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Abstract

Magnetic flux ropes, characterized as magnetic field lines that wrap and rotate around a central axis, are observed
ubiquitously in the space-plasma environment. Accurately examining the physical parameters (e.g., axis
orientation, helical handedness, current density, curvature radius, and size) of flux ropes is essential for studying
their evolution and associated dynamics. The geometric parameters of flux ropes can be resolved by a cluster of at
least four spacecraft with the separation scale much smaller than the flux ropes. However, most spacecraft missions
are of single-point measurements, especially for the missions on other planets (e.g., Mars, Venus, Mercury), thus,
the method for investigating the flux ropes based on single-point measurements becomes particularly important. A
single-point method that infers the axis orientation of flux ropes was recently developed by Rong et al. Here, we
apply this method to study two flux ropes observed by the Magnetospheric Multiscale Mission (MMS), one close
to the force-free field and the other close to the non-force-free field, by comparing them with the multipoint
analysis of MMS. Our study demonstrates that, apart from axis orientation, the method of Rong et al. can
reasonably infer the current density, curvature radius of magnetic field, and the transverse size of flux ropes. We
discussed the main error sources of calculated parameters, and suggest that it is worthwhile to widely apply the
method by Rong et al. to single-point spacecraft missions for the purpose of examining the geometry and dynamics
of flux ropes.

Unified Astronomy Thesaurus concepts: Space plasmas (1544); Magnetic fields (994); Astrophysical magnetism
(102); Planetary magnetosphere (997); Planetary science (1255); Planetary boundary layers (1245); Solar coronal
mass ejections (310)

1. Introduction

Magnetic flux ropes (MFRs), manifested as helical magnetic
field lines wrapping around an axis, have been observed
ubiquitously in the space-plasma environment, e.g., in Earth’s
magnetotail (e.g., Slavin et al. 2003a, 2003b; Zhang et al. 2007;
Yang et al. 2014; Sun et al. 2019), Earth’s magnetopause (e.g.,
Russell & Elphic 1979; Eastwood et al. 2016; Wang et al.
2017; Teh et al. 2017; Akhavan-Tafti et al. 2018), Mars’
magnetotail (Hara et al. 2017), Venus’s magnetotail (Zhang
et al. 2012), Mercury’s magnetotail (e.g., DiBraccio et al. 2015;
Zhao et al. 2019), and interplanetary space (e.g., Burlaga 1988;
Lepping et al. 1990). MFRs are generally considered as a
product of magnetic reconnection that explosively release
magnetic energy (e.g., Schindler 1974; Hones 1977; Wang
et al. 2015; Eastwood et al. 2016; Zhou et al. 2017).

Accurate estimation of the physical parameters (e.g., axis
orientation, current density, size, and curvature radius) of
MFRs is vital for determining the magnetic geometry of MFRs
and exploring their origin and evolution. This issue could be
well solved by multipoint analysis with the advent of
multispacecraft missions, e.g., the Cluster mission (Escoubet
et al. 2001) and the Magnetospheric Multiscale mission (MMS;
Burch et al. 2015), because the spatiotemporal variation of a

magnetic field can be resolved by the simultaneous multipoint
measurements of a spacecraft tetrahedron. The multipoint
methods developed so far, such as the Minimum Directional
Derivative (MDD; Shi et al. 2005, 2019), Multiple Triangula-
tion Analysis (Zhou et al. 2006), and Magnetic Rotation
Analysis (MRA; Shen et al. 2007) can derive the axis
orientation by analyzing the spatial gradient of the magnetic
field. As well as the axis orientation, the current density and
curvature radius of MFRs could also be readily obtained by
multipoint analysis, such as through the curlometer technique
(Dunlop 2002), the Taylor expansion (Shen et al. 2003) and the
MRA analysis by Shen et al. (2007). However, most current
spacecraft missions, such as Geotail (Nishida 1994), ACE
(Chiu et al. 1998), and the planetary missions, e.g., Mars
Atmosphere and Volatile Evolution (MAVEN; Jakosky et al.
2015) and BepiColombo (Benkhoff et al. 2010), do not have a
unique tetrahedral configuration like Cluster or MMS, and thus
face a great challenge in inferring these parameters of MFRs.
In the past decades, with given assumptions, a few popular

single-point methods have attempted to infer the axis
orientation. (1) The minimum variance analysis based on
magnetic field (BMVA; Sonnerup & Scheible 1998). It was
argued that BMVA can infer the axis orientation relying on the
calculated orthogonal eigendirections of magnetic field
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variation, and it does not require plasma data. However, model
tests showed that the inferred axis orientation critically depends
on the spacecraft’s crossing trajectory (Moldwin &
Hughes 1991; Xiao 2004; Rong et al. 2013); a different
trajectory would result in different axis orientation. (2) The fit
of force-free model (e.g., Lundquist 1950; Burlaga 1988;
Lepping et al. 1990; Eastwood et al. 2016). This requires
building a principle axis coordinate first based on BMVA and
repeatedly fitting the data to the force-free model with least-
squares analysis to find the final axis and the other model
parameters. Nonetheless, one cannot guarantee that the real
detected field structure of MFRs always fits well with the force-
free model. Multipoint analysis of Cluster demonstrated that
only the fraction around the centers of MFRs is close to the
force-free field (e.g., Yang et al. 2014). (3) The technique of
Grad–Shafranov reconstruction (GSR; Sonnerup & Guo 1996;
Hau & Sonnerup 1999; Hu & Sonnerup 2001, 2002, 2003;
Hu 2017; Hu et al. 2018). For the best GSR technique, an MFR
is assumed to be in an approximately 2D magnetohydrostatic
equilibrium (the balance between the gradient force of plasma
pressure and the Lorentz force) during a spacecraft crossing,
and a trial scheme is performed repeatedly to search for the axis
orientation, for which the curve for total transverse pressure
(plasma pressure plus magnetic pressure) versus the magnetic
vector potential in the inbound crossing should be equal to that
of the outbound crossing. This method could not only yield a
reasonable axis orientation, but also the field distribution in the
cross section of the MFR. However, applying the GSR
technique increases the expense of a trial scheme, and it
requires reliable plasma data, which is not always available for
the spacecraft missions.

