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Abstract

We report on resolving power measurements of an X-ray reflection grating designed for use in an astronomical soft
X-ray spectrograph. The grating was patterned via electron-beam lithography (EBL) to have fanned grooves to
match the convergence of an illuminating beam. Grating measurements were conducted in an echelle-like
mounting, which yields access to high diffraction orders in the soft X-ray bandpass (0.2–2.0 keV). By comparing
the zeroth-order line-spread function to the telescope focus, we find evidence for minimal broadening (<1″)
introduced by the figure of the grating. In addition, we fit for the spectral resolution (R=λ/Δλ) intrinsic to this
grating using a Bayesian Markov Chain Monte Carlo approach. Using an ensemble fitting technique, we find that
the grating resolution R exceeds 2200 (3σ lower bound). This current grating resolution meets the performance
required for a notional soft X-ray grating spectroscopy mission measuring hot baryonic material in the extended
halos of galaxies. Using ray-trace simulations, we identify a geometric aberration resulting from path length
differences across the width of the grating as a limiting factor in assessing the resolution of these gratings and
discuss methods for placing better constraints on the inherent resolution of X-ray astronomical reflection gratings
fabricated using EBL.

Unified Astronomy Thesaurus concepts: Astronomical instrumentation (799); Spectroscopy (1558); Astronomical
techniques (1684); Bayesian statistics (1900)

1. Introduction

In the soft X-ray band (0.2–2.0 keV), gratings are employed
to form dispersive astronomical instruments for spectroscopy.
Several rocket-borne spectrometers (e.g., WRX, Miles et al.
2019; EXOS, Oakley et al. 2013) utilize reflection gratings to
form low-resolution spectra of diffuse objects bright in the soft
X-ray. Within observatory-class instruments, both the Reflec-
tion Grating Spectrometer aboard XMM-Newton (RGS; den
Herder et al. 2001) and the transmission grating spectrometers
aboard the Chandra X-ray Observatory (HETG, Canizares et al.
2005; LETG, Brinkman et al. 2000) have been in productive
operation for roughly two decades. Future proposed X-ray
missions, such as Lynx (Gaskin et al. 2019) and Arcus (Smith
et al. 2019), are baseline grating spectrometers with order-of-
magnitude improvements in effective area (EA) and line
detection sensitivity over existing X-ray grating spectrometers.

The performance requirements for the Arcus and Lynx
spectrometers are influenced by the EA and spectral resolution
R (λ/Δλ) needed to resolve absorption lines produced by
baryonic material distributed in the hot extended halos of
galaxies and clusters. Detections of the Sunyaev–Zel’dovich
effect in stacked galaxy measurements (de Graaff et al. 2019;
Tanimura et al. 2019) provide evidence of significant baryonic
mass out to and beyond the virial radius. UV absorption-line
studies (e.g., Lehner et al. 2007; Danforth & Shull 2008) have
placed constraints on the mass content (20%–40%) of the
“warm” phase (105.5 K) of this material. However, the “hot”
phase (106 K) is thought to contain more of these gaseous
baryons, accounting for as much as 50% of the total and 90%
of metals (Cen & Ostriker 2006; Shull et al. 2012). At the
temperatures of the “hot” phase, astrophysically abundant
metals contribute to the X-ray spectrum predominantly through

bound–bound lines (Bregman 2007). Bregman et al. (2015,
hereafter B15) assess prominent lines produced by ions present
in 106–108.2 K gas and find that O VII Heα (574 eV) and O VIII
Lyα (654 eV), both in the soft X-ray bandpass, are promising
lines for detecting baryonic material in this hot phase.
To that end, Kovács et al. (2019) report the detection of the

O VII Heα line in the Chandra LETG spectrum of H1821+643.
However, they detect the presence of this line without resolving
the individual absorption-line structures in the X-ray spectrum.
Their method relies on previously measured UV absorption-
line systems at known z and stacking redshifted X-ray spectra
along a well-observed (470 ks) sight line to generate a 3.3σ
detection of an O VII absorption feature. This detection lends
credence to using X-ray absorption-line spectroscopy to detect
and characterize these unaccounted-for hot baryons, while also
demonstrating the limitations of using current
instrumentation. B15 compute the required performance for a
grating spectroscopy mission capable of independently detect-
ing a statistically significant number of absorption systems in
promising active galactic nucleus sight lines. They find that
such an instrument must have a minimum resolution of
R>2000 and an EA of at least 300 cm2 at 0.5 keV.

