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Abstract

Alfvén waves are responsible for the transfer of magnetic energy in magnetized plasma. They are involved in
heating the solar atmosphere and driving solar wind through various nonlinear processes. Because the magnetic
field configurations directly affect the nonlinearity of Alfvén waves, it is important to investigate how they relate to
the solar atmosphere and wind structure through the nonlinear propagation of Alfvén waves. In this study, we
carried out one-dimensional magnetohydrodynamic simulations to realize the above relation. The results show that
when the nonlinearity of Alfvén waves in the chromosphere exceeds a critical value, the dynamics of the solar
chromosphere (e.g., spicule) and the mass-loss rate of solar wind tend to be independent of the energy input from
the photosphere. In a situation where the Alfvén waves are highly nonlinear, the strong shear torsional flow
generated in the chromosphere “fractures” the magnetic flux tube. This corresponds to the formation of
chromospheric intermediate shocks, which limit the transmission of the Poynting flux into the corona by Alfvén
waves and also inhibits the propagation of chromospheric slow shock.

Unified Astronomy Thesaurus concepts: Solar chromosphere (1479); Solar wind (1534); Magnetohydrody-
namics (1964)

1. Introduction

The solar atmosphere consists of magnetized plasma with
various thermal properties. A 1 MK corona is characterized by
tenuous, fully ionized, and low-β plasma. It is the envelope of a
cool (∼104 K), dense, and partially ionized chromosphere.
Coronal and chromospheric heating problems arise from the
question regarding the manner of how energy is steadily
supplied and deposited to maintain such a thermal structure of
solar atmosphere. These problems are directly related to the
physical mechanism for solar wind acceleration.

The nonlinear propagation of Alfvén waves is one of the
promising physical mechanisms to solve this problem. That is
because this incompressible wave is responsible for the transfer
of magnetic energy in the magnetized plasma and is involved in
the energy conversion to the kinetic or thermal energy of the
background media through the nonlinear processes. Numerous
theoretical studies have developed scenarios relating Alfvén
waves to atmospheric heating (Alfvén 1947; Osterbrock 1961;
Coleman 1968; Heyvaerts & Priest 1983), solar wind accelera-
tion (Belcher & MacGregor 1976; Heinemann & Olbert 1980),
and spicule dynamics (Hollweg et al. 1982; Kudoh &
Shibata 1999). These ideas have been examined using space-
borne observations that confirmed the ubiquitous existence of
Alfvén waves from the chromosphere (de Pontieu et al. 2007;
Okamoto & de Pontieu 2011), corona (Cirtain et al. 2007;
Banerjee et al. 2009; Hahn & Savin 2013), to interplanetary
space (Belcher & Davis 1971; Bavassano et al. 1982, 2001).

Recent magnetohydrodynamics (MHD) simulations enable a
more seamless description of the relationship between Alfvén
wave propagation and the dynamics of the solar atmosphere
and wind. Because of the inhomogeneous, time-dependent, and
stratified solar atmosphere, Alfvén wave propagation can be
affected by various physical mechanisms in each layer of the
solar atmosphere. Matsumoto & Suzuki (2012) and Matsumoto
& Suzuki (2014) carried out a 2.5 dimensional simulation and
showed the self-consistent transition of heating mechanisms

from shock heating to incompressible processes across the
transition layer. On the basis of their 3D simulation, Shoda
et al. (2019) confirmed that the density fluctuation caused by
the parametric decay instability (Derby 1978; Goldstein 1978;
Terasawa et al. 1986) is essential in exciting Alfvén wave
turbulence in the solar wind.
Aside from the above-mentioned multidimensional models,

one-dimensional (1D) simulations are still helpful, particularly in
investigating the diversity or universality of solar and stellar
atmospheres and wind. They have contributed to understanding
how Alfvén waves are involved with spicules (Hollweg et al.
1982; Matsumoto & Shibata 2010), the solar and stellar wind
(Suzuki & Inutsuka 2005; Suzuki 2007, 2018; Yasuda et al. 2019),
and the coronal loop (Moriyasu et al. 2004; Antolin &
Shibata 2010; Washinoue & Suzuki 2019). Despite these extensive
works, there have been few studies focused on the chromospheric
magnetic field environment in terms of their influence on the solar
atmosphere and wind. The magnetic field in the solar atmosphere
is highly inhomogeneous and variable with time. Thus, it directly
affects the profile of the Alfvén speed with respect to height, which
determines the reflection efficiency of Alfvén waves (An et al.
1990; Velli 1993) and induces Alfvén resonance (Hollweg 1978;
Matsumoto & Shibata 2010). The expanding magnetic flux tube in
the lower atmosphere, additionally, is related to the rapid evolution
of the Alfvén wave amplitude. That leads to the dissipation of
Alfvén waves through direct steepening (Hollweg et al. 1982) or
nonlinear mode coupling (Hollweg 1992; Kudoh & Shibata 1999;
Wang & Yokoyama 2020). Coronal heating and solar wind
acceleration are sustained with a slight transmission of Alfvén
waves from the chromosphere. Therefore, it is worthwhile to
examine how robustly Alfvén waves can transport magnetic
energy across the chromosphere even in different magnetic field
configurations in the lower atmosphere.
In this study, we performed time-dependent 1D MHD

simulations similar to Kudoh & Shibata (1999) or Suzuki &
Inutsuka (2005). Unlike them, we pay particular attention to the
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dependence of the spicule dynamics, coronal heating, and solar
wind acceleration on the magnetic field configuration in the
lower atmosphere.

2. Numerical Setting

2.1. Basic Equations

We used 1D magnetohydrodynamic equations based on the
axial symmetry assumption of the magnetic flux tube. The
surface of the axisymmetric flux tube is defined by the poloidal
and toroidal axes, which are denoted in this study by x and f.
The basic equations in cgs units are written as follows:

The mass conservation law is presented by
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where ρ, vx, and A are the mass density, poloidal component of
velocity, and cross section of the flux tube, respectively.

The energy conservation law is presented by
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where p, Bx, Bf, vf, and γ are the gas pressure, poloidal and
toroidal components of the magnetic field, toroidal component
of velocity, and the specific heat ratio, which is set to 5/3,
respectively. = + fv v vx

2 2 2 and = + fB B Bx
2 2 2. G and M are

the gravitational constant and the solar mass. r is the distance
from the Sun center. Fc and Qrad represent the heat conduction
flux and radiative cooling term, respectively, as described in
Section 2.3.

