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Abstract

The atmospheric circulation of tidally locked planets is dominated by a superrotating eastward equatorial jet. We
develop a predictive theory for the formation of this jet, proposing a mechanism in which the three-dimensional
stationary waves induced by the day–night forcing gradient produce an equatorial acceleration. This is balanced in
equilibrium by an interaction between the resulting jet and the vertical motion of the atmosphere. The three-
dimensional structure of the zonal acceleration is vital to this mechanism. We demonstrate this mechanism in a
hierarchy of models. We calculate the three-dimensional stationary waves induced by the forcing on these planets
and show the vertical structure of the zonal acceleration produced by these waves, which we use to suggest a
mechanism for how the jet forms. General circulation model simulations are used to confirm the equilibrium state
predicted by this mechanism, where the acceleration from these waves is balanced by an interaction between the
zonal-mean vertical velocity and the jet. We derive a simple model of this using the “Weak Temperature Gradient”
approximation, which gives an estimate of the jet speed on a terrestrial tidally locked planet. We conclude that the
proposed mechanism is a good description of the formation of an equatorial jet on a terrestrial tidally locked planet
and should be useful for interpreting observations and simulations of these planets. The mechanism requires
assumptions such as a large equatorial Rossby radius and weak acceleration due to transient waves, and a different
mechanism may produce the equatorial jets on gaseous tidally locked planets.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Atmospheric circulation (112)

1. Introduction

Tidally locked planets always present the same face to the star
that they orbit. Their atmospheric circulation is dominated by
an equatorial jet, the strength of which determines directly
observable features like the hot-spot shift and day–night contrast.
Showman & Polvani (2011) showed that the jet is produced by
the day–night instellation gradient, which induces stationary
equatorial waves that transport prograde momentum toward the
equator.

No studies so far have used this process to predict the
equilibrium jet speed on these planets, as the process that
balances this acceleration has not been identified. In this study,
we propose a mechanism by which this jet forms on terrestrial
tidally locked planets, which does not rely on frictional drag.
This provides an estimate of the jet speed that only depends on
the basic atmospheric and planetary parameters. Our primary
aim is to demonstrate the mechanism by which the jet forms
and to derive how the jet speed depends on the planetary
parameters. Our estimate of an exact jet speed only applies to
the idealized atmospheres we consider in this study and will not
apply to planets with thick atmospheres, significantly different
heating profiles, or strong moisture effects.

The structure of this paper is as follows. In Section 2, we
review previous work on the atmospheric circulation of tidally
locked planets and show their typical global circulation in a
general circulation model (GCM) simulation. In Section 3, we
introduce an idealized model of the three-dimensional
stationary waves induced in the atmosphere of a tidally locked
planets by its day–night instellation gradient. The mechanism

we propose for the formation of the jet relies entirely on the
zonal acceleration caused by these stationary waves, so we aim
to isolate them in this idealized model. We solve the primitive
equations on a beta plane using the Dedalus software package
and show the structure of these waves and the zonal
acceleration that they produce. The vertical profile of the zonal
acceleration is then used in Section 4 to propose a mechanism
for the formation and equilibration of the jet. Leovy (1987) and
Zhu (2006) proposed similar mechanisms for the formations of
zonal jets on Venus and Titan.
Section 6 uses a suite of GCM simulations of terrestrial tidally

locked planets to test the proposed theory. We show that the
equilibrium zonal momentum budget matches the expected
balance from the proposed mechanism. We also show that the
scaling of equatorial jet speed with instellation approximately
matches the predicted speed from the stationary wave calcul-
ation. In Section 5, we derive a simple estimate of the maximum
equatorial jet speed on a terrestrial tidally locked planet:
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for planetary radius a, acceleration due to gravity g, Stefan–
Boltzmann constant σ, specific gas constant R, Brunt–Väisälä
frequency N*, surface pressure p0, specific heat capacity cp, and
instellation F0. This estimate corresponds to the jet speed at a
height z=H, where H is the atmospheric scale height. The
constant of proportionality depends on the heating profile at the
substellar point, so the predicted jet speed is a scaling relation in
general and only a numerical prediction for planets with zero
albedo and a forcing profile with a vertical wavelength ≈2H.
In Section 7, we discuss how this mechanism relies on

several assumptions and simplifications and suggest how other
sources of acceleration such as transient waves could affect the
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jet speed. We also show how the different properties of gaseous
“hot Jupiter” exoplanets could complicate the formation of a jet
via this mechanism, which we will investigate in a forthcoming
study.

We conclude that this mechanism is a good description of
the formation of the equatorial jet on a terrestrial tidally locked
planet with a dry, cloud-free atmosphere and can predict the
approximate jet speed for these planets. The key assumptions
required by this mechanism are that the zonal acceleration is
initially dominated by the contribution from stationary waves,
and that once the jet forms, it does not strongly affect the
magnitude of this zonal acceleration. This mechanism could be
extended to describe the jet formation and speed on planets
with thicker atmospheres, clouds with strong radiative effects,
or significant moisture content.

2. The Global Circulation of Terrestrial Tidally Locked
Planets

Many of the best planetary candidates for atmospheric
characterization or potential habitability are expected to be
tidally locked, but their atmospheric circulation is not fully
understood. This section reviews previous work related to the
equatorial jets of terrestrial tidally locked planets and shows the
typical features of a simulation of the global circulation on such
a planet.

2.1. Review of Previous Work

The atmospheric circulation of tidally locked planets is
measurable through observations such as thermal phase curves
(Parmentier & Crossfield 2017). This study is motivated
by the need to understand the formation of their equatorial jets,
which are the dominant dynamical feature of this circulation
(Pierrehumbert & Hammond 2019). Numerical atmospheric
modeling has been invaluable to understanding the composition
and climates of tidally locked gaseous planets such as hot
Jupiters (Mayne et al. 2014; Showman et al. 2015; Drummond
et al. 2018; Mendonça et al. 2018; Debras et al. 2020) and
terrestrial planets (Joshi et al. 1997; Boutle et al. 2017;
Hammond & Pierrehumbert 2017). The lack of observational
data makes verifying the accuracy of these models difficult,
compared to models of Earth and the other planets of the solar
system. This has led to studies using different modeling
approaches (Cho et al. 2015) and different approximations
(Mayne et al. 2019) as it is not clear what techniques give the
most realistic results. This study aims to provide a theoretical
basis for the equatorial jet on these planets, which may help to
guide modeling choices—for example, ensuring that an imposed
surface drag or top-of-atmosphere sponge layer does not
interfere with the momentum balance of the jet, or using a
high-enough upper boundary to fully resolve the zonal
momentum fluxes that produce the jet.

Previous studies have demonstrated different circulation
regimes on these planets, varying properties such as instellation
and rotation rate to show their effect on the global circulation
and its observable features (Kataria et al. 2014; Carone et al.
2015; Showman et al. 2015). Other studies have compared suites
of simulations to real observations such as phase curves of
terrestrial planets (Demory et al. 2016; Hammond & Pierrehumbert
2017) and hot Jupiters (Arcangeli et al. 2019). More detailed
measurements of circulation are becoming possible, such as

measuring wind speeds via via Doppler spectroscopy (Louden &
Wheatley 2015; Brogi et al. 2016; Flowers et al. 2019) and
measuring multidimensional temperature maps by eclipse mapping
and spectrally resolved phase curves (Majeau et al. 2012;
Stevenson et al. 2014).
An eastward superrotating equatorial jet is a common feature

of almost all simulations of tidally locked planets. Read &
Lebonnois (2018) define local superrotation as a state with a
local excess of eastward atmospheric angular momentum relative
to solid-body rotation at the equator. Any eastward flow at the
equator is therefore superrotating and must be produced by up-
gradient angular momentum transport toward the equator, a
requirement know as Hide’s Theorem (Hide 1969). This process
has been investigated for solar system planets such as Venus
(e.g., Fels & Lindzen 1974) and Earth (e.g., Shell & Held 2004).
Showman & Polvani (2010) showed that on tidally locked
planets, this transport is provided by planetary-scale stationary
waves, similar to the equatorial waves present in the tropics of
Earth (Matsuno 1966). In a pioneering study, Showman &
Polvani (2011) developed this concept further and demonstrated
it in a 2D linear shallow-water model, a 2D nonlinear shallow-
water model, and a 3D GCM. Their linear model relied on a
linear drag to produce the appropriate stationary waves for an
eastward equatorial acceleration (specifically, the equatorial
Kelvin wave) and did not produce a zonal equatorial acceleration
without this linear drag. Their nonlinear model did produce a
zonal equatorial acceleration without linear drag, which we
will explore further in Section 3.2. Heng & Workman (2014)
and Perez-Becker & Showman (2013) further explored two-
dimensional models of this system, showing how nonlinear
balance or a more realistic forcing field gives different solutions,
while still preserving the formation of the equatorial jet. This
study focuses on the three-dimensional structure of the zonal
acceleration, following authors such as Mendonça (2020) and
Debras et al. (2020), who analyzed the vertical structure of the
zonal acceleration on tidally locked planets, identifying the key
role of the vertical transport of zonal momentum.
Tsai et al. (2014) followed the approach of Wu et al. (2000)