1.1. Conical Reflection Grating Geometry

Achieving this EA over a broad bandpass demands a grazing
incidence optical system, since reflections at angles above the
critical angle rapidly reduce throughput. As such, multiple
X-ray reflection gratings must be tightly packed in modules to
yield a spectrometer with the required EA. However, this
stacking prohibits working at high diffraction orders if the
grooves are perpendicular to the incoming beam and diffraction
happens in the plane of incidence, as done for XMM-Newton’s
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RGS. High diffraction orders from one grating are vignetted by
the grating stacked above. Restricting spectroscopy to low
orders in turn places a limitation on the spectral resolution
achievable with this in-plane dispersive optical system.

However, a grazing incidence echelle
spectrograph (Cash 1982) can enable operation at high orders
without a significant loss of throughput. This conical diffrac-
tion geometry has been previously described elsewhere (e.g.,
Cash 1982; McEntaffer et al. 2013; McEntaffer 2019). An
echelle-like mounting with a shallow cone angle yields a
diffraction pattern in a plane perpendicular to the groove
direction, following the generalized grating equation
(Equation (1)):

( )a b
l
g

+ =
n

d
sin sin

sin
, 1

where d is the groove period, λ is the wavelength of the
incident light, n is the diffracted order number, α is the angle
between zeroth-order reflection and the grating normal as
projected on the focal plane, β is the angle of the diffracted
order and the grating normal, and γ is the cone angle formed
between the central groove direction and the incident ray. This
geometry is shown in Figure 1. Pursuant to Figure 1, we define
the additional variables η, the grazing incidence angle between
the grating plane and the incident light, Ψ, the angle between
the central groove and the incident light as projected into the
grating plane, and L, the distance between the center of the
grating and the zeroth-order spot. This diffraction pattern
leaves orders with high angular dispersion accessible at the

same focal plane as the undiffracted beam and does not vignette
high orders in astronomical applications requiring nested
gratings. Furthermore, by employing a blazed grating, the
grazing incidence equivalent of the Littrow configuration can
be realized, yielding efficient high-order operation (Miles et al.
2018).
In order to realize high spectral resolution in this conical

mounting, however, the groove pattern must be radially ruled.
A grating for which the grooves converge at the center of the
diffraction circle, called the grating groove hub, diffracts and
preserves the focus of a converging beam of light. This groove
pattern must match the angular convergence of the imaging
system toward the focal plane. Manufacturing a grating with
this groove pattern poses a challenge for techniques such as
mechanical ruling and photolithography, since the relative
angular change between adjacent grooves is vanishingly small.
In the present work, we describe the characterization and test

of a large-format (100 mm×70 mm) X-ray reflection grating
designed for operation in a conical mounting. This grating was
patterned using electron-beam lithography (EBL), a flexible
lithography technique in which a beam of high-energy
electrons is rastered over resist to produce a pattern. EBL
routinely achieves feature sizes on the order of tens of
nanometers, and isolated features with critical dimensions on
the order of a few nanometers have been previously
demonstrated (e.g., Manfrinato et al. 2013). Moreover, the
patterns produced are highly customizable, making EBL
suitable for producing this radially ruled groove pattern. By
operating this grating in conjunction with a silicon pore optics
telescope (SPO; Collon et al. 2019 and references therein) at
the PANTER X-ray Test Facility, we realize an echelle-like
grazing incidence spectrometer system and measure diffracted
orders at echelle angles of 35°–64°. We assess the line-spread
functions (LSFs) produced by this grazing incidence system
and estimate the resolving power of the large-format grating by
performing an ensemble fit to the diffracted LSFs.

2. Methods

2.1. Test Facility and Optical Components

X-ray measurements were conducted at the PANTER X-ray
Test Facility (Burwitz et al. 2019), an X-ray beamline
specializing in the testing and characterization of X-ray
astronomical systems (e.g., Predehl et al. 2016; Saha et al.
2018; Bradshaw et al. 2019). X-ray sources are housed at one
end of a 122 m, 1 m diameter beamline and used to illuminate
optics in a 12 m long, 3.5 m diameter instrument chamber at the
opposite end. X-ray systems under test can be mounted to an
adaptable optical bench and aligned in situ using vacuum-
compatible remote staging. TRoPIC, an X-ray CCD with
subpixel reconstruction good to 40 μm (Meidinger et al. 2009),
was placed on vacuum-compatible remote staging at the
nominal focal plane of the X-ray optical system. The
measurements described herein use this detector exclusively.
The reflection grating was tested in conjunction with an SPO

telescope (Collon et al. 2019). SPO are an X-ray telescope
technology formed by stacking wedged silicon plates on a
mandrel with a given optical prescription to form an SPO stack
(Keek et al. 2019). Primary and secondary SPO stacks are then
aligned and mounted in brackets to form an X-ray optical unit
(XOU), which is a two-reflection, grazing incidence telescope
(Barriére et al. 2019; Landgraf et al. 2019; Vacanti et al. 2019).