The poloidal component of the equation of motion is
presented by
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The toroidal component of the equation of motion is
presented by
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The toroidal component of the induction equation is
presented by
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The poloidal magnetic flux conservation is presented by

( )=B A const. 6x

Finally, we note that the poloidal axis x is not always parallel
to the radial axis r. They are related to each other as follows:
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2.2. Magnetic Flux Tube Model

The assumption of the background magnetic field is described
here in detail. The cross section of the flux tube A is related to r
through the filling factor f as ( ) ( )p=A r r f r4 2 . f determines the
geometry of the flux tube. We consider the axisymmetric magnetic
flux tube from the photosphere to interplanetary space. The outer
boundary of our simulation is set to 0.5 au. In the lower
atmosphere, the magnetic flux tube expands exponentially such
that the magnetic pressure inside the flux tube balances out with
the ambient plasma gas pressure, which decreases with the scale
height ( )m=H R T ggph eff ph . Here, = ´R 8.31 10g

7 erg K−1

mol−1 is the gas constant, =T 5770eff K, m = 1.3ph is the mean
molecular weight on the photosphere, and g is the gravitational
acceleration on the solar surface. The filling factor f in this layer is
expected to be ( ) { ( )( )} = -f r f r H r rexp 2 1atm ph ph , where
fph is the coverage of the open magnetic flux tube on the

photosphere. By using fatm, ( )=B r f B r fx
2

ph ph
2

atm satisfies the

condition that ( )p =B p8x
2

atm, where patm is the solution of
the hydrostatic equilibrium. In the lower atmosphere, where

= +r r h (  h r ), we obtain ( ) ( )=f h f eh H
atm ph

2 ph . This
exponential expansion of flux tube is assumed to stop at some
height where it merges with the neighboring flux tube. Above this
height (i.e., the merging height Hm), the magnetic pressure
dominates the gas pressure and the flux tube extends vertically.
The poloidal magnetic field strength in this layer is assumed to be
almost constant around ( ) ( )= = -B B f f H B em

H H
ph ph atm ph

2m ph

through the upper chromosphere and coronal base. Thus,
( )= -B B e H H

ph
2m ph roughly represents the area-averaged magn-

etic field strength in the coronal hole from which the solar wind
emanates. It should be noted that various flux tube models in the
lower atmosphere have been considered, for example, by Hasan
et al. (2003, 2005) and Cranmer & van Ballegooijen (2005). The
different magnetic field geometries would lead to different results.
Their significance should be tested in future studies as long as we
rely on the 1D simulation.
The flux tube is assumed to expand superradially again in the

extended corona such that the interplanetary space is filled with
the open flux tube. We characterize this expansion with the
coronal loop height Hl. The functional form of the filling factor
in this layer ( )f rwind is suggested by Kopp & Holzer (1976).
Based on these considerations, the profile of the filling factor
f (r) is determined as follows:
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The key parameters of f (r) are fph, Hm, and Hl. sl in
Equation (9) is set to Hl. The manner by which the properties
of solar and stellar wind depend on fph has already been well
investigated in previous studies (Suzuki 2006; Suzuki et al.
2013). Thereafter, we use the fixed value of 1/1600 for fph by
referring to Suzuki et al. (2013). Note that, when

=f 1 1600ph , the magnetic field strength at =r 1 au is
2.1nT, which is within the typical observed value (Wang et al.
2000). The configuration of the magnetic flux tube with
fph = 1/1600 is depicted in Figure 1. As shown in this figure,
the merging height Hm is the parameter defining the magnetic
field strength B from the chromosphere up to the lower corona.
The higher merging height corresponds to a weaker magnetic
field B , and, in particular, =H H 8, 12m ph are used in this
study. It should be noted that =H H 8, 10, 12m ph correspond
to =B 29, 11, 4 G, respectively. These magnetic field
strengths are comparable to the typical value for the area-
averaged magnetic field strength in the coronal hole (3–36 G
near the solar activity maximum and 1–7 G close to the
minimum, according to Harvey et al. 1982; see also review by
Wiegelmann & Solanki 2004). By adopting a higher coronal
loop height Hl, the magnetic field strength in the upper corona
can be larger (Figure 1), but Hl/re is fixed at 0.1.

2.3. Heat Conduction and Radiative Cooling

The equation of state is [ ( ( ) )]r m c= -p R T T1 2g ph ,
where ( )c T is the ionization degree as a function of
temperature, which is calculated by referring to Carlsson &
Leenaarts (2012). The radiative cooling Qrad is given by the
empirical formulae, which is composed of three distinct terms,
i.e., the photospheric radiation Qph, chromospheric radiation

Qch, and coronal radiation Qcr:

( )( ) ( ) ( )x x x x x= - - + - +Q Q Q Q1 1 1 , 12rad 1 2 ph 1 2 ch 2 cr

where x1 and x2 are assumed to be as follows:
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( ( ))c r= -n T m1 pH I is the neutral hydrogen density. Each
term in Equation (12) is defined as follows:
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k = 0.2R cm2 g−1 pertains to the Rosseland opacity on the
photosphere. sSB is the Stefan–Boltzmann constant.Qch andQcr

are the same functions used in Hori et al. (1997), which are
always positive. ( )L T in Equation (17) is the radiative loss
function for an optically thin plasma. Qph in Equation (15) is

allowed to be negative where ( ) ~- -e 1r r H2
ph
2

, which repre-
sents the radiative heating.
The heat conductive flux is presented by
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¶
¶
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, 18c

where ( )k T is the heat conductivity as a function of the
temperature. That is composed of the collisional and collisionless
terms:

( ) ( ) ( )k k k= + -T q q1 , 19coll sat

where ( ( ))k k= -q max 0, min 1, 1 0.5 coll sat . ( )k Tcoll is
adopted from Nagai (1980), which agrees with the Spitzer–
Härm heat conductivity (Spitzer & Härm 1953) k T0

5 2

(k = -100
6 in CGS unit) when >T 106 K. ksat is given by

( )k = pv
r

T

3

2
, 20esat ,thr

Figure 1. Poloidal magnetic field configurations characterized with the free parameters (Hm, Hl), where Hm, Hl, and Hph are the merging height, loop height, and the
pressure scale height on the photosphere, respectively. The left and right panels show it in the lower and outer atmosphere.
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where ve,thr is the thermal speed of the electron. ksat represents
the saturation of heat flux caused by the collisionless effect
(Parker 1964; Bale et al. 2013). The above expression of ksat

means that the transition of heat conductivity from kcoll to ksat

occurs around l~r e,mfp (le,mfp is the electron mean free path)

and that the heat flux is limited to apv
3

2 e,thr in the distance

where ~ a-T r (a = -0.2 0.4 for winds faster than
500 km s−1; Marsch et al. 1989). Based on the foregoing heat
conductivity, heat conduction is solved by the super-time-
stepping method (Meyer et al. 2012, 2014).

2.4. Initial and Boundary Condition

We set the static atmosphere with a temperature of 104 K as
the initial state. The temperature on the bottom boundary is
promptly cooled down to =T 5770eff K after the initiation of
the simulation. The mass density and poloidal magnetic field
strength on the photosphere are r = ´ -2.5 10ph

7 g cm−3 and
=B 1560ph G, respectively. To excite the outwardly propagat-

ing Alfvén wave, the toroidal velocity vf on the bottom
boundary is oscillated artificially, which represents convective
motion on the solar photosphere. We consider it as a frequency-
dependent fluctuation with the following power spectrum:

( )ò n nµ
n

n
-v d , 21conv

2 1

min

max

where vconv is the free parameter corresponding to the
amplitude of the convective velocity. n-

min
1 and n-

max
1 are

30 minutes and 20 s, respectively. The phase offsets of
fluctuation are randomly assigned. The amplitude of fluctuation
vconv is the subject of survey in this study, e.g., =v csconv ph

0.07, 0.14, 0.21, 0.42, 0.85 ( g m= =c R T 7.8s gph eff ph

km s−1 is the adiabatic sound speed on the photosphere). This
parameter range includes the typical velocity of horizontal
convective motion, 1.1 km s−1 (Matsumoto & Kitai 2010).

To excite the purely outward Alfvén waves on the bottom
boundary, the toroidal magnetic field Bf is determined by

pr= -f fB v4 . This means that the Elsässer variables (i.e.,
pr= -f fz v B 4out , and pr= +f fz v B 4in ) on the

bottom boundary satisfy the conditions, i.e., = fz v2out and
=z 0in . The longitudinal velocity component vx on the bottom

boundary is also given as the fluctuation with the amplitude
vconv, the power spectrum similar to that of the foregoing, and
the randomly assigned phase offsets. We performed a few
simulations with vx=0 on the bottom boundary. We were able
to confirm that ¹v 0x on the photosphere does not have any
influence on the solar wind structure, but the spicule height can
depend on it.

