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Abstract

Gratings enable dispersive spectroscopy from the X-ray to the optical, and feature prominently in proposed
flagships and SmallSats alike. The exacting performance requirements of these future missions necessitate
assessing whether the present state-of-the-art in grating manufacture will limit spectrometer performance. In this
work, we manufacture a 1.5 mm thick, 1000 nm period (1000 gr mm−1) flat grating using electron-beam
lithography (EBL), a promising lithographic technique for patterning gratings for future astronomical
observatories. We assess the limiting spectral resolution of this grating by interferometrically measuring the
diffracted wavefronts produced in±first order. Our measurements show this grating has a performance of at least
R∼14,600, and that our assessment is bounded by the error of our interferometric measurement. The impact of
EBL stitching error on grating performance is quantified, and a path to measuring the period error of customized,
curved gratings is presented.

Unified Astronomy Thesaurus concepts: Spectrometers (1554); Astronomical instrumentation (799); Astronomical
optics (88)

1. Introduction

Encoded in spectra are the physics of astronomical sources.
Temperature, density, relative motion, velocity distributions,
and ionization states can all be deduced with sufficiently
detailed spectra. Gratings are a critical component of dispersive
spectrometers, which are employed across three orders of
magnitude in wavelength space (1–1000 nm).

The dispersive spectrometers of future observatories are
tasked with addressing critical science questions requiring high
spectral resolution R in order to untangle nearby line blends or
detect faint features on top of a dominant background. For
example, Lynx, an X-ray Strategic Mission Concept under
study for the 2020 Decadal Survey on Astronomy and
Astrophysics (Gaskin et al. 2019), requires a dispersive grating
spectrometer with R>5000 in order to achieve its science
objective of detecting the hot (106–107 K) filamentary
structures thought to host much of the universe’s baryonic
material at the current epoch (Bregman et al. 2015 and
references therein). Similarly, the Large Ultraviolet Optical
Infrared Surveyor (LUVOIR), another Strategic Mission
Concept, baselines two spectrometers operating in the ultra-
violet with resolutions ranging from R=8000–65,000
(LUMOS; France et al. 2017) to R>120,000 (POLLUX;
Bouret et al. 2018). These spectrometers address core science
goals of LUVOIR, such as understanding the evolution of
protoplanetary disks, probing the warm phases of the
intergalactic medium through absorption spectroscopy, and
characterizing the winds of metal-poor massive stars to
understand their impact on feedback processes at early cosmic
epochs. For these missions, large-format (10 cm2) gratings
are essential in order to capture a large portion of the light from
the large-aperture telescopes.

The instrument optical designs for both Lynx and LUVOIR
benefit from grating customization. For example, introducing a
grating “chirp,” where the period is intentionally varied across

the grating, theoretically increases the spectral resolution of the
transmission grating spectrometer concept for Lynx (Günther
& Heilmann 2019). Furthermore, the POLLUX instrument, a
UV-spectropolarimeter baselined for LUVOIR, employs grat-
ings patterned on freeform optics, i.e., optics with arbitrary
deviations from a plane or curved surface (Muslimov et al.
2018a). These custom patterns must be realized over areas
10 cm2, and the resulting gratings blazed to offer high
diffraction efficiency at high dispersion.
In addition to enabling instruments for these flagship

concepts, customized gratings also permit novel small missions
with targeted science goals. Blazed gratings on curved surfaces
would allow for further development of the two-element
spectrometer concept for X-ray spectroscopy, a compact
instrument that nonetheless would improve on the line
detection sensitivity of the Chandra and XMM-Newton
spectrometers by an order of magnitude (DeRoo et al. 2019).
By manipulating both the local groove density and groove
direction of the grating pattern, aberration-correcting gratings
can be realized (Beasley et al. 2019). Aberration-correcting
gratings enable unique diffraction geometries, such as point-to-
point imaging with only one optical element for a fixed
wavelength or a hyperspectral imager operating from 400 to
1000 nm compact enough for a CubeSat format (Beasley et al.
2016). Finally, customized gratings can improve the perfor-
mance of suborbital missions relying on efficiently blazed
gratings (e.g., CHESS, Hoadley et al. 2016; OGRE, Donovan
et al. 2019).
The gratings for all of these missions must be inherently

capable of greater spectral resolution than needed for the
science case, as a realistic error budget for the spectrograph will
degrade the resolution performance. Formally, the spectral
resolution of a grating is limited by the total number of grooves
G and working order n (Hutley 1982), making the limiting
spectral resolution of large-area gratings R=nG106 in
principle. In practice, however, fabrication errors dominate the
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achievable resolution. These fabrication errors are either related
to the optical quality of the grating substrate, such as slope
errors or microroughness, or errors in the grating pattern itself,
such as deviations from the designed local grating period.

