explain the trend we see
in Figure 7(b).

4.3. Model Priors, Uncertainties, and Degeneracies

An underlying theme of this analysis is the flexibility
afforded by the nonparametric SFH model. This flexibility is in
the form of both model variability and minimally informative
(i.e., only moderately peaked) priors. Here we briefly comment
on the dependence of our results on the choice of hyperpara-
meters for the nonparametric model (concentration of mass
formation, number of time bins). We also comment on the
change in performance in the presence of additional uncertain-
ties from the stellar population synthesis models and observa-
tional noise.

4.3.1. Tuning of the Nonparametric Model

The nonparametric model hyperparameters and other priors
described in Section 2.4.1 were chosen for maximum
flexibility. While the choice of prior for the degree of mass
concentration (i.e., large variations over short timescales versus
a smoother SFH) matters for the nonparametric SFH
(Appendix A), we find that the results presented here are not
heavily dependent on the choice of time bins. The priors on
either end of the spectrum in terms of favoring smooth SFHs
result in stellar mass offsets that are smaller than the parametric
models but are much larger compared to the fiducial
nonparametric SFH model used in this analysis. The choice
of prior is equivalent to constraining the shape of the SFH;
thus, the strongest prior on the inferred stellar mass is set by the
choice of an SFH form that a priori assumes a certain shape, as
is the case for the parametric models. Moreover, the priors on
the τ model parameters (i.e., τ and the time at which the SFH
peaks) generally cannot be tuned to a given data set because (i)
that could exclude large regions of parameter space for the
inferred properties and (ii) the parameters couple differently in
different contexts. For instance, if we want to do well in
recovering SFHs for galaxies with rising SFRs at late times, we
could impose a prior on τ that would favor large e-folding
times. But this would necessarily bias the results against
galaxies that do not have rising SFHs. Furthermore, the
influence of the priors of the parametric model parameters like
τ and tage on the subsequent galaxy physical properties is not
straightforward; setting an uninformative prior on τ will not
result in a flat prior on SFR, sSFR, or stellar age. The effective
priors on galaxy properties are primarily driven by the choice
of a declining exponential form in the first place. Comparing
the delayed-τ model to the simpler τ model, which does not
allow for rising SFHs even with large τ, Wuyts et al. (2011)
found little difference between ages and SMFs inferred from
either model, especially for galaxies subjected to outshining. In
other words, modifying the τ model to allow for rising SFRs
did not result in significantly better results for stellar mass or
age. Because the nonparametric model does not favor any SFH
shape beforehand, the model can tackle the wide diversity of
SFHs as seen in SIMBA and elsewhere.

4.3.2. Uncertainties from Stellar Evolution and Observational Noise

A major source of uncertainty in SED modeling originates
from stellar evolution; the choice of stellar isochrones, spectral
libraries, and IMF contributes to large uncertainties in stellar
mass (e.g., Conroy 2013; Pforr et al. 2013; Santini et al. 2015).
Our results have been independent of these uncertainties since
we mirror the stellar population synthesis (SPS) models
between the synthetic POWDERDAY SEDs and the SED
modeling with PROPSECTOR. One such aspect of SPS modeling
is the assumed stellar IMF. Remodeling the POWDERDAY
SEDs with a mismatched IMF (Chabrier 2003 versus
Kroupa 2002), we find that, even in the presence of SPS
uncertainty, the distribution of stellar mass offsets between the
nonparametric model and the delayed-τ model remains clear
(Appendix B). However, the assumed stellar IMF is just one
component of an SPS model. The assumed stellar spectral
library and whether to use an empirically based or theoretical
library, along with the choice of stellar isochrones, have been
shown to impart serious uncertainties on inferred stellar masses
(Conroy et al. 2009). These uncertainties stem from difficulty
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in sampling rare stars (e.g., massive, low metallicity) and stars
in relatively short-lived phases (e.g., thermally pulsating AGB
stars), as well as difficulties in modeling stellar atmospheres to
produce theoretical spectra. The issue of how to model
thermally pulsating AGB stars is of particular interest, as it
has been shown to largely impact inferred stellar masses since
these stars dominate the near-IR luminosity of intermediate-age
galaxies (Maraston et al. 2006; Conroy et al. 2009).

