High-level Ab Initio Studies of the Spectroscopic Properties of Triatomic [Al, S, O] $]^{x}$ $(\boldsymbol{x}=\mathbf{0},+1)$ and Its Potential for Detection in Space

Vincent J. Esposito ${ }^{1}$ © ${ }^{(}$, Tarek Trabelsi ${ }^{2}$ © , and Joseph S. Francisco ${ }^{1,2}$ ©
${ }^{1}$ Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6243 USA; frjoseph @ sas.upenn.edu
${ }^{2}$ Department of Earth and Environment Science, University of Pennsylvania, Philadelphia, PA 19104-6243, USA
Received 2020 April 22; revised 2020 September 8; accepted 2020 September 14; published 2020 November 3

Abstract

Highly reliable molecular properties have been computed for the $[\mathrm{Al}, \mathrm{S}, \mathrm{O}]^{x}(x=0,+1)$ molecular system. Spectroscopic parameters are predicted from analysis of each isomer's 3D potential energy surface calculated using the explicitly correlated multireference configuration interaction method, including the Davidson correction (MRCI-F12+Q). These parameters provide an accurate prediction of spectroscopic data that can be used in laboratory and observational studies of these molecules. Linear-SAlO is expected to have a large permanent dipole moment suitable for detection in the circumstellar envelopes of large, evolved, oxygen-rich stars such as VY Canis Majoris, IK Tauri, and R Doradus. Frequencies are provided for rotational transitions originating from the most highly populated rotational state based on a Boltzmann distribution. Additionally, both linear isomers exhibit a flat potential along the bending angle and are predicted to have very low bending mode frequencies $\left(<200 \mathrm{~cm}^{-1}\right)$, complicating the spectra of these molecules.

Unified Astronomy Thesaurus concepts: Astrochemistry (75); Molecular spectroscopy (2095); Red supergiant stars (1375); Radio spectroscopy (1359); Line positions (2085)

1. Introduction

Large, evolved stars, such as those classified as asymptotic giant branch (AGB) stars and red supergiants (RSGs), continuously eject mass into the region around them, creating chemically complex circumstellar envelopes (CSEs). Stars with the AGB designation are cool, evolved, luminous stars with a progenitor mass of less than $10 M_{\odot}$, while the RSG designation is populated with luminous stars having the largest volume and initial main-sequence masses between 10 and $40 M_{\odot}$. As age increases, stellar mass loss increases drastically (Willson 2000). Different temperature and pressure regions exist within these CSEs corresponding to different distances from the stellar photosphere. These differing environments allow for various forms of chemistry to take place. Additionally, photochemical processes are initiated as species are bombarded with incoming ultraviolet (UV) light that enters from outside of the CSEs (Ziurys 2006). Depending on the age and characteristics of the central star, these envelopes can contain very different chemical compositions. For example, IRC +10216 , an AGB carbon-rich star, has been relatively well explored and shows great chemical complexity with the detection of metal-containing molecules and carbon-chain radicals (Winnewisser \& Walmsley 1978; Cernicharo \& Guelin 1987; Turner et al. 1994; Ziurys et al. 1994, 2002; Cernicharo et al. 2000; Ziurys 2006; Pulliam et al. 2010). The chemistry around carbon-rich AGB stars is dominated by these long carbon chains, with contributions from silicon and metals such as magnesium and sodium (Ziurys 2006). Conversely, oxygen-rich stars like the RSG star VY Canis Majoris (VY CMa) and AGB stars IK Tauri (IK Tau) and R Doradus (R Dor) exhibit less chemical diversity, with only recent identification of new molecules such as SO_{2} (Omont et al. 1993; Adande et al. 2013), NaCl (Ziurys et al. 2007), AlO (De Beck et al. 2017) and AlOH (Tenenbaum \& Ziurys 2010). However, it is theorized that oxygen-rich CSEs contain as much chemical diversity as carbon-rich CSEs, but many molecules have simply not been identified yet (Ziurys et al. 2007).

Many aluminum-containing species have been observed in the CSEs of VY CMa, IK Tau, and R Dor, including molecules such as $\mathrm{AlO}\left(10^{-8}\right.$ abundance compared to H_{2}; Tenenbaum \& Ziurys 2009; Decin et al. 2017), AlOH (Tenenbaum \& Ziurys 2010; Decin et al. 2017), and AlCl (Kaminski et al. 2013b; Decin et al. 2017); all well studied in all three stars. Formation of these molecules in VY CMa is theorized to happen via photospheric shocks and photochemistry, with shocks playing a more prominent role because of the greater macroturbulent velocities (Ziurys et al. 2009). Aluminum is classified as a refractory element, as it has a relatively high equilibrium condensation temperature, at which it will be found 50% of the time in the form of a solid compound under a pressure of 10^{-4} bar. It is theorized that AlO is an important progenitor of dust particles (Kaminski et al. 2013a), potentially forming large molecular clusters such as $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)_{x}$, which act as a dust nucleation site. $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)_{x}$ can also condense onto the surface of other dust or ice grains (Lodders 2003). The abundance of $\mathrm{AlO}, \mathrm{AlOH}$, and AlCl in the CSEs of both IK Tau and R Dor, derived from a non-LTE radiative transfer model, is approximately 1×10^{-7} relative to H_{2} (Decin et al. 2017), meaning only 2% of the total available aluminum $\left[(\mathrm{Al} / \mathrm{H}]=3 \times 10^{-6}\right.$; Savage \& Sembach 1996; Lodders 2003) is found in these three molecules. This leaves the possibility that some Al may be found in [$\mathrm{Al}, \mathrm{S}, \mathrm{O}$] triatomic molecules.

Sulfur can be found in high abundance in high-energy regions and near large, evolved stars (Danilovich et al. 2017, 2018). Specifically, SO_{2} chemistry is prominent in many astronomical features, such as hot cores (Schilke et al. 2001), CSEs of old stars such as IK Tau, R Dor, and VY CMa (Tenenbaum et al. 2010; Kaminski et al. 2013b; Danilovich et al. 2016, 2020), and cold, dense molecular clouds (Turner 1994). In the envelope of VY CMa, SO_{2} is found to be the sulfur "parent" molecule, originating in the stellar photosphere before flowing out and participating in chemical and photochemical reactions farther from the surface, where the abundance is observed to drop drastically (Adande et al. 2013). At distances of up to $30 R_{*}$,
where chemical reactions are known to take place and photochemical activity is high, S, O, and Al will all be available for reaction in the form of molecules such as $\mathrm{SO}, \mathrm{SO}_{2}, \mathrm{AlO}$, AlOH , and other aluminum-containing molecules (Ziurys et al. 2007; Kaminski et al. 2013b; Decin et al. 2017; Danilovich et al. 2020). Additionally, observation of the molecules AlO and AlOH past the dust condensation region of IK Tau and R Dor indicates that the aluminum oxide condensation cycle is not efficient (Decin et al. 2017), and the relevant molecules required for formation of triatomic [Al, S, O] may be present throughout the CSEs.

The neutral species may be formed mainly via three mechanisms: (i) the gas-phase chemical reactions $\mathrm{AlS}+\mathrm{O}_{2}$, $\mathrm{AlO}+\mathrm{SO}$, and $\mathrm{Al}+\mathrm{SO}_{2}$, (ii) the radiative association between atom + diatom whether $\mathrm{Al}+\mathrm{SO}$ or $\mathrm{AlO}+\mathrm{S}$, and (iii) the reaction of sulfur-bearing species, such as SO or SO_{2}, at the dust surface of $\mathrm{Al}_{2} \mathrm{O}_{3}$. In fact, the presence of $\mathrm{Al}_{2} \mathrm{O}_{3}$ clusters in the oxygen-rich regions of AGB stars (Decin et al. 2017) increases the likelihood of aluminum-bearing molecules forming on the surface of said clusters. Kim et al. (2007) demonstrated a similar mechanism for the formation of AlCN and AlNCO on the surface of $\mathrm{Al}_{2} \mathrm{O}_{3}$. The cation may form through the photoionization of the neutral species or via collision.

Previously, a few computational studies have been performed on the [Al, S, O] group of isomers. Using various density functional theory (DFT) methods, Bu found five different isomeric forms for the [$\mathrm{Al}, \mathrm{S}, \mathrm{O}$] triatomic molecular group with linear-SA1O as the ground state minimum (Bu 2000, 2001). Isomerization pathways were found that connect the two linear isomers by two transition state structures and an intermediate (Bu 2001). A follow-up study by Bu looked at the bonding character of the [Al, S, O] quartet excited states using coupled-cluster ($\mathrm{CCSD}(\mathrm{T})$) and DFT methods (Bu 2002). As will be explained in this paper, coupled-cluster methods are not suitable for accurate characterization of the [Al, S, O] group of molecules because of their radical character, which causes a large T1 diagnostic value. Nonetheless, Bu found four minimum structures with the lowest energy state being cyc-AlSO $\left({ }^{4} A^{\prime \prime}\right)$.

Many high-level theoretical studies have been performed on aluminum-bearing molecules (Ma et al. 1995; Alikhani 2003; Trabelsi \& Francisco 2018; Yousefi \& Bernath 2018; Yurchenko et al. 2018; Trabelsi et al. 2019a, 2019b, 2019c; Xu et al. 2020). These publications have set a benchmark for the computational study of aluminum-bearing species, and many of the methods are adapted for the current work.