The deviations from the designed local grating period are
related to the groove placement accuracy of the technique used
to pattern the grating—high groove placement accuracy yields
a distribution of groove periods that closely match the grating’s
design, while poor groove placement accuracy results in
unwanted variation in the space between adjacent grooves.
These errors in groove placement enter as errors in the grating’s
period in the generalized grating equation (Figure 1):

( )a b
l
g

+ =
n

d
sin sin

sin
, 1

as σd, the error in the grating groove period d. For a given
incidence geometry (set by α, the angle between the reflected
beam and grating normal as projected into the focal plane, and
γ, the cone angle between the center groove and the incidence
light), an error in d degrades the ability to measure the
diffraction angle β and hence the ability to determine the
wavelength λ at a given order n. Thus, an error in d maps to an
error in λ, limiting the resolution of a perfect spectrometer
to l l s= D ~R d d .

In sum, a host of astrophysics missions benefit from gratings
fabricated with high groove placement accuracy and custo-
mized for the instrument application. Hence, a high-accuracy
patterning technique flexible enough to produce (1) blazed (2)
grating patterns with variable line spacing (VLS) over (3) large
areas on (4) freeform optical surfaces is desirable. Several
techniques promise a viable pathway toward meeting these
requirements, including photolithography on freeform sub-
strates (Muslimov et al. 2018b) and mechanical ruling using
atomic force microscopy (Gleason et al. 2017). In this paper,
we focus on grating manufacture via electron-beam lithography
(EBL). EBL is a precise, flexible lithography method that
rasters a beam of energetic, collimated electrons across resist.
EBL can create minute feature sizes (∼10 nm; Manfrinato et al.
2013), but has traditionally been limited to small areas

(1 cm2). However, recent advances in EBL patterning have
permitted the production of a VLS grating with a nominal
∼160 nm period over a 75 cm2 area (Miles et al. 2018). EBL
has also been used to write gratings with sculpted, triangular

groove profiles directly using grayscale lithography and
thermal reflow (McCoy et al. 2018). These direct-write blazed
gratings have achieved high diffraction efficiency in the X-ray
when used in an echelle mounting (McCoy et al. 2020;
McCurdy et al. 2019). Finally, EBL has been previously
employed to write a grating on a curved optical surface for the
CRISM instrument on board the Mars Reconnaissance Orbiter,
albeit with a large period (15.552 μm) and over a ∼4 cm2 area
(Wilson et al. 2003). Thus, EBL has demonstrated large-
formats, blazing, curved substrate patterning, and VLS
pattering, making the method a viable technical path toward
realizing gratings suitable for future astronomical instruments.
However, an assessment of the groove placement accuracy

afforded by EBL for astronomical gratings is lacking.
Measurements of the spectral resolving power of X-ray
spectrometer systems under test offer lower limits on the
period error (e.g., Heilmann et al. 2019; DeRoo et al. 2020;
Donovan et al. 2020). However, these studies offer no spatial
information about the achieved grating periodicity, and are
routinely limited by the inherent width of the fluoresced X-ray
lines or the focus quality of the employed telescope. Measuring
the period error of EUV/X-ray gratings for use in synchrotrons
has been previously done (e.g., Gleason et al. 2017; Voronov
et al. 2017); however, these gratings are on thick substrates not
suitable for astronomical use given the constraints on packing
geometry and instrument mass.
In this paper, we characterize the groove placement accuracy

achieved on an EBL-patterned astronomical grating using an
optical interferometer. Interferometric measurements offer
information about the frequency content and spatial distribution
of period errors and are assessed independently of a
spectrometer system. Moreover, the grating in the present
study is patterned using the same tooling used to produce the
large-format VLS grating of Miles et al. (2018) and the direct-
write blazed gratings of McCurdy et al. (2019). Thus, these
measurements characterize the present state-of-the-art for
making high-resolution, customized gratings with EBL. A
description of the grating under test and the interferometric
measurements conducted are described in Section 2. In
Section 3, the groove placement accuracy and the derived
groove period error are presented, along with a method of
verifying the internal consistency of our measurements and an
assessment of the noise inherent in our interferometric
measurement. Finally, a discussion of the implications of these
results for astrophysical instruments and a description of an
interferometric technique for assessing EBL patterns on curved
substrates is given in Section 4.