The upper boundary is treated as the free boundary. A total
of 19,200 grids are placed nonuniformly in between. The
numerical scheme is based on the HLLD Riemann solver
(Miyoshi & Kusano 2005) with the second-order MUSCL
interpolation and the third-order TVD Runge–Kutta method
(Shu & Osher 1988).

3. Results

3.1. Solar Wind Profiles

After several tens of hours, the solar wind in the simulation
box reaches quasi-steady state with numerous wave signatures

(Figure 2). Figure 3 shows the simulation results, including the
snapshots of solar wind velocity, mass density, temperature
profiles, and temporally averaged profiles of the Alfvén wave
amplitude and Alfvén speed in the solar wind. The black and
red lines in each figure correspond to the results in the cases of

=B 29 and 4 G, respectively.
The top panel of Figure 3 shows that the solar wind in the
=B 4 G case is found to be faster than that in =B 29 G case.

The Alfvén speed at the coronal base is much higher in the
=B 29 G case than in =B 4 G. In the outer space above the

coronal loop height, where the magnetic field strengths in both
cases are the same, the Alfvén speed in the =B 4 G case is
larger than in =B 29 G, clearly indicating denser wind in the

=B 29 G case. With regard to the higher Alfvén speed at the
coronal base in =B 29 G, the Alfvén speed steeply declines
above the coronal loop height due to the largely expanding
magnetic flux tube. This induces the strong interference
between the outward and inward Alfvén waves, resulting in
the humps in the Alfvén wave amplitude profiles below r0.1 .
The most significant discrepancy between the solar winds in

different merging heights is found in the wind’s mass-loss rate.
Figure 4 shows the mass-loss rates as a function of the energy
input from the photosphere ( r=F v VA0 ph conv

2
Aph). The filled and

open circles show the results for =B 29 and 4 G, respectively.
While the wind’s mass-loss rate monotonically increases with a
larger energy input from the photosphere in the case of

=B 29 G, that in =B 4 G is almost independent of the
energy input. The mass-loss rate in =B 4 G is limited to
∼10−15

M yr −1 even in the largest energy input case of
=v c 0.42sconv ph , which is two orders of magnitude smaller

than that in the =B 29 G case.

Figure 2. The temporal variations of the solar wind velocity (upper) and
temperature (lower) given that the simulation starts in the case of =B 29 G
and =v c 0.21sconv ph .
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3.2. Spicule Dynamics

Figure 5 shows the time-slice diagrams of the mass density
in the lower atmosphere. The top of the chromosphere
(r r ~ -10ph

7) shows the upward and downward motions
representing the spicule dynamics. Figures 5(a) and (b) are the
results in the cases of =B 29 G for =v c 0.21sconv ph and 0.42,
respectively.

The height of the spicule becomes taller with a larger
v csconv ph. On the other hand, the height of the spicule in the

=B 4 G case is less dependent on vconv, as shown in

Figures 5(c) and (d). The average spicule height, as a function
of vconv, is summarized in Figure 6. The line styles and symbols
are the same as those used in Figure 4. The spicule height is
measured by tracking the isothermal contour of 4×104 K, the
typical temperature of the transition layer (Heggland et al.
2011; Iijima & Yokoyama 2015). By fitting the oscillatory
pattern of the isothermal contour with the trajectories of the
Lagrange particles, the individual spicules are identified, which
enables us to do statistical analysis.
A common feature can be confirmed in the behaviors of the

wind’s mass-loss rate (Figure 4) and the average spicule height
(Figure 6). The spicule becomes monotonically taller with a
larger vconv in the =B 29 G case, while in =B 4 G case, it is
almost independent of vconv.
The lesser dependence of the simulated solar wind on vconv

implies significant wave damping below the transition layer,
i.e., in the chromosphere. The difference in the spicule
dynamics between =B 4 and 29 G also suggests that the
propagation of a chromospheric shock wave is qualitatively
affected by the parameter B . These possibilities are further
investigated in the following section.

4. Analyses

4.1. Poynting Flux by Alfvén Waves

To investigate the energy transfer by Alfvén waves, the time-
averaged Poynting flux of the magnetic tension force
( ( )p= - f fF B v B 4xA ) is plotted as a function of height in
Figure 7. The black and red lines correspond to the results in
the cases of =B 29 and 4 G, respectively. Although the
velocity amplitude on the photosphere is fixed at

=v c 0.21sconv ph , the FA below 1Mm in the =B 4 G case is
slightly larger than that in the =B 29 G case. This is caused by
the reflection of the Alfvén waves at the merging height. The
energy flux of the reflected (inward) Alfvén waves is plotted in

Figure 7(b) using dotted lines, where r=F z V
1

4
xA

out,in
out,in
2

A ,

= -F F FA A
out

A
in. As seen in this plot, the inward Alfvén waves

below 1Mm comes mainly from the merging height, above
which the Alfvén speed exponentially increases (Figure 7(c)).
The energy flux of the inward Alfvén waves below 1Mm is,
therefore, related to the outward energy flux at the merging

Figure 3. The snapshots of solar wind velocity, mass density, temperature
profiles, and temporally averaged profiles of the Alfvén wave amplitude and
Alfvén speed in the solar wind. The black and red lines represent the profiles in
the cases of =B 29 and 4 G, respectively. =v c 0.21sconv ph . The corresp-
onding times of the presented snapshots is t=62 hr in the =B 29 G case and
t=45 hr in the =B 4 G case. The arrows in the second and third panels
indicate the top of the chromosphere ( = ´T 4 104 K, r = -10 14 g cm−3).

Figure 4. The mass-loss rates of solar wind as a function of the energy input
from the photosphere (FA0). The filled and open symbols correspond to the
simulation results with =B 29 and 4 G.
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height. This leads to the smaller net energy flux when the
merging height is lower.

The most remarkable feature in Figure 7(a) is the significant
decrease in the energy flux around the transition layer in the
case of =B 4 G (red line). Figure 8(a) shows the dependence
of the FA height profile on vconv in the case of =B 4 G.
Although a larger vconv produces a larger FA on the bottom
boundary ( –= ´ ´F 6 10 2 10A0

8 10 erg cm−2 s−1 for vconv

–=c 0.07 0.42sph ), the transmitted energy fluxes into the corona
do not show the significant increase from ~F 10A

5

erg cm−2 s−1 ( ( ) ~F A AA 0 a few ×107 erg cm−2 s−1). In other
words, the additional energy input associated with a larger vconv
is completely lost below the transition layer. This cannot be
seen in the case of =B 29 G. Figure 8(b) shows that a larger

energy input from the photosphere always leads to larger
transmitted energy flux when =B 29 G.

4.2. Alfvén Waves in the Chromosphere

In the previous subsection, it was determined that the
transmission of energy flux into the corona is limited to
∼105 erg cm−2 s−1 when the merging height is higher
( =B 4 G). This suggests that Alfvén waves cannot be
responsible for a Poynting flux across the chromosphere that
is larger than a certain upper limit in the case of =B 4 G.
Therefore, how the oscillations of toroidal velocity and
magnetic field depend on the poloidal magnetic field config-
uration in the chromosphere was investigated.