to construct a three-dimensional linear model where the
stationary wave response to stellar forcing is composed of
separable vertical modes coupled to two-dimensional shallow-
water systems. This showed that a uniform eastward zonal flow
shifts the stationary equatorial waves eastward, producing the
equatorial hot-spot shift seen in observations (Parmentier &
Crossfield 2017). Tsai et al. (2014) also showed that on hot
Jupiters, the eastward shift of these equatorial waves can reduce
the acceleration they produce, allowing the equatorial jet to
reach a steady state. Hammond & Pierrehumbert (2018) used a
two-dimensional linear shallow-water model to show how a
zonal flow with meridional shear, and an associated geostro-
phically balanced geopotential perturbation, produces the
characteristic shape of the atmospheric circulation and hot
spot shift on tidally locked planets.
The global circulation on a slowly rotating tidally locked planet

has similarities to the tropical circulation on Earth due to the large
Rossby number in both cases (Pierrehumbert & Hammond 2019).
This leads to behavior that can be approximated by the “Weak
Temperature Gradient” (WTG) regime (Pierrehumbert 2010a;
Koll & Abbot 2016), where a nonlinear balance in the zonal
momentum equation leads to weak horizontal geopotential
gradients (and therefore weak temperature gradients). This will

2

The Astrophysical Journal, 901:78 (16pp), 2020 September 20 Hammond, Tsai, & Pierrehumbert



be a key simplifying assumption later in this study. The tropics of
Earth also host equatorial stationary waves similar to those on
tidally locked planets (Matsuno 1966; Gill 1980), which can lead
to similar equatorial superrotation (Norton 2006). Lutsko (2018)
considered a very similar system to this study, with a localized
tropical heat source on the equator of Earth rather than a
planetary-scale day–night instellation gradient.

This study also builds on other work on the magnitude and
scaling behavior of the velocity and temperature fields on these
planets. Komacek & Showman (2016) and Komacek et al.
(2017) introduced a predictive theory for the scaling of
temperature and velocity perturbations in the atmospheres of
tidally locked planets and successfully applied it to explain the
observed scaling of day–night temperature differences on hot
Jupiters. Koll & Abbot (2015) produced a similar theory for
terrestrial planets based on the WTG approximation, which
Kreidberg et al. (2019) used to interpret observations of the
thermal phase curve of a terrestrial planet. Zhang & Showman
(2017) derived scaling relations for properties of the atmo-
spheric circulation of tidally locked planets, based on the
relations of Komacek & Showman (2016). Koll & Komacek
(2018) treated the global circulation of a tidally locked planet
as a heat engine to predict the wind speeds on hot Jupiters.
Many of these theoretical predictions of observable quantities
depend on the equatorial jet speed, which previously needed to
be diagnosed from GCM simulations. This study aims to
provide a predictive theory for this jet speed on terrestrial
tidally locked planets to enable the prediction of many other
observable quantities.

2.2. Typical Global Circulation

Figure 1 shows the typical global circulation on a terrestrial
tidally locked planet, similar to the planets of the Trappist-1
system (Gillon et al. 2017). The simulation was run in the
GCM ExoFMS (Ding & Pierrehumbert 2016; Pierrehumbert &
Ding 2016; Hammond & Pierrehumbert 2017, 2018; Pierre-
humbert & Hammond 2019). Section 6.1 describes the details
of the numerical modeling in this study in more depth; we
introduce a single simulation here to show the key features of
its circulation. Its main parameters are a radius of 6×106 km,
a rotation period of 10 days, and instellation at the substellar
point of 300 Wm−2.

Figure 1(a) shows the geopotential and velocity fields at the
500 mbar pressure level of this simulation, at the peak of the
equatorial jet. Tsai et al. (2014) and Hammond & Pierrehum-
bert (2018) explained that the geopotential and velocity fields
represent a “Matsuno-Gill” pattern of stationary equatorial
waves (Matsuno 1966; Gill 1980), which are shifted eastwards
by the equatorial jet. Hammond & Pierrehumbert (2018)
showed how the velocity field is primarily a combination of a
meridionally sheared (but zonally uniform) equatorial jet, plus
a stationary wave response with zonal wavenumber 1. This
results in a strong eastward velocity at −90° where these two
components combine, and a region of weak flow at 90° where
these two components cancel.
The eastward shift of the peak of the geopotential in

Figure 1(a) corresponds to a shift in the peak of the temperature
field eastwards from the substellar point. The maximum shift in
the geopotential is at the level of the peak of the equatorial jet;
the maximum shift in the temperature field is at a different
pressure level as it is out of vertical phase with the geopotential
field due to the hydrostatic relation. The shift of the hot spot
and the difference in temperature between the dayside and the
nightside are observable quantities (Komacek & Showman
2016; Parmentier & Crossfield 2017), which should depend on
the speed of this jet (Zhang & Showman 2017). The next
section introduces the idealized model that we use to calculate
the three-dimensional stationary wave response to a day–night
instellation gradient.

3. Three-dimensional Stationary Wave Response to Forcing

In this section, we calculate the three-dimensional sta-
tionary waves produced in the primitive equations on an
equatorial beta plane by an idealized forcing, representing the
atmosphere of a tidally locked planet. Our aim is to show the
structure of the zonal acceleration produced by these
stationary waves, which we will use in the next section to
suggest a mechanism for the formation and equilibration of
the equatorial jet. Unlike previous studies, we find the
response to forcing without imposing a linear drag on the
horizontal velocities, which we will show to be vital to
matching the magnitude of the velocity perturbations and
zonal acceleration in our GCM simulations.

Figure 1. The equilibrium circulation of a simulation of a terrestrial tidally locked planet with instellation -300 W m 2, discussed in Section 2.2. It is plotted at the
390 mbar level, for consistency with later figures. The substellar point is located at 0° longitude. This is a typical circulation pattern for a tidally locked planet, with an
eastward equatorial jet producing an eastward hot-spot shift. The eastward equatorial jet is centered at about 500 mbar.
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3.1. Idealized Beta-plane Model

The adiabatic, inviscid primitive equations in height (log-
pressure) coordinates (x, y, z) are (Vallis 2006)
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The variables in these equations are the temperature T, the
horizontal velocity =u u v,( ), the vertical velocity w, and
the geopotential Φ. The log-pressure z coordinate can be
transformed to the pressure coordinate = -p p es

z H , and
the vertical velocity w can be transformed to the vertical
pressure velocity w = - p H w( ) .

The Coriolis parameter is f= Wf 2 sin , where Ω is the
planetary rotation rate and f is the latitude (which we will
represent with the y coordinate on the beta plane, so that

f b= W =f y2 sin ). The density is r r= -z Hexp0 ( ) for a
surface density ρ0 (determined from the surface pressure for an
ideal gas) and a scale height that we approximate as
H=RT0/g. R is the specific gas constant, g is the acceleration
due to gravity, and T0 is the planetary equilibrium temperature
for the instellation F0. The Brunt–Väisälä frequency N* is
defined by k= + ¶ ¶N T H T ZR

H
2
* ( ), where the dry adiabatic

exponent κ=R/cp for the specific heat capacity cp. We
approximate N2

* to have the constant value of ´ - -5 10 s4 2 to
approximate the value used in the tropics of Earth by Wu et al.
(2000) and to match the magnitude of the velocity perturba-
tions in our GCM simulations in Section 6.