2. Experimental Method

2.1. Measuring Gratings Interferometrically

Both the figure of a planar, constant-period grating and the
optical quality of the diffracted orders can be assessed
interferometrically, provided the constraints can be satisfied
(Hutley 1982). Measuring the grating’s figure is straightfor-
ward—in reflection, the grating behaves like a mirror. Thus, the
optical figure of the grating can be measured with an
interferometer equipped with a transmission flat by placing
the grating at normal incidence to the beam (Figure 2(A)). A
commercial interferometer integrates over the produced fringe
patterns to yield a height map over the surface of the grating. In
this paper, this measurement of the grating figure is referred to

Figure 1. Cartoon of the generalized grating geometry. Light is incident on the
grating at a cone angle γ, and reflects or diffracts to a point on a semicircle with
the same cone angle. The undiffracted light forms an angle α with the grating
normal, whereas diffracted light travels to an angle β.
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as the zeroth order height map ( ) x y,0 , where x is the
coordinate in the dispersion direction and y is along the groove
direction.

To measure the wave front produced by the diffracted orders,
the grating is placed into a geometry in which a diffracted order
propagates back along the incident beam. This is achieved by
setting γ=90° such that diffraction happens entirely in the
plane of incidence, and rotating the grating about the groove
direction such that the condition

( )a
l

=
n

d
sin

2
, 2

is realized. This condition stems from evaluating Equation (1)
when β=α. In this geometry, a coherent, back-diffracted
wave front produced by the grating can be measured by the
interferometer. As a result of projection effects, this wave front
is diminished in lateral extent by a factor of acos relative to the
zeroth order height map. The height map for diffracted order n
is referred to as ( )a x ycos ,n n , where an is the angle α for
which Equation (2) is satisfied for a given order n.

An ideal grating will produce a back-diffracted wave front
that is perfectly in-phase—the phase difference across the
grating from the nonzero incidence angle are exactly offset by
the phase difference induced by the grating pattern. Phase

errors in the diffracted wave front hence have one of two
sources: (1) the figure error of the grating viewed in projection
results in path length errors and thus phase errors between
different physical areas of the grating or (2) local deviations
from the average period change the local angle of diffraction,
resulting in a difference in path length (and hence phase) when
traversing the interferometric cavity. For a real (i.e., non-
idealized) grating, both of these sources of error are present
simultaneously. These errors are discussed in greater detail in
Gleason et al. (2017); we summarize key aspects of their work
as pertains to interferometric grating measurement in the
following paragraphs.
For grating figure, phase differences are proportional to
( ) x y,0 . At small incidence angles, these errors are symmetric

about order i.e., identical for back-diffracted wavefronts with
the same value of ∣ ∣n . In the latter case of period error, grooves
offset from their position in an idealized grating fail to cancel
the phase difference introduced by placing the grating at a
nonzero incidence angle. We define this offset in idealized
groove position as ( )D x y, for a given trace in the dispersion
direction.Δ(x, y) quantifies the groove placement accuracy of a
grating patterning technique (see Section 1), as it measures the
offset between the realized and ideal groove positions. The
phase errors introduced due to Δ(x, y) are antisymmetric about
order since grooves are offset closer to or farther away from the
source wave front at opposite incidence angles, producing the
opposite phase shift for ±n.
This difference in symmetry can be exploited to isolate these

sources of error, yielding either the groove offset Δ(x, y) or the
figure error ( ) x y,0 from diffracted measurements of opposite
orders ( ) x y,n . The height map measured by a commercial
interferometer is related to the spatially varying phase map f(x,
y) produced by the grating:

( ) ( ) ( )f
p
l

= x y x y,
4

, , 3n

modulo a constant overall phase offset. Following the
definitions of Gleason et al. (2017) and using Equation (3), it
can be shown that:

( ) ( ) ( ) ( )a a
a

=
++ -

 
x y

x y x y
,

cos , cos ,

2 cos
, 4n n n n

n
0

( ) ( ( ) ( )) ( )
l

a aD = -+ - x y
d

x y x y, cos , cos , , 5n n n n

where d is the average period of the grating under measurement
and λ the operating wavelength of the interferometer.
Next, we relate the measured groove offset Δ(x, y) to period

error as a function of position on the grating σd(x, y) by
considering the origin of a groove offset in one-dimension. We
define the distance between two grating grooves (i, j) in the
dispersion direction as xi, j, which can be written as:

( ) ( ) ( )= - + Dx j i d x , 6i j i j, ,

where d is the average period of the grating, ( j− i) is the total
number of grooves separating the two under examination and
Δ(xi, j) encompasses any remaining offset, i.e., any deviation
from an ideal grating. Δ(xi, j), in turn, is the sum of the period
errors for all the grooves between the ith and jth (see Figure 3):