Figure 1. Diagram of the generalized conical diffraction geometry.
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An XOU forms the base unit of SPO, and the modular design
of SPO permits many XOUs to be aligned into a larger
telescope assembly, as is planned for the European Space
Agency’s ATHENA mission (Bavdaz et al. 2019). The optical
prescription for an SPO XOU is defined by its focal length z0
and the radius of curvature of its central plate r0. The SPO
employed for these X-ray measurements is XOU0038,
manufactured for the Arcus Medium-class Explorer (MIDEX)
mission concept by cosine Research BV. The XOU has a focal
length of z0∼12.0 m and a radius of curvature of 737.0 mm,
resulting in a graze angle of approximately i=0°.88.

The reflection grating was fabricated at the Pennsylvania
State University’s Materials Research Institute. A 6-inch-
diameter, 1.5 mm thick silicon wafer was employed as the
grating substrate. This wafer was then coated with resist and
patterned using a Raith EBPG5200 EBL tool. The grating
patterning process via EBL is described in greater detail by
Miles et al. (2018). The grating pattern is designed to have a
400 nm period at the center of the grating and is fanned so as to
converge to a point 11,749.41 mm away from the center of the
grating. The grating pattern measures 100 mm in the dispersion
direction (orthogonal to the grooves) and 70 mm in the axial
direction (along the grooves). Following the EBL write, the
resist was developed and transferred to the underlying silicon
substrate via an anisotropic reactive-ion etch, leaving a laminar
groove pattern. An atomic force micrograph of the grating
pattern produced is shown in Figure 2.

2.2. Optical System Alignment

Ideally, the spectrometer system is aligned such that the SPO
radial direction, the cross-dispersion direction of the gratings,
and the horizontal axis of the CCD are all parallel. This
minimizes the size of the point-spread function (PSF) in the
dispersion direction of the grating, since the PSF of an
azimuthal segment of an X-ray telescope is highly asymmetric
(see Section 3.2). Achieving this alignment increases the
experiment’s sensitivity to measuring the inherent spectral
resolution of the grating.
A cartoon of the optical path of the experiment is shown in

Figure 3. The grazing incidence spectrometer system is
illuminated by a point-like soft X-ray source located 122 m
away from the chamber entrance and hence is a spherical wave
front with mild (but nonnegligible) curvature. This wave front
passes through the chamber entrance mask and an optics mask
sized to the SPO XOU dimensions. This serves to fully
illuminate the SPO XOU while minimizing X-ray stray light.
The finite distance of the source displaces the position of the
telescope’s best focus to 13.39 m away from the optic, resulting
in a plate scale of 64.89 μm per arcsecond.
Aligning the SPO and grating to form a grazing incidence

spectrometer system proceeds sequentially along the photon
path. The radial and azimuthal directions of the SPO are first
aligned relative to the CCD horizontal and vertical directions,
respectively. This places the SPO in the “parentheses”
configuration relative to gravity. Alignment begins by imaging
the direct beam through the SPO without a reflection. This
produces an array of pore images with shadows created by the

Figure 2. Atomic force micrograph of the fabricated reflection grating. This micrograph covers a 2.0 μm by 0.5 μm area near the center of the grating. Measurements
of the arithmetical mean height Sa and rms height Sq on the upper surface of the grating yield values of 2.5 and 3.0 nm, respectively.

Figure 3. Cartoon showing the optical setup for the grazing incidence grating spectrometer system under test. Distances are not to scale. Measurements are along the
optical axis and are given with the CCD in the position of the SPO focus. Errors are estimated based on the repeatability of separate laser-distance meter measurements
or based on machine tolerances.
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pore walls and wafer surfaces on the detector. The SPO is then
pitched (i.e., rotated about the gravity vector) and the light
produced by a single reflection within the SPO traced across
the fixed CCD. This determines the radial direction of the SPO
module relative to the horizontal axis of the CCD. As both the
radial/azimuthal directions of the SPO and the horizontal/
vertical directions of the CCD are orthogonal by definition, the
SPO is aligned to the fixed CCD axes.

