
Chains of Planets in Mean Motion Resonances Arising from Oligarchic Growth

Sarah J. Morrison1,2,3 , Rebekah I. Dawson2,3 , and Mariah MacDonald2,3
1 Department of Physics, Astronomy, & Materials Science, Missouri State University, Springfield, MO 65897, USA; SJMorrison@missouristate.edu

2 Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA, 16802, USA
3 Dept. of Astronomy & Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA
Received 2020 July 31; revised 2020 October 1; accepted 2020 October 5; published 2020 November 30

Abstract

Exoplanet systems with multiple planets in mean motion resonances have often been hailed as a signpost of disk-
driven migration. Resonant chains like Kepler-223 and Kepler-80 consist of a trio of planets with the three-body
resonant angle librating and/or with a two-body resonant angle librating for each pair. Here we investigate whether
close-in super-Earths and mini-Neptunes forming in situ can lock into resonant chains due to dissipation from a
depleted gas disk. We simulate the giant impact phase of planet formation, including eccentricity damping from a
gaseous disk, followed by subsequent dynamical evolution over tens of millions of years. In a fraction of simulated
systems, we find that planets naturally lock into resonant chains. These planets achieve a chain of near-integer
period ratios during the gas-disk stage, experience eccentricity damping that captures them into resonance, stay in
resonance as the gas disk dissipates, and avoid subsequent giant impacts, eccentricity excitation, and chaotic
diffusion that would dislodge the planets from resonance. Disk conditions that enable planets to complete their
formation during the gas-disk stage enable those planets to achieve tight period ratios �2 and, if they happen to be
near-integer period ratios, lock into resonance. Using the weighting of different disk conditions deduced by
MacDonald et al. and forward modeling Kepler selection effects, we find that our simulations of in situ formation
via oligarchic growth lead to a rate of observable trios with integer period ratios and librating resonant angles
comparable to observed Kepler systems.

Unified Astronomy Thesaurus concepts: Exoplanet formation (492); Planet formation (1241); Protoplanetary disks
(1300); Orbital evolution (1178); Orbital resonances (1181); Gravitational interaction (669); Exoplanet dynamics
(490); Exoplanet astronomy (486); Exoplanet systems (484)

1. Introduction

An enduring question about many of the several thousand
known exoplanets is whether they formed where we observe
them today or underwent migration from their birthplace. The
prevalence of migration (i.e., whether planets typically form
where we observe them) affects our assumptions about their
compositions and habitability. Even if we believe that
migration likely does take place to some degree, it is unclear
whether it is a vital process shaping the architectures of most
planetary systems, a minor process tweaking planetary
architectures, and/or a process important in some systems
but not others.

Short-period planets were once assumed to be the product of
migration (e.g., Lin et al. 1996; Rasio & Ford 1996; Lee &
Peale 2002). Migration has been invoked to explain the
presence and properties of super-Earths and mini-Neptunes
orbiting close to their star (e.g., Ida & Lin 2008; Cossou et al.
2014; Izidoro et al. 2017, 2019; Carrera et al. 2019) discovered
in abundance by ground-based radial-velocity surveys (e.g.,
Howard et al. 2010; Mayor et al. 2011) and the Kepler Mission
(e.g., Howard et al. 2012). However, recent simulations of
planet formation have shown that planets with modest gas
envelopes may be able to form close to their host stars (e.g.,
Chiang & Laughlin 2013; Lee et al. 2014), or at least assemble
from transported building blocks (e.g., Hansen & Murray
2012). In situ formation can account for many of the observed
orbital and composition properties of super-Earths and
mini-Neptunes (e.g., Dawson et al. 2015, 2016; Lee & Chiang
2015; Moriarty & Ballard 2016; MacDonald et al. 2020).
However, even if the bulk of short-period super-Earths and
mini-Neptunes form in situ, it has usually been assumed that at

least planets in an orbital configuration known as a resonant
chain must have formed elsewhere and migrated to their
present location during the protoplanetary disk phase of that
system’s history.
Mean motion resonant (MMR) chains consist of three or

more planets in the same system with integer period ratios. We
observe this configuration among certain moons in our solar
system (most famously Io, Ganymede, and Europa) and about a
dozen extrasolar systems (e.g., Fabrycky & Murray-Clay 2010;
MacDonald et al. 2016; Mills et al. 2016; Gillon et al. 2017).
To formally be in resonance, bodies must exhibit libration of
their resonant angles. We consider two types of resonant chains
here. In the first type, three planets are configured in a three-
body resonance with a resonant angle involving the longitude
of each planet. In the second type, the inner pair of three
planets and the outer pair each participates in a two-body
resonance with a resonant angle involving the longitudes of the
two planets and the periapse angle of one planet. We will
define the various angles we consider in Section 3.
Disk-driven migration can form resonant chains (e.g.,

