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Abstract

The ultradiffuse galaxy NGC 1052-DF2 has an overabundance of luminous globular clusters (GCs), and its
kinematics is consistent with the presence of little to no dark matter. As the velocity dispersion among the GCs is
comparable to the expected internal dispersions of the individual GCs, the galaxy might be highly conducive to
GC–GC merging. If true, this could explain the puzzling luminosity function of its GCs. Here we examine this
possibility by resimulating three of our earlier simulations of the GC system, where the GCs were modeled as
single particles, with live GCs. Somewhat surprisingly, we infer a low merger rate of ∼0.03 Gyr−1. The main
reason is that the GCs are too dense for tidal shock capture, caused by impulsive encounters among them, to
operate efficiently (we infer a tidal capture rate of only ∼0.002 Gyr−1). Therefore, whatever mergers occur are
driven by other mechanisms, which we find to be captures induced by dynamical friction and compressive tides
from other GCs. The low merger rate inferred here makes it unlikely that the unusually large luminosities of the
GCs can be explained as a result of past GC–GC mergers. Our simulations also indicate that, if NGC 1052-DF2 is
indeed largely devoid of dark matter, its tidal field is too weak to induce any significant mass loss from the GCs.
Therefore, in such a scenario, we predict that it is improbable for the GCs to reveal tidal features, something that
can be tested with future deep observations.

Unified Astronomy Thesaurus concepts: Globular star clusters (656); Dynamical friction (422); N-body
simulations (1083)

1. Introduction

The discovery of NGC 1052-DF2 (hereafter DF2; van
Dokkum et al. 2018c) and NGC 1052-DF4 (hereafter DF4; van
Dokkum et al. 2019) has revealed the existence of a puzzling
population of globular cluster (GC)–rich, dark matter–deficient
galaxies. Not only do these galaxies have an overabundance of
luminous GCs (van Dokkum et al. 2018a, 2019), but their
kinematics are also consistent with the presence of little to no
dark matter (van Dokkum et al. 2018b, 2019; Wasserman et al.
2018). The shift in the GC luminosity function to higher
luminosities than usual is statistically significant and is not due
to observational bias toward detecting more luminous GCs (see
Shen et al. 2020). While the association of DF2 with the NGC
1052 group at 20Mpc and the robustness of its dynamical
mass, inferred from GC kinematics, have been contested in
several studies (Hayashi & Inoue 2018; Martin et al. 2018;
Laporte et al. 2019; Nusser 2019; Trujillo et al. 2019; Lewis
et al. 2020), both van Dokkum et al. (2018d) and Blakeslee &
Cantiello (2018) have independently confirmed its distance to
be 19–20Mpc. More importantly, using stellar kinematics,
Danieli et al. (2019) and Emsellem et al. (2019) have validated
its low dark-to-stellar mass ratio (at least within the optical
extent).

In the standard paradigm of galaxy formation, a relatively
massive dark matter halo is a prerequisite for cold gas to
collapse and form stars. Therefore, how such large and diffuse
galaxies (both DF2 and DF4 belong to the class of ultradiffuse
galaxies) with little to no dark matter content came into being is
a puzzle. Ogiya (2018) and Nusser (2020) have proposed that
these galaxies formed in more massive progenitor halos, which
were then tidally heated and stripped in the NGC 1052 group
environment, giving rise to dark matter–depleted systems.
However, such models do not address the origin of the

overabundance of luminous GCs. In fact, since the distribution
of GCs is typically more extended than the stellar body of the
host galaxy, stripping is likely to result in a smaller rather than
a larger specific frequency. An alternative scenario, due to Silk
(2019), involves a high-velocity collision between two gas-rich
galaxies that causes a spatial offset between their dark and
baryonic components. The collision also triggers GC forma-
tion, leading to a high specific frequency of GCs. That dark
matter–deficient galaxies can form in this way has also been
shown by Shin et al. (2020).
Irrespective of how they form, the GC-rich, low-mass systems

DF2 and DF4 present a unique environment for GC evolution.
While the dynamics of the GCs can be used to constrain possible
mass models (Nusser 2018; Dutta Chowdhury et al. 2019), they
are also interesting in their own right. In Dutta Chowdhury et al.
(2019, hereafter Paper I), we studied the dynamical evolution of
the GC system in DF2 for a baryon-only mass model. Using
N-body simulations, we showed that due to a cored stellar
density profile, dynamical friction on the GCs is significantly
reduced in the central region of the galaxy (a phenomenon
known as core stalling; see also Hernandez & Gilmore 1998;
Read et al. 2006; Inoue 2009, 2011; Petts et al. 2015, 2016;
Kaur & Sridhar 2018). Paper I also revealed frequent GC–GC
scattering, which, together with core stalling, prevents the GCs
from sinking to the galaxy center.
A shortcoming of Paper I was that each GC was modeled as

a single particle (i.e., a “hard sphere”). Consequently, we were
unable to account for potential GC–GC mergers, which have
been previously studied in the context of nuclear star cluster
formation (e.g., Tremaine et al. 1975; Oh & Lin 2000;
Capuzzo-Dolcetta & Miocchi 2008a, 2008b; Bekki 2010;
Hartmann et al. 2011; Arca-Sedda & Capuzzo-Dolcetta 2014;
Gnedin et al. 2014), the evolution of disk GCs in the Milky
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Way (e.g., Khoperskov et al. 2018; Mastrobuono-Battisti et al.
2019), the evolution of stellar superclusters (e.g., Kroupa 1998),
and the formation of ultracompact dwarfs (e.g., Fellhauer &
Kroupa 2002; Bekki et al. 2004). Two gravitationally bound
systems are likely to merge when their relative speed is lower
than (or of the same order as) their internal dispersions (Binney
& Tremaine 2008). Since the velocity dispersion of the GC
system in DF2 is comparable to the expected dispersions of the
individual GCs (see Section 2), DF2ʼs environment might be
highly conducive for GC–GC mergers. It is tempting, therefore,
to explain the extreme luminosities of the GCs in DF2, which
are brighter than usual (van Dokkum et al. 2018a), as being the
outcome of such mergers.

In this paper, we explore the dynamical evolution of the GCs
in DF2 by modeling them as live N-body systems, rather than
as hard spheres. As in Paper I, we evolve the GC population in
a live baryon-only model of the galaxy for a duration of 10 Gyr,
starting from equilibrium initial conditions that match the
observational constraints. In addition to focusing on GC–GC
mergers, we examine the impact of the tidal field of DF2 and
that of the other GCs on the mass and structural evolution of a
GC. We also compare the orbital decay of the live GCs to that
of the corresponding hard spheres.

We emphasize that these simulations are needed to obtain a
reliable estimate of the GC–GC merger rate in DF2. One may
be inclined to estimate the merger rate from kinetic theory,
equating the mean free path of a GC to ( )s -n tc

1, with n the
number density of GCs and σtc the (velocity-dependent) cross
section for tidal shock capture (cf. Mamon 1992; Makino &
Hut 1997). However, we caution that this does not account for
dynamical friction, which plays an important role in that it
causes the GCs to congregate near the code radius of DF2 due
to core stalling. Indeed, as we demonstrate in Section 4, tidal
shock capture is not the primary mechanism driving GC–GC
mergers in DF2, and, therefore, such an analytic calculation
grossly underpredicts the merger rate.

This paper is organized as follows. Section 2 discusses how
the simulations are set up using the observational constraints on
the GCs in DF2. The results of our simulations are presented in
Section 3, followed by a detailed discussion of the inferred
GC–GC merger rate in Section 4. We summarize our findings
in Section 5.