The next step is to establish the orientation of the stage
stacks that translate the CCD relative to these axes. While
looking at the array of pore images through the SPO without
reflection, the center of the SPO stack is determined as a
horizontal position on the CCD. The SPO is then placed at its
nominal pitch angle to form a double-reflection image at the
focal plane. The horizontal stage is then moved to the focus and
the position on the CCD is then compared to the center of the
SPO stack determined via the straight-through image. This
determines the horizontal stage attitude relative to the radial
direction. Finally, while at the SPO focus, the vertical detector
stage is then translated across the focus image to measure the
orthogonality of the vertical stage relative to the horizontal
stage. A drift in CCD Y of the static focus demonstrates
nonorthogonality of these two stages. After the completion of
this step, the optic radial and azimuthal directions, the CCD
horizontal and vertical axes, and the horizontal stage attitude
are known relative to one another, and the orthogonality of the
detector stages is also known. After obtaining the prime focus
of the SPO through pitch, yaw, and focus scans, the optic
is fixed.

Next, the position of the machined grating mask is adjusted.
The grating mask has an aperture stop for the telescope beam,
minimizing the illumination of unruled grating area. Unruled
areas are prone to high roughness and curvature. Vignetting
these unruled areas is necessary to accurately assess the zeroth-
order LSF and hence constrain the spectral resolution of the
grating. The relationship between the position of the grating
mask and the optical system was mapped out in two ways.
First, the grating mask was illuminated using the straight-
through telescope beam. The mask shadows were used to
position the mask such that the vertical bisector of the slits is
coincident with the radial direction of the SPO. This exercise
also provides an initial estimate for positioning the slit radially
in the focused telescope beam. This radial position was fine-
tuned by translating the slit mask across the focused telescope
beam and recording the flux in the optic focus. As the slit mask
travels across the telescope beam, the measured intensity in the

SPO focus varies smoothly from zero when occulted to full
intensity when passing through the slit.
Following placement of the mask, the grating is translated to

establish its placement relative to the telescope beam. The
horizontal and vertical placement of the grating is achieved by
mapping the shadow of the grating position in the straight-
through beam of the SPO. The center of the grating in the
vertical direction is aligned to the SPO by placing the bisector
of the grating width along the bisector of the SPO in azimuth.
The intended offset in the radial direction is known and the
grating is placed horizontally according to this distance. The
remaining linear alignment, distance along the optical axis,
arises from the need to place the converging grooves of the
radial pattern at the appropriate distance from the focal plane.
The grating was installed in the chamber near this nominal
position, and a laser-distance meter was used to determine
distances as reported in Figure 3. These measurements were
then used to compute the translation needed to bring the grating
into position along the optical axis and hence set the distance
between the center of the grating and the focal plane (Figure 4).
Next, the grating pitch and roll axes are aligned. This begins

by placing the grating in the SPO beam at the nominal test pitch
and imaging the zeroth-order reflection. The pitch is decreased
until the reflected spot returns to the SPO focus spot, thus
defining the grating stage position at which zero pitch is
achieved. To align the grating in roll, a series of images of the
zeroth-order reflection is created as the pitch is increased to
1°.5, the nominal graze angle for testing. If the roll of the
grating is not aligned to the horizontal stage axis, the centroid
of the zeroth-order reflection will drift in azimuthal direction of
the SPO during this series. The roll orientation of the grating is
then adjusted until the centroids of this series of zeroth-order
images lie along the line defining the SPO radial direction with
respect to the horizontal stage axis. Following these steps,
grating pitch and roll are calibrated, and the cross-dispersion
and dispersion axes of the grating are aligned with the SPO
radial and azimuthal directions, respectively.
To complete the process of aligning the grating, the yaw of

the grating is determined. At the nominal pitch of 1°.5,±1st
orders are found at the focal plane. If the grating yaw Ψ=0°,
the centroid of these orders is at the same cross-dispersion
position, and the line connecting them is parallel to the
dispersion direction of the grating. By performing a series of
shallow exposures, the grating yaw is adjusted until this
condition is reached. In this investigation, the yaw alignment
was further refined by repeating this process at±3rd order.