Cresswell & Nelson 2006; Gallardo et al. 2016; Migaszewski
2016; Sun et al. 2017; Charalambous et al. 2018), so resonant
chains have been considered a hallmark of planets that formed
far from where we observe them today. Yet, in practice, MMR
chains have been established in simulations not only by long-
distance migration (a factor of ∼10 change in semimajor axis)
but also short-distance migration (e.g., MacDonald et al. 2016;
Choksi & Chiang 2020) a factor of ∼0.1 change in semimajor
axis) and via eccentricity damping only (e.g., Dong & Dawson
2016). Resonance widths are wider at low eccentricities (e.g.,
Malhotra & Zhang 2020 and references therein), so eccentricity
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damping can expand the range of period ratios compatible with
libration (e.g., Delisle et al. 2012). MacDonald & Dawson
(2018) recently showed that all three dynamical histories (long-
distance migration, short-distance migration, and eccentricity
damping only) can account for the orbital resonances observed
in the Kepler-80, Kepler-223, Kepler-60, and TRAPPIST-1
planetary systems and are consistent with the observed values of
and constraints on their eccentricities, period ratios, libration
centers, and libration amplitudes. MacDonald & Dawson (2018)
demonstrated as a proof of concept that even systems with
resonant chains may have formed at or near their observed
locations. However, more work is needed to demonstrate that
in situ formation is a feasible origins scenario for resonant
chains. MacDonald & Dawson’s (2018) simulations began with
fully formed planetary systems and treated the migration and
eccentricity damping timescales and initial eccentricities and
orbital periods as free parameters. We need to investigate
whether the successful parameters are not too fine tuned or
inconsistent with plausible protoplanetary disk conditions. We
also need to explore whether disk conditions (e.g., Goldreich &
Schlichting 2014) and perturbations from additional undetected
planets (e.g., Pan & Schlichting 2017) are likely to prevent
resonance capture or disrupt resonant chains after they form.

Here we build on MacDonald & Dawson’s (2018) proof of
concept by investigating the establishment of resonant chains
within systems arising from in situ planet formation. We make
use of and expand upon a suite of in situ formation simulations
from MacDonald et al. (2020) that begin with planetary
embryos in a depleted gas disk. MacDonald et al. (2020)
identified a range of disk conditions that can account for the
observed orbital and compositional properties of Kepler super-
Earths and mini-Neptunes. We will investigate whether those
same conditions produce resonant chains. In Section 2, we
summarize how we generated our model planetary systems that
arose from in situ planet formation. In Section 3, we assess
resonant chain outcomes. We discuss conditions needed to
establish resonant chains in Section 4 and the statistics and
observability of chains from our simulations in Section 5. We
summarize our findings in Section 6.

2. Generating Planetary Systems via In Situ Formation

We use and supplement the simulations of in situ formation
from Dawson et al. (2016) and MacDonald et al. (2020). To
summarize, we assume planetary embryos have grown from a
reservoir of solid material transported from the outer disk into
the region of formation. Our simulations begin as the gas disk
starts to dissipate and embryos begin to interact gravitationally;
solid material is no longer being brought in at significant levels
from the outer disk.

We perform N-body integrations of planetary embryos
lasting 28Myr using the mercury6 hybrid symplectic integrator
(Chambers et al. 1996) in which the first 1 Myr includes
eccentricity damping to mimic the dissipative effects of a
depleted gaseous protoplanetary disk. The planetary embryos
begin with zero eccentricity and masses:
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where n is the planet’s mean motion, the random epicyclic
velocity = +v e i na2 2 , =c 1.29s km s−1,(a/au)-1 4 is
the gas sound speed (Papaloizou & Larwood 2000; Kominami
& Ida 2002; Ford & Chiang 2007; Rein 2012), and d is the
depletion factor relative to the minimum mass solar nebula. The
gas disk can also cause migration but we have confirmed
through trial simulations that include migration that the slow
migration expected in a depleted gas disk has a negligible effect
on the final planet properties. To clarify the role of eccentricity
damping, we use a, e, and i only following Wolff et al. (2012);
the user-defined implemented forces in mercury6 have no
direct effect on a.
The scenario we envision is that 1/d declines gradually until

it reaches some threshold value, and the gas disk rapidly
disappears (the photoevaporative switch model, e.g., Owen
et al. 2011, 2012). Here we approximate the dissipation process
as a step function: we begin with d at its threshold value for
1 Myr, and subsequently d=0. The 1Myr timescale repre-
sents the dissipation timescale at the end of the disk lifetime.
We confirm that the step function approximation does not
introduce sudden, spurious capture into or escape from
resonance; in our simulated systems, capture occurs well
before or after the damping force shuts off. The eccentricity
damping acceleration is small, of order 10−6 of the Keplerian
acceleration.
The simulations are grouped into ensembles by degree of

damping and summarized in Table 1. We list the number of
systems with trios with integer period ratios within 2% of 2:1,
3:2, 4:3, or 5:4 and the number of systems with librating
chains. We find that ensemble Ed2 produces far more resonant
chains than the others (for reasons we will explore in
Section 4); Ed2 is also the ensemble that we found can provide
a good match to Kepler planets’ observed orbital and
compositional properties (MacDonald et al. 2020). We identify
a range of Σz,1 (55–148 g cm−2) within the ensemble that
produces the majority of resonant chain systems and perform
additional simulations (ensemble Ed2+).