2. Simulation Setup

We model the diffuse stellar component of DF2 as a
spherically symmetric, isotropic system in equilibrium. Assum-
ing a total mass of M=2×108Me and a distance of 20Mpc
(van Dokkum et al. 2018c), the three-dimensional (3D) density
profile of the stars is inferred from the observed Sérsic (1968)
surface brightness profile (with Sérsic index n=0.6 and
effective radius Re=2.2 kpc) using the inverse Abel transfor-
mation. After that, Eddington inversion is used to obtain the
corresponding ergodic distribution function (DF), f (ε), where ε
is the negative of the energy per unit mass of a star particle (for
more details, see Paper I). The DF, thus obtained, is then used
to draw positions and velocities for 107 star particles, each
having a mass of 20Me. This mass resolution is a factor of 10
better than that adopted in Paper I.

Each of the 10 spectroscopically confirmed GCs in DF2 is
set up as a spherically symmetric, isotropic Plummer (1911)

sphere in equilibrium, whose DF is given by

( ) ( )e e=f F . 17 2

The constant, F, depends on the mass,MGC, and scale radius, a,
of the Plummer sphere and is derived from the constraint that

( )ò ò e =v rf d d M3 3
GC. The resulting density profile is given

by

( ) ( ) ( )r
p

= + -r
M

a
r a

3
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2 2 5 2

The initial mass of each GC is set equal to that inferred from its
observed luminosity (van Dokkum et al. 2018a) using a
constant mass-to-light ratio of 1.8. The initial scale radius of
each GC is set equal to its observed projected half-light radius1

(van Dokkum et al. 2018a). Initial phase-space coordinates of
star particles, each of mass 20Me, for each GC are sampled
from the DF of Equation (1). Table 1 lists the properties of all
10 GCs, including their masses; projected half-light radii (scale
radii); 3D velocity dispersions inside the respective 3D half-
mass radii, σ3D; line-of-sight (LOS) velocity dispersions inside
the respective projected half-mass radii, σLOS; and the number
of particles, N, used to represent each GC. Note that σ3D and
σLOS are inferred from the DF of Equation (1), and since all of
the GCs are self-similar, we have σLOS;0.57σ3D in each case.
In Paper I, we used the observed projected positions and

LOS velocities of the GCs (van Dokkum et al. 2018c, 2018b),
both measured with respect to the galaxy center, as constraints
to make 50 realizations for the GC system. This was done by
first determining the 3D number density profile of the GCs
from their projected number density (fitted with a Sérsic profile
of index n=1 and 2D half-number radius Rhalf,GC= R1.3 e)
using the inverse Abel transformation. Next, Eddington
inversion was used to calculate the corresponding ergodic DF
of the GC system by assuming it to be in equilibrium with the
stellar potential. The DF, thus obtained, was then used to

Table 1
Relevant Parameters for the 10 Spectroscopically Confirmed GCs in DF2

ID MGC rh,proj (a) σ3D σLOS N
(Me) (pc) (km s−1) (km s−1)

39 7.3×105 7.5 12.8 7.3 36,500
59 5.0×105 6.5 11.3 6.5 25,000
71 5.5×105 6.7 11.7 6.7 27,500
73 1.5×106 6.4 19.8 11.3 75,000
77 9.6×105 9.4 13.1 7.4 48,000
85 6.6×105 5.2 14.6 8.3 33,000
91 6.6×105 8.4 11.5 6.5 33,000
92 8.0×105 4.3 17.7 10.1 40,000
98 4.2×105 5.4 11.4 6.5 21,000
101 3.8×105 4.8 11.5 6.6 19,000

Note. The first three columns list the IDs, masses, and projected half-light radii
(scale radii of the corresponding Plummer spheres) of the 10 spectroscopically
confirmed GCs in DF2 considered in this paper. For each GC, the fourth, fifth,
and sixth columns list the 3D velocity dispersion inside the 3D half-mass
radius, the LOS velocity dispersion inside the projected half-mass radius, and
the total number of star particles used in its N-body representation,
respectively. See text for details.

1 Assuming a constant mass-to-light ratio, the half-light radius is equal to the
half-mass radius, and for a Plummer sphere, the projected half-mass radius is
equal to the scale radius, a.
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sample GC positions along the LOS and velocity components
perpendicular to the LOS. For more details, see Paper I.

Figure 1 shows the probability distribution for the 3D
velocity dispersion of the GC system, σ3D,sys, in the 50
realizations presented in Paper I. Note that the typical velocity
dispersion of the GC system (∼10–14 km s−1) is comparable
to, and in some cases even lower than, the internal velocity
dispersions of the individual GCs, listed in Table 1
(∼11–20 km s−1). As noted in Section 1, such a situation is
conducive for GC–GC mergers.

Since σ3D,sys indicates how fast the GCs are moving, on
average, with respect to the galaxy center, it can be expected to
be indicative of how many GCs are likely to merge in a
particular realization. Therefore, in order to roughly sample, in
some quantitative measure, the expected frequency of GC–GC
mergers in DF2, we resimulate the realizations corresponding
to the 16th, 50th, and 84th percentiles of the σ3D,sys distribution
with live GCs (indicated by the blue dashed vertical lines in
Figure 1). In what follows, we refer to these simulations as runs
A, B, and C, respectively. To compare the orbital evolution of
the live GCs with that of hard spheres, we also resimulate the
same realizations with single-particle GCs (hereafter runs A’,
B’, and C’).2

After initializing the positions and velocities of the star
particles that make up the galaxy and the individual GCs in
isolation, we place the GCs at their respective positions within
the galaxy and add the corresponding orbital velocity vectors to
that of the individual GC particles. The upper left panel of
Figure 2 shows the N-body representation of DF2 and its GCs
projected on the sky plane at t=0, which is the same for all
three live-GC simulations. The zoom-ins illustrate the huge

dynamic range in scales and densities covered by our
simulations.
All simulations are run forward in time for 10 Gyr with

the code GADGET-2 (Springel 2005). In GADGET-2, the
gravitational force between two particles is softened with a
spline, such that the force is exactly Newtonian beyond 2.8ò,
where ò is the equivalent Plummer softening. We also simulate
the most and least massive GCs and the stellar body of DF2 in
isolation with different values of ò (0.1–1 pc). For ò=0.4 pc,
we find that both the stellar body of DF2 and the GCs in
isolation remain in stable equilibrium for at least their
respective half-mass relaxation times (computed using Spitzer
1969). Therefore, we adopt this value of the softening length in
runs A, B, and C for all particles, independent of whether they
belong to DF2 or one of the GCs. In runs A’, B’, and C’, we
adopt ò=10 pc for all particles (stars and GCs). In Paper I, this
was found to be the optimal softening length for the single-
particle GCs and perfectly adequate to model the stellar body of
DF2 as well. A Barnes–Hut oct-tree (Barnes & Hut 1986) with
an opening angle of 0.7 is used for gravitational force
calculations, and the time step, Δt, taken by a particle is
determined using the criterion ∣ ∣hD =  at 2 . Here a is the
instantaneous acceleration of the particle, and η controls the
accuracy of time integration. We set η=0.002 in all runs.

3. Results

For the live-GC simulations, determining the membership of
the GCs (i.e., which particle is bound to which GC) is a
nontrivial exercise. Once the membership of the GCs in a
particular snapshot has been ascertained, the member particles
of a GC can be used to determine its center-of-mass position
and velocity, bound mass, and structural properties. Therefore,
before presenting the simulation results, we briefly outline the
steps taken to accomplish this task.

1. For each GC in each snapshot, we initialize its member-
ship with the particles that belonged to it at t=0 and find
the position and velocity of the center of mass of this
collection.

2. For each GC, this collection of particles is then fed to a
tree code with the same softening length and opening
angle as that used in the live-GC simulations, along with
those particles that do not belong to this collection (but
belonged to any one of the 10 GCs at t=0) but with
their masses set to zero.

3. The potential calculated by the tree code for each particle
is used to obtain its binding energy in the center-of-mass
frame of each GC, as determined in the previous iteration
(or in step 1 for the zeroth iteration). The membership of
the GCs is updated by assigning each particle to the GC
with respect to which it has the most negative binding
energy. The particles that have positive binding energy
with respect to every GC are not assigned to any and
constitute the collection of unbound particles.