Figure 5. The time-slice diagrams of the mass density in the lower atmosphere. Note that the scale of height used in (a) and (b) is twice as large as that in (c) and (d).
The top of the chromosphere (r r ~ -10ph

7) shows the upward and downward motions, which correspond to the spicule dynamics. The dependence of spicule
dynamics on B and vconv is clearly seen in these panels. Panels (a) and (b) show the results in the cases of =B 29 G and =v c 0.21, 0.42sconv ph , respectively. Panels
(c) and (d) correspond to the cases of =B 4 G.
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Figure 9 shows the twisting motion of the magnetic flux tube
in the chromosphere. Figures 9(a1) and (b1) show the time-
slice diagram of density in the lower atmosphere when =B 29

and 4 G, respectively. Figures 9(a2) and (b2) show the
nonlinearity of Alfvén wave amplitude. Because of the weaker
B , fv V xA are higher in the =B 4 G case. In addition, the
toroidal velocities above and below the merging height
(horizontal dashed lines) often have opposite signs when

=B 4 G. Such an antiphase oscillation is rarely seen when
=B 29 G. This difference is more clearly seen in Figures 9(a3)

and (b3). These panels show the comparison of the low-
frequency component of the vf oscillation (n < 1 mHz). The
antiphase oscillation mentioned above appears in Figure 9(b3).
Figures 10 and 11 depict the typical time sequence of the

magnetic field lines in the cases of =B 4 and 29 G,
respectively. When the merging height is low and B is large,
the upper part of the flux tube above the merging height is
twisted as its lower part rotates (Figure 11). On the other hand,
Figure 10 shows that the upper part of the flux tube is
counterrotating against the lower part, thereby causing the
formation of the break in the magnetic field line. The close-up
view around such a break in the magnetic field line is shown in
Figure 12, which corresponds to the rectangle area in Figure 9.
The break in the magnetic field line is represented by the
dashed line in this figure, which agrees with the characteristics
at pr+v B 4x x . Figure 9 shows that this signature appears

Figure 6. The average spicule height as a function of the velocity amplitude on
the photosphere. The filled (open) circles correspond to the simulation results
in the case of =B 29 G (4 G).

Figure 7. The dependence of the transmissivity of Alfvén waves on different
B . =v c 0.21sconv ph . The black and red lines show the results in the cases of

=B 29 and 4 G. Panel (a): Poynting flux by magnetic tension force
( ( )p- f fB v B 4x ) normalized by the cross section of the magnetic flux tube.
Panel (b): outward (solid lines) and inward (dashed lines) Poynting flux by
magnetic tension. Panel (c): temporally averaged profile of the Alfvén speed.
The vertical gray lines correspond to the merging height =H H8, 12m ph.

Figure 8. The dependence of the transmissivity of Alfvén waves on vconv in the
case of =B 4 G (panel (a)) and 29 G (panel (b)). Each profile represents the
Poynting flux of the magnetic tension force normalized by the cross section of
the magnetic flux tube. The thickest black line shows the simulation result with

=v c 0.42sconv ph while the thick red and black lines show the results with
=v c 0.21, 0.14sconv ph . The thin line corresponds to =v c 0.07sconv ph . Here,
g m=c R Ts gph eff ph is the adiabatic sound speed on the photosphere.
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transiently and is associated with a compression that is strong
enough to significantly enhance the plasma β in the down-
stream. The break in the magnetic field line is, therefore,
identified as the intermediate shock.

4.3. Slow/Fast Shocks in the Chromosphere

The previous subsections revealed that energy transfer by
Alfvén waves is restricted in the case of a weak magnetic field
( =B 4 G). Aside from such a nearly incompressible wave, the

propagation of magnetoacoustic shocks, including slow and
fast shocks, is possibly dependent on the magnetic field
configuration in the chromosphere. In fact, Figure 6 shows the
dependence of the average spicule height on vconv changes in
accordance with the magnetic field strength B . For a
comprehensive discussion, we investigated the propagation of
slow and fast shocks.
The relatively strong compressible wave can be distin-

guished as propagating spiky signatures with-¶ >v 0x x . After
tracing these signatures, the Alfvén Mach number of the shock

Figure 9. The twisting motion of the magnetic flux tube and its dependence on the merging height. The left and right columns show the results in the cases of =B 29
and 4 G, respectively. =v c 0.21sconv ph . The merging heights are indicated with the horizontal dashed lines. Panels (a1) and (b1): the time-slice diagram of density.
Panels (a2) and (b2): the nonlinearity of the toroidal velocity vf with respect to the Alfvén speed prB 4x . Panels (a3) and (b3): the nonlinearity of the low-frequency
component of the toroidal velocity with respect to the Alfvén speed. The gray rectangle area corresponds to the frame of Figure 12.

Figure 10. The schematic drawing of flux tube motion in the case of =B 4 G. Note that t=0 s corresponds to the same time used in Figures 9(b1)–(b3). This time
range is within the gray rectangle in Figure 9.
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wave (MA) is calculated using the following formula (the
derivation is described in Appendix A):
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where ( )p= + fp p B 8tot
2 . By expressing the fast- and

slow-mode Mach numbers with =M M V Vf A A fast and =Ms

M V VA A slow, where Vfast and Vslow are the fast- and slow-mode
speeds, the detected shock is specified as the fast shock when
∣ ∣ ∣ ∣- < -M M1 1f s , or, otherwise, the slow shock. This
classification is justified when both fast and slow shocks are
relatively weak, i.e., ~M 1f and ~M 1s . By counting the fast
(slow) shocks with Mf (Ms) propagating around the mass
density ρ in the stratified atmosphere, the distribution function
of Mf or Ms, with respect to ρ, is defined as follows:
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where ( )rdN M, is the expected number of shocks character-
ized with (r M, ) in one snapshot and the subscriptions i and j
represent the discretization.

Figure 13 shows the distribution functions calculated from
the simulation results in the cases of =B 29 G (upper panels)
and 4 G (lower panels). v csconv ph is fixed at 0.21. The vertical
dotted line in each panel corresponds to the mean mass density
at the transition layer. The distribution around the transition
layer is artificially sparse in all panels. This is because the
shock crossing the transition layer is hardly detected in this

analysis (we used the time series data over 50,000 s with an
interval of 4 s. This interval is much longer than that of the
shock-crossing timescale across the transition layer). The cross
symbol represents the most frequently appearing Mach number
in each bin of ρ. Thus, the gradual rise of cross symbols seen
around r - 10 12 g cm−3 in Figure 13(a2) shows the growth of
the chromospheric slow shock. Note that the coronal slow
shocks in Figures 13(a2) and (b2) are concentrated on

g~M 1s rather than ~M 1s . This is because we calculated
Ms by assuming γ=5/3 without any considerations of
nonadiabatic effects. The phase speed of slow shock in the
corona tends to be the isothermal sound speed r~ p due to
the strong heat conduction. This leads to the underestimation of
Ms by a factor of g~1 in the corona.
The most remarkable feature in this figure is that the slow

shock vanishes around r ~ -10 11 g cm−3 in Figure 13(b2).
r = -10 11 g cm−3 is three orders of magnitude higher than the
mass density at the transition layer and roughly corresponds to
the mass density around the merging height. Therefore, this
disappearance of slow shock is not related to the above-
mentioned artificial sparse distribution around the transition
layer. Instead, it is implied that the slow shock can be
evanescent in the chromosphere when the magnetic field
is weak.

5. Discussion

5.1. Intermediate Shock in the Chromosphere

We discuss here the causal relationship between the high
nonlinearity of Alfvén waves in the chromosphere and the limit
on the energy transmission into the corona (Section 4.1).
Figure 14 shows the temporally averaged profiles of

nonlinearity regarding Bf, vf, and vx. Note that we abbreviated

Figure 11. The schematic drawing of flux tube motion in the case of =B 29 G. Note that t=0 s corresponds to the same time used in Figures 9(a1)–(a3).