We recast these equations onto the beta plane, add a forcing Q
to represent that on a tidally locked planet, and introduce a linear
radiative cooling term and a Rayleigh drag term (which we
set to zero for the “nonlinear” solutions later). We impose a
second-order divergence damping, second-order hyperdiffusion,
and a sponge layer to stabilize the horizontal velocity fields
(Jablonowski & Williamson 2011), which are all represented by
the terms Du and DT. This results in the system:
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for an equilibrium temperature T0 defined by s=F T0 0
4. The

factor -e ps
2 3 corresponds to the pressure level at which the

long-wave optical depth is 2/3 in our GCM simulations, i.e.,
the radiating level of the outgoing long-wave radiation (the
structure of the solutions is not directly sensitive to this
parameter). The dynamical damping rate αdyn is an arbitrary
parameter corresponding to the rate of a linear Rayleigh drag,
which we set to zero for most of the calculations.
The second-order diffusive damping and second-order

divergence damping applied to the velocity field has the form

n=  + D Du uD S z K , 7u 2 2( ) ( ) ( · ) ( )

and the second-order diffusive damping applied to the
temperature field is
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terms is

= + +
-

S z
z z

z
1 5 1 tanh , 9s

w

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟( ) ( )

to give a sponge layer that prevents the reflection of waves in
the vertical direction from the upper boundary of the model.
The sponge layer height is zs=3H, and the length scale over
which the sponge layer increases to its maximum value is
zw=H/3. We choose the coefficients to be K2=107 and
ν2=3×107 to stabilize the calculations, without playing
a major role in the momentum balance (Jablonowski &
Williamson 2011).
The forcing Q is a three-dimensional field representing the

heating applied to the atmosphere on a terrestrial tidally locked
planet. We use an idealized vertical heating profile similar to
that used by Wu et al. (2000) to represent heating by
convective plumes in the tropics of Earth, as the atmosphere
in the simulations in this study is forced by the absorption of
long-wave radiation from the surface and by dry convective
adjustment:
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Gill & Philips (1986) use the same profile to represent
localized tropical heating on Earth that excites waves with a
vertical wavelength 2H. We found that the qualitative structure
of the resulting stationary waves did not depend strongly on the
exact structure of the vertical heating profile, as long as the
vertical wavelength of the heating profile was comparable to
2H. The discontinuity in the first derivative of this vertical
profile did excite higher-order modes than smoother forcing
profiles; we still used this profile as we found that the abrupt
end to the forcing at a height H produced zonal acceleration
profiles that matched those in the later GCM simulations well.
In Tsai et al. (2014), a similar system of stationary waves is
forced by a well-defined heating profile due to absorption of
stellar radiation in the atmosphere of a hot Jupiter.

4

The Astrophysical Journal, 901:78 (16pp), 2020 September 20 Hammond, Tsai, & Pierrehumbert



The forcing has the same horizontal distribution at all
vertical levels, following the cosine of the longitude θ to
represent the instellation on a tidally locked planet and
following a Gaussian envelope in the meridional direction:
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where the latitudinal scale of the forcing y0 is set to be a2 ,
where a is the radius of the planet, in order to generate
planetary-scale stationary waves similar to those in the GCM
simulations and the shallow-water model of Showman &
Polvani (2011).
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substellar point, and the albedo of the planet, so in general this
is a scaling relation ~Q
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0 rather than an exact equality.

We solve Equation (5) in a three-dimensional spectral basis
using the Dedalus package (Burns et al. 2016, 2020). This is an
open-source Python package for the numerical solution of
partial differential equations with spectral methods. We find the
stationary solution of this forced system using different basis
functions in each of its three-dimensions. The x direction is
represented with a Fourier basis, from which we exclude all
zonally uniform modes with zonal wavenumber n=0. This
prevents the formation of a zonally uniform flow that affects
the stationary wave response, as we are trying to isolate the
acceleration due to stationary waves, without any background
zonal flow. We will investigate the feedback of a zonal-mean
flow on the stationary wave response in Section 4.3. The y
direction is represented by a combination of sine and cosine
functions (the “Sin/Cos” basis in Burns et al. (2020)), which
allows for even or odd parity to be imposed on the variables in
this direction. The u, w, Φ, and T fields are required to be
symmetric about the equator, and the v field is required to be
antisymmetric. The z direction is represented with a Chebyshev
basis, where we impose the boundary conditions w=0 at the
top and bottom of the model.

This system of equations is similar to the primitive equations
solved in a GCM; however, the solution is conceptually closer
to the results of shallow-water models such as those in Matsuno
(1966), Showman & Polvani (2011), and to the results of the
three-dimensional stationary wave model of Tsai et al. (2014).
This system is on a beta plane rather than a sphere, has strict
parity conditions on all of its variables about the equator, is

restricted to nonzero zonal wavenumbers, and is forced by a
predefined stationary sinusoidal function. It therefore recovers
only the three-dimensional stationary waves due to this forcing,
rather than producing a full planetary circulation as a GCM
would. The solution should be considered as “pseudo-
equilibrium” as it satisfies the constrained set of equations we
are solving, but in reality would produce a zonal-mean zonal
flow which would modify the solution.

3.2. Stationary Wave Structure

Previous studies have found the stationary wave response
and resulting zonal acceleration in systems with a linear drag
applied to the velocity fields (Tsai et al. 2014). Showman &
Polvani (2011) found that a linear shallow-water system with
no linear drag produced no zonal acceleration at the equator, as
it could not produce the required Kelvin wave response there
without drag. In this study, we calculate the solution with no
linear drag in order to match our GCM simulations and to
derive an acceleration and equatorial jet speed that does not
depend on an arbitrarily chosen linear drag timescale. We will
show that our nonlinear model can produce a zonal acceleration
at the equator without linear dynamical drag. Showman &
Polvani (2011) showed that this was possible in two-
dimensional nonlinear shallow-water simulations, but did not
examine the resulting stationary wave structure.
Figure 2 shows the temperature and velocity fields of the

equilibrated solutions to Equation (5) in the Dedalus software
package, with and without a linear drag αdyn. Both of
the solutions have a planetary radius ´6 10 m6 , acceleration
due to gravity -10 m s 2, day (and year) length 10 days,
instellation -10 W m3 2, specific heat capacity - -10 J kg K3 1 1,
molar mass -28 g mol 1, and surface pressure 10 Pa5 . The
square of the Brunt–Väisälä frequency is set to a constant value

= ´ - -N 5 10 s2 4 2
* . The magnitude of the velocity field in the

solution is sensitive to this parameter, but it is difficult to
estimate accurately for a atmosphere in general (unless the
atmosphere is isothermal, which is not the case here). We
suggest that this value is appropriate for these “Earth-like”
atmospheres, as it gives velocities that approximately match the
GCM simulations. It is important to note that the overall
magnitude of the acceleration fluxes is sensitive to this
parameter, but the actual mechanism is not.
These parameters correspond approximately to the GCM test

in Section 6 with instellation -10 W m3 2. Figure 2(a) shows the
“linear” solution with a strong linear dynamical damping with a
timescale of 1 day. While gaseous planets such as hot Jupiters
may have been affected by magnetic drag that can be
represented by this term (Komacek & Showman 2016), there
is no reason to expect that the equatorial jet speed of terrestrial
planets at the temperatures we consider will be affected by a
uniform Rayleigh drag (apart from the drag near their surface,
which will not affect the momentum budget at the level of the
jet). We include the case with linear drag for comparison with
the two-dimensional shallow-water solutions of Matsuno
(1966) and Showman & Polvani (2011), as well as the three-
dimensional stationary wave calculations of Tsai et al. (2014).
The geopotential and velocity fields in Figure 2(a) are similar to
those in Matsuno (1966) and Showman & Polvani (2011), with
a stronger response on the equator than the solution in Matsuno
(1966) due to the higher radiative and dynamical damping
rates.
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Figure 2(b) shows the “nonlinear” solution with the same
parameters as the solution in Figure 2(a), but with no
dynamical damping. This system is governed by the same
balances in the momentum and thermodynamic equations in
Equation (5) as the GCM simulations later. Komacek &
Showman (2016) discuss this nonlinear (or “advective”)
momentum balance in detail and compare it to other
momentum balances via the Coriolis term and linear damping.
The “linear”’ and “nonlinear” solutions are similar far away
from the equator, where the momentum balance is governed by
the Coriolis term ´ uf .

In the linear case, the geopotential gradient ∇zΦ is balanced
by the linear drag a udyn . This leads to a linear scaling between
the velocity and the geopotential perturbation (and, via the
hydrostatic balance equation and the thermodynamic equation,
between the velocity and the forcing):

~ DF ~ D ~u T Q. 13( )

This gives the linear relation between the velocity perturba-
tions and forcing in Matsuno (1966) and Showman & Polvani
(2011), which means that the zonal acceleration caused by
these perturbations scales quadratically with the forcing. In the
“nonlinear” case, this Rayleigh drag term is not present and the
balance must be different. We discuss this nonlinear balance in
more detail in Section 5 and show how it leads to a much
weaker dependence of the velocity perturbations and zonal
acceleration on the magnitude of the stellar forcing. This
approximation will be invalid when the WTG approximation
does not apply globally on sufficiently rapidly rotating planets
or for sufficiently strong forcing that leads to nonnegligible
nonlinear terms in the thermodynamic equation in Equation (5)
(Pierrehumbert & Hammond 2019).