4. For each GC, from its collection of bound particles
determined in step 3, the 50% most bound ones are used
to update the position and velocity of its center of mass.

Steps 2, 3, and 4 are repeated with each GC’s collection of
bound particles, as determined in the previous iteration, until
the relative separation between the positions and velocities of
the centers of mass obtained in two successive iterations
converges to better than 1×10−3 for every GC.

Figure 1. Probability distribution for the 3D velocity dispersion of the GC
system, σ3D,sys, at t=0, as obtained from the 50 multi-GC realizations
described in Paper I (green histogram). The blue dashed vertical lines denote
the realizations that are chosen for resimulation with live GCs and correspond
to the 16th, 50th, and 84th percentiles of the σ3D,sys distribution. Due to
computational limitations, it is not feasible to resimulate all 50 realizations.

2 These simulations yield results that are indistinguishable from the
corresponding simulations presented in Paper I, even though here we use an
order of magnitude more particles to represent the galaxy.
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3.1. Orbital Evolution of Live and Single-particle GCs

Figure 3 shows the orbital evolution of the GCs in DF2.
From left to right, the columns depict the galactocentric
distances of the 10 GCs as a function of time for the three
different initial condition setups described in Section 2. In each
column, the top, middle, and bottom panels show the results for
different GC subsets (to avoid overcrowding), with each GC
represented by a different color, as indicated. For each GC, we
depict its orbital evolution in both the simulations where it is
live (solid lines; runs A, B, and C) and the simulations where it
is represented as a hard sphere (dashed lines; runs A’, B’,
and C’).

Overall, the orbital evolution of the live and single-particle
GCs shows very good agreement. Small differences occur in

the later stages of the evolution (t5 Gyr) due to the presence
of extra degrees of freedom in the live-GC simulations
pertaining to the internal motion of the GCs. As the GCs sink
in due to dynamical friction and come closer together at later
times, GC–GC interactions become important. Together with
reduced dynamical friction in the galactic core, these interac-
tions keep the GCs afloat, preventing them from sinking to the
center of the galaxy (see Paper I). In the case of live GCs, GC–
GC interactions also transfer orbital energy from the relative
motion of a GC pair to internal energy of the GCs, causing the
GC orbits to deviate from that in the corresponding simulations
with single-particle GCs. If this transfer of energy is
sufficiently large or continues for a sufficiently long time, it
leads to a GC–GC merger.

Figure 2. The upper left panel shows the N-body representation of DF2 and its GCs projected on the sky plane at t=0, covering an area of 22 kpc×22 kpc. The star
particles that belong to the galaxy are shown in gray, and those associated with the GCs are displayed with different colors, as indicated. By having live GCs (with
19,000–75,000 particles, depending on the GC mass) within a live galaxy (with 107 particles), our simulations resolve a vast range of densities and scales. This is
illustrated by zooming in to a region of area 2.2 kpc×2.2 kpc that contains GCs 73 and 85 (upper right panel) and further zooming in to two regions of area
22 pc×22 pc, one that does not contain any GCs (lower left panel) and another centered on GC 73 (lower right panel). Note the huge density contrast between these
two zoom-ins.
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Somewhat surprisingly, even though DF2 was purported to
be conducive to GC–GC merging, we only find a single
complete merger event in our simulations. This merger, which
occurs in run B and involves GCs 73 and 77, happens toward
the very end of the simulation, at t=9.75 Gyr. The blue
curves in the top and middle panels of the middle column of
Figure 3 show the orbital evolution of the merged remnant,

and it is joined to the red (GC 73) and magenta (GC 77)
curves at t=9.75 Gyr, the time when it is no longer possible
to identify the two GCs as separately bound systems. Note
that the merged remnant continues to orbit near the core
radius of DF2 (roughly 0.2–0.3 Re) and does not sink to the
galaxy center. Section 3.4 discusses this merger event in more
detail.

Figure 3. Orbital evolution of live and single-particle GCs. Solid lines indicate the evolution of the galactocentric distance, R, of each live GC in units of the effective
radius of DF2, Re, in runs A (left column), B (middle column), and C (right column). The orbital evolution of the GCs in runs A’, B’, and C’, which have the same
initial conditions as runs A, B, and C, respectively, but where the GCs are represented as hard spheres, is shown with dashed lines. In each column, the GCs are
divided into three subsets (top, middle, and bottom panels) for clarity. Overall, the evolution of live and single-particle GCs is in very good agreement. The small
differences that occur in the later stages of the evolution are due to the transfer of the relative orbital energy of a GC pair to the internal energy of the live GCs. In run
B, GCs 73 and 77 merge together at t=9.75 Gyr, and the orbit of the merged remnant is indicated by the blue curves in the top and middle panels of the middle
column. See text for more details.

Figure 4. Evolution of the bound mass of each GC, MGC, normalized by the total mass of all the GCs at t=0 (Mtot) in runs A (left panel), B (middle panel), and C
(right panel). Each GC is represented with a different color, as indicated. The fraction, funb, of Mtot that is no longer bound to any of the GCs is indicated by the black
dashed curves. Overall, the GCs are very stable to tidal perturbations from the galaxy and other GCs. They undergo little mass evolution over 10 Gyr, except during
GC–GC mergers, when two GCs are strongly affected by each other’s tidal field and experience significantly more mass loss/gain (GCs 71 and 73 in run A; GCs 77
and 73 in run B). After the merger between GCs 73 and 77 occurs in run B, the red curve in the middle panel is continued with a blue curve, reflecting the mass
evolution of the merged remnant.

5

The Astrophysical Journal, 903:149 (15pp), 2020 November 10 Dutta Chowdhury, van den Bosch, & van Dokkum



3.2. Mass Evolution of Live GCs

Figure 4 shows the evolution of the bound mass of each live
GC, MGC, normalized by the total mass of all the GCs at t=0,

= å =M Mi
i

tot 1
10

GC. Different panels correspond to different
runs, as indicated. Note that at any given time, the bound mass
of a GC consists of star particles that belonged to it initially and
are still bound (self mass), as well as star particles that
belonged to the other GCs at t=0 but are now bound to this
particular GC (accreted mass). The black dashed curves in each
panel indicate the fraction, funb, of Mtot that is no longer bound
to any of the GCs.

In runs A, B, and C, after 10 Gyr of evolution, funb is 2%,
4%, and 1%, respectively. Such low values of funb indicate that
the GCs are very stable to mass loss induced by tidal
perturbations from the galaxy. For a single GC on a circular
orbit in DF2, its tidal radius, rt, is the distance to the Lagrange
point, L3, from the center of the GC and is given by the root of
the equation

( )
( )

( ) ( ) ( )-
-

- - + W =
GM R r

R r

GM R

R

GM r

r
r 0. 3t

t
2 2

GC t

t
2 c

2
t

Here R is the galactocentric distance of the GC, M(R) is the
mass of DF2 enclosed within R, MGC(r) is the GC mass
enclosed within the clustercentric radius r, and Wc is its
angular velocity. The density profile of the galaxy is given by
the deprojected Sérsic profile, as discussed in Section 2,
and the GC has a Plummer density profile with mass
MGC=7.2×105Me and scale radius a=6.5 pc, which

are the initial averages of the respective quantities for the 10
GCs in DF2.
The solid blue curve in Figure 5 shows rt as a function of R,