Figure 4. View of the grating along the dispersion axis following positional alignment. Both reported distances are calculated based on measurements reported in
Figure 3. All distances are given in mm.
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Lastly, the relative position of the grating and grating mask
is verified. We employ a 1.31 mm wide slit in the grating mask,
which equates to illuminating ∼50 mm along the grating
groove direction. By translating the grating horizontally across
the telescope beam, the flux in the optic focus varies. This flux
mapping shows structure that indicates the shadow of the
grating substrate. In addition, this flux mapping is used as a
secondary verification on pitch alignment. Since small errors
(∼0°.1) in pitch increase the projected thickness of the grating,
the size of the grating shadow can be measured by this flux
mapping and used as a secondary correction on the pitch angle
of the grating. Following these steps, the grating is centered on
the 1.31 mm slit in the grating mask and the alignment process
complete.

To measure diffracted orders at high dispersions, the grating
was placed into an echelle-like configuration by rotating the
grating about its surface normal by an angle Ψ. Yawing the
grating in this manner increases the cone angle γ without
changing the graze angle η. Since

( )h
g

a=
sin

sin
cos , 2

this increases α, permitting solutions of the grating equation for
higher-order n (Equation (1)).

3. Measurements and Analysis

3.1. Echelle-like Test Geometry

Following this alignment procedure, we next validated our
test geometry through X-ray measurements of diffracted orders.
Figure 5 displays a mosaic of the diffracted orders of Al Kα1,2

measured in this test configuration. The centroids of these
diffracted orders are calculated, and a least-squares fit of a
circle to these points is used to compute parameters for the
tested grating configuration. These parameters are reported in
Table 1; errors in these parameters are derived by propagating
the 1σ uncertainty in the best-fit circle to the diffraction
geometry.

The manufactured X-ray grating under test is not a true
echelle, since the grating profile is laminar rather than blazed.
However, we term this configuration “echelle-like” given this
configuration’s access to diffracted orders at large diffraction
angles. For 24th–30th orders, βn ranges from 35° to 64° and the

centroids are displaced a distance of 550–700 mm from zeroth
order.
Deep exposures of Al Kα zeroth, 27th, 29th, and 30th orders

were measured in this test configuration.5 As the dispersion
direction of the grating has been aligned to the horizontal
direction of the detector, the spectral information of the LSFs
can be obtained by summing the data in the vertical direction,
forming a one-dimensional profile. The raw X-ray images and
the resulting LSFs are shown in Figure 6. These data form the
basis for our analysis of the grating’s spectral resolution
performance.

3.2. Comparing Zeroth Order to the SPO Focus

To assess the impact of grating figure on the achieved
spectral resolution of the spectrometer system, we compared
the zeroth-order LSF to the focus of the SPO telescope.
Measurements of the SPO telescope focus, the zeroth-order
LSF, and the dispersion direction profiles are shown in
Figure 7. Qualitatively, we note that features of the SPO focus,
such as the asymmetric core and the “wings” of the PSF, are
reproduced by the grating, albeit with a reflection as expected.
Quantitatively, we computed the width and 1σ errors of the
SPO focus to be FWHMSPO=106±2 μm and the width of
the zeroth-order LSF to be FWHMn=0=121±5 μm. Hence,
we observe a broadening of the telescope focus from the
addition of the reflection grating by 0 9±0 2.

Figure 5. Mosaic image of the diffraction pattern produced by the X-ray reflection grating in the echelle-like mounting. The stage positions of each measurement
along with the line centroids were used to reconstruct the mosaic and the prescription of the diffraction arc. With reference to Equation (1), labels for α, β30 have been
added.

Table 1
Geometric Parameters for the Configuration under Test

Geometric Parameter Value (Å)

η 1°. 537±0°. 002
γ 2°. 220±0°. 003
α 45°. 79±0°. 08
Ψ 1°. 59±0°. 04

Note. Parameters are given with reference to Figure 1. Errors are 1σ.

5 While 28th order is accessible, efficiency calculations predict that this order
is highly inefficient in this mounting configuration. Hence, 28th order was not
measured deeply enough to provide a useful constraint on the grating
resolution R.
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Figure 6. Deep exposures of Al Kα1,2 zeroth (top left), 27th (top right), 29th (bottom left), and 30th (bottom right) orders. The CCD images have been summed along
the vertical direction to form the one-dimensional profile in the dispersion direction along the bottom of each frame. In these images and profiles, wavelength increases
with positive x (i.e., the dispersion vector is to the right). Error bars show the Poisson counting error in each bin, and profiles are normalized so as to integrate to unity.
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As an independent assessment of the grating figure, the
X-ray grating was measured using an optical profilometer
following mounting but prior to installation in the PANTER
test chamber. As limitations on the total travel of the
profilometer stage precluded measuring the entire grating, a
subsection of the reflection grating measuring 35 mm in the
dispersion direction and 70 mm along the optical axis was
examined using the profilometer. A surface plot of the resulting
data is shown in Figure 8.