Recently, by assuming the radial magnetic field component
is zero (Br= 0), Rong et al. (2013) presented a simple single-
point method (we refer to it as R13) to derive the axis
orientation of MFR. Model tests and application to the same
MFR cases observed by the four spacecraft of Cluster
demonstrated that R13 could infer the axis orientation
consistently without the restriction of a force-free field
configuration. Nonetheless, the typical separation scale of a
Cluster tetrahedron is from several hundred kilometers to
thousands of kilometers, which is comparable to or larger than
the typical scale of MFRs observed in a magnetosphere. The
multipoint analysis of Cluster on the field structure of MFRs
could yield a significant truncation error owing to the large
separation scale (e.g., Shen et al. 2003, 2007). Therefore, Rong
et al. (2013) did not make the direct comparison between R13
and the multipoint analysis of Cluster. Moreover, there is no
further analysis about the other parameters (e.g., current
density, curvature radius, size) of MFRs by Rong et al. (2013).

In Table 1, we summarize the main constraints or
assumptions of these single-point methods.

The four closer together spacecraft (separation scale
10∼ 20 km) of the MMS tetrahedron (Burch et al. 2015), with
unprecedented temporal and spatial resolutions of magnetic
field and plasma measurements, make it possible to evaluate
the validity of R13 by comparison with the multipoint analysis.
The high resolution of the magnetic field is measured by a
fluxgate magnetometer operating at 128 vectors s−1 in burst
mode (Russell et al. 2016). While fast plasma investigation
(FPI) on board MMS can measure the electrons at a burst
cadence of 30 ms and ions at a burst cadence of 150 ms, with

an energy/charge range from 10 to 30,000 eV q−1. (Pollock
et al. 2016). The plasma moments are derived from the all-sky
electron and ion distributions by FPI.
As a continuation of Rong et al. (2013), here, we use R13 to

analyze two flux rope cases which have been studied by
previous studies (Eastwood et al. 2016; Zhao et al. 2016; Wang
et al. 2017; Akhavan-Tafti et al. 2018). Through comparison
with multipoint analysis methods and previous studies, we
show that the single-point method, R13, apart from the
consistent axis orientation, is also able to infer the current
density, helical handedness, curvature radius, and boundaries
of MFRs.
This paper is organized as follows: the method of R13 is

briefly reviewed in Section 2; the overview of studied MFR
cases by MMS, and the application results derived by the
associated multipoint analysis and R13 are offered in Section 3;
and the conclusion and discussion are finally given in
Section 4.

2. Review of R13

Rong et al. (2013) presented a single-point method based on
the sampled magnetic field data by spacecraft to infer the axis
orientation of MFRs. This method makes two key assumptions:
(1) the relative trajectory of the spacecraft crossing the MFR is
straight; and (2) the magnetic field structure of MFRs is stable
and the projected field along the axis can be seen as an ideal
circular-like structure, or the radial field component is zero
(Br= 0). The assumptions are usually acceptable, particularly
for the innermost part of the MFR where the field structure is
the least affected by the interaction with the ambient plasma.
The available data are the relative velocity of spacecraft to
cross the MFR, V, and the sampled magnetic field vector, B, by
spacecraft. The unit vectors of relative velocity and magnetic
field are v̂ (v̂=V/| V|) and b̂ (b̂=B/| B|) respectively.
The first step in applying this method is to seek out the

innermost location where the spacecraft, along its trajectory, is
closest to the center of the MFR. In the cross section of the
MFR, Figure 1(a) shows that v⊥ and b̂ , the components of v̂
and b̂ perpendicular to the axis orientation, respectively, would
become parallel or antiparallel at the innermost location, and
^ ^v b· would reach the extremum. Hence, by checking the time
series of v bˆ · ˆ, the data point of the innermost location could be
identified. The identification of the innermost location is a key
step in determining the axis orientation, because the axis
orientation n̂, the unit field direction at the innermost time bin

ˆ ,
and v̂ should be coplanar there (see Figure 1(b)).
The second step is to find the axis orientation n̂ in the plane

formed by bin
ˆ and v̂. Using the derived bin

ˆ , one can construct an
orthogonal coordinate system e v n, ,1 0{ˆ ˆ ˆ } to seek n̂ (see
Figure 1(b)), where

= ´ ´
= ´

e v b v b
n e v. 1

1

0 1

ˆ ˆ ˆ ∣ˆ ˆ∣
ˆ ˆ ˆ ( )

In the plane constituted by bin
ˆ and v̂, the unsolved axis

orientation n̂ deviates from n0ˆ by an angle of ψ. In other
words, n̂ is a function of ψ. To constrain ψ, we noticed
that the evaluated impact distance r0 (the closest distance of
the center of the MFR to the spacecraft’s trajectory) for each
data point should be constant along the trajectory. The solved
ψ or the optimal n̂ should result in a constant series of r0.
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Table 1
The Summary of Various Single-point Methods in Analyzing MFRs

BMVA GSR
Fit of Force-free Field
Model R13

Required dataa B B, n, T, V B, V B, V
Key assumptions or
constraints

Magnetic structure should be stationary 2D magnetohydrostatic equilibrium, and the structure has
an invariant direction

Force-free field model Br=0; magnetic structure should
be stationary

Need a trial scheme? No Yes Yes No
Outcome Three eigendirections which are sensitive to the

spacecraft’s trajectory
Axis and field distribution Axis and model

parameters
Axis and distance to axis center

Notes.
a The abbreviations B, n, T, V represent magnetic field, plasma density, plasma temperature, and plasma bulk velocity, respectively.
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Thus Rong et al. (2013) constructed a residue error as a
function of ψ,

ås = - á ñ
M

r r
1

, 2
i

M

i
2

0 0
2( ) ( )

where M is the number of data points and á ñ = år r
M i

M
i0

1
0 . The

axis orientation n̂ can be numerically solved when σ2 reaches a
minimum.