obtained by solving Equation (3). The dashed blue vertical line
indicates the galactocentric distance inside which L3 ceases to
exist for a circular orbit, and the tidal radius is infinite. This is
due to the cored density profile of DF2, which causes tidal
forces to become fully compressive at small R. For eccentric
orbits, one can define the instantaneous tidal radius by
replacing Wc in Equation (3) with the instantaneous angular
velocity, Ω, of the GC. At a given R, ( )W < W >Wc c indicates
apocentric (pericentric) passages. The solid red and green
curves depict the instantaneous tidal radius as a function of
R for maximum (Ωmax=Vesc/R) and minimum (Ωmin=0)
possible angular velocities at that R, respectively. For Ωmin, L3
ceases to exist (and the tidal radius is infinite) inside the
galactocentric distance indicated by the dashed green vertical
line. For Ωmax, the centrifugal force is maximum and
effectively counters the compressive tidal force in the core.
As a result, the tidal radius is always finite and continues to
decrease with decreasing R. The dashed magenta horizontal
line indicates r99, the GC radius that encloses 99% of the total
GC mass. Except for pericentric passages close to the center
( <r R0.2 e) on highly eccentric orbits (Ω close to Ωmax), rt is
always much larger than r99. Therefore, for the GCs in DF2,
mass loss due to galactic tides is almost always insignificant (at
least if DF2 is devoid of dark matter, as assumed here).
The tidal field of one GC on another is also not strong

enough to cause significant mass evolution unless a pair of GCs
is about to undergo a merger. For example, in run B, maximum
mass loss is experienced by GC 77. By the time of its merger
with GC 73, 87% of its self mass is accreted onto GC 73, and
the remaining 13% is not bound to any GC. During the same
time, GC 73 loses only about 4% of its self mass, almost all of
which is no longer bound to any other GC. However, the mass
accreted from GC 77 more than compensates for this loss and
increases its bound mass by about 52% compared to that at
t=0 (red curve in the middle panel of Figure 4). Post-merger,
this red curve is continued with a blue curve, indicating the
mass evolution of the merged remnant. Similarly, in run A,
toward the very end of the simulation, GCs 71 and 73 (green
and red curves in the left panel of Figure 4, respectively) start
getting strongly affected by each other’s tidal field. Being the
less massive of the two, GC 71 loses mass to GC 73. As the
merger has just begun, the mass exchange is less pronounced
than that between GCs 73 and 77 in run B.

3.3. Structural Evolution of Live GCs

Figure 6 shows the evolution of the live GCs in the
rh,proj−σLOS plane, where rh,proj is the projected half-mass
radius of a GC and σLOS is its LOS velocity dispersion inside
rh,proj. Different panels correspond to different runs, and each
GC is represented with a different color, as indicated. Overall,
over 10 Gyr, there is remarkably little evolution in the
structural parameters of the GCs, such that the curves for the
individual GCs morph into little smudges. This indicates that,
in general, the tidal fields of the host galaxy and the other GCs
have negligible effects on the structural evolution of a GC.
The clear exception is the merger between GCs 73 and 77 in

run B. In this case, the two GCs are strongly affected by each
other’s tidal field. Before merging with GC 73, GC 77ʼs rh,proj
and σLOS decrease by about 30% and 4%, respectively

Figure 5. Tidal radius, rt, of a typical GC in DF2 in units of its 3D half-mass
radius, rh, as a function of its galactocentric distance, R, in units of the effective
radius of DF2, Re. The solid blue curve shows the tidal radius for a circular
orbit (W = W = V Rc c ), while solid red and green curves depict the
instantaneous tidal radius for maximum (Ωmax=Vesc/R) and minimum
(Ωmin=0) possible angular velocities at a particular R, respectively. The
dashed blue (green) vertical line indicates the galactocentric distance inside
which the tidal radius is infinite for ( )W = W Wc min . The dashed magenta
horizontal line highlights the GC radius that encloses 99% of its total mass.
Except for rare pericentric passages close to the center ( <R R0.2 e) on highly
eccentric orbits (Ω close to Ωmax), mass loss due to galactic tides is
insignificant.
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(magenta curve in the middle panel). During the same time, GC
73ʼs rh,proj increases by about 12%, and its σLOS decreases by
about 2% (red curve in the middle panel). Post-merger, the red
curve in the middle panel is continued with a blue curve,
indicating the evolution of the merged remnant in the
rh,proj−σLOS plane, and the blue star highlights its location at
the end of 10 Gyr. In run A, the merger between GCs 71 and 73
has just begun, so their evolution in the rh,proj−σLOS plane
(green and red curves in the left panel, respectively) is not as
pronounced as that of GCs 73 and 77 in run B.

3.4. A Close-up Look at the GC–GC Merger

As mentioned above, across our three simulations, only a
single GC–GC merger occurs. Here we describe this merger
in some detail. The upper panel of Figure 7 shows the
galactocentric evolution of GCs 73 (red curve) and 77 (magenta
curve) in runs B and B’. The middle and lower panels show the
evolution of the relative separation between the two GCs, r12,
and their relative orbital energy, m= +E v W0.512 12

2
12, respec-

tively. Here v12 is the relative velocity between the two GCs, μ
is the reduced bound mass, and W12 is the mutual gravitational
potential energy. For two mass distributions with densities ρ1
and ρ2,

( ) ( ) ( ) ( ) ( )ò òr r= F + Fr r r r r rW d d
1

2

1

2
, 412 1 2

3
2 1

3

where Φ1 and Φ2 are the potentials due to 1 and 2, respectively.
In the case of live GCs, W12 is calculated by modeling GCs 73
and 77 as Plummer spheres, each with a mass and scale radius
equal to the instantaneous bound mass and projected half-mass
radius of the GCs, respectively. In the case of single-particle
GCs, Plummer spheres of scale radii equal to the softening
length of run B’ (10 pc) are used. In all panels, solid and dashed
curves correspond to runs B and B’, respectively.

Being the most massive GC, GC 73 experiences significant
orbital decay due to dynamical friction and sinks to the galactic
core in about 5 Gyr. Also, GC 77ʼs orbit decays initially for
about 2 Gyr, but as the orbit of GC 73 shrinks, and it gets closer
to GC 77, GC 73 pulls GC 77 toward it and away from the
galactic center for the next 3 Gyr or so. The resulting decrease
in the gravitational potential energy of the pair, which would

otherwise appear as an increase in the relative kinetic energy of
the GCs and cause them to drift apart again, is drained away to
the galactic stars via dynamical friction. This can be inferred
from the rapid, overall decreasing trend in E12 for the first
5 Gyr, which leads to a similarly rapid, overall decrease in r12.
Note that during this period, the galactocentric evolution of
both GCs and the evolution of r12 and E12 in runs B and B’ are
in very good agreement. This is because the GCs are still
sufficiently far apart, so their mutual attraction is not strong
enough to distort their internal structure, i.e., transfer the
relative orbital energy to the internal energy of the live GCs.
Thus, they behave like single-particle systems for all practical
purposes.
For the next 5 Gyr, both GCs 73 and 77 remain near the

galactic core and continue to interact with each other. In both
runs B and B’, dynamical friction keeps draining E12, albeit at
reduced efficiency (see Paper I), allowing the GCs to become
bound (E12<0). After becoming bound, the GCs continue to
get closer and closer and begin to interact more strongly.
Consequently, in run B, E12 starts getting converted to the
internal energy of the GCs. Over time, this causes the evolution
of r12 and E12 and the galactocentric evolution of both GCs to
deviate more and more from that in run B’. Eventually, at
around 9.75 Gyr, the two GCs merge. In the upper panel of
Figure 7, the evolution of the galactocentric distance of the
merged remnant is shown in blue, and the time of merger is
denoted by the brown dashed vertical line. Note that even after
becoming bound, it takes an additional 2.5–3 Gyr for the GCs
to merge.
Figure 8 shows several snapshots of the merger between

GCs 73 and 77. The particle distributions are projected on the
sky plane and centered on the center of mass of all particles that
initially belonged to GC 73. The projected density of all
particles that initially belonged to GC 73, measured within
pixels of area 2×2 pc2, is depicted with the hot color map
(color changes from yellow to black with decreasing density).
Similarly, the projected density of all particles that initially
belonged to GC 77 is shown with the cool color map (color
changes from magenta to cyan with decreasing density). When
the two GCs are sufficiently far apart, a portion of their relative
orbit is also indicated with a brown dashed curve. As the GCs
get closer and begin to interact strongly with each other, the