An important difference between the “linear” and “non-
linear” cases is that in the linear case, the magnitude of the
velocity field is entirely dependent on the arbitrarily chosen
αdyn damping parameter. This means that for a given forcing Q
(and constant planetary parameters), the magnitude of the
equatorial acceleration and the resulting jet speed will be
entirely determined by the choice of the dynamical damping
rate αdyn. Conversely, in the “nonlinear” case, the magnitude of
the equatorial velocities is determined only by the planetary

parameters. The nonlinear term plays the role of linear
dynamical damping, balancing the gradient of the geopotential
Φ. The nonlinear solution therefore has more predictive power
than the linear solution. The linear case is still useful for
emulating the behavior of the nonlinear case and providing
analytically soluble systems, as the damping parameter can
represent the nonlinear term if an appropriate value is chosen
(for example, if a ~ ¶u u uxdyn ).
Both solutions are sensitive to the Brunt–Väisälä frequency

N*. If the frequency is large enough that the w term is the
dominant balance in the thermodynamic equation in
Equation (5) (which is the case in the solutions plotted in this
study), the qualitative form of the solutions should not depend
on the exact magnitude of N*. The absolute magnitude of the
vertical velocity perturbation (and by extension, the horizontal
velocity perturbations) will depend on its magnitude. If the
Brunt–Väisälä frequency is small enough that the w term is not
the main term balancing the forcing in the thermodynamic
equation (i.e., the WTG approximation does not apply), the
stationary wave response to forcing may be very different. The
Brunt–Väisälä frequency depends on the temperature structure
of the atmosphere; it is simple to calculate for an isothermal
atmosphere but we found that assuming an isothermal
atmosphere did not produce stationary wave solutions that
matched the GCM simulations, where the convective atmos-
phere (on the dayside) is much closer to neutral stability. The
Brunt–Väisälä frequency is zero for a neutrally stable
atmosphere, and it is difficult to estimate an accurate value to
represent the entire atmosphere of a tidally locked planet.
We chose a constant value of = ´ - -N 5 10 s2 4 2

* to give
solutions that approximately matched the magnitude of the
stationary waves in the GCM and to be consistent with the
value used to represent the tropics of Earth by Wu et al. (2000).
The absolute value of the jet speed we predict is only as
accurate as the value chosen for this frequency, although the
qualitative mechanism is the same whatever value is chosen.
An improved representation of this frequency could be a way to
improve the accuracy of this model, highlighting the
importance of understanding the generation of static stability
in the atmospheres of tidally locked planets.

Figure 2. The geopotential and velocity fields at the =p 0.39 bar ( »z 8630 m) level for the stationary solutions to Equation (5). This level corresponds to the peak
of the “Stationary Horizontal” acceleration in Figure 3. The solution in the first plot has a linear drag a udyn for a drag timescale t a= =1 1 daydyn dyn/ , and the
second plot has no linear drag. Away from the equator, where the momentum balance is governed by the Coriolis force, the two solutions are similar. Near the equator,
the solutions are governed by linear drag and nonlinear balance respectively. This distinction is vital to accurately calculating the equatorial velocities and acceleration.
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4. Jet Formation Mechanism

The three-dimensional stationary waves induced by the day–
night instellation gradient produce a zonal acceleration at the
equator (which would accelerate an equatorial jet, if we had not
suppressed this in our idealized calculations). In this section,
we calculate the vertical profiles of the different terms
contributing to this acceleration. We will then propose a
mechanism in which the jet forms due to this acceleration then
interacts with the vertical velocity to produce a deceleration
that balances this acceleration and produces equilibrium. This
mechanism is similar to that used to describe the formation of
superrotating flows on Venus and Titan by Leovy (1987) and
Zhu (2006).

4.1. Acceleration Profile Structure

The velocity fields in the solution to Equation (5) produce a
zonal-mean zonal acceleration in spherical pressure coordinates
(θ, f, p) (Lutsko 2018):
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for the acceleration terms “Mean Horizontal” (MH), “Mean
Vertical” (MV), “Stationary Horizontal” (SH), “Stationary
Vertical” (SV), “Transient Horizontal” (TH), and “Transient
Vertical” (TV). On the beta plane (x, y, p), this is
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where overbars denote zonal-mean values and asterisks denote
deviations from the zonal-mean value (“stationary” terms). All
quantities such as u are time means, apart from the “Transient”
terms where the primes denote deviations from the time mean
(“eddy” terms), and the square brackets denote a time mean
taken after the two eddy terms are multiplied together. Note
that these terms are simplified compared to the equivalent terms
in other studies such as Mayne et al. (2017); the “Mean” terms
have been expanded and partially canceled by combination
with the zonally averaged continuity equation.

For forcing that is symmetric about the equator, v will be
zero on the equator. We assume that the stationary forcing will
produce stationary waves that are much larger than the transient
waves, so the acceleration terms associated with the transient

waves can be ignored (although we will still include these
terms when diagnosing the momentum budget in the GCM
simulations). These assumptions lead to the following
simplified expression for the zonal-mean zonal acceleration
on the equator:
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Figure 3 shows the terms in Equation (16), for the solution to
Equation (5) in the linear limit and the nonlinear limit (which
are the solutions shown in Figure 2). The “Mean Vertical” term
is zero in both cases as the zonal-mean zonal velocity is zero.
The linear and nonlinear cases have qualitatively similar
vertical acceleration profiles, although the nonlinear case has a
larger acceleration, as the linear case must have smaller
velocity perturbations from its additional dynamical damping.
The “Stationary Horizontal” term corresponds to a transport of
eastward momentum toward the equator at about 0.4 bar, as
shown by Showman & Polvani (2011) in a two-dimensional
model corresponding to this level. The “Stationary Vertical”
term corresponds to a transport of eastward momentum down
from this level to about 0.6 bar, where it will accelerate the
initial jet at the initialization of the atmosphere from rest in the
GCM. The structure of this acceleration is similar to that shown
by Debras et al. (2020) for hot Jupiters, who identified the role
of the “Stationary Vertical” term in accelerating the jet, rather
than only decelerating it as in Showman & Polvani (2011). In
the next section, we will describe a mechanism where this
initial jet produces a new “Mean Vertical” acceleration term,
which moves it up back toward the 0.4 bar level, and
eventually balances the “Stationary” terms in equilibrium.

4.2. Predicted Jet Speed

The acceleration profiles caused by momentum transport
from stationary waves in Figure 3 correspond to the zonal
acceleration when there is no zonal-mean zonal flow. We
suppose in this section that the jet does not strongly feed back
on these stationary waves and affect the resulting acceleration,
an assumption that we test in Section 4.3. Instead, the primary
effect of the zonal-mean jet u is to increase the “Mean Vertical”
term in Equation (16), which is zero when the atmosphere is at
rest. If this is the only feedback from the jet on the zonal
momentum budget, the jet will accelerate until the “Mean
Vertical” term exactly balances the sum of the “Stationary”
terms, shown as the dashed black line in Figure 3.
Setting =¶

¶
0u

t
in Equation (16) shows that the zonal-mean

jet u required for the “Mean Vertical” term to balance the
“Stationary” terms is

ò w f f
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Figure 4 is a schematic of how this mechanism works in
practice. The first panel shows the evolution of the zonal-mean
zonal flow to equilibrium, where line 3 is the equilibrium jet
predicted by Equation (17), and lines 1 and 2 are example jet

7

The Astrophysical Journal, 901:78 (16pp), 2020 September 20 Hammond, Tsai, & Pierrehumbert



profiles chosen to represent the spin-up of the jet. The second
panel shows the resulting “Mean Vertical” acceleration from
each of these velocity profiles. As the jet speed increases over
time, this term increases until it balances the sum of the
“Stationary Horizontal” and “Stationary Vertical” terms in the
zonal-mean momentum equation and equilibrium is reached.
Line 3 and the dashed line do not cancel exactly above z=H
due to the way we estimate w, which we will discuss later.

