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Abstract

Using mapping from dark matter halos to galaxy properties based on hydrodynamical simulations, we explore the
impact of galaxy properties on the void size function and the void–galaxy correlation function. We replicate the
properties of galaxies from Illustris on MassiveNus halos, to perform both luminosity and star formation
rate cuts on MassiveNus halos. We compare the impact of such cuts on void properties with respect to cuts on
halo mass (as usually performed on halo catalogs driven from N-body simulations). We find that void catalogs built
from luminosity-selected galaxies and halos are consistent within errors, while void catalogs built from star
formation rate-selected galaxies differ from void catalogs built on halos. We investigate the reason for this
difference. Our work suggests that voids built on galaxy catalogs (selected through luminosity cuts) can be reliably
studied using halos in dark matter simulations.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902); Voids (1779); Catalogs (205);
Surveys (1671); Cosmology (343); Hydrodynamical simulations (767); N-body simulations (1083)

1. Introduction

Cosmic voids, the large underdense regions in the galaxy
distribution, are a novel probe for cosmology (see Pisani et al.
2019 and references therein). Due to their low-density nature,
they are particularly sensitive probes of dark energy, modified
gravity, and neutrino properties (Lee & Park 2009; Odrzywołek
2009; Biswas et al. 2010; Lavaux & Wandelt 2010, 2012; Bos
et al. 2012; Sutter et al. 2012, 2015; Clampitt et al. 2013;
Spolyar et al. 2013; Carlesi et al. 2014; Barreira et al.
2015; Massara et al. 2015; Pisani et al. 2015; Zivick et al. 2015;
Hamaus et al. 2016, 2017; Pollina et al. 2016; Voivodic et al.
2017; Cautun et al. 2018; Kreisch et al. 2019; Schuster et al.
2019; Perico et al. 2019; Pisani et al. 2019; Verza et al. 2019).
Voids span sizes of tens to hundreds of h−1 Mpc. Their use for
cosmology relies on averaged quantities such as their void size
function or the stacked density profile (also known as the void–
galaxy cross-correlation function)—needing large samples of
voids.

In cosmology, theoretical models for voids are mainly built
and tested on halo catalogs from large dark matter (DM)
N-body simulations (see, e.g., Hamaus et al. 2014). In N-body
simulations, halos are found using algorithms such as friends-
of-friends (Springel et al. 2001; Dolag et al. 2009) and are then
used as tracers to construct void catalogs. Ideally, model testing
should be done on simulations able to mimic galaxy properties
matching observations: mock galaxies would be ideal as
tracers, since the ultimate goal is to apply those models to data
(e.g., Hamaus et al. 2016, 2017; Hawken et al. 2017).

In the best case, however, large N-body simulations are
populated with Halo Occupation Distribution (HOD) techni-
ques (Zheng et al. 2005) to replicate the properties of a
particular galaxy population—this is still far from optimal
(Hadzhiyska et al. 2020), as it fails to include all the
complicated effects impacting galaxy formation, and does not
account for the impact of selection cuts performed on galaxies
from observations. Typically, large simulations are unable to
include the small-scale evolution of stars and gas and fail to
reproduce the observed population ratios of spiral and elliptical

galaxies (Vogelsberger et al. 2014a). Indeed, modeling the
baryonic component requires being able to mimic stars, gas,
supermassive black holes, and their feedback. This is necessary
to allow a robust prediction of galaxy properties (e.g., stellar
content, morphology) on small scales and, consequently, to
reliably reproduce galaxy populations over large scales. Such
effects are only accounted for in hydrodynamical simulations.
Current hydrodynamical simulations model galaxy popula-

tions and features in great detail (including, among others,
effects such as primordial and metal-line gas cooling, star
formation, stellar feedback, supermassive black hole formation,
growth, and feedback), but the simulation of all these effects is
computationally expensive and can only be performed for
relatively small simulation sizes (e.g., Illustris, Genel
et al. 2014) up to a few hundred h−1 Mpc. Consequently, all
recent works testing the extraction of cosmological information
from voids rely on halo catalogs from DM simulations or HOD,
implicitly assuming that the use of halos or HOD-populated
fields as tracers of the cosmic web—instead of galaxies—to
measure void observables is robust, and that the impact of such
an assumption is small enough to be negligible (or, in any case,
smaller than the error in the measurements of cosmological
parameters).
As of today this assumption remains untested. With the