Figure 6. Evolution of the GCs in the rh,proj−σLOS plane, where rh,proj is the projected half-mass radius of a GC and σLOS is its LOS velocity dispersion inside rh,proj.
Results are shown for runs A (left panel), B (middle panel), and C (right panel). Different colors represent different GCs, as indicated. Overall, there is remarkably
little evolution in the structural parameters of the GCs. A clear exception is the merger between GCs 73 and 77 in run B (red and magenta curves in the middle panel),
which produces the remnant whose evolution is indicated in blue, with the blue star marking its final state at the end of 10 Gyr.
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relative orbital energy of the GC pair is converted to the
internal energy of the GCs (see also Figure 7). Over time, an
increasingly large number of particles that initially belonged to
GC 77 are able to gain sufficient energy to unbind themselves
from its gravitational field. Being more massive, GC 73 does
not experience significant mass loss, but it attracts and accretes
the majority of the particles lost from GC 77 (see Section 3.2).
By 9.75 Gyr, it is no longer possible to identify a bound
collection of particles for GC 77; all particles that initially
belonged to GC 77 are either unbound (13%) or bound to GC
73 (87%), and the two GCs are said to have merged. Note the
strongly elongated nature of the final merged remnant.

4. Discussion

Why is it that we find such a low GC–GC merger rate in our
simulations (only one out of a total of 3×45 GC pairs3 merge
in a period of 10 Gyr), even though the velocity dispersion of
the GC system, σ3D,sys, is similar to the intrinsic dispersion of
the GCs, σ3D?

To answer this question, we need to ask what it takes for two
GCs to merge. First of all, the GCs need to become bound to
each other, thus forming a GC binary. Therefore, we begin our
discussion by defining the boundedness condition for a pair of
GCs and identifying the various mechanisms by which they can
become bound to each other. Next, we discuss tidal shock
capture due to impulsive encounters, which is typically

considered to be the main mechanism driving the merging of
galaxies in groups and clusters, and show that its rate is too low
to be relevant for DF2. We end by estimating the average
merger rate of the GCs in DF2 and demonstrate that it is
dominated by two other mechanisms: dissipative capture,
driven by dynamical friction, and three-body capture, driven by
interactions of a GC pair with one (or more) of the other GCs.

4.1. Foundations

Consider two GCs, with masses m1 and m2, moving in an
external potential, ( )F Rext . The total orbital energy of the GCs
is given by

( ) ( ) ( )

= + +

+ F + FR R

E m V m V W

m m

1

2

1

2
. 5

tot 1 1
2

2 2
2

12

1 ext 1 2 ext 2

Here Vi and Ri are the velocity and position vectors of GC i
with respect to the center of the external potential, and W12 is
their mutual gravitational potential energy, defined in
Equation (4). It can also be written in the form

( ) ( )= - W
G m m

r
r , 612

1 2

12
12

where ∣ ∣= -R Rr12 1 2 is the distance between GCs 1 and 2,
and ( ) x is a function that depends on the density profiles of
the two GCs and which asymptotes to unity in the limit of large
separation.

Figure 7. Evolution of GCs 73 and 77 in runs B (solid curves) and B’ (dashed curves). Red and magenta curves in the top panel show the evolution of the
galactocentric distances of GCs 73 and 77, respectively, in units of the effective radius of DF2, Re. The black curves in the middle and lower panels depict the
evolution of the relative separation between the two GCs, r12, in units of Re, and their relative orbital energy, E12, in units of GM

2/Re, respectively. HereM is the mass
of DF2 and G is the universal gravitational constant. Loss of E12 due to dynamical friction brings the GCs close together, allowing them to become bound. In the case
of live GCs, after becoming bound, E12 starts getting converted to the internal energy of the GCs, eventually resulting in a merger at around 9.75 Gyr. In the upper
panel, the galactocentric distance of the merged remnant, in units of Re, is shown in blue, and the time of the merger is denoted by the brown dashed vertical line. The
brown dashed horizontal line in the lower panel indicates E12=0.

3 Each simulation has ( ) !
! !

= = 4510

2

10

2 8
GC pairs. Therefore, in total,

the three live-GC simulations have 3×45 pairs of GCs.
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Figure 8. Merger between GCs 73 and 77 in run B. The projected density in the sky plane of star particles that initially belonged to GCs 73 and 77, measured within
pixels of area 2×2pc2, is depicted with the hot (varying from yellow to black with decreasing density) and cool (varying from magenta to cyan with decreasing
density) color maps, respectively, for a few snapshots before and after the merger. When the two GCs are sufficiently far apart, a portion of their relative orbit is also
indicated with a brown dashed curve. Over time, GC 77 gets closer to GC 73 and loses mass, the majority of which is accreted onto GC 73, resulting in a complete
merger by 9.75 Gyr. Note the elongated nature of the final merged remnant.
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If we define the center-of-mass velocity of the GCs as

( )=
+

V
V Vm m

M
, 7cm

1 1 2 2

where M≡m1+m2, then we can rewrite the total energy as

( ) ( ) ( )= + F + F +R RE MV m m E
1

2
. 8tot cm

2
1 ext 1 2 ext 2 12

Here

( ) ( )m= - E v
G m m

r
r

1

2
912 12

2 1 2

12
12

specifies the binding energy (or relative orbital energy) of the
GC pair, where μ=m1m2/M and ∣ ∣= -V Vv12 1 2 are their
reduced mass and relative speed, respectively. A pair of GCs is
considered to be bound if E12<0.

We emphasize, though, that a bound pair is not guaranteed to
remain bound. In particular, as we show in Appendix A, if the
pair is comprised of hard spheres and the external potential is
time-invariant, then, as it evolves from configuration a at time t
to configuration b at time +t dt, the binding energy changes
according to

( ) ( )D  = E a b . 1012 tide

Heretide is the work done on the GC pair by the external tidal
field, which can be either positive or negative, corresponding to
a loosening or tightening of the binary, respectively.

Equation (10) is basically just an expression for the work-
energy principle. In fact, in our simulations, where each GC is
live and moves in a live external potential determined by the
galaxy and the other GCs, we may replacetide with the total
work, which includes, in addition to tide, the work due to a
variety of additional processes, which we split into three
categories:

1. work done due to mutual gravitational interactions
between the GCs that make up the pair,

2. work done due to gravitational interactions between the
GC pair and individual particles belonging to the
galaxy, and

3. work done due to gravitational interactions between the
GC pair and other GCs.

Here we are interested in mechanisms that can cause an
initially unbound GC pair (E12>0) to become bound
(E12<0). The primary mechanism of category 1 that can do
so is a close, impulsive encounter between two GCs, which
causes a transfer of relative orbital energy to internal energy of
the GCs (Spitzer 1958). If this energy transfer is sufficiently
large, E12 can become negative. In what follows, we refer to
this as “tidal shock capture” (tidal capture for short). In the
literature, tidal shock capture is considered to be the principal
driver of mergers among galaxies (or subhalos) in clusters and
groups of galaxies (e.g., Richstone 1975; White 1978; Roos &
Norman 1979; Mamon 1992; Makino & Hut 1997). However,
there are other effects to be considered as well. For example,
the main mechanism belonging to category 2 that can cause a
pair of GCs to become bound is dynamical friction. Since
different GCs experience different amounts of dynamical
friction, by chance, two GCs can become bound to each other.
In what follows, we refer to this as “dissipative capture.”
Finally, compressive tidal forces acting on a GC pair from one
(or more) of the other eight GCs can also cause it to become

bound (a category 3 mechanism), and this is hereafter referred
to as “three-body capture.” Note that irrespective of how a GC
pair becomes bound, to merge, it must subsequently harden as a
binary (via mutual tides, dynamical friction, compressive tides
from the galaxy, or other GCs) before disruptive tidal forces
from the galaxy or other GCs can rip it apart again.