Here, to nondimensionalize the residue error, we suggest
modifying Equation (2) as

ås = -
á ñM

r

r

1
1 . 3

i

M
i2 0

0

2

( )
⎛
⎝⎜

⎞
⎠⎟

It is worth mentioning that R13 can be still applied even if
the magnetic field of MFR is varied along the axis direction,
because R13 only assumes that the projected magnetic field
vectors are azimuthally oriented in the cross section. Thus, R13
is superior to the 2D structure as assumed by, e.g., the fit of
force-free model or GSR, at this point in the searching axis
of MFRs.

With the optimal n̂ derived from Equation (3), one can set up
an orthogonal coordinate system e e n, ,1 2{ˆ ˆ ˆ}, and associated
cylindrical coordinates fr n, ,{ˆ ˆ ˆ} to describe the intrinsic helical
field structure of the MFR, where = ´ = =^ ^ ^e n e v V V2 1ˆ ˆ ˆ ˆ ∣ ∣
(see Figure 1(b), V⊥ is the velocity component which is
perpendicular to the axis, r̂ is the unit radial vector from the
center of the MFR, and f̂ is the unit azimuthal vector. The
cylindrical coordinate can be transformed from the orthogonal
coordinate via f f= +r e ecos sin1 2ˆ ˆ ˆ and f f= - +e sin1

ˆ ˆ
fe cos2ˆ , where the azimuth angle f (0°�f�360°) rotation-

ally increases from e1ˆ toward e2ˆ .
In the cylindrical coordinate, the current density and

curvature radius could be further obtained if the magnetic
field of the whole MFR is of a cylindrical azimuthal
symmetry (Br= 0, ¶

¶n
=0,

f
¶
¶
=0). In this case, the axial

and azimuthal components of current density can be

calculated, respectively, as:

m
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where μ0 is the vacuum permeability coefficient, r is the radial
distance to the MFR’s center, and Bn and Bf are the axial and
azimuthal components of the magnetic field, respectively.
In this case, the curvature of the magnetic field line of the

MFR (r = b bc ( ˆ · ) ˆ), whose full components are

f

f

f

 =
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¶
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z
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( ˆ · ˆ)

( ˆ · ˆ)

( )

can be also reduced to

r = - f r
b

r
, 6c

2

ˆ ( )

where br, bf, and bn are the radial, azimuthal, and axial
components of b̂, respectively.

3. Analysis of Cases

In this section, we apply R13 to study the magnetic structure
of two MFR cases observed by MMS, the one is close to the
force-free field and the other one is close to the non-force-free
field. Comparison with other methods, particularly with
multipoint methods, would highlight the validity and plausi-
bility of R13. The system utilized here is the Geocentric Solar
Ecliptic (GSE) coordinate system unless otherwise stated.

Figure 1. Two schematic views of MFR. (a) The variation of unit magnetic field direction along the trajectory of a spacecraft in the cross-sectional plane. The green
arrow denotes the spacecraft trajectory, or it can be regarded as the direction of v⊥. The red arrows represent the direction of b⊥. r0, as the impact distance, is the
closest distance to the center of MFR. (b) The geometric relationship between e v n, ,1 0{ˆ ˆ ˆ } and e e n, ,1 2{ˆ ˆ ˆ}.
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3.1. The Force-free Flux Rope Case

Figure 2 shows an ion-scale MFR case observed by MMS
from 13:04:32–13:04:36 on 2015 October 16. MMS was
located at (X= 8.33, Y= 8.51, Z=−0.7) RE, around the
dayside magnetopause during this period, and the separation
scale of the tetrahedron was about 20 km. This case, known as
flux transfer events around the magnetopause, has been studied
by many researchers (Eastwood et al. 2016; Zhao et al. 2016;
Akhavan-Tafti et al. 2018).

The detected magnetic field data in Figure 2(a) shows
bipolar signatures (−/+) for both Bx and Bz components
accompanied by enhanced magnetic field strength and ion
flow in the −Vz direction. These typical field signatures of
MFRs suggest that MMS3 may have encountered a south-
ward-moving MFR. The ion and electron number density
evidence a slight decreasing tendency toward the MFR’s
center, from ∼14 to 5 cm−3, and the plasma beta (the ratio of
plasma pressure to magnetic pressure) reaches a minimum
around the center of an MFR. The signatures of both the
magnetic field and plasma are consistent with those reported

in previous studies of MFRs (e.g., Slavin et al. 2003a;
Akhavan-Tafti et al. 2018; Sun et al. 2019).

3.1.1. Multipoint Analysis

Previous studies suggested that the scale of this MFR case is
about several hundred kilometers (Eastwood et al. 2016;
Akhavan-Tafti et al. 2018), which is larger than the scale of the
MMS tetrahedron (∼20 km). Thus, the magnetic field within
the tetrahedron could be better approximated by a linear varied
field, which favors the application of multipoint analysis
methods to examine the geometric structure of a magnetic field,
e.g., axis orientation, current density, curvature radius of the
magnetic field, etc. The parameters of field structure that are
yielded could be treated as a benchmark for checking the
validity of R13.
In this subsection, two popular multipoint analysis methods,

i.e., MDD and MRA, are used independently to infer the axis
orientation.
MDD can determine the dimensionality of magnetic

structure and has been successfully applied to analysis of the

Figure 2. The flux rope case observed by MMS3 on 2015 October 16. From top to bottom, panels (a)–(f) show the time series of magnetic field components in GSE,
the field strength, the number density of ions and electrons, the bulk velocity of ions and electrons in GSE, and the value of plasma beta.
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structure of MFRs (Shi et al. 2005, 2019; Sun et al. 2019). The
key step is to decompose the symmetrical matrix  B B T( )( ) ,
where ∇B is the gradient tensor of magnetic field. Three
eigenvalues l l l, ,max int min( ) and the corresponding eigenvec-
tors n n n, ,max int min( ˆ ˆ ˆ ) can be obtained by decomposing
 B B T( )( ) . The dimensionality of the magnetic structure
can be indicated by the three eigenvalues. If magnetic structure
is 1D, we would have l l l»max int min , it would be
l l l»max int min if it is 2D.
Applying MDD to this case (see Figure 3(a)), we find
lmax ∼0.35, lint ∼0.25, and lmin ∼0.03 around the