From these data, we compute the expected broadening of the
zeroth-order LSF of 0 3±0 1. This is smaller than the
broadening observed under X-ray illumination; however, the
area of the grating illuminated during the X-ray test (50 mm
along the grooves by 100 mm orthogonal to the grooves) is
larger than the area that could be sampled with the
profilometer. To estimate the broadening that would be
produced by the fully illuminated area, the profilometer data
are fit with a two-dimensional, third-order polynomial and the

Figure 7.Measurements of the SPO focus (top), the zeroth-order LSF (middle), and the dispersion profiles of each (bottom). Features in the SPO focus are present but
vertically flipped, and the dispersion dimension profiles are similar.

Figure 8. Figure of the interior portion (70 mm×35 mm) of the tested grating.
Contours separated by 0.5 μm are projected on the Z-axis. The grating figure is
dominated by power, typical of Si wafers.
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resulting function extrapolated to the size of the illuminated
area. Using this extrapolation, the expected broadening is 0 9,
in keeping with the X-ray measurement. Thus, we posit that the
grating figure fully accounts for the observed zeroth-order
broadening.

However, slope errors introduced by the grating figure are
not the limiting factor in the achieved resolving power of the
spectrometer system. The SPO PSF focus quality measures 1 6
FWHM in the dispersion direction, and hence the telescope
quality is the dominant term in the measured width of the
zeroth-order LSF. Figure 9 estimates the system-limited
resolution for the spectrometer based on the X-ray measured
zeroth-order FWHM. Other grating-induced contributions are
quantified using R, and the resulting broadening is added in
quadrature to the measured zeroth-order width. We also denote
the positions of high diffraction orders of Al Kα1,2 accessible
in the echelle-like mounting. Given the divergence of the
resolution curves at these large dispersions, measurements of
the 24th–30th diffraction orders permit the assessment of the
grating’s intrinsic resolution R. We note that beyond R>
10,000, the width of the diffracted LSF is dominated (>90%)
by the contribution of the telescope PSF. Hence, R values
exceeding this limit are ill constrained by these data.

3.3. Functional Form of the Diffracted LSFs

The LSFs measured in this X-ray test are the responses of the
spectrometer to the Al Kα1,2 fluorescence line complex. A
single fluorescence line follows a Lorentzian distribution, with
functional form

( )
[( ) ]

( )l l
p l l

G =
G

- + G
L , , , 30

0
2 2

with central wavelength λ0 and an FWHM of 2Γ. The Al Kα1,2

doublet consists of two of these closely spaced fluorescence
lines, and the spectral source illuminating the grating is
modeled as
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where we have parameterized the wavelength separation
between these features as l l lD = -a a

0 0
K

0
K1 2 and assumed

the flux ratio Kα1/Kα2=2. Table 2 details the values and
errors for the line shape parameters of Al Kα1,2 adopted in
this work.
The LSF measured in response to Al Kα1,2 illumination

depends on the natural line shape (Equation (4)), the
spectrometer system focus, and the dispersed grating response.
The spectrometer system focus is the zeroth-order LSF, which
is the telescope PSF modulo any errors induced by the grating’s
optical figure. The dispersed grating response consists of errors
that broaden the spectral response, such as grating misalign-
ment, geometric limitations, or groove period errors (see
Section 4.1). Through the generalized grating equation
(Equation (1)), these errors blur the spatial distribution of
photons at the focal plane, broadening the LSF and limiting the
resolution of the instrument. The LSF response is the
convolution of each of these components; hence, we model
the observed LSFs using the following expression:

⎧⎨⎩
⎫⎬⎭

( ) ( )
[( ( ) ( )]

( )
( )

q q
l l a l l l

l

= =

´
D G

¶ ¶




F x n F x n

G R

n x

, , , 0,

, , AlK , , ,
. 50 1,2 0 0

In Equation (5), # represents the convolution operation, x is the
position along the horizontal detector axis in mm, F(x, n, θ) is
the LSF at order n with parameter set θ, ∂λ/∂x is the dispersion
relation converting between spectral and spatial coordinates,
and G(λ, λ0, R) is a normalized Gaussian with FWHM R used
to represent any grating-induced broadening.