Further observational uncertainties on inferred stellar masses
originate from photometric noise, especially for data sets
containing spectral line and continuum information. The
additional information provided by spectra helps to discern
different stellar populations and provides more information
about the metal content in galaxy, potentially helping to avoid
degeneracies between these parameters. However, spectra tend
to suffer from calibration issues, and the information provided
by spectra is dependent on the signal-to-noise ratio of said
spectra. Though we do not consider spectra from nebular
emission in this analysis, we conduct a brief test of the
performance of the SFH models in the presence of noise by
perturbing the input broadband photometry points within the
3% uncertainties. We show in Appendix B, Figure 11 that fits
to these noisy SEDs produce results similar to the above
analysis; thus, the results presented here, isolated from
additional sources of uncertainty, hold. However, in future
work we will conduct a more in-depth investigation into how
these results change as a function of varying signal-to-noise
ratio and SED coverage; for a thorough investigation into the
efficacy of these models for varying signal-to-noise ratios of
mock empirical spectra, see Leja et al. (2019a).

4.3.3. Uncertainties from Model Degeneracies

How an SED model handles degeneracies between model
parameters and their mapping to the observed SED is a large
difference between the parametric and nonparametric SFH
models studied here. For the parametric SFHs, placing a strong
prior on, e.g., the shape of SFH will affect the properties
derived from the model and the correlations between properties
by ruling out certain parameter combinations from the
beginning. Though this can break degeneracies between, e.g.,
dust and stellar age, it is done so through strongly peaked priors
with little physical basis and results in strongly biased
predictions. For instance, we see in Figures 2 and 6(c) that
the parametric models all favor younger stellar populations
than the true ages even in the absence of realistic dust, an
aspect of the τ model priors noted by Carnall et al. (2019).
Because many degenerate, though physically plausible, solu-
tions are ruled out a priori by the model choice (e.g., two stellar
populations produced by two separate star bursts), the inferred
uncertainties on galaxy properties like stellar mass are under-
estimated, as shown in Figures 3(c) and 7(a). The nonpara-
metric SFH, on the other hand, is subject to the same
degeneracies but does not impose such strong biases on
inferred properties as a result of the carefully applied priors. In
the Bayesian framework, an overly complex model will
provide unconstrained results; thus, if the chosen number of
time bins is too great relative to the input information or the
model solutions are highly degenerate, the galaxy properties
inferred with a flexible nonparametric SFH model will return
increasingly larger posteriors. We see evidence of this in the
middle panel of Figure 7, where average uncertainties for some
of the high stellar mass bins extend more than 2 dex.

Focusing on the stellar mass inferred from the PROSPECTOR
SED fits, the nonuniform sensitivity to variations in the SFH of
a galaxy makes it difficult to untangle the contribution of old
stars, young stars, metallicity, and dust to the integrated SED of
a galaxy and can result in inaccurately inferred galaxy
properties. It is worth restating that the results from the specific
implementation of nonparametric SFHs presented here out-
match the accuracy of the three commonly used parametric
forms considered, as shown in Figures 3 and 6. The use of
more simple parametric SFH forms to determine the physical
properties of galaxies will result in systematically biased stellar
mass estimates with SFRs and stellar ages that are not well
constrained, even in a best-case scenario of 25 broadband
photometry points and a constrained dust model.

4.4. The Impact of Diffuse Dust

The results discussed so far do not consider the impact of
diffuse galactic dust on the inferred stellar mass from SED
modeling. Instead, we forced the POWDERDAY dust radiative
transfer simulations to employ a dust screen model around stars
in order to force an apples-to-apples comparison with the SED
fitting techniques that also model dust via a screen model. This
allowed us to isolate the differences between the input
POWDERDAY SEDs and the output PROSPECTOR SEDs and
focus on how the assumed SFH model affects the inferred
stellar mass. However, by neglecting the true dust distribution
and dust-to-star geometry, we underestimate the uncertainty
with which we can infer the stellar mass of a galaxy. In this
section, we now briefly explore how including diffuse dust
impacts the results presented so far (noting that a full
exploration of the impact of dust attenuation will be presented
in future work).