peak of the magnetic field. Thus, the MFR is a 2D structure,
and the axis orientation is along nminˆ (Shi et al. 2005, 2019).
We select an appropriate time interval when nminˆ is stable
around the peak of the magnetic field (see the shaded interval
“13:04:33.950–13:04:34.350” in Figure 3(b)). The mean of

nminˆ within this interval demonstrates that the axis orientation
is (−0.2618, 0.9416, −0.2119).
In contrast to MDD, MRA is performed to analyze the

spatial rotation rates of the magnetic field direction by
decomposing the magnetic rotation tensor  b b T( ˆ)( ˆ) (Shen
et al. 2007). The decomposition of this tensor leads to three
eigenvalues m m m, ,1 2 3( ) and three eigenvectors n n n, ,1 2 3( ˆ ˆ ˆ ). n1ˆ ,
n2ˆ , and n3ˆ represent the fastest, moderate, and slowest
directions, respectively, along which the direction of magnetic
field varies. Thus, n3ˆ is usually seen as the axis orientation of
MFR when it was surveyed (Shen et al. 2007; Yang et al.
2014). The time series of calculated n3ˆ is displayed in
Figure 3(c). With the same shaded interval in Figure 3(b),
the average axis orientation derived by MRA is (−0.2679,
0.9338, −0.2373), which is nearly equal to that obtained by
MDD. The inferred axis orientations from MDD and MRA are
tabulated in Table 2.

Figure 3. Multipoint analysis of a flux rope. (a) Magnetic field, (b) the eigenvector corresponding to lmin in MDD, (c) the eigenvector corresponding to μ3 in MRA,
(d) the current density derived by multipoint analysis of the magnetic field, (e) current density derived by plasma moments from FPI of MMS3, and (f) the angle
between current density and the direction of the magnetic field.
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According to m=  ´- Bj 0
1 , the current density can be

derived based on a multipoint analysis on a magnetic field
gradient using Taylor expansion by Shen et al. (2003) (referred
to as S03). The calculated current density is shown in
Figure 3(d). Alternatively, with plasma moments measured
by FPI on board each MMS, one can calculate the current
density with plasma measurement. Figure 3(e) shows the
current density calculated by = -j n e V Ve ei( ) with the plasma
measurement of MMS3 (see also Eastwood et al. 2016),
where ne is the number density of electrons, while Vi andVe are
the bulk velocity of protons and electrons respectively. Note
that to keep a consistent time resolution with the magnetic field,
the plasma moments in calculating current density have been
interpolated with the cadence of magnetic field data (128 s−1).

Apparently, the two methods to calculate the current density
show a good agreement, demonstrating that the measurement
of plasma moments by FPI can be employed to calculate the
current density, and that the electrons are the main current
carrier of this MFR (not shown here). It is interesting to note
that there is a significant field-aligned current in the center of
the MFR and a filament peak of current ahead of it, suggesting
that the magnetic field is nearly force-free around the center but
non-force-free in the outer region of the MFR.

The angle between current density and magnetic field,
denoted as γ, is nearly equal to 0° in the center and trail of the
MFR (see Figure 3(f)), which indicates that the current density
is basically field-aligned, and suggests that the field structures
in the MFR’s center and trail are close to the force-free field
with a right-hand helical handedness (Eastwood et al. 2016).

3.1.2. Application of R13

We now perform R13 to analyze the field structure of this
flux rope. Without loss of generality, we arbitrarily choose the
data provided by MMS3 for our analysis.

Following the procedures of Rong et al. (2013), we identify
the innermost time first by checking the time series of
v bˆ · ˆ. Considering the much slower velocity of the spacecraft
(∼2 km s−1) , the velocity of the MFR can be seen as VHT

which is the velocity of the DeHoffmann–Teller (HT) frame
(Khrabrov & Sonnerup 1998), if the encountered flux rope
is a quasi-stationary magnetic structure (for this case, using
the multipoint analysis of MMS, Zhao et al. (2016) have
demonstrated that the magnetic curvature force is balanced by
the magnetic pressure force, and the plasma pressure gradient
is relatively much smaller). With HT analysis within the

interval 13:04:32–13:04:36, the relative velocity of the
spacecraft to the MFR is calculated as = -V VHT=(167.88,
−208.83, 165.94) km s−1. The correlation coefficient ∼0.998
between - ´V BHT and - ´V B (V is the bulk ion velocity
from FPI) guarantees the reliability of HT analysis. As a
result, the unit vector of v̂ is derived as =v V

V
ˆ

∣ ∣ =(0.5327,
−0.6626, 0.5265).
Figure 4(a) shows the time series of v bˆ · ˆ. Clearly, the

product of v bˆ · ˆ reaches a minimum around the peak of field
strength (Figure 4(b)). Thus, corresponding to the minimum of
v bˆ · ˆ, the time when the spacecraft is located at the innermost
part or is closest to the MFR’s center can be identified at
13:04:33.982 (see the red dashed lines in Figures 4(a) and (b)).
Accordingly, having identified the innermost time, the inferred
e1ˆ is (−0.7295, −0.0442, 0.6825), n0ˆ is (0.4290, 0.7477,
0.5069), and the local coordinate system e v n, ,1 0{ˆ ˆ ˆ } can be
constructed via Equation (1).
We choose a short interval centered around the innermost

time with 20 sampled magnetic field vectors to infer the axis
orientation (a longer interval may contain the samples near the
boundary where field structures are significantly distorted). It
should be noted that, as suggested by Rong et al. (2013), the
sampled data point at the innermost time has been excluded to
avoid a poor calculation because the evaluated impact distance
(r0) would become infinite in this time (see Equation (9) of
Rong et al. 2013). By numerical calculation, we find that the
residue error σ, defined in Equation (3), would reach a
minimum (smin=0.015) when the angle between n̂ and n0ˆ
equals either 126°.18 or 306°.18 (Figure 4(c)), which, in
principle, results in a pair of antiparallel axis orientations.
Following Rong et al. (2013), we choose the one pointing
roughly along bin