3.4. Bayesian Modeling of Diffracted LSFs

The measured LSF data are of order 103 counts distributed
over 50 bins each 40 μm in width. Based on this sparse
sampling, the errors are not Gaussian distributed. Moreover,
even with substantially deeper measurements than those
presented here, the LSF line shape will not fulfill the condition
for Gaussian-distributed errors in the LSF wings where the
number of counts approaches zero. Thus, χ2 statistics are
inappropriate not only for these sparsely sampled LSF data but
even for deep exposures if the data are regularly binned.
To characterize the shape of these LSFs and address this

issue of non-Gaussian errors, we use a Bayesian Markov Chain
Monte Carlo (MCMC) approach. Bayesian MCMC generates a
large number of samples of the posterior probability distribu-
tion given a specified prior and likelihood function. This
approach probes the range of model parameters θ that describe
the measured data D.

Figure 9. Achieved spectral resolution of the grating spectrometer as a function
of dispersed distance. The system resolution is calculated for intrinsic grating
resolutions R=2000, 6000, and 10,000. A zeroth-order width of 121 μm is
assumed, and the locations of Al Kα1,2 24th–30th orders are denoted with a
black arrow.
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Barring an overall normalization, Bayes’s theorem can be
written as

( ∣ ) ( ∣ ) ( ) ( )q q qµP D P D P , 6

where ( ∣ )qP D is the posterior probability (i.e., probability of
the model parameters θ given the observed data D), ( ∣ )qP D is
the likelihood (i.e., probability of the observed data given a
model with parameters θ), and P(θ) is the prior (i.e., the
probability of the model parameters θ being accurate given
prior information).

The X-ray data are individual photon counts. Hence, the
counts in each bin i follow a Poisson distribution with an
expected number of counts Λi and the associated error
s = Li i . The probability of observing Ni counts in a given
bin i is thus

( )
( )!

( )=
L-LP N e
N

. 7i
i
N

i

i

i

An LSF model with a parameter set θ predicts an expected
number of counts in each bin Λi(θ). The likelihood of
measuring data N0 ... NT given this model is simply the
product of the probabilities given by Equation (7) over T total
bins. This makes the log likelihood of observing these data
given the model parameterized by θ

( ∣ ) ( ) ( ) ( )åq q q= - L + L
=

P D Nlog log , 8
i

T

i i i
0

modulo a constant that depends only on the observed data Ni

and not the model parameters θ. This formulation of the
likelihood of observing Poissonian counts over multiple bins is
commonly employed for high-energy astronomical observa-
tions (Cash 1979).

To sample the posterior distribution ( ∣ )qP D , we adopt
Equation (8) as the likelihood function ( ∣ )qP D . To construct
the prior P(θ), we employ uniform distributions that are
centered around the parameters’ best-known value and
bounded by 1σ errors on either side. For parameters related
to the Kα1,2 line complex, center values and bounds are
adopted from literature values (see Table 2). The dispersion
∂λ/∂x, which sets the relationship between wavelength and the
dispersion position, is calculated by taking the change in nλ for
27th, 29th, and 30th orders and dividing it by the difference
between the order centroids in the dispersion direction. This
approach yields values for ∂ λ/∂ x(n=1) that fall in the range
0.340750±0.000077 Åmm−1. R is parameterized logarith-
mically, and its prior is permitted in the range 3 < log R < 4.
Parameters specific to this set of LSF measurements in this
particular optical configuration, such as the overall amplitude
of the measured LSF or the absolute position of the LSF
centroid, are nuisance parameters for the purpose of constrain-
ing R. For these, flat “uninformative” priors with reasonable
boundaries are employed; this is equivalent to providing these
as bounds for a least-squares fitting routine.

We have utilized emcee6 to perform the MCMC sampling of
the posterior probability distribution (Foreman-Mackey et al.
2013). emcee is a Python implementation of an Affine Invariant
MCMC Ensemble sampler (Goodman & Weare 2010), which
is insensitive to the covariance between model parameters.
Hence, this method is well suited to sampling distributions with
highly correlated parameters such as the distribution at hand,
where, for example, the grating resolution R is correlated with
parameters describing the zeroth-order line width. The models
and likelihood functions described here are constructed in
lmfit,7 a Python-based curve-fitting package (Newville et al.
2019) containing a wrapper for emcee.
For all MCMC samplings of the posterior distribution, 300