Figure 12. The time-slice diagram of fB Bx, div vx, and plasma β in the chromosphere, showing the highly sheared toroidal magnetic field with strong compression.
The dashed line represents the propagation of the intermediate shock. t=0 s in these diagrams corresponds to t=2600 s in Figure 9. (The time range of this diagram
corresponds to the gray rectangle in Figure 9.)
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( )á ñfB Bx
2 1 2, ( )á ñfv V xA

2 1 2, and ( )á ñv Vx xA
2 1 2 into fB Bx,

fv V xA , and v Vx xA . fB Bx and fv V xA represent the nonlinearity
of Alfvén waves. The maximum level of nonlinearity is always
found around the merging height. The higher merging height is
responsible for the higher maximum nonlinearity of torsional
(Bf and vf) and longitudinal (vx) oscillation. In particular, the
high level of nonlinearity of vx corresponds to the large inertia
of the magnetic flux tube.

By using mass conservation (Equation (1)) and poloidal
magnetic flux conservation (Equation (6)), the toroidal
component of the equation of motion (Equation (4)) can be
expressed as below:
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The variables in the above equation are the same as those used
in Section 2.1. The second term represents the inertia term. It
can be competitive against the Lorentz force (the third term)
when the longitudinal oscillation is highly nonlinear. The last
panel of Figure 14 shows the ratio of the temporally averaged
absolute value of the inertia term in relation to that of the
restoring term in Equation (24). Here, we define the following:

( )
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¶

¶
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x
25x
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( )
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=

¶

¶
f

f
B
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A B

x4
. 26x

restoring

The low ratio in the corona means that Alfvén waves can
propagate without a significant nonlinear effect while the ratio
around unity implies that wave propagation is strongly affected
by the inertia term. In the case of the higher merging height

Figure 13. The distribution functions of the Mach number of the fast or slow shocks with respect to the atmospheric mass density ρ. The color shows the quantities
defined by Equation (23), the expected number of shocks found in one snapshot. The cross symbol represents the most frequently appearing Mach number in each bin
of ρ. Panels (a1) and (a2) show the analysis result for the case of =B 29 G while (b1) and (b2) correspond to the =B 4 G case. =v c 0.21sconv ph . The vertical dotted
line in each panel corresponds to the mean mass density at the transition layer. The horizontal dotted lines in panels (a2) and (b2) correspond to g=M 1s .

Figure 14. The nonlinearity of Bf, vf, and vx in the lower atmosphere. The
solid and dashed lines show the results in the cases of =B 29 and 4 G,
respectively. The thick and thin lines show the results in the cases of

=v c 0.21sconv ph and 0.07, respectively.
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( =B 4 G), the ratio reaches unity around the merging height,
as shown with the red thick line in Figure 15. Due to this large
inertia of the magnetic flux tube, the rotation of the upper part
of the flux tube cannot be restored so easily by the twisting
motion injected from the photosphere. That would result in the
antiphase oscillation between the upper and lower parts of the
flux tube (Figure 9). The highly sheared torsional flow and
nonlinear longitudinal oscillation can cause the “fracture” of
the flux tube, i.e., the formation of the intermediate shock
(Figure 10). Once the intermediate shock is formed in the
chromosphere, the Poynting flux associated with it hardly
transmits into the corona. That is because the intermediate
shock easily interacts with the slow and fast shocks or contact
discontinuity, including the transition layer itself. Among these
interactions, the collision of intermediate shock with the
transition layer results in the transmitted waves composed of
fast rarefaction wave and slow shock. As both of them have
negative Poynting fluxes, the magnetic energy transferred by
the chromospheric intermediate shock is, in this sense, confined
below the transition layer until its dissipation.

Figures 15 and 16 show examples of the formation of the
chromospheric intermediate shock. In Figure 15, the inter-
mediate shock deviates from the fast shock at around t=120 s
and collides with the downward slow shock at around
t=340 s. Although the upward fast shock generated by this
collision has a positive Poynting flux, the other resultant waves,
including the upward intermediate rarefaction wave, transport
the magnetic energy downward. The formation of the
intermediate shock in Figure 16 is a result of the head-on
collision of upward and downward slow shocks, which is
associated with the encounter with large shear flow. The
upward intermediate shock finally becomes bidirectional fast
shocks after the interaction with the other waves. The
dissipation of the intermediate shock is clearly exemplified in
Figure 17. In this scene, the interaction between the sequence
of intermediate shocks and the downward slow shock results in
the bidirectional slow shocks. As a result, the highly sheared

magnetic field line is rapidly relaxed and the super-Alfvénic
torsional flow is generated.

5.2. Wave Nonlinearity in the Chromosphere

Figure 14 shows that wave nonlinearity such as fB Bx,
fv V xA , and v Vx xA is highest around the merging height. It
demonstrates that higher merging height (or weaker B ) and
larger v csconv ph are always associated with higher wave
nonlinearity in the chromosphere. By focusing on the
maximum values of the profiles plotted in Figure 14,
the scaling relations between v csconv ph and wave nonlinearity
were summarized in Figure 18.
Figure 18(a) shows that the ratio of the inertia force to the

restoring force is clearly correlated to ( )( )-v c B Bsconv ph ph
1 2,

i.e.,

[( )

( ) ] ( )

=

´ - -

f f v c

B B

0.28

. 27

sinertia restoring conv ph

ph
1 2 0.89

This scaling is composed of the relation between
f finertia restoring with v Vx xA (Figure 18(b)) and that between

v Vx xA with ( )( )-v c B Bsconv ph ph
1 2 (Figure 18(c)). In fact,

Equations (25) and (26) indicate that l~ ff v vxinertia A and
( )prl~ ff B B 4xrestoring A , where lA is the wavelength of the

Alfvén waves. Therefore, f finertia restoring tends to be v Vx xA

when pr~f fv B 4 . The amplitude of vx basically follows
the energy flux conservation for the longitudinal wave in the
isothermal atmosphere. That means r ~v Bx x

2 constant and
µ -v V Bx x xA

1 2. By using these scaling relations, it is
inferred that there is a critical v csconv ph or B Bph across
which the chromosphere is too highly nonlinear such that the
Lorentz force associated with Alfvén wave propagation
( frestoring) can no longer twist the flux tube against the
large inertia force ( finertia). From Equation (27), we
replace this critical condition of f finertia restoring with

Figure 15. The typical scene of formation of the intermediate shock which deviates from the fast shock. t=0 s in these diagrams corresponds to t=2600 s in
Figure 9. The intermediate shock immediately interacts with the downward slow shock and results in the intermediate rarefaction wave with negative Pointing flux.
“SS,” “FS,” “IS,” “IR,” and "SR" in the leftmost panel stand for the slow shock, fast shock, intermediate shock, intermediate rarefaction wave, and slow rarefaction
wave, respectively. The colored lines correspond to the trajectories of the characteristics. The horizontal dashed line represents the merging height =H H12m ph.
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[( ) ]- v c B B0.28 1sconv ph ph
0.89 or

( )v c B B4.2 . 28sconv ph ph

This implies the following: first, for a given flux tube with
B Bph, the energy input from the photosphere larger than

r=F v VA,cr ph conv,cr
2

Aph does not contribute to the coronal
heating. As such,

( ) ( )= ´ - -F B B2.4 10 erg cm s . 29A,cr
12 2 1

ph

When =B 4 G and =B 1560ph G, we find ( ) ~v c 0.21sconv ph cr

and = ´F 6.3 10A,cr
9 erg cm−2 s−1. Second, for a given convec-

tion velocity of v csconv ph, the magnetic flux tube with
( ) ( )< =B B B B v c0.057 sph ph cr conv ph

2 is unable to guide the

magnetic energy from the lower atmosphere to the corona. When
=v c 0.21sconv ph and =B 1560ph G, we find =B 4cr G.