3. Resonant Chain Outcomes of Oligarchic Growth

We identify resonant chains in the formation simulations
described in Section 2. In Section 3.1, we describe the two
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types of resonant chains we look for and their associated
resonant angles. In Section 3.2, we describe the process and
results of identifying resonant chains in our simulations.

3.1. Classifying Resonant Chains and Angles

We consider two types of resonant chains. The first type of
chain is a set of at least three planets in which each successive
pair of planets has at least one of its corresponding two-body
angles librating. For first-order resonances, there are two
possible resonant angles, and they consist of
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where p is an integer corresponding to a p+ 1:p resonance, λ is
the orbit mean longitude, ϖ is the longitude of periapse, and
the subscripts 1 and 2 refer to the inner and outer planet,
respectively. In many cases, the planets’ period ratios are near
p+ 1:p, but if the longitude of periapse quickly precesses, the
period ratio can be significantly different (e.g., Lithwick &
Wu 2012).

The second type of resonant chain is a set of three planets
with a librating three-body angle. Here we focus on three-body
angles that depend only on the planets’ mean longitudes
because this type of three-body angle has been investigated for
observed systems (e.g., MacDonald et al. 2016). These angles
consist of
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where the subscripts 1, 2, and 3 refer to the inner, middle, and
outer planet, respectively. For commensurate period ratios:
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Table 2 contains a nonexhaustive list of three-body angles.
A triplet of planets can be in both types of resonant chain,

the first type only, or the second type only (e.g., Charalambous
et al. 2018). The Galilean satellites (Io, Ganymede, and
Europa) and GJ 876 are examples of systems with both
librating two-body and three-body angles (e.g., Nelson et al.
2016). For observed systems, it can be easier to determine if the

three-body angle is librating than two-body angles because ϖ
can be challenging to measure. For example, the TRAPPIST-1
system is known to have multiple librating three-body angles
but it is unknown whether any of the two-body angles are
librating (Luger et al. 2017).

3.2. Resonant Chains Formed in Simulations

To systematically identify resonant chains, we generate plots
of two-body and three-body angles and assess each by eye for
libration. We list the resonant chains in Table 3 and show
examples in Figures 1–3. We identify triplets in both types of
resonant chains. Most chains contain only three planets, but
several contain four or more, including one chain of five
planets and two chains of six planets, reminiscent of the
TRAPPIST-1 system. We see resonant chains across the full
range of simulated orbital periods.
We find that simulated systems with both types of resonant

chains (i.e., librating three-body angles and successive pairs of
librating two-body angles) are relatively uncommon: most
resonant chains are either one type or the other. In order for a
librating pair of two-body resonances to dictate the libration of
the three-body angle, ( )f + 1, 2p p o1: ,1, and ( )f + 2, 3p p i1: ,1, must
both librate. For most of our simulated chains, ( )f + 1, 2p p o1: ,1,
does not librate. One of our six planet chains is an exception:
the two-body angles ( )f 5, 4o2:1, and ( )f 6, 5i3:2, both librate, so
three-body angle ( )f 6, 5, 4b3 3,1 librates as well (Figure 3).
Chains of interlocking two-body resonances include the 2:1,

3:2, 4:3, 5:4, and 6:5. An example is shown in Figure 1. The
two pairs can have similar period ratios (e.g., both pairs of
planets in the 2:1 MMR, like the observed system GJ 876) or
different period ratios (e.g., one pair in the 4:3 and one in the
3:2, like the observed system Kepler-223). Period ratios can
either be narrow or wide of commensurability. For example,
one system features two pairs of 3:2 MMR with period ratios of
1.48 and 1.47 (narrow of commensurability), and another
features a 4:3 pair with a period ratio of 1.34 and a 5:4 pair with
a period ratio of 1.27 (both wide of commensurability). As
expected from stability, planets with period ratios closer to 1
tend to be less massive. For example, a 3.3M⊕ and 0.9M⊕ pair
exhibits libration of the 5:4 two-body angle, and a 8.6 M⊕ and
9.3 M⊕ pair exhibits libration of the 2:1.