In this paper, accurate high-level calculations of the electronic structure and spectroscopic parameters of the [Al , $\mathrm{S}, \mathrm{O}]$ triatomic isomers are presented for the first time. The electronic structure calculations were performed using explicitly correlated multireference configuration interaction methods with large basis sets. Following identification of the stable isomers, a 3D potential energy surface (3D-PES) is generated around the equilibrium geometry of each isomer, and a set of spectroscopic constants were produced. From these constants, rotational transition frequencies were derived. These predictions will help drive detection and identification of the [Al, S, O] triatomic isomers in laboratory experiments and observational studies of oxygen-rich CSEs surrounding large, cool stars.

2. Computational Methods

First, calculations were performed with the complete active space self-consistent field (CASSCF) method (Knowles \& Werner 1985; Werner \& Knowles 1985) to investigate the electronic wave functions of each of the [Al, S, O] isomers. Then geometries were optimized using the standard coupledcluster theory with single and double excitations, including a perturbative treatment of triples ($\operatorname{CCSD}(\mathrm{T})$; Knowles et al. 1993, 2000), and the aug-cc-pV(X+d)Z basis sets of increasing size ($\mathrm{X}=\mathrm{D}, \mathrm{T}, \mathrm{Q}, 5$) (Dunning 1989; Dunning et al. 2001). Additionally, the explicitly correlated (CCSD(T)-F12) method (Adler et al. 2007; Knizia et al. 2009) is also used with the aug-cc-pVQZ and explicitly correlated cc-pVXZ-F12 ($\mathrm{X}=\mathrm{D}, \mathrm{T}$, Q) basis sets (Peterson et al. 2008) for comparison. An accurate description of the electronic structure and spectroscopic parameters of these species is achieved using CASSCF followed by the internally-contracted multireference configuration interaction (MRCI) method (Knowles \& Werner 1988; Werner \& Knowles 1988; Shamasundar et al. 2011) in conjunction with the aug-cc-pV(X+d)Z basis sets $(\mathrm{X}=\mathrm{T}$, Q), which add tight d functions to the aluminum and sulfur atoms. This is an addition that is important for proper characterization of sulfur-bearing molecules (Dunning et al. 2001). Additionally, calculations were performed with the contracted relativistic Douglas-Kroll aug-cc-pwCVTZ-DK basis set to correct for scalar relativistic and core-correlation effects (Jorge et al. 2009). Geometry optimizations were also performed with the MRCI+Q method, including Davidson corrections to further account for electron correlation to the energy (Szalay \& Bartlett 1993) and the explicitly correlated MRCI-F12 method (Shiozaki et al. 2011).

In this study, optimized geometries, harmonic frequencies, and rotational constants were calculated using $\operatorname{CCSD}(\mathrm{T})$ as well as the CASSCF and MRCI methods. The permanent dipole moments at equilibrium geometry $\left(\mu_{\mathrm{e}}\right)$ are calculated in the center of mass of the molecule using the finite field procedure as implemented in MOLPRO. All electronic structure calculations were performed using the MOLPRO2019 software (Werner et al. 2019).

The 3D-PESs of the ground electronic state for the linear isomer were calculated at the MRCI-F12+Q/aug-cc-pVQZ level of theory. The resulting 3D-PESs were used to compute a set of spectroscopic constants using the derivatives of the potentials at equilibrium and perturbation theory (Mills 1972) as implemented in the SURFIT (Senekowitsch 1988) program. Vibrationally corrected rotational constants (Kroto 1975) were then calculated using the following formula:

$$
\begin{equation*}
X_{o}=X_{\mathrm{e}}+\Delta X_{o} \tag{1}
\end{equation*}
$$

where X_{e} is the equilibrium rotational constants corresponding to the molecular geometry at the minimum of the BornOppenheimer PES. ΔX_{o} is the vibrational correction obtained from the following formula:

$$
\begin{equation*}
\Delta X_{o}=-\sum_{r}-\alpha_{r}^{i}\left(\nu_{r}+\frac{1}{2}\right) \tag{2}
\end{equation*}
$$

where the sum is over all normal coordinates, r, and α_{r} is the vibration-rotation interaction constant. ν_{r} is the vibrational quantum number of the normal mode. Including the vibrational correction to the equilibrium rotational constants accounts for

Figure 1. MRCI-F12+Q/aug-cc-pVQZ 1-D PES of the electronic ground state of (a) AlOS and (b) SAlO along the bending angle. Molecular structures are included for visualization of the different bending angles along the lowest energy potential energy surface with $A^{\prime \prime}$ being the ground state in both cases.
the presence of zero-point vibrational motion in the ground vibrational state of the molecule.

3. Results and Discussion

3.1. Equilibrium Geometries
 3.1.1. Neutral-[Al, S, O]

All possible triatomic isomers that may be formed with the three atoms Al, S, and O are explored. Structural and bonding analysis is performed to deduce which isomers may be expected to occur in the CSEs of evolved, oxygen-rich stars. At first glance, the existence of three isomers is expected: AlSO, AlOS, and SAlO that may be formed through $\mathrm{Al}+\mathrm{SO}$, $\mathrm{AlO}+\mathrm{S}$, or AlS +O entrance channels. All levels of theory show that only AlOS and SAlO form a true minimum in their PES. When the sulfur atom is in the middle (e.g., AlSO), no stability is found, and the potential is characterized by an imaginary frequency. Both AlOS and SAlO are linear with an $\mathrm{X}^{2} \Pi$ electronic ground state and form a Renner-Teller pair when the bending angle $(\theta)=180^{\circ}$. When θ varies from 0° to 180°, a splitting of the Π state into A^{\prime} and $A^{\prime \prime}$ states occurs, and the third isomer, cyc-AlOS, appears with an $X^{2} A^{\prime \prime}$ ground state. The evolution of the ground state along the bending angle for AlOS and SAlO is depicted in Figure 1. Extensive calculations at various levels of theory were done on each isomer, and total energies, relative energies, and optimized equilibrium geometries are listed in Table 1 for the three neutral isomers in their ground electronic state.

Close inspection of Table 1 shows that at the MRCI/aug-cc$\mathrm{pV}(\mathrm{Q}+\mathrm{d}) \mathrm{Z}$ level of theory, linear-AlOS $\left(X^{2} \Pi\right)$ is the most stable isomer and is located only 0.06 eV and 0.95 eV below cyc-AlOS ($\left.A^{2} A^{\prime \prime}\right)$ and linear-SAlO $\left(X^{2} \Pi\right)$, respectively. Increasing basis set size and including various corrections consistently shortens both AlO and SO bond lengths and elongates the AlS bond length, along with changing the order of stability. When including the Davidson correction (MRCI+Q), the cyclic isomer is more stable and located 0.20 eV below linear-AlOS. The scalar relativistic and core-correlation correction at the MRCI/aug-cc-pwCVTZ-DK level shows that linear-AlOS is more stable by 0.54 eV compared to linear- SAlO , with the
cyclic isomer being the least stable at this level of theory. An explicit treatment of the electron correlation at the MRCI-F12/ aug-cc-pVQZ level shows that linear-AlOS is more stable and located 0.47 eV below the cyc-AlOS isomer. Convergence is not reached for the MRCI-F12 level of theory for linear-SAIO. As one can see, multireference treatment of this system shows some disagreement regarding the stability of the isomers and the SO equilibrium distance. In fact, throughout the multireference methods, the AlO equilibrium distance stays relatively consistent, even with the Davidson correction and inclusion of the electron correlation. Alternatively, the SO equilibrium distance does show some fluctuation for linearAlOS, where the smallest value calculated at MRCI-F12/aug-cc-pVQZ is predicted to be $1.5758 \AA$, approximately $0.015 \AA$ less than at the MRCI/aug-cc-pV(Q+d)Z level. Given the strong scatter of results among the multireference levels of theory, it would be interesting to know how single reference treatment using coupled-cluster theory would compare. For linear-AlOS and the cyclic isomer, the diagnostic T 1 is calculated to be 0.022 and 0.024 , respectively, while that for linear-SAlO is greater than 0.03 at the $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pV(5 $+\mathrm{d}) \mathrm{Z}$ level of theory. This indicates the multireference character of the neutral ground state. All $\operatorname{CCSD}(\mathrm{T})$ levels predict linear-SAlO as the more stable isomer, displaying the problems that occur when the multireference character of these molecules is ignored.

The AlO bond is present in all three isomers, and the length is predicted to be the shortest in linear-SAlO, with a value of $1.6055 \AA$ at the MRCI/aug-cc-pV(Q+d)Z level of theory, compared to $1.7228 \AA$ and $1.7190 \AA$ for linear-AIOS and cycAlOS, respectively. Inclusion of scalar relativistic effects does not change the AlO bond length in linear- or cyc-AlOS, but elongates it in linear-SA1O to a value of $1.6128 \AA$. There is a similar pattern with inclusion of the Davidson correction. The AlO bond length in the free diatomic molecule $\mathrm{AlO}\left(X^{2} \Sigma^{+}\right)$has been experimentally determined to be $1.6179 \AA$ (Huber \& Herzberg 1979), similar to linear-SAIO, but much shorter than in linear- and cyc-AlOS by over $1 \AA$. $\operatorname{CCSD}(\mathrm{T})$ methods consistently predict a shorter AlO bond length in linear-AlOS than MRCI methods. In cyc-AlOS and linear-SAlO, CCSD(T) predicts a similar AlO bond length to MRCI using all basis sets.