increase in void numbers promised by upcoming surveys such
as DESI (DESI Collaboration et al. 2016), Euclid (Laureijs
et al. 2011), SPHEREx (Doré et al. 2018), and WFIRST
(Spergel et al. 2015), errors in measurements of void related
quantities will drop dramatically. The era of precision
cosmology from voids steadily approaches: it becomes critical
to test the impact of galaxy properties on void observables used
for cosmology. Typically, when performing void finding in
simulations we rely on halos above a certain mass.
The mass of halos is often modeled as correlated with galaxy

luminosity or galaxy star formation rate (SFR). Most N-body
simulations will assume a linear relationship between the halo
mass and the galaxy luminosity (or galaxy SFR) to build halo
catalogs. Nevertheless, it is well known that there is a
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considerable scatter in this relationship (Guo et al. 2011; Greco
et al. 2015). Very massive halos can correspond to low
luminosity or low SFR galaxies. Voids are built using a tracer
field; in observations the used tracers are galaxies, while in
simulations we use halos. Void catalogs from simulations will
then intrinsically be impacted by this scatter. To allow a proper
understanding of applications to data, such scatter needs to be
quantified.

In this work we build a tool to replicate the properties of the
Illustris galaxy population on a larger simulation, the
MassiveNus ΛCDM. We then construct void catalogs from
MassiveNus, using as tracers both the DM halos and the
reconstructed galaxies. This allows us to analyze void proper-
ties in both the original halo catalog and in the galaxy catalog
obtained by replicating the properties of Illustris on the
larger MassiveNus simulation. The comparison quantifies
the impact on void observables of the scatter in the mass-to-
luminosity (or SFR) relationship.

The paper is organized as follows. Section 2 introduces the
hydrodynamical and N-body simulations used for this work, as
well as the void-finding algorithm. Section 3 presents the
method used to replicate the properties of galaxies from
Illustris in the large N-body MassiveNus simulation.
Section 4 describes the void observables on which we test the
impact of the tracer used to build void catalogs, and presents
our results. We present our conclusions in Section 5.

2. Simulations and Void Finder

In this paper we rely on two simulations: the Illustris
simulation provides us with a framework to reproduce galaxy
properties relying on halos from the larger N-body simulation
MassiveNus.

2.1. Illustris

The Illustris (Vogelsberger et al. 2014b) project is a set
of hydrodynamical particle simulations aiming to simulta-
neously be complex enough to model galaxy formation, large
enough to model evolution on cosmic scales, and resolved
enough that small (as well as large) structures can be studied.
The Illustris project grows out of previous work with the
Millennium simulation and allows us to connect galactic
scales to the large-scale structure of the universe.4

Cosmological parameters reflect a ΛCDM cosmology, with
Ωm=0.2726, Ωb=0.0456, and ΩΛ=0.7274, h=0.704,
σ8=0.809, ns=0.963; the parameters follow the Wilkinson
Microwave Anisotropy Probe-9 measurements (Hinshaw et al.
2013). Minimal changes of cosmological parameters are not
expected to affect the results of the paper. Initial conditions for
the simulation are obtained with N-GenIC (Springel 2005).5 The
simulations consist of a total of 18203 dark matter particles and
18203 gas tracer particles, each with a particle mass of mDM=
4. 4×106 Me/h in a 75 h−1 Mpc length cube (;106.5 Mpc)
(Genel et al. 2014; Vogelsberger et al. 2014a, 2014b; Nelson
et al. 2015) built using the moving mesh code AREPO
(Springel 2010). The Illustris simulation includes

modeling of subgrid physics, radiative gas cooling, star
formation, galactic-scale winds from star formation feedback,
supermassive black hole formation, accretion, and feedback.
The simulation provides halo catalogs built with friend-of-
friends (Davis et al. 1985). Redshift snapshots span from
z=0.0 to z=127.0. For this work we train our models on the
z=0.0 halos data set, containing ´7.7 106 halos.