ˆ as the final axis orientation. As a result, the
axis orientation n̂ is derived as (−0.1767, 0.9762, −0.1257),
and e2ˆ is estimated as (0.6607, 0.2123, 0.7200). In other words,
projected along the derived n̂, the orientations of the 20
magnetic vectors in trajectory can be best fitted with a circular-
like field structure. We find the mean impact distance of the
trajectory is about ∼3.2 km (see Figure 4(d)), which indicates
that, in this case, MMS3 was almost crossing the center of
the MFR.
Since e1ˆ , e2ˆ , and n̂ are inferred, the orthogonal coordinate

system e e n, ,1 2{ˆ ˆ ˆ} is set up to describe the intrinsic helical field
structure of the MFR. In this coordinate, Figure 5(a) shows the
projection of sampled b (within the shaded interval) in the cross
section. Obviously the loop-like pattern of the projected field

Table 2
The Inferred Axis Orientations by Different Methods

Spacecraft e1ˆ e2ˆ n̂ Method

MMS1 (−0.77, −0.10, 0.63) (0.60, 0.22, 0.77) (−0.21, 0.97, −0.11) R13a

MMS2 (−0.72, −0.02, 0.69) (0.68, 0.17, 0.71) (−0.14, 0.98, −0.11) R13
MMS3 (−0.73, −0.04, 0.68) (0.66, 0.21, 0.72) (−0.18, 0.97, −0.13) R13
MMS4 (−0.73, −0.05, 0.68) (0.64, 0.30, 0.71) (−0.24, 0.95, −0.19) R13
All (−0.24, 0.95, −0.22) MDD
All (−0.25, 0.94, −0.23) MRA
MMS3 (−0.01, 0.99, −0.15) Fitting of force-free modelb

All (−0.26, 0.90, −0.36) MVA on the gradient of magnetic pressurec

Notes.
a R13 is the single-point method presented by Rong et al. (2013).
b The fitting of the force-free model applied by Eastwood et al. (2016).
c The minimum variance analysis on the gradient of magnetic pressure employed by Zhao et al. (2016).
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(also see Figure 5(b)) is consistent with the field-aligned
current density near the center of the MFR (see Figure 3(c)),
which demonstrates the validity of R13.

Repeating the same procedure as conducted above, the axis
orientations of this MFR based on the measurements of MMS1,
MMS2, and MMS4 are also inferred separately. The yielded

Figure 4. Analysis of a flux rope based on the single-point method proposed by Rong et al. (2013). (a), (b) The time series of v bˆ · ˆ and the magnetic field strength,
respectively. The red dashed lines mark the time when v bˆ · ˆ reaches a minimum. (c) The variation of σ against ψ. (d) The evaluated impact distances for the 20 data
points of magnetic vectors.

Figure 5. (a) The projection of unit field vectors of sampled data points on the -e e1 2ˆ ˆ plane. The red arrows represent the orientations of b⊥, and the green arrow
represents the relative moving direction of the spacecraft crossing the MFR. The origin, marked as “×,” represents the center of the MFR. (b) A sketched diagram of
the spacecraft crossing the MFR.
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results are tabulated in Table 2. As a comparison, the axis
orientations by means of MDD, MRA, and the fitting of the
force-free model (Eastwood et al. 2016), and a minimum
variance analysis on the gradient of magnetic pressure (Zhao
et al. 2016) are also tabulated in Table 2. In contrast to the
single-point fitting method used by Eastwood et al. (2016), it
seems the axis orientation inferred by R13 is closer to the
axis orientation estimated by multipoint methods, i.e., MDD,
MRA, and the analysis of magnetic pressure gradient by Zhao
et al. (2016).

With the derived coordinate system e e n, ,1 2{ˆ ˆ ˆ} for each
spacecraft, we can examine the current density and the
curvature radius of the magnetic field for associated cylindrical
coordinates fr n, ,{ˆ ˆ ˆ} based on Equations (4)–(6), respectively.
The time series of the calculated axial component, jn, the
azimuthal component, jf, and the radial component jr of current
density for MMS1, MMS2, MMS3, and MMS4 are shown in
Figures 6(a)–(d), (e)–(h) and (i)–(l), respectively. The angle
between the current density and magnetic field, denoted as γ, is
shown in Figures 6(m)–(p) for the four spacecraft.

In comparison to the current density calculated by
= -j V Vn ee i e( ) and m=  ´-j B0

1 by S03 (because we
cannot judge which one could be better seen as the benchmark
of current density, both are shown for reference), we find that
the current density calculated by R13 for each of the four
spacecraft are consistent with that derived from the plasma
moments and the curl of magnetic field. Note that the axial,
azimuthal, and radial components of both j=ne e(Vi−Ve)
and m=  ´-j B0

1 are calculated based on the cylindrical

coordinates fr n, ,{ˆ ˆ ˆ} inferred by R13. The consistent pattern
of axial and azimuthal components of current density
demonstrates that R13 can recover the distribution of current
density the MFR (red line) by means of a one-point analysis.
Furthermore, the derived radial component of current density,
jr, by S03 and FPI is always nonzero, which indicates that

¹
f
¶
¶

¶
¶

, 0
n

for the MFR. Thus, to evaluate the calculation
quality of current density by R13, we could calculate the
relative errors of current density derived by R13 (Figures 6(q)–
(t)) as d =

-
j

j j

jFPI
t t

t

,R13 ,FPI

,FPI

∣ ∣
(d =

-
j

j j

jS03
t t

t

,R13 ,S03

,S03

∣ ∣
) if the current

density derived by FPI (S03) is regarded as the accurate value,
where jt,FPI, jt S, 03, and jt,R13 are the calculated strength of
current density by FPI, S03, and R13, respectively. One can
find that < -j 200 nA mr

2∣ ∣ and δj<0.2 in most parts of the
MFR, especially in the center of the MFR, which demonstrated
that the current density derived by R13 is reasonable.