Table 1
Equilibrium Geometry, Rotational Constants, Total Energy $\left(E_{\mathrm{T}}\right)$, and Relative Energy $\left(E_{\mathrm{r}}\right)$ for linear-AlOS, cyc-AlOS and linear-SAlO Neutral Doublet Isomers

linear-AlOS ($\left.X^{2} \Pi\right)$									
Method	Basis	$R_{\text {AlO }}$ (A)	$\begin{gathered} R_{\mathrm{OS}} \\ (\mathrm{~A}) \end{gathered}$	$\begin{gathered} \theta \\ (\operatorname{deg}) \end{gathered}$	$\begin{gathered} A \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} B \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} C \\ (\mathrm{MHz}) \end{gathered}$	E_{T} (Hartree)	$\begin{gathered} E_{\mathrm{r}} \\ (\mathrm{eV}) \end{gathered}$
MRCI	aug-cc-pV(Q+d)Z	1.7228	1.5883	180.0	3144	3144	0	-714.84257247	0.00
	aug-cc-pwCVTZ-DK	1.7259	1.5793	180.0	3156	3156	0	-716.40154967	0.00
MRCI+Q	aug-cc-pV(Q+d)Z	1.7251	1.5888	180.0	3139	3139	0	-714.87034821	0.00
MRCI-F12	aug-cc-pVQZ	1.7276	1.5758	180.0	3159	3159	0	-714.87222151	0.00
$\operatorname{CCSD}(\mathrm{T})$	CBS	1.7183	1.6024	180.0	3126	3126	0	-714.91760205	0.00
	aug-cc-pwCVTZ-DK	1.7210	1.6118	180.0	3103	3103	0	-716.44057155	0.00
$\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12$	aug-cc-pVQZ	1.7182	1.6030	180.0	3125	3125	0	-714.91107657	0.00
	CBS	1.7155	1.6021	180.0	3132	3132	0	-714.92218701	0.00
$\operatorname{CCSD}(\mathrm{T})$ - AE	aug-cc-pwCVTZ-DK	1.7143	1.6086	180.0	3121	3121	0	-717.07245656	0.00
cyc-AlOS ($A^{2} A^{\prime \prime}$)									
Method	Basis	$R_{\text {AlO }}$	$R_{\text {OS }}$	θ	A	B	C	$E_{\text {T }}$	E_{r}
MRCI	aug-cc-pV(Q+d)Z	1.7190	1.8375	73.2	20006	7569	5491	-714.84051360	0.06
	aug-cc-pwCVTZ-DK	1.7190	1.8487	73.2	19915	7512	5455	-716.38009879	0.58
MRCI+Q	aug-cc-pV(Q+d)Z	1.7223	1.8451	73.3	19913	7507	5452	-714.87772776	-0.20
MRCI-F12	aug-cc-pVQZ	1.7215	1.8381	73.2	19956	7564	5485	-714.85232974	0.47
$\operatorname{CCSD}(\mathrm{T})$	CBS	1.7213	1.8279	73.9	20225	7492	5467	-714.90485106	0.34
	aug-cc-pwCVTZ-DK	1.7242	1.8425	74.0	20098	7385	5400	-716.42364886	0.46
$\operatorname{CCSD}(\mathrm{T})-\mathrm{F} 12$	aug-cc-pVQZ	1.7217	1.8275	73.9	20229	7488	5465	-714.89824158	0.35
	CBS	1.7204	1.8264	73.9	20251	7503	5474	-714.90979034	0.33
$\operatorname{CCSD}(\mathrm{T})-\mathrm{AE}$	aug-cc-pwCVTZ-DK	1.7171	1.8385	74.0	20220	7438	5437	-717.05422865	0.50
linear-SA1O ($\left.X^{2} \Pi\right)$									
Method	Basis	$R_{\text {AlO }}$	$R_{\text {AlS }}$	θ	A	B	C	$E_{\text {T }}$	E_{r}
MRCI	aug-cc-pV(Q+d)Z	1.6055	2.1667	180.0	3040	3040	0	-714.80771532	0.95
	aug-cc-pwCVTZ-DK	1.6128	2.1505	180.0	3061	3061	0	-716.38171921	0.54
MRCI+Q	aug-cc-pV(Q+d)Z	1.6095	2.1714	180.0	3026	3026	0	-714.82934517	1.12
$\operatorname{CCSD}(\mathrm{T})$	CBS	1.6062	2.1661	180.0	3040	3040	0	-714.92354060	-0.16
	aug-cc-pwCVTZ-DK	1.6115	2.1703	180.0	3021	3021	0	-716.44477056	-0.11
$\operatorname{CCSD}(\mathrm{T})$-F12	aug-cc-pVQZ	1.6090	2.1600	180.0	3048	3048	0	-714.91752473	-0.18
	CBS	1.6078	2.1597	180.0	3050	3050	0	-714.92914930	-0.18
CCSD(T)-AE	aug-cc-pwCVTZ-DK	1.6036	2.1658	180.0	3044	3044	0	-717.07455236	-0.06

There is an SO bond present in linear- and cyc-AlOS. Across all levels of theory, the SO bond is predicted to be shorter in linear-AIOS by over $0.2 \AA$. At the MRCI/aug-cc-pV(Q+d)Z level of theory, the SO bond is predicted to be $1.5883 \AA$ in linear-AIOS and $1.8375 \AA$ in cyc-AIOS. Inclusion of scalar relativistic effects proves to shorten this bond in the linear isomer while elongating it in the cyclic isomer. Inclusion of the Davidson correction does not change the SO bond in linearAlOS, while it elongates the same bond in cyc-AlOS. All $\operatorname{CCSD}(\mathrm{T})$ methods predict a longer SO bond in linear-AIOS than MRCI methods. $\operatorname{At~} \operatorname{CCSD}(\mathrm{T}) / \mathrm{CBS}$, this value is predicted to be $1.6024 \AA$. Both isomers are predicted to have a longer SO bond length than the free diatomic SO $\left(X^{3} \Sigma^{-}\right)$, which was experimentally determined to be $1.481 \AA$ (Huber \& Herzberg 1979). Comparing the equilibrium bond lengths in the triatomic molecules to those in the free diatomics, the formation of linear-AIOS may occur through the reaction $\mathrm{Al}+\mathrm{OS}$ due to the much larger AlO bond length in linear-AlOS. Upon AlO bond formation, the SO bond elongates slightly while the aluminum atom finds a potential minimum far away from the diatomic AlO bond length.
Linear-SAIO includes an AlS bond that is predicted to be $2.1667 \AA$ at the MRCI/aug-cc-pV(Q+d)Z level of theory,
slightly longer than that in cyc-AlOS, which has an AlS bond length of $2.1229 \AA$. The Davidson corrected MRCI method predicts a longer AlS bond in both isomers. The AlS bond length in both isomers at all levels of theory is predicted to be larger than the experimentally determined AIS bond length in the diatomic AIS $\left(X^{2} \Sigma^{+}, R_{\mathrm{AlS}}=2.0129 \AA\right)$ (Huber \& Herzberg 1979).

$$
\text { 3.1.2. Cation- }[\mathrm{Al}, \mathrm{~S}, \mathrm{O}]^{+1}
$$

After characterization of the neutral ground state, the cations of each isomer are explored. Following removal of an electron, each isomer can take on a singlet or triplet spin multiplicity. Each isomer is most stable in the triplet configuration, with triplet linear-AlOS ${ }^{+}\left(X^{3} \Pi\right)$ being the global minimum. The stability and equilibrium geometries at many levels of theory are reported in Table 2 and will be explored below as they relate to each other and their neutral counterparts.

All MRCI calculations except MRCI $+\mathrm{Q} /$ aug-cc-pV(T+d)Z predict triplet linear- AlOS^{+}as the most stable cation isomer. It is predicted to be 0.11 eV and 0.20 eV more stable than the next two closest isomers, triplet cyc-AlOS ${ }^{+}\left(A^{3} A^{\prime \prime}\right)$ and singlet cyc-AlOS ${ }^{+}\left(A^{1} A^{\prime \prime}\right)$, respectively, at MRCI/aug-cc-pV(T+d)Z. Increasing basis set size increases this energy gap between triplet