2.2. MassiveNus

MassiveNus6 (Cosmological Massive Neutrino Simula-
tions) (Liu et al. 2018) are a set of 101 N-body simulations with
sizes of 512 h−1 Mpceach. The simulations have a ΛCDM
version, as well as boxes including the effect of massive
neutrinos. Massive neutrino modeling (for the boxes that we do
not use in this work) is done by evolving neutrinos
perturbatively and considering clustering with a nonlinear cold
DM potential. Other parameters are varied in the 101 versions:
aside from the sum of neutrinos masses, the matter density Ωm

and the primordial curvature power spectrum As are changed.
Each box has 10243 particles and the simulations span redshifts
from 0 to 45. The publicly available simulated data include
simulation snapshots and halo catalogs that are relevant for
our work.
Initial conditions are obtained with an improved version of

N-GenIC (Springel 2005), S-GenIC; simulations are built with
the public tree-Particle Mesh code Gadget-2 (Springel 2005).
The halo catalogs are generated with the halo finder code
Rockstar (Behroozi et al. 2013), relying on a friends-of-friends
algorithm that groups close particles and finds substructures
within parent halos. The minimum halo mass in the simulations
is roughly 1011Me h−1, while the number of high-mass halos
(>1014) is slightly below model predictions due to the box size.
Cosmological parameters for the massless neutrino ΛCDM

simulation snapshot at z=0 used in this work are: As=
2.1×10−9, Ωm=0.3, Ωrad=0, h=0.7, ns=0.97,
w=−1, and Ωb=0.05. As for the Illustris simulation,
we note that minimal changes of cosmological parameters are
not expected to affect the results of the paper. The volume is
large enough to observe a considerable statistics of voids, while
still resolving relatively low-mass halos; this makes Massi-
veNus the most suitable simulation to test the impact of the
halo mass-to-luminosity relationship scatter on void properties.

2.3. Void Finder

This project uses the VIDE7 void finder (Sutter et al. 2015,
embedding ZOBOV Neyrinck 2008), which operates in three
steps: the tessellation of space, creation of a density field, and
finally, a watershed transformation. The tessellation of space is
performed as a Voronoi tessellation where each input particle,
galaxy, or dark matter halo acts as a tracer of the large-scale
structure.
The Voronoi tessellation (see, e.g., Barr & Schoenberg 2010)

has been widely used in astrophysics (see, e.g., Ebeling &
Wiedenmann 1993; van de Weygaert 2007; Cappellari 2009;
van de Weygaert & Schaap 2009; Soares-Santos et al. 2010). It
associates to each tracer a cell (called a Voronoi cell) that
contains all of the points that are closer to the tracer itself than
any other tracer. Each cell is assigned a uniform density,

4 We note that a larger IllustrisTNG has been recently developed, with
different sizes available (50, 100 and 300 Mpc), an extended mass range of
galaxies and halos, and other improvements (Nelson et al. 2015). It is a valid
option to consider for further work.
5 More details can be found here: http://www.illustris-project.org/data/
downloads/Illustris-1/.

6 MassiveNuS snapshots, halo catalogs, merger trees, and galaxy and CMB
lensing convergence maps are publicly available at http://ColumbiaLensing.org.
7 Publicly available at https://bitbucket.org/cosmicvoids/vide_public.
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inversely proportional to its volume. This creates a density field
across all of space. Cells corresponding to local density minima
are merged with higher-density cells surrounding them, until
local density maxima are reached. The watershed transform
effectively merges smaller basins into larger ones. The merged
basins are the detected voids.

VIDE has been used in many recent applications for
cosmology (examples include Sutter et al. 2014a, 2015;
Hamaus et al. 2015, 2016; Pisani et al. 2015; Pollina et al.
2017, 2019; Contarini et al. 2019; Kreisch et al. 2019; Schuster
et al. 2019; Verza et al. 2019), both to test theoretical models
and to constrain parameters with data—it will likely be used in
upcoming years to analyze data from future surveys and for
model testing with future state-of-the-art mocks and simula-
tions.8 It is therefore important to check the impact of tracer
selection properties on void finding.9

3. Tracer Selection

This section describes the algorithm to reproduce the relation-
ship between halos and galaxies modeled in Illustris on
MassiveNus halos. Illustris properly takes into account
the scatter in the relationship, thanks to the realistic implementa-
tion of galaxies’ properties. Rich data from Illustris allow us
to bridge the computational gap between high-resolution,
complex simulations, and larger simulations with relatively lower
resolution and complexity—namely, MassiveNus. We build a
predictive model mapping a halo’s mass to the properties of the
galaxy within that halo. The model can then be utilized to
probabilistically assign galaxy properties to a halo. It associates
galaxy-like properties to pre-existing halos, by assigning galaxy
features (luminosity and SFR), mapped from the halo mass, to
existing halo positions.