4.4.1. Diffuse Dust Radiative Transfer

For the exploration of diffuse dust on our results, we use
POWDERDAY to perform radiative transfer on the SIMBA
galaxies, as described in Section 2.3. In this situation, however,
we abandon our initial assumption of a uniform dust optical
depth for all stars. Instead, the FSPS stellar SEDs are propagated
through the dusty ISM. The diffuse dust content is derived from
the on-the-fly self-consistent model in SIMBA (Li et al. 2019),
and this dust is assumed to have extinction properties following
the carbonaceous and silicate mix of Draine & Li (2007), which
follows the Weingartner & Draine (2001) size distribution and
the Draine (2003) renormalization relative to hydrogen. We
assume ( )º - =R A E B V 3.15V V . We do not assume
further extinction from subresolution birth clouds. PAHs are
included following the Robitaille et al. (2012) model, in which
PAHs are assumed to occupy a constant fraction of the dust
mass (here, modeled as grains with size a<20Å) and
occupying 5.86% of the dust mass. The dust emissivities
follow the Draine & Li (2007) model, though they are
parameterized in terms of the mean intensity absorbed by
grains, rather than the average interstellar radiation field as in
the original Draine & Li model.

4.4.2. Impact of Diffuse Dust on the Inferred Stellar Mass

To include the impact of diffuse dust in this analysis, we
again fit the SIMBA broadband SEDs with PROSPECTOR, this
time allowing a flexible dust attenuation curve following the
parameterization presented in Kriek & Conroy (2013). In
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Figure 9, we compare the stellar mass offsets from two of the
SFH models with and without diffuse dust for a subset of
SIMBA galaxies. The stellar masses inferred from the nonpara-
metric SFH model are only marginally affected by the addition
of diffuse dust. The difference in the median of the distribution
of stellar mass offsets between the two data sets is statistically
insignificant. The delayed-τ model, on the other hand, is
significantly affected by the addition of diffuse dust: the
magnitude of stellar mass offsets extends to just over 1 dex.
And while, like the nonparametric model, the median of the
stellar mass offset distribution remains largely unchanged for
the delayed-τ model, the dispersion of the distribution has
increased, such that a larger fraction of galaxies have larger
offsets compared to the SED fits without diffuse dust.

The addition of diffuse dust and variable attenuation curve
not only increases the number of model parameters PROSPEC-
TOR must fit simultaneously but also introduces degeneracies
between model parameters that are difficult to untangle, even
with the constraints on, e.g., stellar metallicity in place. The
addition of diffuse dust amplifies the drawbacks of using a
parametric SFH model shown previously. In future work, we
will explore these drawbacks in detail by considering a flexible
dust attenuation curve to capture the diversity of attenuation
curves present in the universe and to follow up this analysis by
determining the impact of observational sources of uncertainty
on inferred galaxy properties.

5. Conclusions

We have used simulated galaxies from the SIMBA cosmo-
logical simulation to understand our current ability to infer the
stellar mass of a galaxy with SED modeling. In particular, we
assessed the impact of the SFH model in SED fitting. We
considered four SFH models, three commonly used parametric
models and one nonparametric model, included in the
PROSPECTOR modeling framework. We have demonstrated
that the biases in stellar mass estimates decrease significantly
with the use of nonparametric SFHs, falling below 0.09 dex for
a majority of modeled SIMBA galaxies. The conclusions from
our analysis are as follows:

1. Stellar masses derived from the PROSPECTOR nonpara-
metric SFH models are much more accurate on average
than those derived from parametric models, for galaxies
of all stellar masses, ages, and morphologies. Figure 3(a)
shows the median derived M* for galaxies assuming
different SFHs models. We find that the offset between
the inferred M* and the true M* decreases from 0.4 dex
on average when modeled with a delayed-τ SFH to
−0.02 dex when modeled with a nonparametric SFH.
Outliers exist for galaxies at the high-mass end, caused by
failures to recover early periods of intense star formation.
An important note is that while our results improve when
using this particular nonparametric model, the differences
between nonparametric and parametric begin to smear out
once diffuse dust, noise, and other model uncertainties are
considered. That said, we present here an estimate for the
baseline M* uncertainties achievable with current broad-
band SED models.