( ) ( )å sD =
=

x , 7i j
k i

j

k,

Figure 2. Geometry for the interferometric grating measurement. (A) The
incidence geometry for measuring the zeroth order of the grating. In this
geometry, the grating behaves like a mirror and the figure of the optic is
measured directly. (B) Rotation about the groove direction (out of the page)
such that Equation (2) is satisfied aligns +first order with the incidence wave
front, permitting the interferometer measurement of the back-diffracted wave
front. (C) Similar to (B), the opposite rotation permits the measurement of
−first order interferometrically.
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where σk is the error in the period of the kth groove.
To calculate a localized average period error σd(x) as a

function of position on the grating, we next make two
assumptions. First, we assume that the spatial sampling in the
dispersion direction dx constitutes many periods, i.e.,
( ) -j i 1 such that dx d 1. Next, we assume that the
period error for each groove is small relative to the overall
period of the grating, s dk , such that dx can be faithfully
approximated as ( j− i)d. Under these assumptions,
Equation (7) can be converted to an integral and differentiated
to yield:

( ) ( ) ( )s =
D

x d
d x

dx
, 8d

where σd(x) represents the localized average period error.
Equation (8) has a straightforward interpretation–since the error
in groove position accumulates at a rate of σd(x) per groove, the
error dΔ(x) over a spatial interval dx is simply the number of
grooves contained in the interval (dx/d) multiplied by σd(x).

This expression is easily generalized to two-dimensions by
considering that the groove offset Δ(x, y) relative to an
arbitrary reference point is determined wholly by the average
period error accumulating in the dispersion direction x.
Equations (5) and (8) thus provide a means to move from a
set of interferometric measurements of diffracted orders

( )a x ycos ,n n to a map of the average period error over
the surface of the grating σd(x, y).

2.2. EBL-written Grating Measurements

To assess the groove placement accuracy of astronomical
gratings made using EBL, we manufactured a 50 mm×50
mm, 1000 nm period (i.e., 1000 gr mm−1) grating with laminar
grooves (Figure 4). The grating substrate is a 6 inch diameter,
1.5 mm thick silicon wafer. A 30 nm silicon nitride layer was
deposited onto the silicon wafer with low-pressure chemical
vapor deposition and served as a hard mask for the transfer of
the pattern. This wafer was next coated with ZEP520A (1:1
dilution in anisole) and patterned at The Pennsylvania State
University’s Material Research Institute using a Raith
EBPG5200 EBL tool. Following development, the pattern
was transferred into the silicon substrate using a plasma etch
performed by a Plasma-therm Versalock tool. The process for
manufacturing astronomical gratings via EBL is described in
greater detail in Miles et al. (2018).

For the present work, we measure both the grating’s figure
(zeroth order) and wave front of the +first and −first diffracted
orders in back-diffraction. With respect to Equation (2), the

back-diffraction angle α±1 for these measurements is 18°.44.
Measurements were taken with a 4D Technologies Accu-
FizH100S Fizeau interferometer (operating wavelength
λ= 632.8 nm). The AccuFizH100S was operated in dynamic
mode in order to minimize the impact of environmental
vibration during integrations (Brock et al. 2005). This tool is
equipped with a 6MP camera for ultra-fine sampling; the
effective pixel scale of measurements operated in this mode is
0.043 mm pix−1 in zeroth order.
From a Fourier optics perspective, the measured power in

spatial errors may be reduced by the frequency response of the
interferometer optical system (Goodman 1996; de Groot & de
Lega 2006). To quantify this loss and support an analysis of the
frequency content of the measured period error, the instrument
transfer function (ITF) on the interferometer was independently
measured. The ITF is the ratio of the power of a test optic
measured by an optical system to the known power present on
that test optic as a function of spatial frequency. Hence, the ITF
is a measure of how accurately an optical system captures
errors at a specific spatial frequency. The ITF can be applied as
a corrective factor to provide a more accurate estimate of the
spatial frequency content of an optic with unknown spatial
frequency content. The ITF of the interferometer system
employed was characterized prior to the grating measurements
reported here, and is shown in Figure 5.
The measurement error of the wavefronts is estimated using

the repeatability of the interferometer. The grating figure
(zeroth order) was measured in separate instances, between
which the grating was realigned to the interferometer. We
assume that this repeatability error is comparable to the error
present in our measurements at separate orders, as each order
also requires a distinct alignment to the interferometer beam.
This error is used to assess the error present in our calculation
of zeroth order from±first orders (see Section 3.1) and in the
average period error of the grating (see Section 3.2).