Table 2
Equilibrium Geometry, Rotational Constants, Total Energy $\left(E_{\mathrm{T}}\right)$, and Relative Energy $\left(E_{\mathrm{r}}\right)$ for linear- AlOS^{+}, cyc-AlOS ${ }^{+}$and linear-SAlO ${ }^{+}$Cation Isomers

linear- $\mathrm{AlOS}^{+}\left(X^{3} \Pi\right)$									
Method	Basis	$\begin{aligned} & R_{\mathrm{AlO}} \\ & (\mathrm{~A}) \end{aligned}$	$\begin{aligned} & R_{\mathrm{OS}} \\ & (\mathrm{~A}) \end{aligned}$	$\begin{gathered} \theta \\ (\operatorname{deg}) \end{gathered}$	$\begin{gathered} A \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} B \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} C \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} E_{\mathrm{T}} \\ \text { (Hartree) } \end{gathered}$	$\begin{gathered} E_{\mathrm{r}} \\ (\mathrm{eV}) \end{gathered}$
MRCI	aug-cc-pV(T+d)Z	2.1718	1.5016	180.0	2551	2551	0	-714.51870136	0.00
	aug-cc-pV(Q+d)Z	2.2042	1.4923	180.0	2518	2518	0	-714.56506424	0.00
	aug-cc-pwCVTZ-DK	2.3076	1.4927	180.0	2380	2380	0	-716.12989930	0.00
MRCI+Q	aug-cc-pV(T+d)Z	2.1802	1.5040	180.0	2536	2536	0	-714.53837535	0.00
	aug-cc-pV(Q+d)Z	2.2184	1.4945	180.0	2495	2495	0	-714.58719745	0.00
MRCI-F12	aug-cc-pVQZ	2.3124	1.4915	180.0	2375	2375	0	-714.59667665	0.00
$\operatorname{CCSD}(\mathrm{T})$	CBS	2.0372	1.4997	180.0	2754	2754	0	-714.62714093	0.00
	aug-cc-pwCVTZ-DK	2.0522	1.5063	180.0	2721	2721	0	-716.15368275	0.00
$\operatorname{CCSD}(\mathrm{T})$-F12	aug-cc-pVQZ	2.0398	1.5004	180.0	2749	2749	0	-714.62099468	0.00
	CBS	2.0381	1.4986	180.0	2755	2755	0	-714.63110325	0.00
$\operatorname{CCSD}(\mathrm{T})$ - AE	aug-cc-pwCVTZ-DK	2.0453	1.5036	180.0	2736	2736	0	-716.78548710	0.00
cyc- $\operatorname{AlOS}^{+}\left(A^{3} A^{\prime \prime}\right)$									
Method	Basis	$R_{\text {AIO }}$	$R_{\text {OS }}$	θ	A	B	C	$E_{\text {T }}$	E_{r}
MRCI	aug-cc-pV(T+d)Z	1.7763	1.6589	81.0	23619	6922	5353	-714.51432378	0.11
	aug-cc-pV(Q+d)Z	1.7727	1.6497	80.9	23772	6986	5399	-714.54945915	0.42
		1.7726	1.6563	81.0	23716	6943	5371	-716.09078404	1.06
$\mathrm{MRCI}+\mathrm{Q}$	aug-cc-pV(T+d)Z	1.7820	1.6622	80.9	23487	6890	5327	-714.54228853	-0.11
	aug-cc-pV(Q+d)Z	1.7782	1.6527	80.8	23638	6960	5376	-714.57954185	0.21
MRCI-F12	aug-cc-pVQZ	1.7747	1.6516	80.8	23704	6976	5390	-714.56013813	0.99
$\operatorname{CCSD}(\mathrm{T})$	CBS	1.7791	1.6421	81.0	23857	6971	5395	-714.60297213	0.65
	aug-cc-pwCVTZ-DK	1.7814	1.6523	81.4	23796	6872	5332	-716.12428682	0.80
$\operatorname{CCSD}(\mathrm{T})$-F12	aug-cc-pVQZ	1.7794	1.6421	81.2	23912	6946	5383	-714.59650811	0.66
	CBS	1.7777	1.6408	81.2	23966	6954	5390	-714.60742034	0.64
$\underline{\operatorname{CCSD}(\mathrm{T})-\mathrm{AE}}$	aug-cc-pwCVTZ-DK	1.7811	1.6524	81.4	23795	6874	5334	-716.75402406	0.85
cyc- $\mathrm{AlOS}^{+}\left(A^{1} A^{\prime \prime}\right)$									
Method	Basis	$R_{\text {AIO }}$	$R_{\text {OS }}$	θ	A	B	C	$E_{\text {T }}$	$E_{\text {r }}$
MRCI	aug-cc-pV(T+d)Z	1.7758	1.6609	80.9	23584	6922	5351	-714.51122376	0.20
	aug-cc-pV(Q+d)Z	1.7756	1.6556	80.4	23466	7025	5406	-714.54474714	0.55
	aug-cc-pwCVTZ-DK	1.7718	1.6584	81.0	23686	6942	5368	-716.08765516	1.15
MRCI+Q	aug-cc-pV(T+d)Z	1.7809	1.6649	80.9	23438	6893	5326	-714.53909074	-0.02
	aug-cc-pV(Q+d)Z	1.7800	1.6591	80.4	23374	6987	5379	-714.57669425	0.28
MRCI-F12	aug-cc-pVQZ	1.7740	1.6535	80.8	23670	6978	5389	-714.55719274	1.07
$\operatorname{CCSD}(\mathrm{T})$	CBS	1.6720	1.9429	69.3	18724	8008	5609	-714.55280503	2.02
	aug-cc-pwCVTZ-DK	1.6921	1.7418	82.6	24242	6687	5241	-716.07345030	2.18
$\operatorname{CCSD}(\mathrm{T})$-F12	aug-cc-pVQZ	1.6897	1.7354	81.5	23973	6867	5338	-714.54572884	2.04
	CBS	1.6716	1.9392	69.4	19305	7791	5550	-714.55731913	1.90
$\underline{\operatorname{CCSD}(\mathrm{T})-\mathrm{AE}}$	aug-cc-pwCVTZ-DK	1.6736	1.8962	72.8	20218	7449	5443	-716.70272621	2.25
linear- $\mathrm{AlOS}^{+}\left(A^{1} \Pi\right)$									
Method	Basis	$R_{\text {AIO }}$	$R_{\text {OS }}$	θ	A	B	C	$E_{\text {T }}$	E_{r}
MRCI	aug-cc-pV(T+d)Z	1.6185	1.6663	180.0	3189	3189	0	-714.42631309	2.51
	aug-cc-pV(Q+d)Z	1.6141	1.6497	179.9	3231	3231	0	-714.52017595	1.22
	aug-cc-pwCVTZ-DK	1.6154	1.6637	180.0	3200	3200	0	-716.03893284	2.47
$\mathrm{MRCI}+\mathrm{Q}$	aug-cc-pV(T+d)Z	1.6198	1.6681	180.0	3184	3184	0	-714.43912194	2.70
		1.6169	1.6604	180.0	3204	3204	0	-714.48671751	2.73
MRCI-F12	aug-cc-pVQZ	1.6179	1.6597	180.0	3204	3204	0	-714.50842568	2.40
$\operatorname{CCSD}(\mathrm{T})$	CBS	2.0768	1.5061	180.0	2683	2683	0	-714.58783411	1.06
	aug-cc-pwCVTZ-DK	2.0932	1.5134	180.0	2648	2648	0	-716.11352324	1.09
$\operatorname{CCSD}(\mathrm{T})$-F12	aug-cc-pVQZ	2.0824	1.5065	180.0	2674	2674	0	-714.58106562	1.08
	CBS	2.0818	1.5052	180.0	2677	2677	0	-714.59186881	1.07
$\underline{\operatorname{CCSD}(\mathrm{T})-\mathrm{AE}}$	aug-cc-pwCVTZ-DK	2.0873	1.5108	180.0	2661	2661	0	-716.74495265	1.10
linear $-\mathrm{SAlO}^{+}\left(X^{3} \Pi\right)$									
Method	Basis	$R_{\text {AIO }}$	$R_{\text {AlS }}$	θ	A	B	C	$E_{\text {T }}$	E_{r}
MRCI	aug-cc-pwCVTZ-DK	1.6886	2.1242	180.0	3012	3012	0	-715.99901313	3.56
MRCI-F12	aug-cc-pVQZ	1.6865	2.1171	180.0	3027	3027	0	-714.46456316	3.59
$\text { linear- } \mathrm{SAlO}^{+}\left(A^{1} \Pi\right)$									
Method	Basis	$R_{\text {AIO }}$	$R_{\text {AIS }}$	θ	A	B	C	$E_{\text {T }}$	E_{r}
MRCI	aug-cc-pVQZ	1.6912	2.1226	180.0	3011	3011	0	-714.35980809	5.05
MRCI	aug-cc-pwCVTZ-DK	1.6874	2.1251	180.0	3011	3011	0	-715.98783300	3.86

linear- AlOS^{+}and the rest of the cation isomers. Inclusion of core relativistic effects markedly increases the stability of triplet linear- AlOS^{+}, as it is 1.06 and 1.15 eV lower in energy than the triplet and singlet cyc-AlOS ${ }^{+}$isomers at the MRCI/aug-cc-pwCVTZ-DK level of theory. As mentioned before, taking the Davidson correction into account changes the predicted stability, with triplet cyc-AlOS ${ }^{+}$becoming 0.11 eV lower than triplet linear- AlOS^{+}at $\mathrm{MRCI}+\mathrm{Q} /$ aug-cc- $\mathrm{pV}(\mathrm{T}+\mathrm{d}) \mathrm{Z}$. Increasing the basis set size to aug-cc- $\mathrm{pV}(\mathrm{Q}+\mathrm{d}) \mathrm{Z}$ causes the stability to switch back and agree with the other levels of theory. Finally, explicit treatment of the electron correlation at the MRCI-F12/aug-ccpVQZ level of theory predicts similar stability as the inclusion of relativistic effects, with triplet linear- $\mathrm{AlOS}^{+} 0.99 \mathrm{eV}$ and 1.07 eV lower in energy than the triplet and singlet cyc -AlOS ${ }^{+}$ isomers.