The curvature radius of the magnetic field is calculated
separately for each of the four spacecraft via Equation (6), as
shown in Figures 6(u)–(x). For comparison, the curvature
radius calculated by S03 is displayed. It is clear that the
curvature radius from S03 is larger in the center of an MFR
(∼0.25 RE) than in the outer region (∼0.05 RE), which implies
that magnetic field lines become straighter in the center of the
MFR. This is consistent with previous studies (e.g., Shen et al.
2007; Yang et al. 2014). It is interesting to note that R13
obtains a similar pattern of curvature radius variation, but
slightly overestimates the curvature radius. Because R13
ignores axial and azimuthal components and only estimates
the radial component of curvature, the real curvature (curvature
radius) is underestimated (overestimated). The discrepancy
demonstrates that the actual field structure in the inner core of

the MFR cannot be an ideal structure of cylindrical azimuthal
symmetry.
With the derived axis orientation by R13, we could further

study the helical field structure of the MFR, and identify its
boundaries or transverse size.
In the cross section near the center of the MFR (Figure 7(a)),

the projected magnetic field would be close to a circular
configuration, and the displacement vector (r, cyan lines) should
be nearly perpendicular to the magnetic field vector (b⊥, red
arrows). The angle a ^r b, , defined as a = =^

^

^
a cos r b

r br b, ( )∣ · ∣
∣ ∣∣ ∣

fa B Btan r(∣ ∣), is presumably close to 90° around the center of
the MFR where the cross section of the MFR is nearly circular
(Br≈0). In contrast, in the outer part or boundary, a ^r b, would
deviate from 90° due to the distorted field structure or
nonnegligible Br component induced by the interaction with
ambient plasma. Thus, the boundaries of MFRs could be
identified to some extent by checking the time series ofa ^r b, . The
time series of a ^r b, recorded by MMS3 is shown in Figure 7(b).
As expected, during the passage of an MFR by the spacecraft,
a ^r b, increases when the spacecraft moves toward the center of
the MFR, stays about 90° when around the inner part, and finally
decreases as it moves away from the MFR.

Further, one can define a helical angle as q = ^a cos B

Bt
( ),

where B⊥ = -^ B B n nB( ∣ ( · ˆ) ˆ∣) is the field component
perpendicular to the axis, to study the helical geometry of the
MFR’s field. Since the magnetic field in the center of the MFR
is nearly parallel to the axis orientation, one would expect an
increased helical angle when the distance to the center of the
MFR is decreased. Figure 7(c) shows the calculated helical
angle by R13 during the whole passage of the MFR. For
comparison, according to the axis orientation inferred from
MRA, the helical angle from multipoint analysis is also
displayed. The two methods yield an almost coincident time
series of the helical angle, suggesting the validity of the derived
axis orientation by R13. In line with our expectations, we find
the calculated helical angle increases as the spacecraft
approaches the innermost location, and decreases as it moves
away from the MFR. The maximum helical angle of nearly 90°
demonstrates that the field lines around the innermost part are
almost parallel to the axis orientation.
Therefore, considering the variation of a ^r b, , the helical

angle, and the axial component of magnetic field and field
strength (Figure 7(d)), we suggest that the turning points (the
minimum value of a ^r b, ) on both sides of the center of the
MFR (13:04:32.708 and 13:04:35.404), should correspond to
the inbound and outbound crossing time of MFR boundaries,
respectively. Thus the interval of crossing the MFR is about
2.7 s (see the shaded interval in Figures 7(b)–(f)). It is worth
noting that with our identification of the boundaries, the
frontal region or outer draping region with the non-force-
free field could be reasonably included within the MFR
(Figure 7(e)).
With the knowledge of axis orientation and the relative

velocity of the spacecraft ( = -V VHT), the transverse speed
of the crossing spacecraft is = -V̂ V V n n∣ ∣ ∣ ( · ˆ) ˆ ∣=
186 km s−1; thus the diameter (radius) of the MFR is about
502 km (251 km). Since the radius of a cylindrical MFR is
approximated to be the curvature radius of projected field
lines on the cross section near the boundaries, one could
check the accuracy of the identified MFR’s boundaries in
terms of the curvature radius. Considering that the curvature
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radius is about 0.05 RE, or 319 km near the boundaries
of the MFR (13:04:32.5–13:04:33 or 13:04:34.5–13:04:35)
(see Figures 6(m)–(p)), and the helical angle is about 45°
there, the radius of the MFR could be 319×cos(45°) ≈
226 km, which is comparable to that estimated by a ^r b, . Thus
the boundaries we identified by a ^r b, are reasonable. In
contrast, with the fit of the force-free model, the radius of an
MFR estimated previously by Eastwood et al. (2016) and
Akhavan-Tafti et al. (2018) is about 400∼550 km, about
twice that of our estimation.

In the innermost part of this MFR, which has a low beta
(∼0.25) and a dominated field-aligned current (see Figures 2(f)
and 7(e)), the innermost field basically satisfies the force-free

field (Lepping et al. 1990; Yang et al. 2014),  ´ =B
m a=j B0 . The calculated force-free factor α (a m= j Bt t0 )
demonstrates that α is nearly constant (∼0.013 km−1) in the
innermost position of the MFR, suggesting a linearly force-free
field there (Figure 7(f)).
Repeating the same procedures, the radii of MFRs based on

the measurements of MMS1, MMS2, and MMS4 are also
inferred separately. The results yielded are tabulated in Table 3.
Using the inferred axis orientation and the transverse size of

the MFR based on the measurements of MMS3, we project the
field vectors recorded by four spacecraft on the cross section in
Figure 8. The projected magnetic field is circular-like or
close to the structure of azimuthal symmetry near the center

Figure 6. The current density and curvature radius of the MFR. The inferred axial components ( jn) of current density for four spacecraft are shown in (a)–(d), the
azimuthal components ( jr) of current density are shown in (e)–(h), the radial components ( jr) of current density are shown in (i)–(l), the angles between the current
density and local magnetic field direction are shown in (m)–(p), the relative errors of the calculated current density are displayed in (q)–(t), and the inferred curvature
radii of magnetic field are shown in (u)–(x). In these panels, the red and black lines represent the single-point results by R13 and plasma moment of FPI, respectively.
The blue lines represent the results of multipoint analysis by S03, which is the same for all panels in each column. The black dashed lines in all panels denote the time
when the spacecraft is closest to the center of MFR.