3. Results

The measured height maps of zeroth, +first, and −first
orders ( ( ) ( ) ( )+ -  x y x y x y, , , , ,0 1 1 respectively) are shown
in Figure 6. These height maps are normalized such that the
average value across the height map is zero (i.e., that piston is
zero) so they can be compared directly. These three measure-
ments, along with the interferometer repeatability used as a
proxy for the error implicit in these height maps, form the basis
for the analysis presented in Sections 3 and 4.

3.1. Methodology Verification—Predicting Figure from the
Diffracted Wavefronts

As a cross-check on the self-consistency of the height map
measurements, we use the height maps of the +first and −first
orders to predict the figure of the grating as measured by the
zeroth order height map. From Equation (4), we see that:

( ) ( ) ( )

( )

a a
a

+
- =+  - 



 


x y x y
x y

cos , cos ,

2 cos
, 0,

9

1 1 1 1

1
0

where zero on the right-hand side of the expression is
interpreted in a statistical sense, i.e., is consistent within the
error of the interferometer. The left side of Figure 7 displays the
result of evaluating the left-hand side of Equation (9) with the
measured data. We find that this difference map is centered

Figure 3. A diagram depicting the differences between an ideal grating (black
dashed line) and the as-manufactured grating (red solid line). The distance
between the ith and jth facet is equal to the number of periods between them
( j − i)d plus a groove offset Δ(x). This groove offset is in turn related to the
average period error by Equations (7) and (8).
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about zero as expected. Moreover, we find a characteristic
variation of 7.0 nm rms across the grating surface, consistent
with the variation expected due to interferometer measurement
noise (9.8 nm rms). Thus, we conclude that our measurements

are consistent with Equation (9), bolstering confidence in the
application of the methodology outlined in Section 2.1.

3.2. Groove Displacement and Groove Period Error

We next compute the position-dependent groove displace-
ment Δ(x, y) from the height maps of the diffracted orders
using Equation (5). The result is shown in Figure 8. The left
side of Figure 8 is the displacement map over the whole grating
surface, Δ(x, y), while the right side shows several representa-
tive traces of groove displacement across the dispersion
direction (i.e., Δ(x, y= c), where c is a chosen constant). Note
that we have remapped the pixel scale of these±first order
measurements to account for the acos 1 reduction in spatial
sampling. In doing so, they can be compared directly to the
zeroth order height map (Figure 6), albeit with coarser spatial
sampling (0.045 mm pixel−1 versus 0.043 mm pixel−1).
Periodic structure in this displacement map on the scale of a
couple of millimeters is evident; an analysis of the power
spectral density (PSD) of this measurement is performed in
Section 3.3.
From the groove displacement map, the average period error

as a function of position is derived using Equation (8). Similar
to Figure 8, the left side of Figure 9 shows the average period
error over the grating surface, while, on the right, the average
period errors at fixed positions along the groove dimension are
shown. To examine the distribution of the average period error
over the entire grating, we construct a histogram of the average
period error from the 1.2×106 pixels sampling the grating
(Figure 10). We assume Gehrels errors in each bin
(Gehrels 1986), and fit the resulting distribution with lmfit,4 a
Python-based curve-fitting package (Newville et al. 2019). We
find that the groove period errors are satisfactorily described
(cr

2 = 0.95) by a Gaussian distribution.
We calculate the rms of the raw average period error map

shown in Figure 9(A) to be 0.028 nm. This establishes the
correct order of a typical period error over the EBL-written
grating; however, it should be both corrected for the impact of
the ITF and contextualized relative to the interferometer’s
measurement error in order to provide a faithful assessment of
the groove placement accuracy of EBL.

3.3. Frequency Content of Average Period Error

While the groove period errors are found to be distributed as
a uniform Gaussian in magnitude, there is a clear spatial
correlation present in Figure 9(A). To elucidate this spatial
correlation, we compute the PSD of the period error map in the
dispersion direction by averaging the one-dimensional PSDs of
each row, i.e., at a fixed groove direction position. As a cross-
check on our representative PSD, we calculate the integral of
this representative PSD over frequency and find that it agrees
with the standard deviation of the groove period error map to
within 5% error, as expected via Parseval’s theorem.
We next correct this representative PSD with the best-fit ITF

from the interferometer calibration (Figure 5, red line); this
correction results in a <5% change in σ (as calculated by
integrating the PSD) relative to the uncorrected PSD. The ITF-
corrected representative PSD is shown as a black line in
Figure 11. The average period error σd as calculated from this
PSD is 0.029 nm. Contributing to this average period error is

Figure 4. The 50 mm×50 mm laminar grating written using EBL measured
in this study. The grating area is visible in the lower center of the 6 inch
diameter Si wafer as a darker, iridescent square. The grating substrate is held in
a three-point mount, which is in turn affixed to rotation stages permitting
alignment to the interferometer.