The mechanism can also be understood qualitatively by
considering the direction of zonal momentum transport. The
stationary waves form in response to the dayside instellation and
nightside cooling. These produce a “Stationary Horizontal”
transport of eastward angular momentum toward the equator,
with a peak around one scale height above the surface. This is
opposed by the “Stationary Vertical” transport of this eastward
momentum toward the surface. This accelerates a jet closer to the
surface than the peak of the horizontal momentum transport. As
this jet forms, it interacts with the zonal-mean vertical velocity
associated with a Hadley-like circulation (which is not zero, as
there is a zonal-mean component to the instellation, unlike in the

idealized sinusoidal forcing in Showman & Polvani 2011). This
interaction produces a “Mean Vertical” acceleration, as the jet is
moved upwards by the zonal-mean vertical velocity. As the jet
increases, this acceleration term balances the “Stationary” terms
until they are exactly balanced in equilibrium. If the “Stationary”
terms exactly cancel at a certain pressure level, the peak of the
equilibrium jet will form there, as the “Mean Vertical” term will
be zero there as the jet has no vertical shear at that point.
The terms denoted by asterisks in Equation (17) are determined

entirely by the calculation of the stationary wave response in
Section 3. This calculation specifically excludes the zonal-mean
quantities with zonal wavenumber 0, and so does not determine the
zonal-mean vertical velocity w . We instead estimate w to be the
zonal mean of the dayside vertical velocity, as we expect there to
be a Hadley-like overturning on the dayside due to instellation
there. The sinusoidal variation of forcing with longitude in
Section 3 implies an equal and opposite overturning on the
nightside, giving no zonal-mean vertical velocity. A more realistic
forcing field like that in Perez-Becker & Showman (2013) would
be uniform on the nightside and would only support overturning

Figure 4. A schematic of the formation of an equatorial jet by the mechanism proposed in this study. The first panel represents the development of the jet; line 3 is the
equilibrium jet predicted by Equation (29) to balance the “Stationary” acceleration terms, which are shown by the dashed line in the second panel. It produces line 3 in
the second panel, which balances the “Stationary” terms. Lines 1 and 2 in the first panel are velocity profiles chosen to represent the jet in its spin-up; as time progresses,
the jet speed increases and the “Mean Vertical” acceleration in the second panel increases as well, until it reaches line 3 and equilibrium is achieved.

Figure 3. The vertical profiles of the “stationary” acceleration terms in Equation (16) for the solutions in Figure 2, which are the basis of the mechanism in Section 4. The
qualitative forms of the profiles are the same, but their magnitudes are different as the zonal momentum equation is governed by different balances in each case. The local
peaks of the acceleration profiles at about 0.4 bar correspond to the acceleration in two-dimensional shallow-water models such as in Showman & Polvani (2011). The
peak of the “Stationary Vertical” term at about 0.6 bar is the main contribution to the unbalanced initial acceleration, which produces the equatorial jet.
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on the dayside, giving a nonzero zonal-mean vertical velocity. Our
approximation of w in this stationary wave calculation is therefore

òw
p

w=
p

p

-
y p x y p dx,

1
, , . 18

2

2
( ) ( ) ( )

We only calculate u up to z=H using this approximation, as
above this level w can cross zero, giving an undefined solution to
Equation (17). Figure 4(b) shows that ignoring u above z=H is
a reasonable approximation, as the majority of the “Stationary”
acceleration is below this level, so the portion of u above z=H
is not important to the zonal-mean momentum budget.

Figure 5 shows the zonal velocity profiles that are predicted
by this mechanism using the stationary wave calculations in
Dedalus, as discussed in Section 3. We vary the instellation
(the magnitude of the forcing) but keep all other parameters the
same. It is notable that the predicted zonal-mean jet only
depends weakly on instellation. This is due to the nonlinear
dependence of the velocity perturbations on the instellation, as
well as the inverse relation between the jet speed and the zonal-
mean vertical velocity (which increases with increasing
instellation) given by Equation (17). In reality, and in the
GCM simulations, the evolution of the global circulation will
be more complicated as the jet will affect the “Stationary”
terms and be affected by the “Transient” terms, among other
nonlinear processes. In the next section, we investigate how
strongly the jet affects the “Stationary” terms.

4.3. Jet Feedback on Stationary Acceleration Terms

This study proposes that the jet on terrestrial tidally locked
planets reaches equilibrium when it becomes strong enough that the
“Mean Vertical” acceleration term cancels the “Stationary”
acceleration terms in Equation (16). Tsai et al. (2014) proposed a
different mechanism for equilibrium in the atmospheres of hot
Jupiters, where the jet Doppler-shifts the stationary waves produced
by the instellation far enough eastward that the “Stationary”
acceleration terms decrease to zero. These acceleration terms
require a phase difference between the on-equator stationary Kelvin
waves and the off-equator stationary Rossby waves; if they are
shifted toward the same position, the acceleration will decrease
(Tsai et al. 2014; Hammond & Pierrehumbert 2018).

So far, we have ignored this effect and assumed that the jet
does not affect the stationary waves and the resulting
acceleration strongly enough to affect the zonal momentum
budget. In this section, we find the effect of an imposed
background flow on the nonlinear solutions to Equation (5) to
see if this feedback is an important effect. In Section 3 the
zonal mean of all variables was set to zero, but we now impose
a nonzero zonal-mean background flow with a Gaussian profile
in the meridional direction, similar to the background flow in
Hammond & Pierrehumbert (2018):

= -u u e , 190
y
a

2
( )( )

where a is the planetary radius. The exact meridional profile of
this flow is not critical, as we focus on its effect at the equator
only. The background flow must satisfy Equation (5), so we
also impose a geopotential perturbation:

bF = -a u e . 202
0

y
a

2
( )( )

We impose the same zonal flow at all vertical levels; in
reality, the jet would vary in the vertical direction.
Figure 6(a) shows the geopotential and velocity fields for the

nonlinear solution with this background jet now imposed, with
otherwise the same parameters as the solution with instellation

-1000 W m 2 in Figure 2(b). The imposition of the jet gives a
visually different solution (with a structure explained in
Hammond & Pierrehumbert (2018), but the magnitude of the
zonal acceleration is almost the same in both cases. This shows
that it can be difficult to estimate the zonal acceleration from
the visual appearance of the stationary wave field.
Figure 6(b) shows the effect of the zonal-mean zonal

velocity on the maximum value of the “Stationary Horizontal”
acceleration term, for a range of values of instellation. For the
calculation with instellation -10 W m3 2, the “Stationary
Horizontal” term is not strongly affected by the imposed
background flow until the flow is greater than about -50 m s 1.
As the jet speed in the corresponding GCM simulation is
approximately -38 m s 1 (as shown in Figure 6(b)), this
feedback should not play a large role in the zonal momentum
budget. The feedback from the jet is also small in the case with
instellation -10 W m2 2, where the Dedalus calculations imply
that the jet speed in the relevant GCM simulation is smaller

Figure 5. Equilibrium zonal-mean zonal velocity profiles predicted by the “nonlinear” (zero Rayleigh drag) calculation using the Dedalus software described in
Section 3, according to the mechanism in Section 4. The first panel shows the profiles for different values of instellation, and the second panel shows the maximum
value of each profile vs. the instellation. The jet speed only depends weakly on instellation, due to the nonlinear balance governing the magnitude of the velocity
perturbations at the equator, its inverse dependence on the zonal-mean vertical velocity.
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than required to significantly affect the acceleration. However,
Figure 6(b) suggests that this feedback is relevant to the case
with instellation -10 W m4 2. The calculation implies that the jet
speed in this test in the GCM is strong enough to reduce the
acceleration to approximately half its strength in the absence of
a jet. The jet should still reach equilibrium via the proposed
mechanism but may have a lower maximum speed than
predicted. Although this implies that the jet speed could be half
that predicted by our estimate (where we ignore this feedback
effect), in Section 6we find that our estimate still matches the
GCM simulation results reasonably well. This may mean that
we have overestimated the effect of this feedback in this
section, possibly due to our use of a vertically uniform
background flow at the “jet speed.” In reality, the flow only has
this speed at one pressure level and is significantly less at the
peaks of the “Stationary” acceleration terms (as we explain
later, the peak jet speed does not necessarily coincide with
either of the maxima of these acceleration terms). In addition,
in these Dedalus calculations, the imposed jet does not
significantly affect the vertical structure of the acceleration
terms beyond decreasing their magnitude. This is consistent
with Tsai et al. (2014), where the stationary waves Doppler-
shifted by an imposed jet retained the same vertical structure.

In summary, this section shows that for a terrestrial tidally
locked planet with instellation -10 W m3 2, the feedback of the
jet on the stationary waves and the resulting “Stationary”
acceleration terms are negligible for our simulations with
instellation of -10 W m3 2 and below. It may be significant for
the simulations with instellation higher than this, but we find
later that the effect may not be as great as predicted by our
idealized calculations in this section, which apply the “peak”
jet speed at all vertical levels and so may overestimate the
effect of this feedback.