Single reference $\operatorname{CCSD}(\mathrm{T})$ methods showed a large discrepancy in results when considering different corrections and basis set sizes, including the switching of stability for the higher energy isomers. The T1 diagnostic is calculated to be $0.031,0.026,0.021$, and 0.023 for triplet linear- AlOS^{+}, triplet cyc- AlOS^{+}, singlet linear- $\operatorname{AlOS}^{+}\left(A^{1} \Pi\right)$, and singlet $c y c-\mathrm{AlOS}^{+}$at the $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pV(5+d)Z level of theory, respectively, showing the multireference character of this cation system. Nevertheless, at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{CBS}$ level, triplet linear-AlOS ${ }^{+}$is the lowest energy isomer, followed by triplet $c y c$ - AlOS^{+}, singlet linear- AlOS^{+}, and then singlet $c y c-\mathrm{AlOS}^{+}$.

The linear- SAlO^{+}isomers are the two highest energy structures found. The two levels of theory that were able to achieve optimization convergence agree on the stability of triplet linear-SAlO ${ }^{+}\left(X^{3} \Pi\right)$, with MRCI/aug-cc-pwCVTZ-DK predicting an energy of 3.56 eV and MRCI-F12/aug-cc-pVQZ predicting an energy of 3.59 eV above triplet linear-AlOS ${ }^{+}$. For singlet linear-SAlO ${ }^{+}\left(A^{1} \Pi\right)$, MRCI/aug-cc-pVQZ and MRCI/aug-cc-pwCVTZ-DK predicted a stability of 4.05 eV and 3.86 eV , respectively, compared to triplet linear- AlOS^{+}. The remaining levels of theory were plagued by large and imaginary frequencies at the stationary points.

The equilibrium geometries of the cations showed some very interesting patterns when compared to each other and the neutral species. Triplet linear- AlOS^{+}is predicted to have an AlO bond length of $2.2042 \AA$ and an SO bond length of $1.4923 \AA$ at the MRCI/aug-cc- $\mathrm{pV}(\mathrm{Q}+\mathrm{d}) \mathrm{Z}$ level of theory, while triplet cyc- AlOS^{+}, singlet cyc- AlOS^{+}, and triplet linear- AlOS^{+}are predicted to have AlO bond lengths of $1.7727 \AA, 1.7756 \AA$, and $1.6141 \AA$, and SO bond lengths of $1.6497 \AA, 1.6556 \AA$, and $1.6497 \AA$, respectively. When the Davidson correction is incorporated, all bond lengths were shown to increase in all cation isomers. Explicit treatment of the electron correlation does not show the same pattern. For triplet linear-AlOS ${ }^{+}$, the AlO bond length increases to its largest predicted value, while the SO bond decreases to its shortest predicted value. For the cyclic isomers, explicit treatment of electron correlation predicted similar bond lengths for both. For the singlet linear- AlOS^{+}, no change is seen in the AlO bond length with a slight increase in the SO bond. With increasing basis set size, a shortening of the SO bond is observed for all cation isomers. No such pattern is seen for the AlO bond. Single reference treatment utilizing $\operatorname{CCSD}(\mathrm{T})$ methods proved erratic with major changes in bond lengths for some isomers, while others saw no change in the predicted geometric parameters.

The AlO bond length in the ground state triplet linear-AlOS ${ }^{+}$ is predicted to be $2.2042 \AA$ at the $\mathrm{MRCI} /$ aug-cc-pV $(\mathrm{Q}+\mathrm{d}) \mathrm{Z}$
level of theory, compared to $1.6141 \AA$ in singlet linear-AlOS ${ }^{+}$. The SO bond length in each isomer at the same level of theory is $1.4923 \AA$ and $1.6497 \AA$, respectively. Comparing both to the AlO and SO bond lengths of 1.7728 and $1.5883 \AA$ in the neutral linear-AIOS species, upon photoionization to the triplet state electron density is shifted from the AlO bond to the SO bond, elongating the former and shortening the latter. The opposite effect is seen in photoionization to the singlet state, where the AlO bond becomes stronger and the SO bond lengthens. This trend holds at all MRCI levels of theory and is accentuated when relativistic effects are taken into account.

3.2. Spectroscopy

Rotational constants were calculated using the average atomic mass as implemented in MOLPRO and are reported in Tables 1 and 2. At the MRCI $+\mathrm{Q} /$ aug-cc- $\mathrm{pV}(\mathrm{Q}+\mathrm{d}) \mathrm{Z}$ level of theory, the rotational constants for linear-AlOS and linearSAlO were calculated to be $A=B=3159 \mathrm{MHz}$ and 3026 MHz , respectively. For the linear isomers, the rotational constants do not show a large dependence on the level of theory used, with all predicted values within 30 MHz of each other. For cyc-AlOS, there is slightly more variability in the rotational constants based on level of theory, with convergence seen using the largest basis sets.

A better picture of the bonding nature can be obtained by analysis of the natural population and dipole moments of these molecules. A natural bond order analysis for linear-AlOS predicts positive charges on the $\mathrm{Al}(+0.84 \mathrm{e})$ and $\mathrm{S}(+0.35 \mathrm{e})$ and a negative charge on the $\mathrm{O}(-1.19 \mathrm{e})$. For linear-SAlO, a large positive charge is seen on the $\mathrm{Al}(+1.59 \mathrm{e})$, while $\mathrm{O}(-1.18 \mathrm{e})$ and $\mathrm{S}(-0.41 \mathrm{e})$ carry negative charges. Large ionic bond character is seen between the Al and O atoms in linear-SAlO, as would be expected for such a large charge separation. Additionally, the large charge separation between the Al and O , combined with the larger (and less rigid nature) of the AlS bond $\left(R_{\text {AIS }}=2.1505 \AA\right)$ compared to the free diatomic $\left(R_{\text {AIS }}=2.0129\right.$ A; Huber \& Herzberg 1979), indicates that linear-SAlO may be formed in the CSE around a star via the reaction $\mathrm{OAl}+\mathrm{S}$. Although still present, less ionic bonding character is seen in linear-AlOS, because of lower charge differences ($\mathrm{Al}(+0.845 \mathrm{e})$, $\mathrm{O}(-1.19 \mathrm{e})$, S $(0.351 \mathrm{e})$). Based on the charge separation and the geometric analysis in Section 3.1.1, linear-AlOS isomer may be formed via the reaction $\mathrm{Al}+\mathrm{OS}$.

The harmonic vibrational frequencies and zero-point vibrational energy calculated for the neutral species are reported in Table 3. Linear-AlOS is predicted to have a large asymmetric stretching frequency $\left(\omega_{1}\right)$. The magnitude of the frequency increases with basis set size, which is consistent with shortening of the bond lengths, especially the AlO bond. The bending mode $\left(\omega_{2}\right)$ has very low amplitude ($<200 \mathrm{~cm}^{-1}$), with a few levels of theory predicting an imaginary frequency. This trouble characterizing the PES in this region can be attributed to the flatness of the potential along the bending angle. As can be seen in Figure 1, the potential is extremely flat for bond angles near $\theta=180^{\circ}$. For this reason, the harmonic oscillator model does not describe the potential in this region well; inclusion of anharmonicity is needed for better characterization of this mode. The symmetric stretch $\left(\omega_{3}\right)$ shows good agreement throughout the various levels of theory, with the largest basis sets converging to the same frequency value.

Cyc-AlOS is well characterized with these methods, showing good agreement for all vibrational modes at all levels of theory.

Table 3
Harmonic Vibrational Frequencies and Zero-point Vibrational Energy of Neutral [Al, S, O] Species

linear-AlOS ($\left.X^{2} \Pi\right)$					
Method	Basis	$\underset{\left(\mathrm{cm}^{-1}\right)}{\omega_{1}}$	$\underset{\left(\mathrm{cm}^{-1}\right)}{\omega_{2}}$	$\left(\mathrm{cm}^{-1}\right)$	$\begin{aligned} & \mathrm{ZPVE} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$
MRCI	aug-cc-pV(T+d)Z	1074	75	502	826
	aug-cc-pV(Q+d)Z	1121	$102 i$	503	812
	aug-cc-pwCVTZ-DK	1177	15	518	843
MRCI+Q	aug-cc-pV(Q+d)Z	1126	$51 i$	508	817
MRCI-F12	aug-cc-pVQZ	1160	$73 i$	508	851
$\operatorname{CCSD}(\mathrm{T})$	aug-cc-pwCVTZ-DK	1040	77	498	808
$\operatorname{CCSD}(\mathrm{T})$-F12	aug-cc-pVQZ	1118	513	814	1223
$\operatorname{CCSD}(\mathrm{T})$ - AE	aug-cc-pwCVTZ-DK	1045	86	501	816
cyc-AlOS $\left(A^{2} A^{\prime \prime}\right)$					
Method	Basis	ω_{1}	ω_{2}	ω_{3}	ZPVE
MRCI	aug-cc-pV(T+d)Z	823	493	509	913
	aug-cc-pV(Q+d)Z	832	504	515	926
	aug-cc-pwCVTZ-DK	825	492	509	913
$\mathrm{MRCI}+\mathrm{Q}$	aug-cc-pV(T+d)Z	812	478	500	895
	aug-cc-pV(Q+d)Z	821	489	507	909
MRCI-F12	aug-cc-pVQZ	822	500	513	928
$\operatorname{CCSD}(\mathrm{T})$	aug-cc-pwCVTZ-DK	809	456	496	881
$\operatorname{CCSD}(\mathrm{T})$-F12	aug-cc-pVQZ	822	480	508	905
$\operatorname{CCSD}(\mathrm{T})$ - AE	aug-cc-pwCVTZ-DK	814	455	498	884
linear-SA1O ($\left.X^{2} \Pi\right)$					
Method	Basis	ω_{1}	ω_{2}	ω_{3}	ZPVE
MRCI	aug-cc-pV(Q+d)Z	1091	161	456	935
	aug-cc-pwCVTZ-DK	1107	140	460	854
$\mathrm{MRCI}+\mathrm{Q}$	aug-cc-pV(T+d)Z	1084	133	459	838
	aug-cc-pV(Q+d)Z	1077	163	448	844
$\operatorname{CCSD}(\mathrm{T})$	aug-cc-pwCVTZ-DK	1053	167	441	831
$\operatorname{CCSD}(\mathrm{T})$-F12	aug-cc-pVQZ	1060	165	447	836
$\operatorname{CCSD}(\mathrm{T})$-AE	aug-cc-pwCVTZ-DK	1074	153	445	837