In particular we focus on two galaxy properties that will impact
selection when using real data: the luminosity of a galaxy and the
SFR. Illustris allows us to link those properties to halo mass,
reproducing the intrinsic scatter present in the relation.

We now describe how to build the model with Illustris
and how to subsequently apply it to MassiveNus.

3.1. Constructing the Model

Given the nature of the distribution of halo masses with
luminosity and SFR, different groups of galaxies will have
different probability distributions that accurately link halo
masses to properties. To construct the model, we first split our
sample of halo masses in even-width groups (the same

number of halos in each). Each group will therefore have an
adequate number of data points. We use five halos per group,
but tested different combinations. Our goal is to find the
optimal model for each group of galaxies. To do so,
independently for each group, we find the discrete random
variable that describes the distribution of the desired property
in that group.
To find the discrete random variable for each group, we

consider the dark matter halo masses for each galaxy in the
group as a random variable and fit a discrete distribution.
We compute a histogram with 100 bins over the data within the
group itself. In other words, we use a normalized histogram of
the dark matter masses. As an example, if a bin with average
dark matter mass m contains half of the total halos in that
group, then PMF(m)=0.5. We repeat for each group to find
the set of discrete random variables that best describes
each case.
From the random variable associated with each group we can

draw properties for each halo. Through this process, the two
properties (luminosity and SFR) are independently assigned to
the halos.
The final model is then the set of random variables and the

boundaries defining the groups.

3.2. Applying the Model

After building the model, we first test it on Illustris
data. Figure 1 shows the probabilistic fits for luminosity and
SFRs overlaid on top of original data from Illustris. The
probabilistic distribution is reproducing the target distribution
for the whole range of halo masses in both the luminosity case
and the SFR case, with a mean squared error of, respectively,
1.8×109 h−1Me and 0.021 (Me yr−1)2.
Our model is subsequently applied to MassiveNus by

fitting each halo within the original slices: the probabilistic
approach allows to replicate both galaxies luminosities, or
SFRs on MassiveNus halos.
After assigning galaxy-like properties to halos, we now have

three different sets of tracers from MassiveNus to perform
void finding:

1. Halo catalog: the original output from the Rockstar
halo finder provided as part of MassiveNus.

2. Luminosity-ordered galaxy catalog: built with our
probabilistic approach from MassiveNus halos.

3. SFR-ordered galaxy catalog: built with our probabilistic
approach from MassiveNus halos.

We wish to replicate what is done in simulations and
observations, to test and subsequently apply models.
In simulations, a mass cut is performed on the original set of

halos. To replicate what is done in observations, we apply a cut on
galaxy catalogs chosen in terms of descending luminosity or SFR,
keeping a number of resultant galaxies equivalent to the number
obtained from the simulation mass cut. That is, if the simulation
mass cut results in n halos, the galaxies with the n highest
luminosity or SFR, respectively, are taken. The cuts on galaxy-
like catalogs mimic real data treatment. We note the importance of
keeping the same number of tracers, as void number density can
be sensitive to tracer number density, both in terms of minimum
mean particle separation (impacting smaller voids to be detected
on a tracer catalog) and of box length (impacting the statistic of
large voids and potentially their observed maximum size). We
note that we perform two different mass cuts, and replicate tracer