10

The Astrophysical Journal, 903:53 (15pp), 2020 November 1 Zhang et al.



Figure 7. (a) A sketched diagram of the MFR, (b) the angle between the displacement vector and the direction of magnetic field (see the definition in the text), (c) the
helical angle, (d) the strength of the magnetic field and the axial component of the magnetic field derived from R13, (e) the angle between current density and
orientation of the magnetic field, (f) the force-free factor α. The shaded interval represents the period of crossing the flux rope. The black dashed line shows the time
when the spacecraft is closest to the center of the MFR.

Table 3
The Inferred Radius of the MFR

Spacecraft Intervalb V⊥ (km s−1) R (km)c Method

MMS1 13:04:32.808–13:04:35:590 186.42 259 R13 d

MMS2 13:04:32.736–13:04:35:572 199.95 284 R13
MMS3 13:04:32.708–13:04:35:404 186.06 251 R13
MMS4 13:04:32.784–13:04:35.409 155.58 204 R13
MMS3 ∼ ∼ 550 Fit of force-free modele

∼a ∼ ∼ 431 Fit of force-free modelf

Notes.
a The symbol “∼” means that the related information is unclear.
b The duration of crossing the MFR based on the variation of a ^r b, .
c The radius of the MFR.
d R13 is the same as defined in Table 2.
e The fit of the force-free model by Eastwood et al. (2016).
f The fit of the force-free model by Akhavan-Tafti et al. (2018).
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(see Figure 8(b)), but it is distorted or deviates from the
circular-like shape near the boundaries. Furthermore, note that
to the left of the center (∼−110 km), there is a jump/transition
of the projected magnetic field, which is consistent with the
peak filament current as reported by Eastwood et al. (2016).

3.2. The Non-force-free Flux Rope Case

The above subsections show a successful application of R13
to an MFR case with a nearly force-free field in the core. In this
section, we continue to show that R13 can be also applied to
study the field structure of a non-force-free MFR if the
assumption of cylindrically azimuthal symmetry holds. The
non-force-free case we studied here was observed by MMS in
the magnetotail at 17:42 on 2017 July 20, which was reported
by Sun et al. (2019).

At that time, MMS was located at [X=−23.75, Y= 5.5,
Z= 5.04] RE. The recorded bipolar variation of Bz and
enhancement of By components by spacecraft (Figure 9(a)),
suggest there was an encounter with an MFR. Due to the small
separation distance of the MMS tetrahedron (scale less than
19 km), we only consider the data of MMS3 for performing the
single-point analysis by R13.

We have taken three different methods to infer the axis
orientation of this MFR. (1) The BMVA over the whole
interval 17:42:50.0–17:42:52.5 yields the intermediate variance
direction (−0.084, 0.996, 0.03). (2) The MDD analysis around
the center of the MFR (shaded interval 17:42:51.2–17:42:51.35
in Figure 9(b)) yields the mean axis orientation (0.0873,
0.9945, 0.0571). (3) Using the obtainedVHT=[367.89,
−64.79, 58.88] km s−1, the analysis of R13 based on the data
of MMS3 around the center of the MFR (shaded interval

17:42:51.05–17:42:51.36 in Figure 9(c)) yields the axis
orientation (0.023, 0.985, 0.173), and the evaluated mean
impact distance á ñ =r 11.10 km.
By repeating the same procedures as done in Section 3.1, we

show the comparison of derived results between R13 and the
multipoint methods (MDD and S03) in Figure 9. In contrast to
the above case, the angle γ calculated with different methods in
Figure 9(c) indicates that the current density is not significantly
field-aligned, even around the innermost position of the MFR
(γ∼30°, and even reaches 90°). Thus, this MFR should be a
non-force-free case with a right-hand helical handedness.
The azimuthal and axial components of current density, fj

and jn, derived by FPI, S03, and R13 basically have the same
variation pattern (see Figures 9(d) and (e)). Note that due to the
errors of plasma measurement, e.g., the contamination of
secondary electrons generated via photoemission from the
sunlit spacecraft and instrument surfaces in the magnetotail
plasma sheet (Gershman et al. 2017), the current density
derived by FPI shows some differences with that derived
by S03. Thus, the current density derived by S03 is better seen
as the benchmark. It is interesting to note that the derived jf and
jn by our R13 are almost coincident with that derived by S03.
The radial current derived by S03 (Figure 9(f)) is basically
lower than 10 nA m−2, while the relative error of the current
density (Figure 9(g)) is lower than 0.5 in most parts of the
MFR. Thus, the current density derived by R13 for this case is
reasonable.
Meanwhile, we find the calculated curvature radius by R13

(Figure 9(h)) basically agrees with that derived by S03 around
the innermost position of the MFR (about 1 RE), but shows
significant discrepancy far away from the innermost position,

Figure 8. The projection of b⊥on the cross section of the flux rope. The resampled field vectors with a cadence of 0.1 s as recorded by MMS1, MMS2, MMS3, and
MMS4 are labeled in black, red, green, and blue, respectively. The inferred size of the MFR is shaded. (b) Enlargement of the projection of magnetic field vectors near
the center of the MFR, which is labeled by a cross.
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which again implies that the assumption of cylindrical
azimuthal symmetry makes sense in the innermost part for
this MFR.

The variation of the axial component of magnetic field
(Figure 9(i)) and the helical angle of magnetic field
(Figure 9(j)) suggest that the magnetic field in the MFR is
dominated by the axial component.

Based on the variation of a ^r b, as shown in Figure 9(k), the
inbound and outbound crossings of the MFR’s boundary are
identified at 17:42:50:055 and 17:42:52.179, respectively.
Considering that the perpendicular speed ofVHT is approxi-
mately 375.5 km s−1 and the mean impact distance is 11.1 km,

the diameter (radius) of this MFR is estimated at about
797.87 km (398.94 km), which is slightly smaller than that
inferred by timing analysis (about 942 km). It is interesting to
note that the projection of the curvature radius around the
boundaries (∼0.8 RE from S03, shown in Figure 9(f)) with the
helical angle (84°) yields a comparable radius of about 533 km.
Thus, the identification of boundaries based on the variation of
a ^r b, still makes sense for the non-force-free MFR case.