Table 1
Suites of Simulations in Which we Assessed the Occurrence of Planets in

Resonant Chains

Name Damping
Σz,1

(g cm−2)
No. of

Simulations

Integer
Period
Ratio
Triosa

Librating
Chainsb

Ed4 d=104 38–105 80 0 0
Ed3 d=103 38–105 80 2 0
Ed2 d=102 14–284 290 28 8
Ed2+ d=102 55–148 80 13 6
Ed1 d=10 14–284 240 14 2
Ed0 d=1 38–105 80 0 0

Notes. All surface density profiles have a power law slope of −1.5.
a Systems contain at least one trio where each pair is within 2% of a 2:1, 3:2,
4:3, or 5:4 orbital period ratio.
b Systems contain at least one trio where each pair’s two-body angle and/or the
three-body angle is librating.

Table 2
Three-body Angles (Equation (5))

P P:2 1 P P:3 2 Three-body

5:4 4:3 f3b/4,4(3, 2, 1)
5:4 3:2 f3b/3,4(3, 2, 1)
4:3 5:3 f3b/5,6(3, 2, 1)
4:3 3:2 f3b/1,1(3, 2, 1)
4:3 4:3 f3b/4,3(3, 2, 1)
4:3 5:4 f3b/5,3(3, 2, 1)
4:3 6:5 f3b/2,1(3, 2, 1)
3:2 2:1 f3b/1,1(3, 2, 1)
3:2 3:2 f3b/3,2(3, 2, 1)
3:2 4:3 f3b/2,1(3, 2, 1)
3:2 5:4 f3b/5,2(3, 2, 1)
5:3 5:3 f3b/5,3(3, 2, 1)
5:3 3:2 f3b/2,1(3, 2, 1)
2:1 2:1 f3b/2,1(3, 2, 1)
2:1 3:2 f3b/3,1(3, 2, 1)
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We find a number of systems with librating three-body
angles where the corresponding two-body angles do not librate.
For example, a system with an inner pair with period ratio near
4:3 and outer pair with period ratio near 6:5 exhibits libration
of ( )f 3, 2, 1b3 2,1 , but not ( )f 2, 1i o4:3, or ( )f 2, 1i o6:5, . We
find only a couple of systems (including one of the six planet
chains) with libration of both the three-body angle and the
corresponding two-body angles.

In summary, resonant chains of both types naturally can arise
from our simulations of in situ formation when planets happen
to form near consecutive integer period ratios. In the next
section, we will explore why some planets near-integer period
ratios do not end up in resonant chains and which formation
conditions are most favorable for capture.

4. Conditions Favorable for Producing MMR Chains

All of our simulations of in situ formation that produced
resonant chains met the following conditions: (1) planets must
achieve a chain of near-integer period ratios during the gas-disk
stage, (2) the planets must experience eccentricity damping that
captures them into resonance, (3) the planets must stay in
resonance as the gas disk dissipates, and (4) the system must avoid
subsequent giant impacts, eccentricity excitation, and chaotic
diffusion that would dislodge the planets from resonance.
Planetary systems fail the first criterion when they only

achieve a chain of near-integer period ratios after the gas-disk
stage. In Figure 4, we plot the fractional change in period ratio

Figure 1. Example of resonant chains formed in situ with interlocking two-
body angles (rows 1 and 2) but no librating three-body angle (row 3). The
vertical dotted–dashed line marks the end of the gas-disk stage. During the gas-
disk stage, planets grow through mergers (bottom row) and excite each other’s
eccentricities (row 4). Once they grow sufficiently isolated, their eccentricities
damp and they capture into two-body mean motion resonance 0.2 Myr before
the dissipation of the gas disk. The resonant angle of the inner pair involves the
periapse of the inner planet, not the middle planet (i.e., ( )q 2, 1o2:1, , not shown,
does not librate). Note that the final system contains 12 planets within 1 au, six
interior and three exterior to the resonant triplet.

Figure 2. Example of resonant chains formed in situ with librating three-body
angles (row 3) but without libration of the corresponding two-body angles
(rows 1 and 2). The vertical dotted–dashed line marks the end of the gas-disk
stage. During the gas-disk stage, planets grow through mergers (bottom row)
and excite each other’s eccentricities (row 4). Once they grow sufficiently
isolated, their eccentricities damp and they capture into resonance. After the
gas-disk stage, eccentricities slowly grow due to perturbations from other
planets in the system and the two-body libration amplitudes grow until the
planets are no longer in resonance; the three-body angle remains tightly
librating. Note that the final system contains 14 planets within 1 au, five interior
and six exterior to the resonant triplet.
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during each simulated system’s post-gas stage evolution from
ensemble Ed2+. For this ensemble, planets in chains of near-
integer period ratios (defined as a period ratio within 3% of an
integer value) tend to reach those period ratios during the gas-
disk stage. We only find one exception, shown in Figure 5. In
this system, a planetary trio continue to undergo mergers and
reach their final masses and period ratios at around 10Myr after