2. Parametric SFHs suffer from biases that are larger than
their associated uncertainties, as explored in this analysis
and in, e.g., Simha et al. (2014), Salmon et al. (2015),
Carnall et al. (2019), and Curtis-Lake et al. (2020). The
danger in applying a delayed-τ SFH to a sample of
galaxies, aside from the relatively poor match to true
SFHs on average, lies in the false constraints imposed on
galaxy properties by the SFH priors. As shown in
Figure 3(c), we find that the nonparametric SFHs tend to
capture the true mass value within the 1σ M* posterior
width for a much higher fraction of galaxies compared to
the three parametric models considered.

3. Nonparametric SFHs in PROSPECTOR are also able to
match the true SIMBA SFHs across time significantly
better than the parametric models, as shown in Figure 5.
This increase in accuracy is owed to the well-constrained
(i.e., through the choice of prior) flexibility permitted by
the nonparametric model, so that the SFR at any one
epoch is not determined by the SFR at another time.
Mass recovery can be further improved by using more
discerning data such as spectra or narrowband photo-
metry, which could provide better constraints for early
star formation activity.

Though the nonparametric SFH model used here out-
performed the other parametric models on all metrics, it is
important to note that these models must be used carefully. As
described in Leja et al. (2019a), the priors that are chosen to
constrain a nonparametric SFH are the primary drivers of the
size of the inferred M* posterior. For the nonparametric models
in PROSPECTOR, this means that the stellar mass posteriors,
while wider than those of the parametric SFH models, are able
to capture the true stellar mass of the simulated galaxies at
much higher fractions. The PROSPECTOR nonparametric priors,
including the Dirichlet prior chosen for this analysis, perform
much better than the parametric SFHs across the board, but the
degree to which this performance improves is dependent on the
choice of prior, as shown in Appendix A.
The difficulty in SED modeling lies in the fact that the SFH is

only moderately constrained by broadband photometry, so priors
must be carefully implemented to allow a diverse range of SFHs
to be modeled while simultaneously fitting for dust and other
model parameters. On this point, the PROSPECTOR nonpara-
metric models are significantly better than the parametric
SFHs used here and some more simplistic implementations of

Figure 9. Distribution of stellar mass offsets for the dust screen models (filled
histograms) and the models including diffuse dust and a variable dust
attenuation curve (open histograms). The median and 1σ width of each
distribution are shown.
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nonparametric SFHs at producing meaningful error bars thanks
to the carefully chosen priors, and SED modeling can only
benefit from other thoughtful implementations of model priors.
Finally, cosmological simulations can play an important role in
future work to constrain priors not only for SFHs but also for
dust attenuation laws. We can also develop nonparametric
models for dust attenuation in a similar way, but the increase in
computational resources and model degeneracies warrant
caution. As such, we hope to explore further improvements to
SED modeling and deriving physical properties from broadband
photometry.
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Appendix A
Nonparametric SFH Hyperparameters

The nonparametric SFH used in this analysis (described in
full in Leja et al. 2019a, along with all other models available
in PROSPECTOR) is described by N bins of constant SFR, where
N=10 and the fraction of mass formed in each bin of star
formation is constrained by a transformation of the Dirichlet

prior (Betancourt & Girolami 2013) parameterized by α, which
sets the concentration of mass formation. Modulating the value
of α modulates the preference for all stellar mass to be formed
in one bin (α < 1) versus a smoother distribution of stellar
mass (α > 1). In practice, the fractional mass formed in each
bin is fit, as opposed to the actual value of mass formed in each
bin, so as to avoid sampling from a large volume of prior space
and to separate fitting the shape of the SFH (done by the
fractional mass) from the surviving stellar mass (the normal-
ization of the SFH). Many tests were run to determine the
dependence of the inferred stellar masses on these hyperpara-
meters. Figure 10 shows the inferred stellar mass offsets for
different choices of time bins and priors. We also include
summary statistics in Table 3. The choice of priors includes
changing α in the Dirichlet prior along with a different prior
distribution, called the Continuity prior, which favors small
changes between adjacent time bins of star formation (similar
to Dirichlet priors with large α values, though star formation
between bins is explicitly tied to each other). The dominant
factor is the choice of prior constraining the fractional mass in
each time bin, highlighting the importance of choosing a prior
suited to a particular data set.
The continuity prior was tuned in Leja et al. (2019a) to

galaxy SFHs from the Illustris hydrodynamical simulation. As
recently presented in Iyer et al. (2020), galaxy SFHs in Illustris
have less power on short timescales compared to galaxies from
SIMBA. This means that SIMBA galaxies tend to have more
fluctuations on short timescales, so implementing an SFH prior
favoring small fluctuations would tend to give worse stellar
mass estimates. Furthermore, because the “correct” choice of
prior for any sample of galaxies, both simulated and observed,
will change depending on the class of galaxy (star-forming
versus quiescent, local versus high redshift), we do not suggest
that the particular priors we imposed on the SIMBA data set will
be correct for all galaxies.