Figure 5. The ITF of the AccuFizH100S Fizeau interferometer employed to
measure the EBL grating produced for this study. The measured ITF is shown
as a solid line, while the best-fit to the ITF is shown as a dashed line.

4 https://lmfit.github.io/lmfit-py/index.html
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two primary peaks at 0.44±0.02 cycles mm−1 and
4.93±0.02 cycles mm−1, which correspond to spatial periods
of 2.27 mm and 0.203 mm, respectively.

As a point of comparison, we also compute the PSD of the
interferometer error, adopting the measurement repeatability as
described in Section 2.2 as the error in  1 and propagating
this error through Equations (5) and (8). The resulting PSD
from the estimated error is displayed as a red dashed line in
Figure 11. Note that we do not correct this error PSD with the
ITF, as this is an estimate of the random error inherent in the
measurement as opposed to the systematic underprediction of
power from the imperfect ITF. We use the error PSD to
estimate the ultimate sensitivity of the interferometric

measurements described in Section 2.1 by integrating this
PSD to calculate a limiting average period error sd,noise. Using
the interferometer noise floor in this way results in sd,noise of
0.028 nm.

4. Discussion

4.1. Implications for Astronomical Spectroscopy Missions

The average groove period error calculated in Section 3 has
implications for the adoption of EBL-written gratings by future
astronomical spectroscopy missions. Most science applications
for grating spectroscopy, such as line detection or assessing
velocity fields, have a figure of merit dependent on the spectral

Figure 6. The measured height maps of zeroth order (left), +first order (middle), and −first order (right). All height maps are in microns, have the same color scale,
and are plotted over the 50 mm×50 mm extent of the grating.

Figure 7. (A) The difference between the predicted grating figure (zeroth order) as calculated from ( )+ x y,1 and ( )- x y,1 and the measured zeroth order. This height
map is equivalent to evaluating the left-hand side of Equation (9). (B) The error in the difference map, as calculated by propagating the interferometer repeatability via
Equation (9). By either a peak-to-valley (PV) or rms metric, the difference map agrees with zero to within measurement error.

Figure 8. (A) A map of the groove displacement ( )D x y, over the grating surface as calculated from ( )+ x y,1 and ( )- x y,1 via Equation (5). (B) Traces across the
map of Δ(x, y) taken at fixed y positions.
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resolution R of an instrument, where l l= DR and Δλ is the
FWHM of the wavelength uncertainty. Following this use of
FWHM in the definition of R, we adopt
Δd=2.35σd=0.068 nm. The factor of 2.35 is derived by
relating σ and FWHM for a Gaussian; we assert that the
assumption of this relationship is well-justified given the
Gaussian distribution of period errors shown in Figure 10.

The resulting estimate of R for the EBL-written grating
tested here is R=d/Δd=14,600. However, there are two
important caveats to this resolution estimate. First, we note that
this resolution estimate is dependent on the assumed period d.
In general, the period of a grating can be assessed in two ways:
(1) the average feature size can be measured with nanometer-
scale metrology, such as an AFM or SEM, or (2) under
illumination by a pencil beam of known wavelength, the
relative angle between diffracted and reflected light can be
measured precisely and d calculated by use of Equation (1).
However, in both instances, the grating period is assessed
locally, i.e., in a small area as compared to the entirety of the
grating. Hence, this period may not be representative of the
average period over the entirety of the grating, as assumed for
the calculation of the average groove period error in
Section 3.2. However, recognizing that the overall dependence
of R on d is merely d−1, we note that a percent uncertainty in d
directly maps to a percent uncertainty in R. We thus address
this quandary of not knowing the true value of d recognizing

that, as most often d is known to a few percent, the R reported
here should also not be taken to be more accurate than a few
percent.
The second, arguably more important, caveat is the issue of

the uncertainty inherent in the interferometric measurement.
The reported average period error contains contributions from
both the true period error of the grating and the interferometer
noise floor. As illustrated in Figure 11, the PSD of the
interferometric measurement uncertainty is comparable to the
PSD of the average period error itself. We therefore argue that
the contribution of the interferometer noise floor dominates
over the true period error of the grating, and that the estimated
limiting spectral resolution R=14,600 of this grating should
be treated as a lower bound for comparable EBL-written
gratings.
In a mission context, period error should be handled as only

one component of a comprehensive error budget. For example,
the grating’s surface quality has not been factored in to arrive at
our reported limiting spectral resolution, and requirements on
the figure of the grating must be assessed within an instrument
context to achieve the desired performance. Nonetheless, our
findings indicate that EBL-written gratings are suitable for
missions such as Arcus and Lynx given the target spectral
resolutions of R>2500 (Smith et al. 2019) and R>5000
respectively (Gaskin et al. 2019).