8 Extensive tests of different techniques to find voids have been considered in
the literature (see, e.g., Colberg et al. 2008; Cautun et al. 2018). Here we focus
on the void finder VIDE: while we do expect that different void finders might
be impacted differently, most recent applications using voids for cosmology
rely on either VIDE or are based on ZOBOV—hence our results cover work
from a broad range of groups.
9 An interesting application for further work would be to focus on analyzing
generalizations of the Voronoi smoothing technique (such as smoothers based
on the empty space function F; see, e.g., Baddeley et al. 2015), and in particular
the impact of other techniques on the results of this work. Nevertheless, we
note that if a different void finder were to be used, there would be no need to
repeat the training, as the void finding procedure is performed after assigning
galaxy properties to MassiveNus halos. If a different halo finder were to be
used in the Illustris simulations, the mapping between galaxies and halos could
change, but the scatter on the relationship between halos and galaxies should be
preserved. In this case, rerunning the training would ensure an enhanced
robustness against changes due to the halo definition. Globally we do not
expect changes in either the halo definition or the void definition to impact our
overall results.
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numbers in each case on the luminosity and SFR-ordered
tracer catalogs. The mass cuts areMmin=2.5×1012 h−1Me and
Mmin=5×1012 h−1Me.

We obtain six void catalogs from the tracers described in the
items above (three kinds of tracers, considering two different
mass cuts for each case). The comparison of void properties in
the catalogs will allow us to estimate the impact of the scatter in
the relationship between halo mass and luminosity or SFR-
selected tracer catalogs.

In the next section we describe the two main void
observables we focus our attention on, the void size function
and the void density profile, and we present our results.

4. Results: Impact on Voids

4.1. Void Size Function

The void size function—the number of voids as a function of
their radius, also known as void abundance—is a sensitive
probe of cosmology. In particular it is sensitive to the
properties of dark energy, modified gravity, and neutrinos
(e.g., Massara et al. 2015; Pisani et al. 2015, 2019; Zivick et al.
2015; Sahlén et al. 2016; Kreisch et al. 2019; Sahlén 2019;
Schuster et al. 2019; Verza et al. 2019).

Aside from being a relevant cosmological observable, the
void size function provides an estimate of the number of voids

to be observed by an hypothetical survey. Since the number of
voids will impact error bars on measurements of the density
profiles or other void features sensitive to cosmology, it is
important that the void size function is modeled correctly.
Recent developments have established a robust framework to
predict void abundance based on an improved version of the
popular Sheth and Van de Weygaert model (an excursion set
model, Sheth & van de Weygaert 2004): the volume
conserving model (Vdn, Jennings et al. 2013). This model
has proven successful in predicting void numbers from dark
matter simulations, using both dark matter and halos (see recent
results in Contarini et al. 2019; Ronconi et al. 2019; Verza et al.
2019), and accounting for halo bias in standard ΛCDM and
different dark energy models.10

The impact on void abundance of the scatter in the
relationship between halo mass and luminosity or SFR-selected
tracer catalogs has yet to be estimated—a relevant point to
consider as the void size function is becoming an established
tool to use with upcoming data.
We run the void finder on all the tracer catalogs described in

Section 3 and compare the results. We show in Figure 2 the
comparison of the void size function. Error bars are obtained
considering Poisson error. Within error bars, voids obtained

Figure 1. Probabilistic fits for the luminosity (left) and SFR (right) overlaid on top of the original data.

Figure 2. Void abundances for the 2.5×1012 h−1 Me set (left) and the 5×1012 h−1 Me set (right). The bottom panels show the relative differences between halo-
traced and galaxy-traced cases. The shaded region for each abundance is the Poisson error.

10 Interestingly, the match with theoretical predictions is done with the same
void finder VIDE that we use in our work.
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from the halo distribution have the same void size function as
voids selected from galaxies using a luminosity cut. Consis-
tency remains for the two different mass cuts used, showing
that testing theory and models on voids from halo catalogs can
be used as a reliable proxy of data application, where galaxies
are selected through their luminosity. We conclude that void
abundances are robust against the scatter present in the
relationship between the dark matter halo mass and the
luminosity of galaxies.