the gas disk dissipates. Without dissipation, they do not capture
into resonance.
More generally, under ensemble Ed2+ʼs gas-disk condi-

tions, most growth occurs during the gas-disk stage. The
average Hill spacing is 14 at the end of the gas-disk stage and
only increases, due to mergers among a small subset of planets,
to 19 after 27Myr of post-gas evolution. Of course, under other
disk conditions (i.e., leading to planets undergoing most of
their growth after the gas-disk stage), chains of near-integer
period ratios may be primarily established after the gas-disk
stage; but such conditions cannot account for other observed
properties of Kepler systems (MacDonald et al. 2020).
Sometimes planets reach near-integer period ratios during the

gas-disk stage but do not experience sufficient eccentricity
damping for resonance capture. Eccentricity damping is necessary
because our simulations of in situ formation do not include
migration, so damping to low eccentricities allows for libration at a
wider range of period ratios (e.g., Delisle et al. 2012). Figure 6
shows an example of a trio where two of the planets experience
their last mergers right before the end of the gas-disk stage at
1 Myr. Their eccentricities are damped slightly in the short
remaining time, but not enough for resonance capture. The need
for eccentricity damping for resonance capture likely contributes to
a trend in our simulations: planets captured into resonant chains in
our simulations end up with lower eccentricities at a given period
ratio (Figure 7). Figure 8 zooms in on the period ratios near first-
order commensurabilities for simulated planets. Eccentricity
damping enables libration away from exact commensurability
and causes a gap in the period ratio distribution just inside
commensurability (e.g., Lithwick & Wu 2012). We do not see an
obvious trend between smaller eccentricities and wider distances

Figure 3. Example of resonant chains formed in situ with librating three-body
angles (row 3) and also libration of the corresponding two-body angles (rows 1
and 2). The vertical dotted–dashed line marks the end of the gas-disk stage.
During the gas-disk stage, planets grow through mergers (bottom row) and
excite each other’s eccentricities (row 4). Once they grow sufficiently isolated,
their eccentricities damp and they capture into resonance 0.4 Myr before the
dissipation of the gas disk. Note that the final system contains seven planets
within 1 au, four interior to the resonant triplet shown here. Six of the planets
are involved in a resonant chain.

Figure 4. Fractional change in period ratio during the post-gas stage vs. final
period ratio from ensemble Ed2+. Planets in chains of two or more pairs near-
integer period ratios (but not necessarily with librating two-body angles) are
marked in red; those with librating resonant angles are outlined in blue. Larger
red symbols indicate planets in the simulation that achieve their near-integer
period ratios after the gas-disk stage. All other chains of near-period ratios are
established during the gas-disk stage.
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from commensurability, but the diversity of simulated planet
masses could obscure such a trend.

Some resonant chains lose their libration when the gas disk
dissipates. We show an example in Figure 9. During the gas-disk
stage, the two-body and three-body angles achieve a low-
amplitude libration. Although nothing dramatic like a collision
happens within the system when the gas disappears—the period
ratios remain constant (panel 4)—the two-body resonant angles
cease to librate shortly after (panels 1–2) and the eccentricities
grow modestly (panel 5). After about 0.5Myr, the three-body
angle circulates as well (panel 3). The trio may get dislodged from
resonance after the gas-disk stage because it is no longer cushioned
by the gas from perturbations of other planets in the system.

Other systems lose their libration on a longer timescale. We
find that two-body angles can be dislodged from resonance while
keeping the corresponding three-body angle intact. Among our
simulations, we find several cases where trios escape two-body
resonances but remain in their three-body resonance. Figure 2
shows an example where the two-body angles gradually escape

resonance but the three-body angle remains tightly librating. In
another resonant chain, the two-body angles are dislodged when a
pair of interior planets uninvolved in the chain undergo a collision
—leading to a spike in the resonant planets’ eccentricities—but
the three-body angle remains tightly librating.
To capture and maintain planets in resonant chains, disk

conditions must allow planets to reach their final masses and
experience eccentricity damping during the gas-disk stage, with
few disturbances afterwards. These are the same conditions that
enable tightly packed planets with period ratios less than 2
(MacDonald et al. 2020), favorable for achieving integer period
ratios. In the next section, we will quantify just how commonly
resonant chains are produced under the right conditions.

5. Statistics and Observability

Our simulations of in situ formation establish resonant chains
under the right disk conditions. Here we assess how often we
expect those chains to be observable in the Kepler sample. We

Figure 5. Example of system where planets do not achieve a chain of near-
integer period ratios until after the gas-disk stage, when late collisions alter
their orbital periods. With no dissipation, they are not captured into resonance.