All large basis sets predicted the AlO stretching (ω_{1}) frequency with a spread of only $25 \mathrm{~cm}^{-1}$ between the highest and lowest value. The MRCI-F12/aug-cc-pVQZ level of theory predicts ω_{1} to be $822 \mathrm{~cm}^{-1}$ compared to the experimental diatomic AlO ($X^{2} \Sigma^{+}$) frequency of $979.2 \mathrm{~cm}^{-1}$ (Huber \& Herzberg 1979). This level of theory calculates a lower magnitude for this vibrational mode due to the lengthening of the AlO bond by $0.1036 \AA$ compared to the free diatomic. The lowest amplitude normal mode $\left(\omega_{2}\right)$ is assigned to the SAlO scissor motion. This mode is less well characterized than the AlO stretch, as the predicted frequencies vary by as much as $50 \mathrm{~cm}^{-1}$. From the vibrational analysis, the final vibrational mode $\left(\omega_{3}\right)$ can be described as mixing of the AlS stretching mode and the bending mode. This is predicted to be $513 \mathrm{~cm}^{-1}$ at the MRCI-F12/aug-cc-pVQZ level of theory, quite far from the experimentally determined diatomic AlS $\left(X^{2} \Sigma^{+}\right)$frequency of $617 \mathrm{~cm}^{-1}$ (Huber \& Herzberg 1979). This agrees with the assertion that this is not purely an AlS stretch and that there is mixing between the two normal modes.

The asymmetric stretching mode $\left(\omega_{1}\right)$ frequencies of linearSAlO follow a similar trend to those of the other linear neutral isomer, increasing in magnitude with increase in basis set size. This is again consistent with shortening of the bond lengths. The bending mode (ω_{2}) in this isomer is better characterized
than that in linear-AlOS, with frequencies above $130 \mathrm{~cm}^{-1}$ at all levels of theory. This indicates that there is a deeper well in the PES, along the bending angle, compared to linear-AlOS. The symmetric stretch $\left(\omega_{3}\right)$ is very consistent at the MRCI levels of theory, differing by only a few wavenumbers. This is also true of the $\operatorname{CCSD}(\mathrm{T})$ predicted frequencies, with the MRCI symmetric frequencies generally larger than those predicted at with $\operatorname{CCSD}(\mathrm{T})$ methods.

A set of accurate spectroscopic constants were calculated from the 3D-PESs obtained in the ground state of linear-AlOS $\left(X^{2} A^{\prime \prime}\right)$, linear-SAlO $\left(X^{2} A^{\prime \prime}\right)$, and linear- $\mathrm{SAlO}^{+}\left(X^{3} A^{\prime \prime}\right)$ isomers to help in their detection. These parameters include equilibrium bond distances $\left(r_{\mathrm{e}}\right)$, rotational constants at the equilibrium geometry $\left(B_{\mathrm{e}}\right)$, vibrationally corrected rotational constants $\left(B_{\mathrm{o}}\right)$, secondorder centrifugal distortion constants $\left(D_{\mathrm{j}}\right)$, Coriolis coupling constants (ζ), rotation-vibration constants (α), vibrational anharmonicity constants (χ_{ij}), and anharmonic vibrational frequencies $\left(\nu_{\mathrm{i}}\right)$, and they are reported in Table 4. The rovibrational levels were not studied here because of the small difference between cyclic and linear-AlOS isomers. This small difference favors the mixing of the rovibrational levels causing both isomers to exhibit complicated spectra. The anharmonic vibrational frequency for the asymmetric stretching mode $\left(\nu_{1}\right)$ is predicted to be $1155 \mathrm{~cm}^{-1}$ for linear-AlOS, while the same mode in linear-SAlO is predicted to

Table 4
MRCI-F12 + Q/aug-cc-pVQZ Equilibrium Geometries and a Set of Spectroscopic Constants for the linear-AlOS $\left(X^{2} A^{\prime \prime}\right)$, linear-SAlO $\left(X^{2} A^{\prime \prime}\right)$ and linear-SAlO ${ }^{+}$ ($X^{3} A^{\prime \prime}$) Isomers

Parameter	linear-AlOS ($X^{2} A^{\prime \prime}$)	linear-SAlO ($X^{2} A^{\prime \prime}$)	linear-SAlO ${ }^{+}\left(X^{3} A^{\prime \prime}\right)$
$r_{\mathrm{e}}(\mathrm{Al}-\mathrm{O}), \AA$	1.7264	1.6051	1.7140
$r_{\mathrm{e}}(\mathrm{Al}-\mathrm{S}), \AA$		2.1534	2.1222
$r_{\mathrm{e}}(\mathrm{S}-\mathrm{O}), \AA$	1.5745		
Theta, deg	180.0	180.0	180.0
$B_{\mathrm{e}}, \mathrm{MHz}$	3168.7	3070.4	2987.6
$B_{\mathrm{o}}, \mathrm{MHz}$	3186.9	3049.0	2965.8
$\mu_{\text {tot }}$, D	1.555	4.288	
$D_{\mathrm{j}}, \mathrm{MHz}$	0.00053	0.00055	0.00050
ζ_{23}	-0.1751	0.2944	0.2228
ζ_{13}	0.9845	-0.9556	-0.9748
$\alpha_{1}^{B}, \mathrm{MHz}$	-0.1982	10.8663	13.8172
$\alpha_{2}^{B}, \mathrm{MHz}$	8.4599	9.8872	9.3830
$\alpha_{3}^{B}, \mathrm{MHz}$	-20.4469	-6.5347	-8.7061
$\alpha_{1}^{C}, \mathrm{MHz}$	-0.1982	10.8863	13.8172
$\alpha_{2}^{C}, \mathrm{MHz}$	8.4599	9.8872	9.3830
$\alpha_{3}^{C}, \mathrm{MHz}$	-20.4469	-6.5347	-8.7061
$\chi_{11}, \mathrm{~cm}^{-1}$	36.9330	-5.6479	-3.2368
$\chi_{12}, \mathrm{~cm}^{-1}$	32.7600	-0.4519	-5.4329
$\chi_{13}, \mathrm{~cm}^{-1}$	-78.8377	-1.8186	-1.4805
$\chi_{22}, \mathrm{~cm}^{-1}$	-4.3191	-1.6283	-0.6927
$\chi_{23}, \mathrm{~cm}^{-1}$	-31.0579	1.4281	1.5783
$\chi_{33}, \mathrm{~cm}^{-1}$	-23.6987	-0.5272	-0.1811
$\nu_{1}, \mathrm{~cm}^{-1}$	1155	1090	910
$\nu_{2}, \mathrm{~cm}^{-1}$	58	174	135
$\nu_{3}, \mathrm{~cm}^{-1}$	508	464	476

Table 5
Vertical Excitation Energies and Corresponding Oscillator Strengths (f) Calculated at the MRCI $+\mathrm{Q} /$ aug-cc-pV(Q+d)Z Level of Theory for the Doublet Electronic Excited States of linear-AlOS and linear-SA1O

linear-AlOS			linear-SAIO		
State Symmetry	$\begin{aligned} & \text { VEE } \\ & \mathrm{eV}(\mathrm{~nm}) \end{aligned}$	f	State Symmetry	$\begin{aligned} & \text { VEE } \\ & \mathrm{eV}(\mathrm{~nm}) \end{aligned}$	f
$\overline{1^{2} \Sigma^{+}}$	2.619 (473)	0.001	$2^{2} \Pi$	1.091 (1138)	0.015
$1^{2} \Delta$	3.431 (361)	0.000	$1^{2} \Sigma^{+}$	1.349 (919)	0.001
$1^{2} \Sigma^{-}$	3.458 (358)	0.000	$2^{2} \Sigma^{+}$	3.048 (406)	0.001
$2^{2} \Pi$	4.342 (285)	0.041	$1^{2} \Sigma^{-}$	3.492 (355)	0.005
$2^{2} \Sigma^{+}$	4.814 (257)	0.070	$1^{2} \Delta$	3.497 (354)	0.002
$1^{2} \Phi$	5.013 (247)	...	$2^{2} \Sigma^{-}$	3.715 (333)	0.007
			$3^{2} \Pi$	4.581 (270)	0.003

Note. Transitions with high oscillator strengths are in bold.
be $1090 \mathrm{~cm}^{-1}$. This mode is expected to have the highest IR intensity of all three vibrational modes. The bending mode of all linear isomers is less than $200 \mathrm{~cm}^{-1}$, especially for linear-AlOS where $\nu_{2}=58 \mathrm{~cm}^{-1}$, which indicates that the molecules examined are floppy and undergo a large amplitude of motion along the bending mode. It should be noted that the perturbative methods used here improve the accuracy of the vibrational frequencies; however, further refinement of the low-frequency bending mode (ν_{2}) can be accomplished using the more computationally expensive variational method.