4.2. Tidal Capture Rate

We now proceed to compute the rate at which a pair of GCs,
modeled as Plummer spheres of identical mass and scale
radius, is expected to undergo tidal shock capture in DF2. This
requires that the two GCs have an encounter, characterized
by impact parameter ∣ ∣= -R Rb 1 2 and encounter velocity

∣ ∣= -V Vv12 1 2 , that results in a loss of orbital energy, ΔE, that
is larger than E12 (initially assumed positive), such that post-
encounter E12<0. As detailed in Appendix B, for a given
impact parameter, this requires an encounter velocity
v12<vcrit(b). The red curve in the left panel of Figure 9 plots
this critical velocity, expressed in units of s̃ º GM rGC h ,
which is proportional to σ3D, as a function of the unitless
impact parameter, ˜ =b b rh. At large impact parameters
( b rh), the critical velocity scales as µ -v bcrit

1 2. At smaller
impact parameters, the detailed density profiles of the GCs
cause the critical velocity to asymptote to a finite value as
b 0 (corresponding to a head-on encounter).
The blue curve in the left panel corresponds to vbound(b),

defined as the encounter velocity at a given impact parameter
for which E12=0. Using the definition of the binary’s binding
energy, it is easy to see that vbound is the root for v12 of

⎜ ⎟⎛
⎝

⎞
⎠˜

( ˜)
˜ ( )

s
=

v r b

b
4 , 1112

2
h

which, for large impact parameters, asymptotes to =v12

˜ ˜s -b2 1 2. The red shaded region indicates the parameter space
of the impact parameter and encounter velocity that results in a
tidal shock capture. The blue shaded region, on the other hand,
represents encounters with v12<vbound(b), which occur
between GC pairs that are already bound. Note that tidal
shock capture basically requires an impact parameter b rh

and a very restricted range of encounter velocities. Hence, we
expect it to be rare.
In order to quantify this better, we define the rate at which a

single GC undergoes tidal shock capture with other GCs as
( )sG = á ñn v vtc tc 12 12 . Here p=n N R3 4 sys

3 is the (approxi-
mate) number density of N GCs distributed within a sphere of
radius Rsys, σtc(v12) is the velocity-dependent cross section for
tidal shock capture, and the angle brackets indicate an
averaging over the encounter velocities, v12. If we define
bmax and bmin as the impact parameters for which v12=vcrit(b)
and v12=vbound(b), respectively, then we have ( )s =vtc 12

[ ( ) ( )]p -b v b vmax
2

12 min
2

12 . We assume that the encounter
velocities follow a Maxwell Boltzmann distribution, such that

⎡
⎣⎢

⎤
⎦⎥( ) ( )

p s s
=

-
f v dv

v v
dv

2
exp

2
, 12

v v
12 12

12
2

3
12
2

2 12

where s s= 2 3v 3D,sys is the dispersion in encounter
velocities. This yields a tidal capture rate, = G Ntc tc,
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given by
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with s̃ºt rcross h , a rough measure of the average crossing
time inside a GC, and
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To apply this to DF2ʼs GC system, where N=10, we use
the masses and scale radii of the GCs listed in Table 1 to obtain
an average GC mass of MGC=7.2×105Me and an average
3D half-mass radius of rh=8.4 pc. This implies that s̃ =
19.2 km s−1, and thus tcross=0.43Myr. For the size of the
entire GC system, we adopt Rsys=Rhalf,GC=2.86 kpc. The
resulting tidal capture rate as a function of σ3D,sys, plotted in
units of s̃, is shown by the solid red curve in the right panel of
Figure 9. For comparison, the dashed red curve indicates the
tidal capture rate obtained if one ignores adiabatic shielding of
the central regions of the GCs (see Appendix B for details).

In order to estimate the actual tidal capture rate in our
simulations, we use all 50 simulations from PaperI, where the
GCs are modeled as hard spheres. For each pair of GCs, in each
simulation, we compute the impact parameter, ∣ ∣= -R Rb 1 2 ,
and encounter velocity, ∣ ∣= -V Vv12 1 2 , during every encoun-
ter, defined as a point in time when the dot product
( ) · ( )- - =R R V V 01 2 1 2 . The tidal capture rate in a particular
simulation is then defined as the total number of encounters for
which b and v12 fall in the red region of the left panel of
Figure 9, divided by the total run time of 10 Gyr. We only find
a single capture in one out of 50 simulations, which implies an
average tidal capture rate of =  - 0.002 0.002 Gyrtc

1,
where the error is determined using the jackknife method.

This is indicated by the black star with error bar in the right
panel of Figure 9, where we have adopted σ3D,sys=12 km s−1

for DF2 (see Figure 1). Note that the average tidal capture rate
inferred from our simulations is in good agreement with the
analytically predicted value.
We emphasize that there are no tidal capture events among

the three simulations with live GCs presented in this paper. In
particular, the one and only merger in these simulations
(between GCs 73 and 77 in run B) results from capture due to
dissipative work done by dynamical friction. That this merger
does not result from a tidal capture is clear from the lower panel
of Figure 7, where the evolution of E12 in run B (live GCs)
starts to deviate from that in run B’ (single-particle GCs) only
after the two GCs have become bound. Therefore, the decrease
in E12 that leads to the capture is identical for the live and
single-particle GCs, and it cannot happen via mutual tides, as
such interactions are irrelevant for single particles.

4.3. Average Merger Rate

In order to estimate the merger rate among DF2ʼs GCs, we go
back to the 50 simulations of Paper I and identify all GC pairs
that undergo a capture and remain bound for a time interval
Δt�tcross,sys, where s= =t R3 0.4 Gyrcross,sys sys 3D,sys is
the average crossing time of the GC system in DF2. We find 23
such pairs but remove seven of them upon “by-eye” inspection.
The removed pairs generally have an increasing trend in E12 for
the greater part of the time interval during which they are bound.
Therefore, disruptive tidal forces from the galaxy, other GCs, or
both are likely to unbind them before they can merge. The
remaining 16 pairs have a decreasing trend in E12 for most of the
post-capture time interval. As these pairs harden over time,
mutual tides (not accounted for in the hard sphere simulations)
can be expected to play an increasingly dominant role,
transferring relative orbital energy to the internal energy of the
GCs, eventually leading to a merger, if the GCs are live.
Therefore, we estimate that if we had run all 50 Paper I

Figure 9. Tidal shock capture. For a pair of GCs modeled as Plummer spheres of identical mass, MGC=7.2×105 Me, and 3D half-mass radius, =r 8.4 pch , the
blue shaded region in the left panel indicates the range of impact parameters, b, and encounter velocities, v12, normalized by rh and s̃ º GM rGC h , respectively, for
which the pair of GCs is bound (i.e., for which E12�0). The red shaded region shows the b−v12 parameter space for which an encounter results in tidal shock capture
(i.e., for which initial E12>0 and ΔE>E12). Here ΔE is the relative orbital energy lost to internal energy during the impulsive encounter and is given by
Equation (B5). The solid red curve in the right panel depicts the tidal capture rate,  tc, in units of Gyr−1 among the GCs in DF2 as a function of σ3D,sys, shown in
units of s̃. The dashed red curve indicates the capture rate obtained if adiabatic shielding of the central regions of the GCs is ignored (see Appendix B for details). The
black star with error bar indicates the average tidal capture rate inferred from the 50 simulations of Paper I, as described in the text.
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simulations with live GCs for 10 Gyr, we would have found a
total of 16 GC–GC mergers corresponding to an average merger
rate of =  - 0.032 0.007 Gyr 1, where the error is deter-
mined using the jackknife method. We emphasize that the one
merger identified in the three live-GC simulations presented here
(see Section 3.4) is correctly identified as a potential merger
using this approach (i.e., it is one of the 16 pairs). In fact, from
the three live-GC simulations, we obtain an average merger rate
of 1/(30×10Gyr)=0.033 Gyr−1, which is in perfect
agreement with the rate inferred from the 50 hard sphere
simulations.