Figure 6. Example of a system where planets do not achieve a chain of near-
integer period ratios until just before the end of the gas-disk stage. There is
insufficient time for eccentricity damping and resonance capture before the gas
disk dissipates.
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follow MacDonald et al. (2020) to assess the observability of
each system, forward modeling both detection efficiency among
Kepler targets (Burke et al. 2015; Christiansen et al. 2015, 2016)
using parameters for the DR25 Kepler catalog (Thompson et al.
2018), the Weiss & Marcy (2014) mass–radius relationship, and
geometric selection effects for 106 randomly oriented copies of
each simulated system. Each system has of order 20,000

realizations with one or more detected transiting planets. When
comparing the observed sample of Kepler targets, we use the
59,356 stars with stellar effective temperature <4100 K

<T 6100 Keff , stellar >glog 4, and Kepler magnitude <15.
For each simulated resonant chain, in Table 3 we report

NKep, the number of detections of the entire resonant chain
multiplied by the number of Kepler targets meeting our
selection criteria and divided by 106. We can interpret NKep as
the expected number of Kepler detections (i.e., where each
planet in the chain transits and has sufficient signal to noise to
be observable around that star) if every Kepler target meeting
our selection criteria had an exact but randomly oriented copy
of this planetary system.
We also compute a related quantity, fch,1+, the number of

detections of the entire resonant chain divided by the total
number of systems with one or more transiting planets generated
by the ensemble, and fch,3+, the number of detections of the
entire resonant chain divided by the total number of systems
with three or more transiting planets generated by the ensemble.
As expected, resonant chains of larger planets at shorter

orbital periods are more commonly “detected.” For example,
we do not expect to ever detect the resonant chain where the
outer planet has a mass of ÅM0.5 and a period of 316 days. In
contrast, if every Kepler star had the resonant chain formed in
our simulations of six short-period super-Earths (periods
between 3 and 25 days and masses between 1.5 and 4 M⊕),
we would expect to detect NKep=247.

Figure 7. Planets participating in resonant chains (red squares) have distinctly
lower eccentricities than the overall resulting distribution of planet eccentri-
cities following formation in depleted gas-disk conditions and subsequent
dynamical evolution (ensemble Ed2).

Figure 8. Librating resonant chains (blue) have lower eccentricities than chains
with near commensurabilities (red) (ensemble Ed2+). Distance from
commensurability is calculated as -

+
1

p

Period Period

1 1
outer inner for the nearest

p + 1:p first-order resonance, where the period ratio is averaged over 0.03 Myr.

Figure 9. Example of a system that escapes resonance shortly (0.05 Myr) after
the gas disk dissipates (red dashed line).

7

The Astrophysical Journal, 904:157 (10pp), 2020 December 1 Morrison, Dawson, & MacDonald



The quantities fch,1+ and fch,3+ give us a sense for whether our
simulations are producing enough resonant chains to be consistent
with observations. Consider ensemble Ed2+, which contains 80
simulations, six of which produce librating resonant chains. Of the
simulated transiting systems containing one or more planets, 0.6%
have transiting, librating resonant chains; of the simulated transiting
systems containing three or more planets, 3% have transiting,
librating resonant chains. The Kepler candidate catalog with our
selection criteria applied contains 1110 systems with one or more
transiting planets and 109 systems with three or more transiting
planets. Ensemble Ed2+ contains a subset of the disk conditions
employed by MacDonald et al. (2020) to reproduce the Kepler
sample. That subset produces about 44% of the simulated systems
with one or more detected transiting planets and 71% of those with
three or more detected transiting planets. Therefore we expect of
the order of three observed systems with librating resonant chains.
We know of at least two observed Kepler super-Earth systems with
librating resonant chains (Kepler-223, Mills et al. 2016, and
Kepler-80, MacDonald et al. 2016; M. G. MacDonald et al. 2020,
in preparation), and there are other possible chains (based on period
ratio) for which the libration status is unknown.4 The in situ
simulations therefore produce librating resonant chains at a rate
consistent with those detected by the Kepler Mission, but
would be underproducing librating resonant chains if many
other Kepler trios have undetected libration.

The Kepler DR25 candidate catalog with our selection criteria
applied contains 10 trios—among the 110 systems with three or
more transiting planets—where each pair is within 2% of a 2:1,
3:2, 4:3, or 5:4 orbital period ratio. Similarly, the Ed2+ ensemble
contains 784 such trios out of 8161 systems with three or more
transiting planets. Therefore our simulations are producing chains
of integer period ratios in line with what is observed.