4.2. EBL Error Contributions at Specific Frequencies

Only two frequency components, 0.44±0.02 cycles mm−1

and 4.93±0.02 cycles mm−1, have significant power above
the measured uncertainty PSD. The error quoted for these
frequency components is derived from the width of the
component in frequency space.
These frequency components occur at spatial scales linked to

attributes of the EBL-patterning processes. The high frequency
component at 4.93 cycles mm−1 roughly corresponds to the
spatial scale of the write field selected for this patterning run,
200 μm. While the measured spatial scale does not correspond
directly to the scale of this write field to within 3σ error
(4.93± 0.02 cycles mm−1 measured versus 5.00 cycles mm−1

expected), the measured frequency is dependent on the
interferometer pixel scale calibrated at the time of measure-
ment. A systematic error of 1.2% in this pixel calibration scale
is sufficient to explain the difference between the as-measured
frequency components and the expected frequencies based on

Figure 9. (A) The average period error across the grating surface as calculated from Figure 8 and Equation (8). (B) Traces across the average period error map at fixed
y positions.

Figure 10. A histogram of the average period errors in Figure 9(A). A
Gaussian fit to this distribution is shown as a red dashed line.
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the EBL write, and is a reasonable magnitude given the
calibration process.

Similarly, the low frequency component is in keeping with
the frequency of a calibration step performed during the EBL-
writing process. For this particular write, the EBL tool
alignment is checked every 7 minutes during the course of
the write. During this alignment check, the EBL tool translates
to fixed alignment markers patterned on the substrate outside of
the grating area and recalibrates its position based on these
markers. Examining the tool log, we find that the average
separation in the dispersion direction between these calibration
points is 2.34±0.09 mm, in agreement with the measured low
frequency component.

In both of these alignment processes during the EBL write,
the relationship between the sample position and the (fixed)
electron column is adjusted. This adjustment introduces
stitching errors, or errors in the position of one write field/
calibration field to the next. In the context of a grating, these
stitching errors would shift grooves contained in one field
relative to another. Thus, EBL stitching errors would be
expected to result in a discontinuity in groove placement, and
appear as a period error occurring at a fixed spatial scale as
observed.

To estimate the contribution of each type of stitching error to
the average period error, we integrate the measured PSD
around the corresponding frequency peaks. The integral from
0.40 to 0.50 cycles mm−1, which encompasses the low
frequency peak, contributes σd, f1=0.009 nm to the overall
power. The high frequency peak contributes σd, f2=0.008 nm
to the total measured power, as estimated by integrating the
PSD over the range of 4.8–5.0 cycles mm−1. Adding these in
quadrature, a total of s s s= + =d d f d f,EBL , 1

2
, 2

2 0.012 nm of

the measured power is directly attributable to the EBL-writing
process itself. We note that no effort has yet been made to
minimize the impact of these calibration steps during the EBL
writing process, and hence it may be possible to reduce their
impact on σd.
Adopting σd, EBL as a best-estimate of the groove period

error inherent in the EBL writing process yields a limiting
spectral resolution of R ∼35,000. In an astronomical context,
this spectral resolution is consistent with the medium-resolution
echelle spectroscopy capability of Hubble Space Telescope’s
Space Telescope Imaging Spectrograph (STIS, Woodgate et al.
1998), albeit with a finer groove period and without the benefit
of the STIS cross-disperser.

4.3. Future Measurements of Curved Substrates

An important open question is whether the EBL groove
placement accuracy as quantified here will translate faithfully
to the patterning of more complex grating patterns, e.g.,
gratings with arbitrary groove orientations or freeform surfaces.
Such gratings break the simplifying symmetry of the interfero-
metric measurement technique for constant period, flat gratings
as presented in Section 2.1. In principle, however, the
interferometric technique can be adapted to assess the expected
groove placement accuracy on a customized EBL grating by
writing a grating pattern yielding a back-diffracted wave front
when illuminated by a plane wave.
To perform such a measurement, a test substrate with a

figure representative of the desired customized grating is
needed. Assuming a fixed incidence geometry on this test
substrate, the local groove density and orientation yielding a
back-diffracting wave front can be calculated numerically via a

Figure 11. The PSD of the average groove period error (Figure 9(A), solid black line) and of the error in the average groove period error (dashed red line), as
estimated by propagating the interferometer repeatability via Equations (5) and (8).