Vertical excitation energies and corresponding oscillator strengths (f) to the lowest doublet electronic excited states were calculated at the $\mathrm{MRCI}+\mathrm{Q} /$ aug $-\mathrm{cc}-\mathrm{pV}(\mathrm{Q}+\mathrm{d}) \mathrm{Z}$ level of theory for the linear-AlOS and linear-SAIO isomers and are listed in Table 5. Both isomers are characterized by a high density of electronic states in the UV-visible region ($270-500 \mathrm{~nm}$), complicating the electronic spectra, as many states are degenerate and will have
multiple crossings. The vertical excitations of linear-SAlO are characterized by low oscillator strengths, decreasing the possibility that they will be observed. For linear-AIOS, excitation to the $2^{2} \Pi$ $(4.342 \mathrm{eV})$ and $2^{2} \Sigma^{+}(4.814 \mathrm{eV})$ states show large oscillator strengths and have a greater chance to occur.

3.3. Detectability and Observation

The triatomic [Al, S, O] isomers may exist in the CSEs of the oxygen-rich stars VY CMa, IK Tau, and R Dor, and may be detectable through observational studies. To assist in this detection, frequencies for various rotational transitions calculated around the most populated rotational levels are provided. It is anticipated that [Al, S, O] triatomic isomers will exist in a region of the CSEs that exhibits a temperature of approximately 200 K . This temperature region was chosen based on the observation of AlO with $T_{\text {rot }} \sim 230 \mathrm{~K}$ in the CSE of VY CMa

Table 6
Relevant Data for Use in Experimental and Observational Studies, Including Frequencies ${ }^{\text {a }}$ for Rotational Transitions in the Ground Vibrational State Surrounding $J_{\text {max }}$ and up to States with 75% of the Relative Population of $J_{\max }$, Vibrationally Corrected Rotational Constants $\left(B_{o}\right)^{\text {a }}$, and Anharmonic Vibrational Frequencies $\left(\nu_{\mathrm{r}}\right)^{\text {a }}$

Isomer	J	J^{\prime}	Frequency (GHz)	J	J^{\prime}	Frequency (GHz)	$\begin{gathered} B_{o} \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} \nu_{1} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	$\begin{gathered} \nu_{2} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	$\begin{gathered} \nu_{3} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$
linear-AlOS	21	20	133.833	31	30	197.529	3186.9	1155	58	508
	22	21	140.204	32	31	202.897				
	23	22	146.575	33	32	210.264				
	24	23	152.946	34	33	216.621				
	25	24	$159.315^{\text {b }}$	35	34	222.997				
	26	25	165.685	36	35	229.363				
	27	26	172.055	37	36	235.728				
	28	27	178.424	38	37	242.093				
	29	28	184.793	39	38	248.458				
	30	29	191.161	40	39	254.822				
linear-SAlO	21	20	128.041	31	30	188.976	3049.0	1090	174	464
	22	21	134.136	32	31	195.068				
	23	22	140.231	33	32	201.159				
	24	23	146.325	34	33	207.250				
	25	24	152.419	35	34	213.340				
	26	25	158.514	36	35	219.430				
	27	26	164.608	37	36	225.519				
	28	27	170.700	38	37	231.608				
	29	28	176.793	39	38	237.697				
	30	29	182.885	40	39	243.784				
linear-SAlO ${ }^{+}$	21	20	124.548	31	30	183.823	2965.8	910	135	476
	22	21	130.476	32	31	189.749				
	23	22	136.405	33	32	195.674				
	24	23	142.334	34	33	201.599				
	25	24	148.262	35	34	207.524				
	26	25	154.190	36	35	213.448				
	27	26	160.117	37	36	219.372				
	28	27	166.044	38	37	225.295				
	29	28	171.971	39	38	231.218				
	30	29	177.898	40	39	237.140				

Note.
${ }^{\text {a }}$ All calculated at MRCI-F12+Q/aug-cc-pVQZ.
${ }^{\mathrm{b}}$ Rotational transitions originating from $J_{\max }$ are shown in bold.
by Tenenbaum \& Ziurys (2009). At 200 K, the most highly populated rotational energy level for linear-AlOS, linearSAlO , and linear- SAlO^{+}are predicted to be $J_{\max }=25,26$, and 26 , respectively, according to a Boltzmann distribution. These rotational levels have energies of $99.3,102.7$, and 99.8 K , respectively.

Frequencies in the ground vibrational state, including the second-order centrifugal distortion correction, for many transitions around $J_{\max }$, where the population is predicted to be large, are included in Table 6. Also reported are frequencies for transitions originating from states predicted to have a relative population greater than 75% of $J_{\max }$. These transitions will have a lower but nonnegligible intensity, and, more importantly, occur in the frequency range accessible from groundbased telescopes. Additionally, the vibrationally corrected rotational constants (B_{o}) and anharmonic vibrational frequencies are included in the table. The $J=25 \rightarrow 24$ transition in linear-AlOS is predicted to be 159.315 GHz , while the $J=26 \rightarrow 25$ transition in linear-SAlO is predicted to occur at 158.154 GHz . The larger dipole moment in linear-SAlO (4.288 D) will likely make it easier to detect via observational studies compared to linear-AlOS (1.555 D) because the intensity of a rotational transition depends on the interaction of the incoming light with the dipole moment of the molecule.

The SURFIT code that is used to calculate the spectroscopic parameters does not provide intensities of vibrational or rotational transitions; however, similar triatomic molecules exhibiting low abundance $\left(\sim 10^{-10}\right.$ relative to $\left.\mathrm{H}_{2}\right)$ have previously been detected via observational studies, such as AlNC in IRC+10216 (Ziurys et al. 2002). Although the stars referred to in this paper are either farther away (IK Tau and VY CMa) or have a lower number density in their CSE based on a smaller mass-loss rate (R Dor) than IRC +10216 , making the detection of [Al, S, O] molecules potentially more difficult, the larger dipole moment of linear-SAlO (4.288 D) compared to that of molecules such as AlNC (3.14 D; Ma et al. 1995) may help compensate for these difficulties, and improve its detectability.
Recent spectral scans of R Dor (De Beck \& Olofsson 2018) and IK Tau (Velilla Prieto et al. 2017) each include several unidentified lines over the frequency range covered in Table 6. A reexamination of the scans, or even additional observational studies in the region predicted in this work, might be helpful in the identification of new [Al, S, O] triatomic species, using the results from this work as a useful spectroscopic guide.

The vibrational frequencies corresponding to the bending motion ($\nu_{2}, \sim 100 \mathrm{~cm}^{-1}$) and symmetric stretch ($\nu_{3}, \sim 500 \mathrm{~cm}^{-1}$) are quite low, and as such, in experiments and in astronomical

Table 7
Adiabatic Ionization Energy of linear-AlOS, cyc-AlOS, and linear-SAlO Calculated for the Transition to Both the Triplet and Singlet States

Isomer	Method	Basis Set	AIE $\left(X^{3} \Pi\right)$ (eV)
linear-AlOS $\left(X^{2} \Pi\right)$		aug-cc-pV(Q+d)Z	7.55
$\left(A^{1} \Pi\right)$			

observations, could be vibrationally excited beyond the ground state. In this case, one would expect to see rotational transitions in the vibrationally excited ν_{2} state, or even excited ν_{3} state. The set of frequencies for rotational transitions in the ground vibrational state from this study should aid the experiments and/or experimental analysis in determining the role of these excited vibrational states. Using this study as a foundational guide, future experimental work is needed to address these important questions.

3.4. Ionization Energy

Adiabatic ionization energies were calculated for the ionization of the neutral species to both the triplet and singlet cation states, and these values are reported in Table 7. Calculated energies are consistent within each method, converging at the largest basis sets. For all isomers, ionization to the triplet state is a lower energy transition than to the singlet state. Focusing in on ionization to the triplet state, MRCI methods consistently predict lower ionization energies for both linear-AlOS and cyc-AlOS isomers than $\operatorname{CCSD}(\mathrm{T})$ methods. This effect may arise from the treatment of electron correlation in the MRCI methods that $\operatorname{CCSD}(\mathrm{T})$ misses with its single-determinant calculation. The ionization energies for the transition from linear-AlOS to triplet and singlet linear- AlOS^{+}are 7.50 and 9.90 eV , respectively, at the MRCI-F12/aug-cc-pVQZ level of theory, corresponding to 165 and 125 nm light in the vacuum ultraviolet regime. This is light that is readily available in the outer envelope of a star like VY CMa, meaning if linear-AlOS is formed, both spin states of linear- AlOS^{+}may be produced via photoionization and would be detectable. If triplet linear-AlOS ${ }^{+}$is formed, the singlet state of linear- AlOS^{+}will not be easily accessed from this state because excitation would require a spin flip. Any excitation from triplet linear-AlOS ${ }^{+}$would be expected to access the spinsymmetric triplet cyclical isomer.