Of the 16 captures that are likely to result in a GC–GC
merger, 11 are between GCs 73 and 77, two between GCs 73
and 92, two between GCs 71 and 73, and one between GCs 73
and 85. These captures can be broadly classified into two
categories: (i) dissipative capture (due to dynamical friction)
and (ii) dissipative + three-body capture (due to both
dynamical friction and compressive tides from one or more
of the other eight GCs). Upon detailed inspection of all 16
cases, we classify four as dissipative (which includes the
capture between GCs 73 and 77 in run B) and 12 as dissipative
+ three-body. Figure 10 shows an example of each from both
categories. The left panels show the binding energy, E12, of the
pair undergoing capture (referred to as GCs 1 and 2). The
middle and right panels show the magnitudes of the
gravitational potential energies of GCs 1 and 2 with respect
to the other nine GCs, respectively.

The capture depicted in the top row is an example of
dissipative capture. It takes place between GCs 73 (GC 1) and
77 (GC 2) in a simulation that is different from run B. In this
case, the magnitude of the gravitational potential energy
between the two GCs (magenta and red curves in the top

middle and right panels, respectively) is always comfortably
larger than that of GCs 1 and 2 with respect to the other eight
GCs. Therefore, the evolution of the two GCs is unaffected by
a third GC, and the decreasing trend in E12 (black curve in the
top left panel) is entirely due to dynamical friction. At around
5 Gyr, this causes E12 to become negative, resulting in a
capture.
The capture depicted in the bottom row is an example of

dissipative + three-body capture. It takes place between GCs
73 (GC 1) and 92 (GC 2). In this case, the motion of the two
GCs is affected by a third GC, namely GC 77. This is evident
from the bottom left panel, which shows a sudden drop in E12

between 4.1 and 4.6 Gyr (indicated by the green vertical band).
During this time interval, the magnitude of the gravitational
potential energy between GCs 73 and 77 (magenta curve in the
bottom middle panel) and that between GCs 92 and 77
(magenta curve in the bottom right panel) is similar to the
magnitude of the gravitational potential energy between the
two GCs (gray and red curves in the bottom middle and right
panels, respectively). Therefore, both dynamical friction and
compressive tides from GC 77 are responsible for capturing
this pair.

5. Summary

Dark matter–deficient, GC-rich galaxies such as DF2 present
a unique environment for GC evolution. Assuming a baryon-
only model for the galaxy, we have studied the evolution of its
GCs by modeling them as live N-body systems. This study is
an improvement over the analysis presented in Paper I, where
the GCs were modeled as hard spheres. It allows us to
investigate the occurrence of GC–GC mergers and the impact

Figure 10. Examples of dissipative (top row) and dissipative + three-body (bottom row) capture. The left panels indicate the binding energy, E12, of the pair
undergoing capture, while the middle and right panels show the magnitudes of the gravitational potential energies of each of these GCs with respect to the other
nine GCs. The capture depicted in the top row results from a steady loss of E12 due to dynamical friction, without any significant interactions with other GCs. This is
evident from the slow decline of E12 and the fact that the magnitude of the gravitational potential energy between the two GCs in question (magenta and red curves in
the top middle and right panels, respectively) is always comfortably larger than that of the two GCs with respect to the other eight GCs. In the capture depicted in the
bottom row, however, there is a sudden drop in E12 from 4.1 to 4.6 Gyr (indicated by the green vertical band), which coincides with the epoch during which the pair
(gray and red curves in bottom middle and right panels, respectively) undergoes strong gravitational interactions with a third GC (magenta curves).
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of the tidal fields of DF2 and the other GCs on the mass and
structural evolution of a GC.

Each GC is initially set up as a spherically symmetric,
isotropic Plummer sphere in equilibrium, matching the
observational constraints on its mass and projected half-light
radius. The projected galactocentric positions and LOS
velocities of the GCs are also set in accordance with
observations. Their galactocentric positions along the LOS
and velocities perpendicular to the LOS are sampled from a DF
obtained by assuming the GC system to be in equilibrium with
the galaxy. Out of 50 such realizations, the same as the ones
simulated in Paper I, those corresponding to the 16th, 50th, and
84th percentiles of the probability distribution for the 3D
velocity dispersion of the GC system are resimulated here with
live GCs. In order to compare the orbital evolution of the live
GCs with that of the corresponding hard spheres, the same
three realizations are also resimulated with single-particle GCs.
In each of these simulations, the galaxy is set up as a live,
spherically symmetric, isotropic system in equilibrium, match-
ing the observational constraints on its surface brightness
profile.

Our findings from these simulations and the accompanying
analytical modeling can be summarized as follows.

1. The GC orbits decay over time due to dynamical friction.
However, the amount of orbital decay varies from GC to
GC and from realization to realization. Furthermore, even
those GCs that experience maximum orbital decay never
sink to the galactic center, as reduced dynamical friction
in the galactic core (core stalling) and GC–GC interac-
tions keep them afloat. Thus, the results obtained in
Paper I with single-particle GCs are confirmed here.

2. In the case of live GCs, in addition to providing
buoyancy, GC–GC interactions transfer the relative
orbital energy of a GC pair to the internal energy of the
GCs, causing their orbits to deviate from that in the
corresponding simulations with single-particle GCs. This
becomes more important in the later stages of the
evolution (t5 Gyr), after initial orbital decay brings
the GCs closer together. During the early stages
(t5 Gyr), when they are still far apart, the orbital
evolution of live and single-particle GCs is in very good
agreement.

3. Mass loss and structural changes induced by galactic
tides are insignificant. The tidal field of one GC on
another is also not strong enough to cause significant
mass and structural evolution, except when a pair of GCs
is about to undergo a merger.

4. Even though the internal velocity dispersion of the GCs is
similar to the velocity dispersion of the GC system, GC–
GC mergers are rare. In only one of the three live-GC
simulations, a single, complete merger occurs within
10 Gyr. The merger takes place near the galactic core,
where the two GCs congregate after having experienced
orbital decay. The merged remnant has a strongly
elongated structure and continues to orbit near the core
radius of the galaxy.

Before two GCs can merge, they must first become bound to
one another and subsequently harden as a binary. In DF2, two
GCs can become bound via one or more of the following
mechanisms: mutual tides (tidal shock capture), dynamical
friction (dissipative capture), and compressive tides from one

(or more) of the other eight GCs (three-body capture). Using
our simulations and analytic modeling, we have shown that
tidal shock capture in DF2 is extremely rare (at least within
10 Gyr), with an expected rate of 0.002±0.002 Gyr−1. This is
because, given their number density, the GCs are too dense for
tidal shock capture to operate efficiently. The tidal capture rate
is an order of magnitude lower than the inferred merger rate
of 0.032±0.007 Gyr−1, which is, therefore, dominated by
dissipative and three-body capture. Using the 50 single-particle
GC simulations of Paper I, we estimate that about one-quarter
of the expected mergers are driven purely by dissipative
capture, with the remaining 75% involving both dynamical
friction and three-body capture. It is also worth emphasizing
that we expect virtually zero mergers during the first 5 Gyr of
evolution; most mergers occur at later times, once several GCs
have congregated close to the core radius of DF2. Note that in
the absence of core stalling (i.e., if DF2 were to have a cuspy
dark matter halo), all of these GCs would likely end up
merging at the center of the galaxy, thus forming a nuclear star
cluster.
During a merger, mutual gravitational interactions may result