Finally, it is notable that the wave nonlinearity of fB Bx follows
( )µf

-B B Bx
1 2 1.15 (Figure 18(d)). This is accounted for by

the energy flux conservation for the Alfvén waves propagating
along the magnetic flux tube that expands like rµBx

2 .
Because r =fv V Ax

2
A const., we find rµf

-v 1 4 and ~fB Bx

rµfv V Bx xA
1 4 . Thus, when rµBx

2 , it is obtained that

µf
-B B Bx x

1 2. Hollweg (1971) and Shibata & Uchida (1985)
discussed that large-amplitude Alfvén waves can be responsible for
the longitudinal motion and derived the relationship of

( )µ fv V B Bx x xA
2. On the other hand, Figures 18(c) and (d)

show [( ) ( ) ]=v V v c B B0.29x x sA conv ph ph
0.86 and =fB Bx

[( ) ( ) ]v c B B0.52 sconv ph ph
1.15, leading to the following scaling

Figure 16. The typical scene of formation of the intermediate shock which results from the head-on collision of slow shocks. t=0 s in these diagrams corresponds to
t=1100 s in Figure 9. “SS,” “FS,” and “IS” in the leftmost panel stand for the slow shock, fast shock, and intermediate shock, respectively. The colored lines
correspond to the trajectories of the characteristics. The horizontal dashed line represents the merging height =H H12m ph.

Figure 17. The typical scene of rapid dissipation of the intermediate shock. t=0 s in these diagrams corresponds to t=400 s in Figure 9. The collision between the
sequences of upward intermediate shocks with the downward slow shock leads to the bidirectional slow shocks. “SS,” “FS,” and “IS” in the leftmost panel stand for
the slow shock, fast shock, and intermediate shock, respectively. The colored lines correspond to the trajectories of the characteristics. The horizontal dashed line
represents the merging height =H H12m ph.
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law:

( ) ( )= fv V B B0.51 . 30x x xA
0.75

5.3. Evanescence of Slow Shock in the Chromosphere

Figure 16 exhibits the formation of the intermediate shock as
well as the disappearance of the upward slow shock. This
reminds us of Figure 13, which shows that the slow shock is
absent in the upper chromosphere when the magnetic field is
weak. In addition to this head-on collision of the counter-
propagating slow shocks, the head-on and rear-end collisions
between the slow and intermediate shocks can disturb the
upward propagation of the slow shock. These interactions
would be encouraged in the highly nonlinear chromosphere,
especially when the magnetic field is weak. This is because the
crossing timescale of slow shock at a speed of ~c B Bs x
becomes longer as nonlinearity increases.

This evanescence of the slow shock in the chromosphere
could result in the following two consequences about the
spicule dynamics. First, the ejection speed of the spicule would
become smaller and less dependent on vconv. Second, less
frequent slow shocks in the upper chromosphere could reduce
the chromospheric temperature, leading to a shorter density
scale height in the chromosphere (Appendix B). As a result of
the smaller ejection speed and shorter density scale height, the

average spicule height in the weak magnetic field tends to be
lower than that in the strong magnetic field.

5.4. Comparison with Observation and Other Theoretical
Studies

5.4.1. Solar Wind

The typical fast solar wind proton flux observed around 1 au
is ∼2×108 cm−2 s−1 (Withbroe 1989; Wang 2010), compar-
able to the simulated value in the stronger magnetic field case
(~ ´2.1 108 cm−2 s−1 for =B 29 G), but inconsistent with
that in the weaker magnetic field case (~ ´0.20 108 cm−2 s−1

for =B 4 G). As discussed in Section 5.1, Poynting flux into
the corona is limited to 105 erg cm−2 s−1 when =B 4 G, which
causes a significantly low-mass flux of solar wind. The
inconsistency between the observed and simulated mass-loss
rates in the =B 4 G case is, however, easily solved by
considering the polarization of the Alfvén waves. In the present
study, we used the axisymmetric coordinate system with
linearly polarized Alfvén waves. The nonlinear propagation of
circularly polarized Alfvén waves in nonsteady solar wind was
simulated by Suzuki & Inutsuka (2006) and Shoda et al. (2018)
using the local spherically symmetric coordinate system (Shoda
& Yokoyama 2018). The differences between the axisymmetric
and local spherically symmetric coordinate systems are

Figure 18. The scaling relation between v csconv ph and wave nonlinearity in the chromosphere. The plotted quantities correspond to the maximum values of the
profiles shown in Figure 14. The styles of the squares or circles are the same as those used in Figure 4.
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summarized in Appendix C. We also conducted a similar
parameter survey on the solar atmosphere and wind structure in
the local spherically symmetric coordinate system with
circularly polarized Alfvén waves. Consequently, it is con-
firmed that the results qualitatively agree with those in the
axisymmetric coordinate system. That means, even in the local
spherically symmetric coordinate system, there is an upper
limit on the transmitted Poynting flux into the corona when the
merging height is higher ( =B 4 G). The wind’s mass-loss rate
and average spicule height become independent of the
velocity amplitude on the photosphere (vconv) when

v c B B4.2sconv ph ph (Section 5.2). Figure 19 shows the
mass-loss rates of solar wind as a function of the energy input
from the photosphere. The filled and open circles are the same
as those in Figure 4, and the square symbols are overplotted as
the results in the local spherically symmetric coordinate
system. The wind’s mass-loss rate in the local spherically
symmetric coordinate system with =B 4 G (open squares)
appear to be constant for F 10A0

10 erg cm−2 s−1. The upper
limit of the mass-loss rate simulated in the local spherically
symmetric coordinate system is, however, much higher than
that in the axisymmetric coordinate system. This is partly
because the circularly polarized Alfvén waves transfer twice as
much magnetic energy as the linearly polarized Alfvén waves
when their amplitudes are the same. In other words, the critical
Poynting flux FA,cr (Equation (29)) in the local spherically
symmetric coordinate system is calculated as = ´F 2A,cr

r v Vph conv,cr
2

Aph,

( ) ( )= ´ - -F B B4.8 10 erg cm s . 31A,cr
12 2 1

ph

As a result, the upper limit of the transmitted Poynting flux into
the corona is much larger than that in the axisymmetric
coordinate system. As such, the resultant mass-loss rate can
reach the observed level. Therefore, the above-mentioned
inconsistency between the observed and simulated mass-loss
rates in the axisymmetric coordinate system is merely an
intrinsic problem of our 1D approximation.