6. Conclusions

Here we demonstrated that resonant chains can naturally arise
in simulations of oligarchic growth in a depleted gas disk.
Resonant chains occur when three nearby planets achieve a chain
of near-integer period ratios during the gas-disk stage, experience
eccentricity damping that captures them into resonance, stay in
resonance as the gas disk dissipates, and avoid subsequent giant
impacts, eccentricity excitation, and chaotic diffusion that would
dislodge the planets from resonance. Some chains contain pairs of
librating two-body angles, some contain librating three-body
angles, and some contain both. Planets in chains of two-body
resonances are captured into resonances as tight as 5:4 and as
wide as 2:1. Generally the three-body angles are most robust
against being dislodged from resonance.

The types of disk conditions that form tight period ratios
(MacDonald et al. 2020) are also the ones that can establish
resonant chains. Near the end of the gas-disk stage, oligarchs are
no longer completely gravitationally cushioned from each other
by the gas disk and can grow through mergers. They finish
forming during the gas stage and can accrete low-mass gas
envelopes. They remain on their compact, coplanar, low-
eccentricity orbits after the gas disk dissipates, throughout the
stellar lifetime. MacDonald et al. (2020) found in their simulations

that adjacent planets with period ratios less than 2 tend to have
larger radii than planets in less compact configurations. The
planets captured into resonant chains are part of this population,
and therefore we expect them to also have larger radii at a given
mass (lower bulk density) than the general population. Therefore
if future observations identify differences in composition between
resonant and nonresonant planets, it is possible that those
differences could be a result of different disk conditions for
in situ formation (e.g., MacDonald et al. 2020) rather than
formation outside versus inside the ice line.
The resonant chains produced in our simulations generally

reside in systems with other planets that are not part of the
chain and that may or may not also transit. The high intrinsic
multiplicity—ranging from 5 to 14 planets interior to 1 au—
results from our assumed initially continuous distribution of
solids. To determine whether high underlying multiplicity is a
testable prediction of in situ formation, future studies must
explore whether initial distributions with gaps or rings can also
produce resonant chains while matching other Kepler obser-
vables like transit multiplicity.
The properties of resonant chains that emerge from our

simulations are consistent with our current knowledge of
observed systems. They exhibit a range of libration amplitudes,
from narrow (e.g., the three-body angle in Figure 2) to wide
(e.g., the two-body angles in Figure 1, which eventually escape
from resonance). In situ formation apparently does not preclude
the tight libration of three-body angles observed in some real
systems (i.e., MacDonald et al. 2016; Mills et al. 2016). True
resonant chains and trios of near-integer period ratios are
prevalent enough in our simulations to account for those
observed (Section 5). However, if many more observed trios of
integer period ratios are found to be librating, our simulations
would be underproducing resonant chains. We recommend
future investigations of whether to expect systematic differ-
ences in the properties of resonant chains expected from in situ
formation versus long-distance migration.
MacDonald & Dawson (2018) concluded from their case

studies of four observed systems that from the presence of a
resonant chain alone, we cannot deduce whether the planets
formed in situ and were captured through short-distance
migration or eccentricity damping only, or whether they
formed much further out and migrated in. Here we generalize
that conclusion by identifying resonant chains formed in situ in
our suite of simulations of in situ formation. Although
disturbances from other planets in the system succeed in
dislodging chains or preventing capture in some systems, in
other cases resonant chains manage to form and survive.

We thank the referee, Dan Tamayo, for the helpful report. The
authors were supported in part by NASA Exoplanet Research
Program grant No. 80NSSC18K0355 and the Center for
Exoplanets and Habitable Worlds at the Pennsylvania State
University. The Center for Exoplanets and Habitable Worlds is
supported by the Pennsylvania State University, the Eberly
College of Science, and the Pennsylvania Space Grant Con-
sortium. S.J.M. also acknowledges support from the Missouri
State University. R.I.D. acknowledges support from the Alfred P.
Sloan Foundation’s Sloan Research Fellowship. M.G.M.
acknowledges that this material is based upon work supported
by the National Science Foundation Graduate Research Fellow-
ship Program under grant No. DGE1255832. Any opinions,
findings, and conclusions or recommendations expressed in this

4 The libration status is typically determined by performing longer term
integrations of a random subset of solutions from the fit to light curves and/or
midtransit times. The libration status is unknown when some solutions librate
but others circulate. This uncertainty in status can arise even when the
instantaneous value of the resonant angle is well measured, if other properties
like mass and eccentricity are uncertain.

8

The Astrophysical Journal, 904:157 (10pp), 2020 December 1 Morrison, Dawson, & MacDonald



material are those of the author and do not necessarily reflect the
views of the National Science Foundation. This research made use
of the NASA Astrophysics Data System Bibliographic Services
and computing facilities from Penn State’s Institute for
CyberScience Advanced CyberInfrastructure.

Appendix
Table of Resonant Chains

Resonant chains produced in the simulations are listed in
Table 3.