In summary, the assumption of cylindrical azimuthal
symmetry is reliable for fitting the interior field structure of
this non-force-free MFR case, particularly around the inner-
most position of the MFR. The calculated axis orientation,

Figure 9. A non-force-free flux rope observed by MMS3 during 2017 July 20 17:42:50.0–52.5. (a) The variation of magnetic field, (b) the eigenvector corresponding
to lmin in MDD, (c) the angle between current density and magnetic field, (d) the time series of azimuthal current density derived by S03, FPI, and R13, (e) the time
series of axial current density, (f) the time series of radial current density derived by S03 and FPI, (g) the relative error of current density, (h) the radius of magnetic
curvature obtained by S03 and R13, (i) the strength of the magnetic field and the axial component of magnetic field derived from R13, (j) the helical angle, and (k) the
angle of a ^r b, , where the interval of crossing MFR is shaded. The black dashed lines in each panel denote the time (17:42:51.207) when MMS3 was crossing the
innermost position of the MFR.
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current density, curvature radius of the magnetic field, and the
identified boundaries of the MFR by R13 are basically
consistent with the results of multipoint analysis.

4. Conclusion and Discussion

In this paper, by applying R13 to two MFRs observed by the
MMS tetrahedron, we analyze the magnetic field structure of
flux ropes. The parameters for characterizing the field structure,
including the axis orientation, current density, curvature radius
of the magnetic field, and the transverse size, are estimated
by R13 under the assumption of cylindrical azimuthal
symmetry of the MFR. The comparison with the multipoint
analysis methods demonstrates that the parameters inferred by
the single-point analysis of R13 are reasonable regardless of
whether the flux rope is quasi-force-free field or not.

Although R13 is reliable and applicable, the points below
should be noted to interpret the error sources of its derived
parameters.

1. To infer the axis orientation, R13 requires that the
projected field vectors in the cross section should be
azimuthally oriented for the best, i.e., Br∼0. As stated
by Rong et al. (2013), the assumption could be valid
when sampled data are confined around the innermost
position of the MFR because the field structure there is
less affected by the interaction with ambient plasma. The
two studied cases here show that the axis orientation
inferred by R13 around the innermost position indeed
agrees well with that by the multipoint analysis of MMS.
However,the field structure around the innermost part of
an MFR cannot have an ideal Br∼0. The deviation error
from Br∼0, or the error of axis inferred by R13, can be
indicated by the nonzero minimum σ (see Equation (3)
and Figure 4(c)).

2. As indicated by Equations (4) and (6), if the magnetic
field for the whole MFR is further assumed to be
of cylindrical azimuthal symmetry (Br∼0, ¶

¶n
=0,

Figure 10. The error estimation for the two studied MFR cases. From top to bottom: (a), (f) the variation of magnetic field, (b), (g) the magnitude of current density,

(c), (h) the curvature radius of magnetic field, (d), (i) the variation of a ^r b, , and (e), (j) the variation of 
´

B
B

· . The black dashed line in each panel labels the time

when spacecraft is at the innermost part of the MFR, and the interval for crossing the flux rope is shaded.
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f
¶
¶
=0), the current density and curvature radius could

be evaluated, respectively. It is relatively easy to check
the validity of Br∼0 by the variation of a ^r b, , because
a ^r b, is also equal to fa B Btan r(∣ ∣), which inversely
varies with Br. Obviously, Br∼0 is well satisfied around
the innermost position of MFRs, but it becomes
significant around the boundaries as indicated by a ^r b,
in the two studied MFR cases.

3. However, the way to evaluate the validity of
f

¶
¶

¶
¶

,
n

=0
is challenging for single-point analysis. Because the three
cylindrical coordinates of a spacecraft’s location are
varied simultaneously along the trajectory, it is impos-
sible to accurately separate the gradient components
associated with ¶

¶n
and

f
¶
¶
. Considering  =B·

+ +
f

¶
¶

¶

¶
¶
¶

frB
r r r

B

r

B

n
n( ) , one could calculate ¶

¶
rB

r r r( ) to
represent the divergence of the magnetic field, or the error
induced by ¹

f
¶
¶

¶
¶

, 0
n

, where Br, though it is minor, is
the radial field component in the cylindrical coordinates

fr n, ,{ˆ ˆ ˆ} setup by R13. Consequently, we could

construct a dimensionless parameter 
´

B
B

· to roughly

indicate the error brought by ¹
f

¶
¶

¶
¶

, 0
n

, which is similar
to the indicator developed by Dunlop (2002) to evaluate
the calculation error of current density. The calculation of
 ´ B is based on Equation (4). In Figures 10(e) and (j),
under the assumption of

f
¶
¶

¶
¶

,
n

=0, we calculate


´
B
B

· for the two studied flux ropes. It is clear that

the calculated 
´

B
B

· for both cases shows a dip around
the innermost position, which demonstrates that our
calculations of current density and curvature radius
by R13 are relatively reasonable there. We noticed that
when 

´
B
B

· becomes larger, e.g., >0.5 far away from
the innermost position, the difference in calculated
current density and curvature radius with the multipoint
analysis becomes significant.

In summary, the comparison with multipoint analysis
methods for two flux rope cases demonstrates that the single-
point analysis of R13 is reasonable in analyzing the interior
field structure of MFRs unless it is highly distorted.
Therefore, R13 could be applied widely to the “big data set”
accumulated by the single-point spacecraft missions in history,
and to the planetary missions, e.g., MAVEN (Jakosky et al.
2015) and the BepiColombo mission (Benkhoff et al. 2010), to
study the geometry of MFRs and explore their origin,
evolution, and roles in the planetary space environment.
Nonetheless, the application of R13 strongly depends on the
assumption of cylindrical azimuthal symmetry, and the yielded
parameters by R13 must always be interpreted with caution,
and may combine the technique of GSR if necessary.
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