3.5. Bond Dissociation Energies

Because of the nonsize consistency of the MRCI method, bond dissociation energies (BDE) of linear-AlOS and linear-SAlO
were calculated using the $\operatorname{CCSD}(\mathrm{T})-\mathrm{AE} /$ aug-cc-pwCVTZ-DK level of theory. Even though the $\operatorname{CCSD}(\mathrm{T})$ method loses some information due to its single reference determinant, the all-electron approximation coupled with the scalar relativistic corrections implemented in the Douglas-Kroll basis set help remedy this. The linear-AIOS BDE for AlO-S and Al-OS are 3.18 and 3.48 eV , respectively. For linear-SAlO, the BDE for $\mathrm{S}-\mathrm{AlO}$ and $\mathrm{SAl-O}$ are 3.46 and 4.61 eV , respectively. These results, coupled with the low frequency of the bending mode, suggest that for both linear isomers elimination of the sulfur atom is the most likely pathway of dissociation through the excited-state cyclic isomer.

4. Conclusion

New triatomic isomers arising from the [Al, S, O] group of molecules have been characterized for the first time using highlevel ab initio methods. linear-SAlO $\left(X^{2} \Pi\right)$ is predicted to be a potential candidate for detection via radio astronomy, in the $150-250 \mathrm{GHz}$ frequency range, because of its relative stability and large permanent dipole moment. Accurate spectroscopic parameters are also reported for use in potential laboratory explorations of this system. Two important follow-up studies arise from this work: (1) the need to decipher the most likely formation mechanism of this group of molecules, and (2) exploration of the rotational transitions in the excited vibrational states.

Thanks are due to K . Peterson for allowing us to use the SURFIT code. We also thank Ryan Fortenberry for helpful comments. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under grant No. DGE-1845298 (V.J.E.). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

ORCID iDs

Vincent J. Esposito © https://orcid.org/0000-0001-6035-3869
Tarek Trabelsi (1) https://orcid.org/0000-0001-6258-7191
Joseph S. Francisco © https:// orcid.org/0000-0002-5461-1486

References

Adande, G. R., Edwards, J. L., \& Ziurys, L. M. 2013, ApJ, 778, 22
Adler, T. B., Knizia, G., \& Werner, H.-J. 2007, JChPh, 127, 221106
Alikhani, M. E. 2003, JChPh, 119, 11146
Bu, Y. 2000, CPL, 322, 503
Bu, Y. 2001, CPL, 338, 142
Bu, Y. 2002, IJQC, 87, 181
Cernicharo, J., \& Guelin, M. 1987, A\&A, 183, L10
Cernicharo, J., Guélin, M., \& Kahane, C. 2000, A\&AS, 142, 181
Danilovich, T., De Beck, E., Black, J. H., Olofsson, H., \& Justtanont, K. 2016, A\&A, 588, A119
Danilovich, T., Ramstedt, S., Gobrecht, D., et al. 2018, A\&A, 617, A132
Danilovich, T., Richards, A. M. S., Decin, L., Van de Sande, M., \& Gottlieb, C. A. 2020, MNRAS, 494, 1323
Danilovich, T., Van de Sande, M., De Beck, E., et al. 2017, A\&A, 606, A124
De Beck, E., Decin, L., Ramstedt, S., et al. 2017, A\&A, 598, A53
De Beck, E., \& Olofsson, H. 2018, A\&A, 615, A8
Decin, L., Richards, A. M. S., Waters, L. B. F. M., et al. 2017, A\&A, 608, A55
Dunning, T. H. 1989, JChPh, 90, 1007
Dunning, T. H., Peterson, K. A., \& Wilson, A. K. 2001, JChPh, 114, 9244
Huber, K. P., \& Herzberg, G. 1979, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold)
Jorge, F. E., Canal Neto, A., Camiletti, G. G., \& Machado, S. F. 2009, JChPh, 130, 064108
Kaminski, T., Gottlieb, C. A., Schmidt, M. R., et al. 2013a, in EAS Publications Series 60, Betelgeuse Workshop 2012, ed. P. Kervella et al. (Les Ulis: EDP Sciences), 191
Kaminski, T., Gottlieb, C. A., Young, K. H., Menten, K. M., \& Patel, N. A. 2013b, ApJS, 209, 38
Kim, S., Sorescu, D. C., \& Yates, J. T. 2007, J. Phys. Chem. C, 111, 18226
Knizia, G., Adler, T. B., \& Werner, H.-J. 2009, JChPh, 130, 054104
Knowles, P. J., Hampel, C., \& Werner, H.-J. 1993, JChPh, 99, 5219
Knowles, P. J., Hampel, C., \& Werner, H.-J. 2000, JChPh, 112, 3106
Knowles, P. J., \& Werner, H.-J. 1985, CPL, 115, 259
Knowles, P. J., \& Werner, H.-J. 1988, CPL, 145, 514
Kroto, H. W. 1975, Molecular Rotation Spectra (New York: Wiley)
Lodders, K. 2003, ApJ, 591, 1220
Ma, B., Yamaguchi, Y., \& Schaefer, H. F. 1995, MolPh, 86, 1331
Mills, I. 1972, Molecular Spectroscopy: Modern Research (New York: Academic)
Omont, A., Lucas, R., Morris, M., \& Guilloteau, S. 1993, A\&A, 490

Peterson, K. A., Adler, T. B., \& Werner, H.-J. 2008, JChPh, 128, 084102
Pulliam, R. L., Savage, C., Agúndez, M., et al. 2010, ApJL, 725, L181
Savage, B. D., \& Sembach, K. R. 1996, ARA\&A, 34, 279
Schilke, P., Benford, D., Hunter, T., Lis, D., \& Phillips, T. 2001, ApJS, 132, 281
Senekowitsch, J. 1988, SURFIT (Frankfurt: Univ. Frankfurt)
Shamasundar, K. R., Knizia, G., \& Werner, H.-J. 2011, JChPh, 135, 054101
Shiozaki, T., Knizia, G., \& Werner, H.-J. 2011, JChPh, 134, 034113
Szalay, P. G., \& Bartlett, R. J. 1993, CPL, 214, 481
Tenenbaum, E. D., Dodd, J. L., Milam, S. N., Woolf, N. J., \& Ziurys, L. M. 2010, ApJS, 190, 348
Tenenbaum, E. D., \& Ziurys, L. M. 2009, ApJL, 694, L59
Tenenbaum, E. D., \& Ziurys, L. M. 2010, ApJL, 712, L93
Trabelsi, T., Davis, M. C., Fortenberry, R. C., \& Francisco, J. S. 2019a, JChPh, 151, 244303
Trabelsi, T., \& Francisco, J. S. 2018, ApJ, 863, 139
Trabelsi, T., Mahjoubi, K., Mehnen, B., Hochlaf, M., \& Francisco, J. S. 2019b, JChPh, 150, 124306
Trabelsi, T., Mahjoubi, K., Mehnen, B., Hochlaf, M., \& Francisco, J. S. 2019c, JPCA, 123, 463
Turner, B. E. 1994, ApJ, 430, 727
Turner, B. E., Steimle, T. C., \& Meerts, L. 1994, ApJL, 426, L97
Velilla Prieto, L., Sánchez Contreras, C., Cernicharo, J., et al. 2017, A\&A, 597, A25
Werner, H.-J., \& Knowles, P. J. 1985, JChPh, 82, 5053
Werner, H.-J., \& Knowles, P. J. 1988, JChPh, 89, 5803
Werner, H.-J., Knowles, P. J., Knizia, G., et al. 2019, MOLPRO, v2019.1, a package of ab initio programs, https://www.molpro.net/info/release/doc/ manual/index.html
Willson, L. A. 2000, ARA\&A, 38, 573
Winnewisser, G., \& Walmsley, C. M. 1978, A\&A, 70, L37
Xu, J.-G., Zhang, C.-Y., \& Zhang, Y.-G. 2020, ChPhB, 29, 033102
Yousefi, M., \& Bernath, P. F. 2018, ApJS, 237, 8
Yurchenko, S. N., Williams, H., Leyland, P. C., Lodi, L., \& Tennyson, J. 2018, MNRAS, 479, 1401
Ziurys, L. M. 2006, PNAS, 103, 12274
Ziurys, L. M., Apponi, A. J., \& Phillips, T. G. 1994, ApJ, 433, 729
Ziurys, L. M., Milam, S. N., Apponi, A. J., \& Woolf, N. J. 2007, Natur, 447, 1094
Ziurys, L. M., Savage, C., Highberger, J. L., Apponi, A. J., \& Guelin, M. 2002, ApJL, 564, L45
Ziurys, L. M., Tenenbaum, E. D., Pulliam, R. L., Woolf, N. J., \& Milam, S. N. 2009, ApJ, 695, 1604