Table 3
Simulated Resonant Chains

Ens. Σz,1 P1 P2 P3 P4 P5 P6
P

P
2

1

P

P
3

2

P

P
4

3

P

P
5

4

P

P
6

5 Librating Angle(s) NKep fch,1+ fch,3+
(d) (d) ( )-10 4 ( )-10 3

m1 m2 m3 m4 m5 m6

( )ÅM

Ed2 17 65 24.6 33.1 40.0 1.35 1.21 ( )f 3, 2, 1b3 2,1 31 2 1

0.7 2.1 1.6 4:3 5:4

Ed2 66 28.3 43.6 59.9 1.54 1.37 ( )f 3, 2, 1b3 2,1 33 2 1

2.1 2.6 2.3 3:2 4:3

Ed2+ 71 45.6 89.1 177 1.95 1.98 ( ) ( )f f2, 1 , 3, 2i i2:1, 2:1, 58 2 1

4.2 3.6 6.1 2:1 2:1

Ed2 74 17.7 23.5 32.8 1.38 1.34 ( )f 3, 2, 1b3 3,2 14 0.9 0.6

1.8 1.8 1.3 4:3 4:3

Ed2+ 84 21.9 29.4 37.3 1.34 1.27 ( ) ( )f f2, 1 , 3, 2i o4:3, 5:4, 11 0.4 0.2

0.9 3.3 0.9 4:3 5:4

Ed2 88 12.1 18.3 28.0 1.52 1.53 ( ) ( )f f2, 1 , 2, 1i o3:2, 3:2, 200 9 7

1.8 2.1 2.4 3:2 3:2

Ed2 92 145 213 316 1.47 1.48 ( ) ( )f f2, 1 , 2, 1i o3:2, 3:2, 0 0 0

3.0 5.0 0.5 3:2 3:2 ( )f 3, 2o3:2,

Ed2 96 17.3 21.8 33.1 1.26 1.53 ( )f 3, 2, 1b3 3,4 63 3 2

1.2 2.6 2.0 5:4 3:2

Ed2+ 109 111 148 225 1.34 1.52 ( )f 3, 2, 1b3 1,1 6 0.2 0.1

2.6 4.7 5.8 4:3 3:2

Ed2 112 168 254 340 1.51 1.34 ( ) ( )f f2, 1 , 3, 2o i3:2, 4:3, 0.1 0.004 0.002

6.3 2.2 1.4 4:3 3:2 ( )f 3, 2, 1b3 2,1

Ed2+ 112 3.23 4.39 7.19 11.7 17.1 24.7 1.36 1.64 1.63 1.46 1.44 ( ) ( )f f2, 1 , 5, 4i i4:3, 3:2, 247a 8a 5a

1.5 2.4 2.2 3.2 3.5 4.0 4:3 5:3 5:3 3:2 3:2 ( ) ( )f f6, 5 , 5, 4, 3i b3:2, 3 2,1

Ed2+ 133 11.9 27.4 56.2 114 229 346 2.31 2.05 2.02 2.01 1.51 ( ) ( )f f2, 1 , 3, 2i i2:1, 2:1,

6.3 8.6 9.3 5.9 2.9 12 2:1 2:1 2:1 2:1 3:2 ( ) ( )f f4, 3 , 5, 4i o2:1, 2:1, 8b 0.3b 0.2b

( ) ( )f f6, 5 , 6, 5, 4i b3:2, 3 3,1

( ) ( )f f5, 4 , 6, 5i o2:1, 3:2,

Ed2+ 146 101 144 194 265 420 1.43 1.34 1.37 1.58 ( ) ( )f f2, 1 , 3, 2i o3:2, 4:3, 0 0 0

2.7 11.5 1.2 4.8 3.2 3:2 4:3 4:3 3:2 ( )f 5, 4, 3b3 1,1

Ed2 166 123 169 267 1.37 1.58 ( ) ( )f f2, 1 , 3, 2, 1o b4:3, 3 1,1 0.7 0.02 0.008

14.7 2.4 9.8 4:3 3:2

Ed1 228 19.7 30.0 40.7 1.53 1.36 ( )f 3, 2, 1b3 2,1 75 2 1

12 1.3 1.7 3:2 4:3 ( ) ( )f f2, 1 , 3, 2o i3:2, 4:3,

Ed1 230 94.4 129 202 1.36 1.57 ( )f 3, 2, 1b3 1,1 58 2 1

11 4.1 15 4:3 3:2

Notes.
a For at least one subset detected (3–5 or 4–6), =N 327Kep , = *+

-f 11 10ch,1
4, and = *+

-f 7 10ch,3
4.

b For at least one subset detected (1–3, 2–4, 3–5, or 4–6), =N 964Kep , = *+
-f 44 10ch,1

4, and = *+
-f 20 10ch,3

4.
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