5. Predicting Jet Speed

In this section, we estimate the magnitude of the equatorial
acceleration for given planetary parameters and use this to
derive the jet speed that will balance this acceleration. In
Section 3, we predicted the equilibrium jet speed in
Equation (17) by estimating the zonal flow that would produce

a “Mean Vertical” acceleration that would balance the positive
“Stationary Vertical” acceleration peak shown in Figure 3. In
this section, we approximate Equation (17) as

w~ -
¶
¶

u
H

w p
u . 21* *( ) ( )

This required us to approximate that the numerator (the
“Stationary” terms) and the denominator (the zonal-mean
vertical velocity) of the integrand have a similar vertical profile.
This is supported by Figure 3(b), where the sum of the
“Stationary” terms has a similar vertical profile to the forcing Q
used in Section 3. This means that the vertically varying parts
of the numerator and denominator approximately cancel, and
the integral in Equation (17) becomes a multiplication by H.
To estimate the speed of the jet, we find the magnitude of the

velocity perturbations u v w, ,* * * and the zonal-mean vertical
velocity w , for a given forcing Q. The behavior of the system is
partly governed by the dominant balance in the thermodynamic
equation in Equation (5). In this study, the dominant balance is
between the w term and the forcing Q (Holton 2004;
Vallis 2006), which is a state known as the “Weak Temperature
Gradient” (WTG) regime (Pierrehumbert 2010a; Koll &
Abbot 2016; Pierrehumbert & Hammond 2019). Imposing
the WTG approximation and equating these two terms gives

~w
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N H
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2
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Approximating the derivatives in the continuity equation in
Equation (5) as ¶ ¶ ~x a1 and ¶ ¶ ~z H1 gives an
estimate of the horizontal velocity perturbation (also known as
the “eddy” component, the perturbation to the zonal-mean
value):
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This is the same as the “advective balance” in Komacek &
Showman (2016) and allows us to estimate the magnitude of

Figure 6. The first panel shows the stationary wave response to forcing given an instellation -10 W m3 2 and a background jet = -u u e y a
0

2( ) , where = -u 30 m s0
1

(similar to the equivalent test in the GCM). The geopotential and velocity fields appear very different from the solution in Figure 2(b), which is the same apart from the
imposed background jet. This case with a background jet has almost exactly the same zonal acceleration at the equator, as shown by the second panel, which plots the
fractional change in the maximum “Stationary Horizontal” acceleration relative to the acceleration with zero zonal-mean background flow. The vertical dashed lines
show the maximum jet speed in the corresponding GCM simulation.
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the “Stationary Vertical” acceleration term in Equation (21):
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This is the same as the magnitude of the “Stationary
Horizontal” term if it is approximated as u u a* * . This means
that the magnitude of the total acceleration in Equation (21)
scales in the same way with forcing as the “Stationary Vertical”
term alone.

We estimate the magnitude of the zonal-mean vertical
velocity to predict the jet speed from Equation (17). We assume
that the zonal-mean form of the thermodynamic equation is
governed by the same WTG balance:
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We also need to estimate the magnitude of the zonal-mean
vertical velocity w . This depends on the zonal mean of the
forcing field Q. The idealized forcing field used in the
calculation in Section 3 had no zonal mean, but we can
estimate the magnitude of an equivalent “realistic” field where
the nightside forcing is uniform (or zero), as in Perez-Becker &
Showman (2013). If we assume that in reality only the dayside
forcing contributes to the zonal mean of the forcing (and
therefore to the zonal-mean vertical velocity), we can estimate
the zonal mean of the forcing to be

òp
p~ ~

p

p

-
Q Q dx Q

1

2
. 26

2

2

0 ( )

This gives the following expression for w :
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Equation (21) then gives the expected jet speed using the
expressions for the magnitude of the acceleration and vertical
velocity we have derived:
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We use the normalization of the forcing Q from Section 3 to

write this in terms of the instellation:
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This corresponds to a maximum jet speed at z=H, as by
approximating the vertical derivative ¶ ¶u z as u H we have
assumed that the jet speed increases from 0 at the surface to u
over the distance H. The predicted equatorial jet speed is
comparable to the magnitude of the velocity perturbations ~u*
on the equator in a state of nonlinear balance. This arises from
the cancellation of the vertical velocity term in the “Stationary

Vertical” term with the vertical velocity in the denominator of
Equation (17), as well as the cancellation of the vertical
derivative in the “Stationary Vertical” term with the vertical
integral in Equation (17). It is important to note that u

*

is not
the gravity wave speed gH , as might be expected. Instead, it
is the magnitude of the horizontal velocity providing nonlinear
zonal momentum balance on the equator. As discussed in
Section 3.1, the constant of proportionality in Equation (29)
depends on the vertical profile of the heating at the substellar
point, so will vary for planets without simple heating profiles
(and zero albedo) like those in our GCM simulations. We
expect that the overall mechanism and scaling relations will
remain the same, unless the heating profile has a scale very
different from H or the atmosphere is very thick.
In the next section, we will show how this prediction

approximately matches the jet speeds predicted by the
calculation in Dedalus in Section 3 and also the GCM results
that we will present later.
This prediction of the jet speed can be arrived at even more

simply, by interpreting the proposed mechanism as requiring
that the magnitude of the acceleration due to “Stationary
Vertical” transport, w¶

¶
u

p
* *( ), to be equal to the magnitude of

the gradient due to the “Mean Vertical” interaction between the
zonal-mean zonal flow and the zonal-mean vertical velocity,
w¶

¶
u

p
. Setting the “Stationary Vertical” and “Mean Vertical”

terms to be equal and approximating the derivatives as before
gives

~u
w

w
u . 30
*
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This leads to Equation (29) by the path outlined above. The
jet speeds predicted by the calculation in Dedalus and by
Equation (29) depend on the value of the Brunt–Väisälä
frequency N*. These values are therefore only as accurate as the
approximation of a constant N*, and the accuracy of the value
of the chosen N*.
The jet speed is strongly sensitive to the acceleration due to

gravity g, scaling with g3. Each of these factors of g enters
through the scale height H, which affects the magnitude of the
vertical velocity, the horizontal velocity, and determines the
vertical scale of the forcing. This cubic dependence on g is
misleading, as the Brunt–Väisälä frequency for an (isothermal)
atmosphere depends on g2, which means that in reality, the jet
speed only depends linearly on g. We have not replaced N*
with the exact expression for an isothermal atmosphere in
Equation (29) as this is not a good estimate for a realistic
terrestrial atmosphere, which is far from isothermal. This again
shows the importance of an accurate estimate of the Brunt–
Väisälä frequency in estimating the stationary wave strength
and the resulting jet speed.
The jet speed depends inversely on ps, implying that a very

high surface pressure gives a very weak jet. This comes about
because we assume that the jet forms at a pressure level
comparable to ps on terrestrial planets. For a gaseous planet
without a set surface pressure, it would instead be more
appropriate to use a pressure level at which the atmosphere is
heated strongly by shortwave radiation. In summary, this
estimate of jet speed relies on several assumptions about the
planet and its atmosphere and will not apply to planets with
different properties. We will investigate the jet speed on
gaseous tidally locked planets in a study to follow.
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6. GCM Simulations of Jet Formation

In this section, we examine how well the preceding
reasoning fares in explaining the zonal momentum budget of
GCM simulations. We hope that at some stage in the future, the
hierarchy of understanding can be completed by comparing the
GCM simulations to observations of terrestrial tide-locked
planets. We will show that the jet speed in the GCM
simulations can be approximately predicted by our previous
calculations of the stationary wave response.

6.1. Numerical Simulations

We ran simulations of the atmospheres of terrestrial tidally
locked planets in the GCM ExoFMS (Ding & Pierrehumbert
2016; Pierrehumbert & Ding 2016), built on the GFDL FMS
(Flexible Modeling System) and the associated cubed-sphere
dynamical core (Lin 2004). This solves the hydrostatic primitive
equations on a cubed-sphere grid with a hybrid “sigma-pressure”
coordinate system in the vertical, and uses a semigray radiative
transfer scheme and a dry convective adjustment scheme
(Pierrehumbert 2010b; Hammond & Pierrehumbert 2018). To
generate plots, the simulation results are regridded from the
cubed-sphere grid to a latitude–longitude grid and interpolated to
a pressure grid in the vertical.

We use 100 vertical levels to better resolve the vertical
profiles of the momentum fluxes shown in Figure 8. The
mechanism should still apply to simulations with a lower
vertical resolution, and this high vertical resolution would be
unnecessary for most other studies. We use a cubed-sphere grid
with 48 grid cells on each of the six faces, which corresponds
approximately to a spectral resolution of T63. We apply a
fourth-order horizontal divergence damping to the velocity
fields in the model, with an Earth-like nondimensional damping
coefficient of 0.16 (Lin 2004).