8

The Astrophysical Journal, 904:142 (10pp), 2020 December 1 DeRoo et al.



raytracing program. This back-diffracting grating pattern would
then be written on a test substrate, and the back-diffracting
wave front measured interferometrically. Additionally, detailed
knowledge of the figure of the test substrate is required, either
from manufacturing metrology or via measurement with a
computer-generated hologram. This independent measurement
of the test substrate can be used to account for the phase errors
introduced in a back-diffracted wave front due to figure.
Subtracting the impact of the test substrate figure from the
back-diffraction interferogram yields a residual phase error due
to imperfect groove placement on this curved substrate.

As a concrete example, we have calculated the customized
grating pattern required to assess the groove placement
accuracy on a spherical grating. The assumed substrate and
incidence geometry for this test grating is shown in
Figure 12(A). The sphere is assumed to have a diameter of
76.2 mm and a radius of curvature of 220 mm. The sphere
would be patterned with a grating over at least the central 50
mm square and illuminated by a plane wave of the same size.
The groove direction vector and grating period required to yield
a back-diffracted wave front assuming this substrate and
incidence geometry are shown as the left-hand and right-hand
plots in Figure 12(B). Assessing the groove placement
accuracy of EBL on a curved substrate such as this simple

sphere would serve as a proof-of-concept for the customized
gratings discussed in Section 1, and reduce the risk of adoption
for instrument concepts featuring these gratings such as the
two-element spectrometer (DeRoo et al. 2019).

5. Conclusions

We have fabricated a large-format, 1000 nm period grating
on a relatively thin (1.5 mm) Si substrate, and assessed its
limiting spectral resolution in the context of astronomical
spectroscopy missions. Our core findings are as follows:

1. The groove placement accuracy and average period error
σd over the grating surface have been calculated from
interferometric measurements of the±first orders. Cor-
recting for the interferometer ITF, we find
σd=0.029 nm.

2. Using only the±first diffracted orders, the figure of the
grating as measured in zeroth order was reproduced to
within the repeatability error of the interferometer. This
method serves as a cross-check on the interferometric
approach to assessing grating performance and the self-
consistency of the measurements employed in this work.

Figure 12. (A) A diagram showing the optical bench configuration for assessing the groove displacement of a spherical EBL grating. (B) The grating groove
orientation (left) and period map (right) required to yield a back-diffracting sphere. Errors in realizing this pattern with EBL lithography will result in phase errors in
the interferogram of the back-diffracted order.
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3. We find that the measured distribution of period errors on
this EBL-written grating to be well-described by a
Gaussian distribution.

4. Based on a representative PSD, we identify two
frequency components associated with the stitching error
of the EBL fabrication process. These frequency
components contribute σd, f1=0.009 nm and
σd, f2=0.008 nm to the overall power of the average
period error.

5. Outside of these two EBL-related frequency components,
the PSD is similar in shape and magnitude to the PSD
expected from propagating the interferometer measure-
ment error. Moreover, the overall power attributable to
the error is 0.028 nm.

6. We estimate the limiting spectral resolution of this EBL-
written grating as R∼d/Δd, where Δd is the FWHM of
the average period error. This yields R=14,600 for
EBL-written gratings. We argue that, given the con-
tributed power of the interferometric measurement error,
this should be interpreted as a lower bound. Performing
the same assessment for the stitching error features with
power above the interferometer noise floor yields
R=35,000.

Based on these measurements, we conclude that, in principle,
EBL-written gratings are a suitable grating technology for
spectroscopy missions requiring periods ∼1000 nm and
spectral resolutions of R>10,000, and may be capable of
supporting missions of R>30,000. Additional improvements
to the fabrication process are likely needed to support
instruments with resolutions of R>100,000, such as the
POLLUX instrument for the LUVOIR concept. As an aside, we
also note that, since limiting average period error sd,noise scales
with d and is of order a few tenths of an Angstrom for a grating
with period d=1000 nm, improvements to interferometric
measurement techniques may also be needed to support the
testing and calibration of gratings for systems R>100,000.

Finally, the fidelity of EBL patterning can be assessed for
gratings on curved substrates by adapting the interferometric
technique employed here. Such a study would be an important
technical milestone toward realizing custom EBL-written
gratings and enabling future innovative spectroscopy missions.
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