in observable tidal features around one or both of the involved
GCs, although such features are not seen for the one merger
that occurs in our live-GC simulations. As we have established
that mergers can only take place in the later stages of the
evolution, and since mass loss due to galactic tides is negligible
for the baryon-only mass model that we have assumed for DF2,
it is unlikely for the GCs to have tidal features (such as
extended tidal tails) in their currently observed state. However,
if DF2 were to have a sufficiently dense dark matter halo,
depending on their orbit, the GCs may experience significant
tidal mass loss. Hence, the presence or absence of tidal features
around DF2ʼs GCs can constrain possible mass models.
As to the origin of the unusually high GC masses, we

conclude that it is most likely not an outcome of past GC–GC
mergers. If anything, as GC orbits decay over time, the GC
system is expected to have been more extended in the past,
resulting in an even lower merger rate than inferred here, unless
the total number of initial GCs was much higher than that at
present. For instance, if DF2 initially had ∼100 GCs, roughly
distributed within the same volume as the current population,
its past tidal capture rate would have been higher by a factor of
100 (see Equation (13)). As discussed in Leigh & Fragione
(2020), this could have resulted in significant evolution of the
initial GC luminosity function. However, given that the total
number of GCs in DF2 at present is already anomalously high
for its stellar mass, postulating an even larger number of GCs in
the past seems a bit far-fetched. Hence, the abundance and
luminosity function of the GCs in DF2 continues to be an
enigma for our current understanding of galaxy formation.
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Appendix A
Tidal Evolution of the Binding Energy of a Pair of GCs

In Section 4, we defined the binding energy of a pair of GCs
as

( ) ( )m= - E v
G m m

r
r

1

2
, A112 12

2 1 2

12
12

where μ=(m1m2)/M is the reduced mass, = -v V V12 1 2 is
their relative velocity, = -r R R12 1 2 is their relative separation,
and ( ) x is a function that depends on the density profiles of
the two GCs. Also, Ri and Vi are the position and velocity
vectors of GC i with respect to the center of the external
potential. Under the assumption that the GCs are hard spheres
and the external potential is time-invariant, we now derive an
expression for how E12 evolves as the GCs orbit in this
potential.

Let ¢r1 and ¢r2 be the position vectors of GCs 1 and 2 from
their common center of mass, whose position vector with
respect to the center of the external potential is Rcm. Then,

( )¢ = - ¢ = -r R R r R R, . A21 1 cm 2 2 cm

Applying Newton’s second law of motion in the center-of-mass
frame of the two GCs, we have

̈ ( )
̈ ( ) ( )
¢ = + -
¢ = + -

r F F R A

r F F R A

m m

m m

,

, A3
1 1 12 ext 1 1 cm

2 2 21 ext 2 2 cm

where Fij is the gravitational force due to GC j on GC i, ( )F Rext

is the force at R due to the external potential, and
=A Rd dtcm

2
cm

2 is the acceleration of the center of mass.
The force, - Ami cm, acting on GC i is a pseudoforce, which
comes into play because the center-of-mass frame of the two
GCs is noninternal.

Let ¢rd i correspond to the displacement vector of GC i in time
interval dt in this frame. Since = -F F12 21, we have

̈ · ̈ · ·
( ) · ( ) · ( )

¢ ¢ + ¢ ¢ =

+ ¢ + ¢
r r r r F r

F R r F R r

m d m d d

d d , A4
1 1 1 2 2 2 12 12

ext 1 1 ext 2 2

where º ¢ - ¢r r rd d d12 1 2 is the relative displacement vector of
the two GCs, and we have used the fact that

· ( ) ( )¢ + ¢ =A r rm d m d 0, A5cm 1 1 2 2

which follows from the definition of the center-of-mass
velocity of the two GCs.

Defining ¢̈ = ¢r vd dti i and ¢ = ¢r vd dti i and integrating
Equation (A4) from configuration a at time t to configuration
b at time +t dt, one easily obtains

·
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Finally, since gravity is a conservative force, ·ò- F rd
a

b
12 12 is

simply the difference in mutual gravitational potential energy
between configurations a and b, such that Equation (A6)

reduces to

( ) ( )

· ( ) · ( )

ò

ò
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¢ + ¢

 F R

r F R r

E a b
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a
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1 ext 2 2

where tide is the work done by the external potential on the
GC pair.

Appendix B
Tidal Shock Capture

Consider an impulsive encounter between two GCs with
impact parameter b and encounter velocity v12. In what follows,
for simplicity, we assume that all GCs are Plummer spheres
with identical mass m and half-mass radius rh. In the distant
tide approximation ( b rh), following Spitzer (1958) and
Gnedin et al. (1999), the loss in relative orbital energy as a
result of the encounter is given by

( )

( ) ( ) ( )a c

D = D + D

=

E b v E E

G m

v

r

b
b v b

,

8

3
, . B1

12 1 2

2 3

12
2

h
2

4
2

12

Here α is a structural parameter given by

( ) ( ) ( )òa
p

rº
á ñ

=
r

r mr
r f r r dr

4
, B2

r
2

2
AC

h
2

h
2 0

AC
4

v

with ρ(r) the density profile of the GCs and fAC(r) a function,
detailed below, that accounts for the fact that the central regions
of the GCs may be adiabatically shielded (e.g., Weinberg 1994;
Gnedin & Ostriker 1999). Note that the integral is truncated at
the virial radius, rv,

4 defined such that the self-gravitational
potential energy of a GC is given by = -W Gm r22

v (see, e.g.,
Makino & Hut 1997). For the Plummer spheres considered
here, =r r1.3v h. Finally, the function χ(b) accounts for the
fact that GCs are not point masses and is given by

( ) [( ) (

) ] ( )

c = - - +

- - + +

b J J I I

I J J I
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2
3 2
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2
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-
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I b
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J b
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d
1

,

1
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0
1 2 2 1 2

0
1 4 2 1 2

where m(r) is the GC mass enclosed within a clustercentric
radius r, and ( ) =I b b dI db1 0 and ( ) =J b b dJ db1 0 (Gnedin
et al. 1999).
Equation (B1) is only valid for relatively distant encounters

with b rh. In order to obtain an expression for ΔE(b, v12)
that is valid for all b, we follow van den Bosch et al. (2018) and

4 This truncation is required, since the integral on the right-hand side of
Equation (B2) diverges otherwise.
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Here b0 is defined as the impact parameter for which ΔE
obtained using Equation (B1) is equal to that of a head-on
(b=0) collision, which is given by

( ) ( ) ( )òpD = SE
G m

v
I r r

dr

r

8
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r

0

2 2

12
2 0

0
2

s
v

with ( )S rs the projected surface density profile of the GCs.
Hence, at small b, we assume that ΔE(b, v12) is equal to that of
a head-on encounter. As shown in Banik & van den Bosch
(2020), this accurately captures the dependence of ΔE over the
full range of impact parameters.

Since the encounter velocities among the GCs are compar-
able to the internal velocities of the GCs, the encounters are
only marginally impulsive. Hence, it is important to correct for
adiabatic shielding. We follow Gnedin et al. (1999) and adopt5

( ) [ ( ) ] ( )w t= + g-f r r1 . B7AC
2 2

Here τ=b/v12 is the duration of the impulsive shock, and
( ) ( )w =r v r rc is the angular velocity for a circular orbit at

radius r, with ( ) ( )=v r Gm r rc the circular speed. The value
of γ increases from 1.5 for relatively slow encounters with
τ>4tdyn to 2.5 for fast encounters with τ<tdyn. Here tdyn is
the half-mass dynamical time of the GC.

Tidal shock capture occurs if, prior to the encounter,
E12>0, and the encounter results in ΔE>E12. For a given
impact parameter, b, this requires an encounter speed
v12<vcrit(b), which is given by the root for v12 of ΔE(b,
v12)=E12. We use a simple root finder to numerically
compute vcrit(b). The result for encounters among two identical
Plummer spheres is shown as the red solid line in the left panel
of Figure 9. Note that this critical encounter velocity is
expressed in units of s̃ º Gm rh , which is proportional to
the internal velocity dispersion of the GCs, while the impact
parameter, b, is expressed in units of the GC’s half-mass
radius, rh.
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