The planetary atmospheres simulated all have a radius of
´6 10 m6 , a rotation period of 10 days, acceleration due to

gravity of -10 m s 2, specific heat capacity - -10 J kg K3 1 1, molar
mass -28 g mol 1, and surface pressure 10 Pa5 in order to match
the stationary wave calculations in Dedalus in Section 3. The
simulations have different values of instellation at their
substellar point, from -10 W m2 2 to -10 W m4 2. This range is
comparable to the range of instellation values for the Trappist-1
system (Gillon et al. 2017), which could provide an observa-
tional test of the dependence of the strength of global

circulation on instellation. The simulations were spun up for
1000 days to ensure the outgoing long-wave radiation and
zonal-mean zonal velocity reached equilibrium, then data were
recorded every 2 days for 1000 days to ensure a long-enough
measurement of the time-mean quantities, with enough time
resolution to capture the transient quantities.

6.2. Equilibrium Momentum Budget

Figure 7 shows the state of the model in the first 10 days of
the spin-up of the test with instellation -10 W m3 2. The “Mean
Vertical” term is very small, as the equatorial jet is very weak at
this early stage. The shape of the zonal-mean zonal velocity
profile in Figure 7(a) almost exactly matches the shape of the
sum of the two “Stationary” terms in Figure 7(b). This is a key
result that supports our proposed mechanism, where the initial
jet is only due to these “Stationary” terms. Note that these
terms have not yet reached their full strength in equilibrium;
this is because the stationary velocity perturbations do not
reach their maximum amplitude immediately and take some
time to evolve. This means that rather than the “Stationary”
acceleration terms forming completely and then the jet forming
in response, the jet instead evolves in tandem with the
“Stationary” terms. The final balance should still be the same
as if the jet only evolved to balance the total “Stationary” terms
after they formed completely, as long as it does not affect these
terms strongly (as shown in Section 4.3).
Figure 8 shows the state of the simulation in equilibrium.

Figure 8(a) plots the zonal-mean zonal velocity at the equator of
this test in equilibrium, showing that its maximum is at about
400 mbar. In the mechanism we propose, this equatorial jet
forms to balance the unbalanced “Stationary” acceleration terms.
Figure 8(b) shows the terms in the zonal-mean momentum
budget (Equation (16)) for this simulation. Note that the “Mean
Vertical” term is zero at the peak of the jet, where the vertical
gradient of the jet is zero. The peak of the jet therefore
corresponds to the pressure level where the “Stationary
Horizontal” and “Stationary Vertical” terms originally cancel,
matching the two-dimensional shallow-water model of Show-
man & Polvani (2010, 2011). The amplitude of these two-
dimensional models corresponds to the amplitude of the first
baroclinic mode with vertical wavelength 2H, which is the
dominant mode excited by the forcing with wavelength 2H that
we introduced in Section 3.

Figure 7. The jet profile and acceleration terms averaged over the first 10 days of the GCM simulation with instellation -10 W m3 2. The shape of the zonal-mean
velocity profile matches the shape of the sum of the “Stationary” acceleration terms, supporting our proposed mechanism, where the the initial acceleration is only due
to these terms.
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The result that the peak of the jet corresponds to the pressure
level where the peaks of the two “Stationary” terms always
cancel (in Figures 3 and 8) is notable. If the jet were
equilibrated by a linear Rayleigh drag, the peak of the jet would
be at the pressure level that had the highest initial acceleration.
Instead, it is at a level that has zero zonal-mean zonal
acceleration at the initialization of the model.

In these GCM simulations the “Mean Vertical” term does not
totally cancel the peak of the “Stationary Vertical” term, unlike
in the idealized calculations in Section 3. The remainder of the
momentum balance in the GCM is mostly due to the Rayleigh
drag near the surface (not shown explicitly in the plot, but
included in the “Sum” line). The “Transient” terms in
Equation (14) also contribute to the momentum balance (and
are included in the “Sum” term) but are small compared to the
other terms. In addition, the “Stationary Horizontal” term in
equilibrium in Figure 8 is negative at around 700 mbar and
plays a role in equilibrating the jet.

This does not match the idealized solutions in Section 3,
where this term is always positive. This difference appears to
arise in the GCM in equilibrium at the pressure level where the
vertical shear of the zonal-mean zonal jet is strongest; this
could be modifying the stationary wave response by a
mechanism similar to that shown by Kato & Matsuda (1992).
This process could be similar to the equilibration process
suggested by Tsai et al. (2014) that we discussed in Section 4.3,
where the jet increases until it decreases the “Stationary” terms
enough to reach equilibrium.

The momentum budgets shown in this section have shown
the importance of considering the three-dimensional structure
of the stationary waves induced by forcing in these atmo-
spheres and the resulting vertical structure of the zonal
acceleration. The next section shows how the equatorial jet
speed scales with the magnitude of the instellation in these
simulations and compares it to the speed predicted by our
calculations in Section 3.

6.3. Jet Speed Scaling with Forcing

Figure 9 plots the zonal-mean zonal velocity at the equator
of each test in the GCM, showing how the jet speed increases
weakly with increasing forcing and how the peak moves to
lower pressures. This increase in the height of the jet is likely

related to an increase in the atmospheric scale height at higher
equilibrium temperatures.
The atmospheric scale height will increase at higher

temperatures, increasing the height of the jet according to the
theory in Section 5. However, the idealized scale height H
should always correspond to the same pressure -p es

1 for
surface pressure ps. This means that the decrease in the pressure
of the core of the jet at higher temperatures seen in Figure 9
cannot be explained by an increase in the scale height. It
implies that the height of the jet is increasing slightly faster
than the scale height H increases with temperature, which
cannot be explained by the idealized theory in Section 5. The
pressure level of the center of the jet only changes by a factor
of 2 over the three orders of magnitude of forcing we model, so
we suggest that our approximation that its height is H is fairly
accurate. Modeling the exact height of the jet would require a
more sophisticated theory but would be very useful for
observable planets where the effect of the jet is measured in
phase curves corresponding to particular pressure levels
(Parmentier & Crossfield 2017).
The jet speed only depends weakly on forcing—the

simulation with the highest instellation has 103 times more
energy deposited in the atmosphere than the simulation with
the lowest instellation, but its jet is only a few times faster. It
might be expected from the linear model in Showman &
Polvani (2011; the case when their forcing is weak) that a
forcing 103 times stronger would produce velocity perturba-
tions 103 times stronger as they are linearly related in that
model. This would give an acceleration 106 times stronger,
giving a jet 106 times faster. This is not the case in our GCM
simulations, as the nonlinear balance at the equator means that
the magnitude of the equatorial acceleration depends more
weakly on the forcing. In the mechanism we propose, the
equilibrium jet speed also depends inversely on the zonal-mean
vertical velocity, which increases with increasing instellation,
further reducing the dependence of the jet speed on the
instellation.
Figure 9(b) compares the results of our hierarchy of models.

It shows the maximum jet speed of each test in the GCM and
compares them to the jet speed of the equivalent tests using
Dedalus in Section 3, as well as the jet speed predicted by
Equation (29). The Dedalus calculations approximately match
the magnitude and scaling of the jet speeds in the GCM

Figure 8. The equilibrium jet profile and acceleration terms for the simulation with instellation -10 W m3 2 in the GCM. The jet peaks at about p/ps=0.4. The zonal
momentum budget is dominated by the balance described in Section 4, where the “Stationary” terms produce a jet that provides a “Mean Vertical” acceleration that
balances them.
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simulations, suggesting that the mechanism we propose is a
good description of the process for jet formation in the GCM.
The speed predicted by Equation (29) also approximately
matches the speeds in the GCM, suggesting that this is a
reasonable estimate of the jet speed on these planets (given the
approximations discussed in Section 5).

The jet speed in the GCM scales less strongly than the
prediction of Equation (29) at high instellations. This may be
due to the feedback discussed in Section 4.3, where the faster
jet at higher instellations reduces the magnitude of the
“Stationary Horizontal” acceleration term that transports
momentum toward the equator. A higher instellation and
temperature will also increase the relative importance of
the nonlinear terms in the thermodynamic equation, which
we ignored in our derivation of Equation (29). This will reduce
the resulting temperature perturbation and stationary wave
strength, reducing the jet speed in the GCM relative to our
simple estimate. At the lower end, the jet speed increases more
rapidly than predicted by Equation (29). We could not find a
convincing explanation for this but suggest that it could be due
to a linear balance, rather than nonlinear balance, controlling
the magnitude of the stationary waves. At lower instellation,
the stationary waves and the jet are closer to the ground and
more affected by the linear Rayleigh drag applied there. This
rapid increase could also be due to the onset of the resonance
identified by Tsai et al. (2014) that we discussed in Section 4.3.