Figure 10. Cumulative fraction of galaxies with inferred stellar mass offsets for varying numbers of time bins (left) and prior on fractional mass per time bin used in
the nonparametric SFH model (right). The data presented in this analysis are shown by the dashed lines.
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Appendix B
Variations in the SPS Model and Synthetic SEDs

To quantify the impact of the assumed SPS model, we
changed the model IMF in PROSPECTOR to no longer match the
IMF used in the POWDERDAY radiative transfer. Though the
IMF represents just one uncertainty in an SPS model, the
impact on the inferred stellar mass offsets is noticeable for both
parametric and nonparametric SFH models, shown in the left
panel of Figure 11, with statistics given in Table 3. Even so, the
average galaxy has a more accurately inferred stellar mass from
the nonparametric model than the delayed-τ model. An IMF
change, to first order, is a multiplicative offset in stellar mass

with no change to the observed photometry. Switching from a
Kroupa (2002) IMF to a Chabrier (2003) one will decrease the
mass by 0.03 dex; fitting a Salpeter (1955) IMF to photometry
generated from a Chabrier (2003) IMF would consistently
overestimate masses by 0.2 dex.
Similarly, we simulated the effect of photometric noise on

the inferred stellar mass. This was done by modulating the
input photometry within the 3% uncertainties. Again, we see
noticeable decreases in accuracy from both nonparametric and
parametric SFH models when noise is added, though the
nonparametric SFHs continue to outperform the traditional
parametric models, with offsets extending to 1.5 dex.

Table 3
Summary Statistics for SED Models with Differing Parameter Choices

SFH Model Data Set/Model Median M* Offset

Nonparametric Concentration parameter 0.2 0.22±0.12
0.7a −0.02±0.13
1.0 0.08±0.13
Continuity prior 0.24±0.15

Time resolution 3 bins −0.06±0.21
6 bins −0.03±0.12
10 bins −0.02±0.13
12 bins −0.03±0.14

Initial mass function Kroupa 2002 −0.02±0.13
Chabrier 2003 −0.04±0.21

Noisy SED 3% uncertainties −0.02±0.13
Perturbed w/3% unc. 0.15±0.72

Delayed-τ Initial mass function Kroupa 2002 −0.39±0.12
Chabrier 2003 −0.48±0.89

Noisy SED 3% uncertainties −0.39±0.12
Perturbed w/3% unc. −0.47±1.16

Notes. Median stellar mass offsets are shown for each SED model distribution, with the associated 1σ width, and the fiducial model choices are highlighted in bold.
The choice of prior for the nonparametric model (Dirichlet+concentration parameter and continuity prior) has the largest effect on the stellar masses inferred from the
nonparametric model. Using a perturbed input SED or a mismatched IMF slightly increases the median stellar mass offsets for each respective SFH model, though
effectively each distribution is smeared out by the increased uncertainty in the inputs/model. Concentration parameter: The concentration parameter controls for the
distribution of mass formation across bins. Low values (α < 1) prefer to put all of the weight in one bin, while higher values more evenly distribute the weight across
all bins. The continuity prior is an alternative nonparametric model prior available in PROSPECTOR and favors smoother SFHs, explicitly weighting against sharp
changes in mass formation between adjacent time bins. Time resolution: The nonparametric model depends on a choice of time bins, both in number and in location.
Based on Ocvirk et al. (2006), we set our time bins to be evenly spaced in logarithmic time and focus on the impact the time resolution (number of bins) has on the
inferred stellar masses. IMF and Noise: For both the nonparametric and delayed-τ SFH model, we tested the impact of the assumed IMF and the input SED noise level.
a Fiducial model choices are highlighted in bold.
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