Suzuki et al. (2013) reported their simulation results for solar
and stellar winds, which showed that the wind’s mass-loss rate
saturates due to the enhanced radiative loss in the corona. From
the time-steady energy equation, they paid attention to the
following energy conservation law (in the local spherically

symmetric coordinate system):
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where v̂ and B̂ are the transverse components of the velocity
and magnetic field. rtc represents the top of the chromosphere,
the position with the temperature = ´T 2 104 K, according to
the definition by Suzuki et al. (2013). The foregoing expression
means that the Poynting flux at =r rtc (left-hand side) is
converted to the kinetic energy of wind (the first term in the
right-hand side) as well as the radiative loss and gravitational
potential energy (the second and third terms on the right-hand
side, respectively). While the kinetic energy of wind is
positively correlated to the Alfvén waves energy at the top of
the chromosphere, the large energy transmission into the
corona can make radiative energy loss dominant over the
kinetic energy term. That leads to the saturation of the wind’s
mass-loss rate. This kind of saturation is also seen in our
simulation. Figure 20 is analogous to Figure 8 in Suzuki et al.
(2013). It presents the comparison between the left-hand side of
Equation (32) (( )L fA tc) with the first and second terms on the
right-hand side (LK,out and ( )L fR tc). As seen in this figure,
( )L fA tc larger than ∼4×1028 erg s−1 leads to the saturation of
LK,out, which is associated with the enhanced ( )L fR tc. The
saturation level of LK,out is almost consistent with that
suggested by Suzuki et al. (2013) as shown below, indicated
by the blue horizontal line in Figure 20,

( ) ( )= ´ -L B f2.05 10 erg s . 33K,out,sat
28 1

ph ph
1.84

Figure 19. The mass-loss rates of solar wind as a function of the energy input
from the photosphere (FA0). The circle (square) symbols correspond to the
simulation results with the axisymmetric (local spherically symmetric)
coordinate system. The filled (open) symbols mean the results of the

=B 29 G (4 G) case.
Figure 20. The kinetic energy flux (blue symbols) or radiative loss (red
symbols) of the solar wind with respect to Poynting flux at the top of
chromosphere ( = ´T 2 104 K). This figure is analogous to Figure 8 in Suzuki
et al. (2013). The blue horizontal line corresponds to the saturation level
suggested by their study (Equation (33)). The relation of y=x is also plotted
using the dotted line. The thick vertical lines indicate the limit of transmitted
Poynting flux found in our simulation with the axisymmetric (Limit ( )ax. ) and
local spherically symmetric coordinate systems (Limit ( )sp. ).
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This saturation is, however, not expected in the case of the
higher merging height ( =B 4 G). That is because the
transmission of the Alfvén wave energy itself is limited
due to its high nonlinearity in the chromosphere, as discussed
in the previous subsection. This is why the open circles
and squares are absent above a certain level of ( )L fA tc,
indicated by the vertical thick lines in Figure 20.

5.4.2. Spicule

The magnetic field configuration in the spicule has been
investigated using spectropolarimetric observations (López Ariste
& Casini 2005; Trujillo Bueno et al. 2005; Orozco Suárez et al.
2015) or inferred from MHD seismology (Zaqarashvili et al. 2007;
Kim et al. 2008). However, the statistics relating the spicule
dynamics to magnetic field configuration have not yet been
established (see Tsiropoula et al. 2012 for a review). Several
observational studies suggest that the different magnetic field
configurations between the quiet region and coronal hole are
responsible for the difference in their spicule properties, such as
their height as well as ascending and transverse speeds
(Johannesson & Zirin 1996; Pereira et al. 2012; Zhang et al.
2012). This relationship will be examined by future observations.

From the theoretical point of view, Iijima (2016) found that the
average magnetic field strength is not primarily important for the
length scale of a chromospheric jet based on his 2D radiation
MHD simulation. On the other hand, he noted that the scale of
chromospheric jets driven by torsional motion of a flux tube is
possibly dependent on the average magnetic field strength. Saito
et al. (2001) show that a taller spicule is associated with a lower
density or stronger magnetic field based on their 1D MHD
simulation. They explained, by referring to Shibata & Suematsu
(1982), that a taller spicule is launched by the slow shock that
grows with decreasing density or less expanding flux tube. In our
simulation, the average spicule height is determined by the strength
of slow shock reaching the transition layer and the density scale
height in the chromosphere. When =B 29 G, the slow shock can
grow with height (Figure 13) and drive the faster spicule. The
larger vconv leads to the amplified centrifugal force and enhanced
slow shock heating, both of which could contribute to the
extension of density scale height in the chromosphere
(Appendix B). As a result, the average spicule height is taller
with larger vconv in the case of =B 29 G (Figure 6). On the other
hand, when =B 4 G, the intermediate shock restricts the
centrifugal force from being amplified, and the slow shock
becomes evanescent in the upper chromosphere. This is why the
average spicule height is less dependent on vconv in the weaker B .

5.5. Limitations to Our Model and Future Perspectives

As for the chromospheric intermediate shock, Snow &
Hillier (2019) found that the decoupling of the neutral fluid
against plasma can cause the intermediate shock when
reconnection occurs in the partially ionized plasma. Our study
and their study suggest that the chromospheric intermediate
shock would be observed ubiquitously over a wide range of
spatial scales in near future. The effect of partially ionized
plasma can appear especially for the propagation of high-
frequency Alfvén waves (Soler et al. 2019) and should be
considered in future studies. Several limitations should be
imposed on the application of the results of our study with
regard to the real solar atmosphere and wind. The present study
is based on a 1D approximation (symmetry assumption), flux

tube model, and simplified radiation. Our study ignores solar
rotation, collisionless effects, and various wave dissipation
mechanisms, including phase mixing and turbulent dissipation
(Cranmer et al. 2007; Shoda et al. 2018). Nevertheless, it is
worthwhile to emphasize that highly nonlinear Alfvén waves in
the chromosphere could restrict the energy transfer from the
photosphere to the corona. As such, our findings highlight the
importance of the magnetic field configuration in the chromo-
sphere in terms of the diversity of both solar and stellar
atmosphere and wind structures.

We thank K. Ichimoto for many valuable and critical
comments. T.S. was supported by JSPS KAKENHI grant No.
JP18J12677. Part of this study was carried out by using the
computational resources of the Center for Integrated Data
Science, Institute for Space-Earth Environmental Research,
Nagoya University, through the joint research program, XC40
at YITP in Kyoto University, and Cray XC50 at Center for
Computational Astrophysics, National Astronomical Observa-
tory of Japan. Numerical analyses were partly carried out on
analysis servers at the Center for Computational Astrophysics,
National Astronomical Observatory of Japan.

Appendix A
Measurement of Mach Number of Fast/Slow Shocks

The Alfvén Mach numbers of fast and slow shocks in our
simulation were calculated by Equation (22). The derivation is
described here. Noting the subscripts u and d for the physical
quantities in the upstream and downstream of the shock wave,
the jump condition of momentum flux across the shock front is
expressed as follows:
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Because r r=v vu xu d xd from the mass conservation,
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2 . The above expression is, mean-

while, not practical for the estimation of the Mach number
especially in the stratified atmosphere. Actually, when -v vxu xd

approaches 0, ∣ ∣-p pu dtot tot tends to r Dg x (Dx is the
discretization) because of the stratification. This leads to the
overestimation of the Mach number for weak shocks in the lower
atmosphere. In order to correct it, we used the following formula:
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Appendix B
Density Scale Height of the Atmosphere

The density scale height of the atmosphere follows the
dynamic equilibrium determined by the poloidal component of
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the equation of motion:

⎜ ⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠ ( )

r r p

pr

¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

+
¶

¶
-

¶
¶

-
¶
¶

=

f

f
f

v

t
v

v

x

p

x x

B

B A

x
v

A

x x

GM

r

1 1

8

4

ln ln
0. B1

x
x

x
2

2
2

By substituting ( )r r= ´p p and considering the temporal
average, the following is obtained:
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The left-hand side represents the reciprocal of the density scale
height and is expressed by the harmonic mean of several scale
heights:

( )= + + + +
rH H H H H H

1 1 1 1 1 1
. B3
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Here, Hdyn, HBp, HBt, and Hcnt represent the scale heights,
which are related to the dynamic pressure, magnetic pressure,
magnetic tension force, and centrifugal force, respectively:
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Hhyd is the density scale height of the atmosphere in the
hydrostatic equilibrium when the temperature profile is given.
For the isothermal atmosphere, Hhyd is expressed as follows:
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In the expanding flux tube, Hcnt and HBt are always negative
and positive, respectively. HBp and Hdyn are also usually
negative and positive, respectively. These correspond to the
acceleration by the magnetic pressure gradient and centrifugal
force, as well as the deceleration by the magnetic tension force
and dynamical pressure gradient.
Figure B1 shows the dependence of the density scale height on

B and vconv. In Figure B1(c),Hρ is plotted to see its dependence on
vconv and B . The black and red lines represent the results in the

=B 29 and 4G cases, respectively. The thin and thick lines
correspond to the results in the =v c 0.07sconv ph and 0.21 cases,
respectively. There are two local maxima around ∼1Mm and
2.2Mm in the profile of Hρ when ( ) ( )=B v c, 29 G, 0.21sconv ph
(thick black line). Neither of them are seen in the

=v c 0.07sconv ph case (thin black line). On the other hand, when
=B 4 G, the profiles of Hρ have a single maximum, regardless of

the vconv. In Figure B1(d), focus is placed on the case of
=v c 0.21sconv ph , and Hρ is compared to Hhyd. rH and Hhyd

remarkably disagree with each other around 1Mm in the case of

Figure B1. The median profile of the (a) temperature, (b) density, and averaged density scale height (c) in lower atmosphere. The black and red lines correspond to the
simulation results in the cases of =B 29 and 4 G, respectively. The thin and thick lines represent the results with =v c 0.07sconv ph and 0.21, respectively. In panel
(d), the density scale heights in the case of =v c 0.21sconv ph are compared to their constituents related to the stratification by gravitational acceleration and temperature
gradient (dotted lines).
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=B 29 G, while they agree around 2.2Mm. These suggest that
the first local maximum of rH is accounted for by the magnetic
pressure gradient and the centrifugal force, while the second one
results from higher chromospheric temperature. Compared to the
case of =v c 0.07sconv ph , when =v c 0.21sconv oh , Alfvén waves
in the lower chromosphere are naturally amplified and the
temperature in the upper chromosphere is increased due to the
heating by the slow shock. This leads to the two local maxima in
the profile of Hρ. The single local maximum in the =B 4 G case
corresponds to the first local maximum in the case of
( ) ( )=B v c, 29 G, 0.21sconv ph . This implies that the chromo-
spheric density scale height does not extend even with a larger
vconv because the chromospheric temperature is less dependent on
it compared to that in the case of =B 29 G. This lesser
dependence of the chromospheric temperature on vconv would
result from the evanescence of the slow shock in the upper
chromosphere with a weak magnetic field.

Appendix C
Axisymmetric and Local Spherically Symmetric

Coordinate Systems

We note the different curvilinear coordinate systems that have
been traditionally employed in 1D models. The derivation of the
basic equations in each coordinate system is described here.

The most general expression of our basic equations in the
curvilinear coordinate system is written as follows:
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where h1, h2, and h3 are the scale factors of the curvilinear
coordinate system. = + +v v v v2
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means the summation over a set of even permutations of (1,
2, 3).
There are two traditional approaches in simplifying the

above-mentioned equations into the 1D configuration. The first
one is the axisymmetric coordinate system based on the
assumption that ¶ = 02 for h2, h3, r, and other physical
quantities, and that =B 03 and =v 03 (Hollweg et al. 1982;
Kudoh & Shibata 1999; Matsumoto & Shibata 2010). The
poloidal axis x1 represents the outer edge of the magnetic flux
tube (Figure C1). The second is the local spherically symmetric
coordinate system based on the assumption that ¶ = 02 and
¶ = 03 for h2, h3, r, and other physical quantities (Suzuki &
Inutsuka 2005, 2006; Shoda & Yokoyama 2018). The poloidal
axis x1 in this case agrees with the radial axis of the spherical
coordinate system. The scale factors h2 and h3 are specified so
that µ -h h B2 3 1

1 is along the x1-axis in both coordinate
systems. Thereafter, they can be expressed as

∣ ( )∣= ¶-h Bln2,3
1

1 1 , which is close to =h r2,3 in the distance
where µ -B r1

2. By noting x1, x2, and x3 with x, f, and x3 for
the axisymmetric coordinate system or with x(=r), y, and z

Figure C1. The difference between the (a) axisymmetric and (b) local spherically symmetric coordinate systems. The poloidal axis x1 is represented by solid black
arrows and the toroidal or transverse axis x2 is represented by the thick red arrows. The poloidal axis x1 of the local spherically symmetric coordinate system agrees
with the radial axis, while that of the axisymmetric coordinate system agrees with that of the flux tube. The example of a “local sphere” in the local spherically
symmetric coordinate system is shown with the thin red circle in panel (b), the center of which corresponds to the red × symbol. The local sphere is not the same as the
sphere with r=const. unless the magnetic flux tube expands radially (i.e., µ -B r1

2).
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for the local spherically symmetric coordinate system, the
following equation systems are obtained: in the axisymmetric
coordinate system,
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In the local spherically symmetric coordinate system,
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where ( )=B̂ B B,y z and ( )=v̂ v v,y z . Because the two
transverse components of the velocity and magnetic field are
taken into account in the local spherically symmetric coordinate
system, the circularly polarized Alfvén waves can only be

discussed by using this coordinate system. However, it should be
noted that the simulation result based on the local spherically
symmetric coordinate system is not always representative of the
dynamics of the magnetic flux tube in the 3D space, especially for
the low-frequency Alfvén waves in the lower atmosphere wherein
the flux tube expands superradially, and gravity cannot be
ignored. This is because it is not always possible to assume both
that ( )¶ =h h B 0x y z x and that ¶ = ¶ =r r 0y z , as required in the
local spherically symmetric coordinate system. In fact, because the
local sphere with the curvature radius of hy is not identical to the
sphere radius of r unless µ -B rx

2, the gravitational acceleration
is not uniform on the yz plane. Therefore, when Bx expands more
strongly than -r 2, we can assume ¶ = ¶ =r r 0y z only along the
specific direction where the x-axis agrees with the radial axis, and
the gravity term, which depends on ¶ ry z, , affects the transverse
components of the equation of motion anywhere else. This is why
the assumptions that =B 03 and =v 03 are imposed in the
axisymmetric coordinate system. The magnitude of the gravita-
tional acceleration in the y component of the equation of motion
around (y, z)=(0, 0) is estimated as rg y R, where =R

∣ ∣¶ -Blnx x
1 is the curvature radius of the y-axis. When the flux

tube expands exponentially with the pressure scale height Hp in
the lower atmosphere, we find ( ) ( )µ - -B ex

r r H2 p and, thus,
~R H4 p (see Section 2.2). For the propagation of the Alfvén

waves with the wavelength lA and the frequency nA,
this gravitational acceleration is not negligible compared to
the restoring force ( )pl~B B 4x y A . In fact, by using

n~y vy A and pr~B v 4y y , it is obtained that [ rg vy

( )] [ ( )]n pl n n~H B B4 4p x yA A ac
2

A
2 , where nac is the acoustic

cutoff frequency. This means that the assumption of a local
spherically symmetric coordinate system is not appropriate in
describing the propagation of Alfvén waves with a frequency
lower than the acoustic cutoff frequency in 3D space.
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