Given the volume of the MassiveNus simulation, the
tracer number densities for the Mmin=2.5×1012 h−1Me
tracer catalog and the Mmin=5×1012 h−1Me correspond,
respectively, to a tracer number density of ;1.9×10−3

h3 Mpc−3 and ;9.7×10−4 h3 Mpc−3. These number densities
roughly span the ranges of tracer densities to be observed by
upcoming surveys (including, for example, DESI, PFS, Euclid
or WFIRST—for some of the redshift bins, since the latter is
expected to exceed these number densities for the most
populated bins). This work thus mimics the level of precision
that can be expected, for a given redshift bin, with future
surveys, and shows that void abundance measurements will be
robust against the scatter present in the halo mass-to-galaxy
luminosity relationship.

On the other hand, the selection of galaxies using SFR
provides a void size function with higher values compared to
voids from halos. While the global trend is similar for void
abundance from halos and void abundance from SFR-selected
galaxies, the overall value is different, and is due to an overall
higher void number in the SFR galaxies case.

The larger number of voids in the SFR catalogs can be
attributed to a bias in how tracers are selected for this type of
threshold (see Section 4.3). The galaxies in this catalog are
chosen by taking the n galaxies with the highest SFRs.

Galaxies within clusters have low SFRs, compared to those
that are not in clusters, because they have less gas available
from which to form stars. Thus, the galaxies with the highest
SFRs, which are precisely the ones chosen for these catalogs,
will be those outside of clusters; the SFR-cut tracer catalogs are
biased toward galaxies that are distributed more sparsely. This
is confirmed, for example, by the lower value of the two-point
correlation function for the probabilistic SFR galaxy catalogs
with respect to the two-point correlation function of halos
(which we do not show).

Selecting a more sparsely distributed set of tracers will result
in splitting up larger voids by adding galaxies inside them, and
consequently increase the overall void statistics. Since the SFR-
cut tracer catalogs are biased toward galaxies that are
distributed more sparsely, the splitting of large voids can be
linked to the mass of the host halos. Galaxies within clusters
have low SFRs, therefore SFR-ordered galaxies (with higher
SFR) are associated with halos with lower masses that have
lower bias.

We note that for theMmin=5×1012 h−1Me tracer catalog,
the increase in void abundance is lower, confirming the fact
that it is due to a bias tracer selection effect. Indeed, with the
Mmin=5×1012 h−1Me tracer catalog, we are selecting more
highly biased tracers, making the splitting of voids harder, and
hence resulting in a lower difference in void abundance. Since
current void size function models take into account the bias of
tracers to build the theoretical prediction, we expect this shift to
be correctly modeled—provided that the tracer bias can be
either measured or theoretically predicted.

4.2. Density Profiles

We now estimate the impact of the scatter in the relationship
between halo mass to luminosity and SFR of tracers for void
density profiles. Density profiles of voids are mathematically
equivalent to the cross-correlation between void centers and
tracers (galaxies, halos, dark matter particles) (see, e.g., Cai
et al. 2016; Hamaus et al. 2017; Massara & Sheth 2018),
representing the variation of density contrast as a function of
the distance from the void center. The void-tracer cross-
correlation function is then underdense in the center, and the
density increases toward void edges, up to the overdense shell
that surrounds the void (Sheth & van de Weygaert 2004; Paz
et al. 2013; Hamaus et al. 2014; Pisani et al. 2014).
Void density profiles are powerful tools to constrain

cosmology: the shape of void stacks is used as a standard
sphere for the Alcock–Paczyński test (Lavaux &Wandelt 2012;
Sutter et al. 2014b; Hamaus et al. 2016), or to analyze the
pattern of redshift-space distortions around voids and constrain
the growth rate of structure (Cai et al. 2016; Hamaus et al.
2017). The measure of the void-galaxy cross-correlation
function is, as of today, the only void observable that provided
constraints on cosmological parameters from data (e.g.,
Hamaus et al. 2016, 2017; Achitouv et al. 2017; Hawken
et al. 2017; Achitouv 2019).
We measure the density profiles from the different void

catalogs described in Section 3. Figure 3 shows the results for
different radius bins.11 Error bars are obtained considering
Poisson error. We note that profiles from different tracers are
mostly consistent within error bars, with some exception for the
Mmin=2.5×1012 h−1Me case, where the SFR-galaxy based
catalog results in a lower wall. This is consistent with the
interpretation provided for the void size function: with a lower
mass cut on halos, the SFR-galaxy catalog will be biased
toward galaxies residing closer to void centers, hence selecting
a different population of voids, defined by less biased tracers
and hence with lower walls. For this reason the SFR void
density profile has a lower ridge.
This difference disappears when using the Mmin=5×