In summary, the hierarchy of models approximately agree,
but the exact jet speed deviates from the prediction at very high
and low forcing values. Given the model complexity required
in other studies to accurately predict a single jet speed in
specific planets (Held & Hou 1980; Leovy 1987; Zhu 2006),
we suggest that this approximate match over three orders of
magnitude in forcing is a reasonable confirmation of the
proposed mechanism.

7. Discussion

The mechanism we propose relies on several approximations
and assumptions about which processes are dominant in the zonal
momentum budget of the atmosphere and which are negligible.
This section discusses the validity of these approximations and

considers other processes that could accelerate or decelerate the
equatorial jet.

7.1. Complications to This Mechanism

The mechanism proposed in this paper is an idealized
representation of a complex, time-dependent process. We
assume that the “Stationary” terms in the zonal momentum
equations form to their full strength instantly, then the jet
evolves over time to balance them. In reality, the temperature
and velocity perturbations of the stationary waves produced by
the day–night instellation gradient evolve on a timescale of tens
of days in the GCM simulations. This is a similar timescale to
the evolution of the jet itself, so the “Stationary” acceleration
terms and the jet evolve in tandem rather than sequentially. The
equilibrium zonal momentum balance in Figure 8 still behaves
as if the jet evolved to balance the fully formed “Stationary”
terms, so this approximation is reasonable. We also approxi-
mated that the jet does not strongly affect these “Stationary”
terms once it has formed; we showed this to be true for the
terrestrial planets in this study in Section 4.3, but it may not be
true for higher temperature planets or gaseous planets, which
might have stronger jets.
Some of the terms in Equation (14) that we ignored could

affect the jet speed. For example, we did not consider the effect
of the “Transient” terms, as they were small for the planetary
parameters we used. If the traveling waves were comparable in
magnitude to the stationary waves we considered, they could
accelerate the equatorial jet (Read & Lebonnois 2018) or
decelerate it (Showman et al. 2015). Other processes imposed
in GCM simulations may also affect the speed, such as the
surface drag. This drag extends to 700 mbar in our model; if it
were to extend higher or if the jet were to form lower, the drag
would affect the zonal momentum budget and the speed of
the jet.
We have also ignored the effect of the planetary rotation rate,

which may affect the jet speed (Showman et al. 2015;
Pierrehumbert & Hammond 2019). The rotation rate deter-
mines the horizontal scale of the stationary waves and therefore
the magnitude of the gradients that lead to the “Stationary”
acceleration terms. It will also set the horizontal length scale of
the acceleration terms, determining the meridional width of the

Figure 9. The scaling of the zonal-mean zonal equatorial velocity vs. instellation in our hierarchy of models. The first panel shows how the jet speed depends weakly
on instellation in the GCM simulations, scaling approximately with F0

1 2. The peak of the jet moves to slightly lower pressures at higher values of instellation. This
may be due to a larger scale height at higher temperatures, giving a longer vertical scale for the forcing and therefore a longer vertical wavelength for the dominant
vertical modes in the stationary waves induced by the forcing. The second panel shows how the maximum jet speed in the GCM simulations scales with instellation
and compares this to the calculation with Dedalus and to the prediction from Equation (29).

14

The Astrophysical Journal, 901:78 (16pp), 2020 September 20 Hammond, Tsai, & Pierrehumbert



equatorial jet. The calculations in this study assumed that the
horizontal scale of the velocity and temperature perturbations
was the planetary radius, which is only true in general for
atmospheres with sufficiently low Rossby numbers.

At higher rotation rates (for example, for terrestrial Earth-
sized planets with periods of less than one day), the (equatorial)
Rossby radius is significantly smaller than the planetary radius,
and the meridional scale of the equatorial waves will therefore
be smaller as well. This should produce a stronger gradient in
the velocity fields, giving a higher acceleration and a faster jet,
as shown in Pierrehumbert & Hammond (2019). The calcula-
tions in this study therefore only apply to planetary atmo-
spheres with stationary waves on the scale of the entire planet.
The rotation rate could be included in the estimate of jet speed
given by Equation (29) by replacing the planetary radius a with
an estimate of the actual meridional scale of the stationary
waves induced by the forcing. The equatorial Rossby radius
would be a possibility for this scale but would give a much
stronger dependence on rotation rate than was seen in
Showman et al. (2015) and Pierrehumbert & Hammond (2019).

7.2. Gaseous Planets

The atmospheric circulation of gaseous tidally locked
exoplanets such as hot Jupiters is generally more easily
observed that that of terrestrial planets. This makes predicting
the jet speed of these planets more observationally relevant
than for terrestrial planets. In a preliminary investigation, we
found that not all of the simplifying assumptions we made in
this study apply to gaseous planets. First, there appeared to be
nonnegligible feedback from the zonal jet on the “Stationary”
terms in the zonal-mean momentum budget, as investigated in
Section 4.3 and demonstrated in Tsai et al. (2014). This effect
appeared strongest where the vertical shear of the jet was
strongest, which could be due to an interaction with the vertical
external mode (Kato & Matsuda 1992).

Second, we found that the assumption of uniformly upward
zonal-mean vertical velocity did not apply to the simulation of
hot Jupiters; as in Mayne et al. (2017), there were regions of
zonal-mean downwelling on the equator. This affects the “Mean
Vertical” term that equilibrates the “Stationary” terms in our
mechanism, which relies on an upward zonal-mean vertical
velocity at all vertical levels at the equator. In addition, hot
Jupiters may be strongly affected by magnetic drag, which is
often represented by a linear Rayleigh drag (Perna et al. 2010).
This would modify the mechanism further (in fact, this could
make the mechanism simpler as the scaling of the velocities and
the equilibration of the jet would be due to this linear drag only).

We will investigate these issues in a study to follow and are
aiming to produce a simple estimate of the magnitude and
scaling of the equatorial jet speed on hot Jupiters. This would
provide a basis for estimates of observable quantities, such as
the predictions of hot-spot shift and day–night contrast in
Zhang & Showman (2017).

8. Conclusion

This study aimed to explain the formation of the equatorial
jet on terrestrial tidally locked planets and to predict its speed.
We proposed that the jet forms by a mechanism in which the
day–night forcing induces stationary waves that accelerate a jet,
which then interacts with the zonal-mean vertical velocity to
produce a deceleration that balances the acceleration from

stationary waves in equilibrium. We derived the structure of the
zonal acceleration by calculating the three-dimensional sta-
tionary wave response to the forcing on a tidally locked planet
using the Dedalus software. This calculation allowed us to
predict the equatorial jet speed for given planetary parameters.
This mechanism was verified by GCM simulations in the

ExoFMS model, where the dominant zonal-mean momentum
balance was the same as in the proposed mechanism. We ran a
suite of simulations with different values of instellation and
showed that the zonal momentum balance and resulting jet
speed were approximately the same as predicted by the
idealized calculations using Dedalus. With this confirmation
of the proposed mechanism, we derived a simplified expression
for the jet speed using the WTG approximation:
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The exact jet speed predicted by this expression depends on
parameters such as the Brunt–Väisälä frequency N*, which is
difficult to estimate accurately in general. The constant of
proportionality also depends on the vertical heating profile at
the substellar point and the planetary albedo. However, we
expect that the relation ~u F0

1 2 should hold as long as the
mechanism we propose in this study holds.
We discussed why this mechanism may not apply to gaseous

tidally locked planets such as hot Jupiters and suggested how it
could be modified to describe their behavior. The feedback of
the jet on the “Stationary” acceleration terms may need to be
taken into account for other types of planets, particularly those
with high instellation. The mechanism could be modified in
other ways to describe other types of tidally locked planetary
atmospheres, such as those with cloud layers or significant
moisture. These may have different vertical heating profiles and
different thermodynamic balances from those assumed in this
study of dry, cloud-free atmospheres.
We conclude that this mechanism describes the formation of the

equatorial superrotating jet on terrestrial tidally locked planets. It
provides a simple prediction of the approximate jet speed and
explains why the jet speed only depends weakly on instellation. We
hope that the prediction for jet speeds will be useful for interpreting
observations and directing modeling, and we will investigate the
equivalent mechanism for the formation of equatorial jets on
gaseous tidally locked planets in a study to follow.
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