1012 h−1Me: in this case profiles from the different cases
overlap within error bars, as expected. Two reasons can explain
the better match in this case. First, the Mmin=5×
1012 h−1Me case has less voids, and hence larger error bars,
than the Mmin=2.5×1012 h−1Me case, mitigating the
differences between the halos and galaxy cases. Second, since
the Mmin=5×1012 h−1Me case selects more strongly biased
galaxies as a starting tracer catalog (than the Mmin=
2.5×1012 h−1Me case) the impact of the SFR selection—
which selects less biased objects among the available ones—is
lower.
We conclude that void density profiles are robust against the

scatter present in the relationship between the dark matter halo
mass and the luminosity of galaxies. For SFR-selected galaxies,
void density profiles will also be robust for upcoming surveys
with tracer number densities lower than ;1×10−3 h3 Mpc−3

(corresponding to the Mmin=5×1012 h−1Me case), while
void profiles from denser surveys will only be robust if galaxies
are luminosity or flux-selected.

11 Note that we split in quartiles, for the Mmin=2.5×1012 h−1 Me case;
quartile 2 includes voids from roughly 16–21 h−1 Mpcand quartile 4 includes
voids above 26 h−1 Mpc; for the Mmin=5×1012 h−1 Me case, quartile 2
includes voids from roughly 20–26 h−1 Mpcand quartile 4 includes voids
above 32 h−1 Mpc.
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In the next section we wish to verify that bias is indeed
different for galaxies selected with respect to luminosity or
SFR, to confirm our interpretation of the void size function and
density profile differences.

4.3. Tracer Bias

We calculate the relative bias of the galaxies selected by
luminosity and by SFR with respect to halos (error bars are

obtained through jackknife resampling). As expected Figure 4
shows that SFR-selected galaxies have a lower bias than the
luminous mass-selected galaxies, justifying the observed higher
abundance and the density profiles with lower walls.

5. Conclusion and Discussion

In this work we have tested the assumption that the void size
function and the void-galaxy cross-correlation function are

Figure 4. Relative tracer bias for the 2.5×1012 h−1 Me set (left) and 5×1012 h−1 Me set (right).

Figure 3. Density profiles, of the second (left) and fourth (right) quartiles of void radii, for the 2.5×1012 Me h−1 set (top panels) and 5×1012 h−1 Me set (bottom
panels). The bottom subplots for each panel show the relative differences between halo-traced and galaxy-traced cases. The shaded region for each profile is the error
as the normalized standard deviation.
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robust against the scatter in the halo mass-to-luminosity, or
halo mass-to-SFR relationship for tracers used to build void
catalogs. Mimicking the large N-body simulation MassiveNus
the scatter observed in the Illustris simulation, we find that
both the abundance and the void density profiles remain
consistent within error bars for galaxies selected through
luminosity. This result sets the ground to use void properties
in upcoming data and robustly apply models developed with
halos from N-body simulations. We note that using larger
simulation volumes would reduce error bars, but also likely lead
to a lower number density of tracers due to the decrease in
resolution; this would mimic a harsher luminosity cut, and hence
a stronger bias: the effects of the SFR selection should be
increasingly mitigated.

Future applications could involve machine-learning techni-
ques such as those used by He et al. (2019) to improve the
population of large N-body simulations with galaxies, as well
as testing our results on larger simulations—provided that a
sufficiently low halo mass is reached even with simulations
spanning larger volumes (that is, maintaining a high resolu-
tion). While the void cross-correlation function is already
currently used to extract competitive cosmological constraints
from voids (e.g., relying on SDSS data and VIPERS data),
steps that we leave for future work (such as the impact of
survey mask, and of peculiar velocities) need to be investigated
and thoroughly modeled to reliably use the void size function.

The authors are grateful to Elena Massara, Mélanie Habouzit,
Nico Hamaus, Jia Liu, and Shy Genel for useful discussions. The
authors thank the anonymous referees for their helpful
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Survey.” For using MassiveNuS in our work, we thank the
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