“walkers” W were employed. These walkers function as
separate chains exploring a distinct location in parameter space
but draw information from all the other walkers to inform
subsequent samplings of the posterior distribution. All walkers
are initialized around best-fit model parameters found through
Nelder–Mead (Nelder & Mead 1965) minimization of the
negative log likelihood function, and given a small (∼1%)
perturbation to provide an initial sample of the space of the
posterior probability. Each walker uses a number of samples
Swalker=25,000 with a burn-in period of Sburn=5000. Swalker
and Sburn are selected based on tools for estimating the
autocorrelation time, which suggest an autocorrelation time of
<500 steps for all parameters. The total chain length (WSwalker)
is thinned by this maximum autocorrelation time of 500 steps,
yielding a total of 12,000 independent samples of the posterior
probability distribution. For comparison, the Raftery–Lewis
diagnostic (Raftery & Lewis 1992) indicates that, for fitting the
measured LSFs with our parameter set (Section 3.3), achieving
a 5% accuracy in the 0.135% (3σ lower bound) percentile
requires <1000 independent samples. Hence, the number of
samples of the posterior distribution is large enough that there
is <5% error on the computed 3σ lower bound.

3.5. Zeroth-order Modeling

To estimate Rgrat from the measured 27th, 29th, and 30th
LSFs, we first characterize the zeroth-order LSF by finding an
empirical model for F(x, n=0, θ). As the PSF of the SPO
XOU contains contributions from multiple pores, we expect a
model with multiple-peaked components to best describe the
measured LSF. However, it is not known a priori how many
components are needed to adequately describe the zeroth-order
LSF. Hence, we adopt a heuristic approach, fitting the zeroth-
order data with a grid of models each featuring a distinct
number of Gaussian or Lorentzian components. We assess the
quality of each fit with a merit function in order to select the
best zeroth-order model.
Individual Gaussian components j are free to vary in

amplitude AG
j , center position x G

j
0, , and width sG

j , while

Table 2
Literature Values Used for Modeling the Al Kα1,2 Complex

Al Kα1,2 Parameter Value (Å) Error (Å) Reference

λ0 8.33934 ±9.0×10−5 Bearden & Burr (1967)
Δλ0 2.244×10−3 ±1.8×10−5 Heilmann et al. (2019)
2Γ (FWHM) 2.316×10−3 ±4.6×10−5 Heilmann et al. (2019)

6 https://emcee.readthedocs.io/en/stable/
7 https://lmfit.github.io/lmfit-py/index.html
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individual Lorentzian components k have free parameters of
amplitude AL

k , center position x L
k
0, , and half-width at half-

maximum GL
k . The total number of components, NC, in each

zeroth model is NC�7, while NG, the number of Gaussian
components, is 0�NG�NC for each value of NC. Thus, at
each grid position (NG, NC− NG), we fit the model

( { }) { ( )}

{ ( )} ( )

å

å

q s= =

+ G

=

=

-

F x n G A x

L A x

, 0, , ,

, , , 9

j

N

G
j

G
j

G
j

k

N N

L
k

L
k

L
k

0
0,

0
0,

G

C G

where{ ( )}sG A x, ,G
j

G
j

G
j

0, is the set of Gaussian components for

that grid position, { ( )}GL A x, ,L
k

L
k

L
k

0, is the set of Lorentzian
components for that grid position, and the parameter set {θ}
contains all relevant free parameters for each component in the
zeroth-order model (i.e.,
{ } { }q s= G "A x A x j k, , , , , ,G

j
G

j
G
j

L
k

L
k

L
k

0, 0, ).
The grid of zeroth-order model fits is shown in Figure 10. To

facilitate model selection while avoiding overfitting, we
employ the Bayesian information criterion (BIC;
Schwarz 1978) as our merit function. The BIC modifies the
log likelihood of the fit with a penalty term based on the

number of free parameters in the model. To assess the
robustness of our zeroth-order model selection, we compute
the difference in BIC, ΔBIC, between each other zeroth-order
model and the best-fit model. We find that the distribution of
this statistic over the explored model space is suggestive of one
global minimum (see Figure 10, inset).
Based on this described approach, the zeroth-order best-fit

model consists of four components, one Gaussian and three
Lorentzian. The best-fit model is shown in Figure 11. We adopt
this model, with best-fit parameters {θ}, as F(x, n=0, {θ}) in
Equation (5) for subsequent fits to the diffracted LSFs.

3.6. Spectral Resolution Analysis via Ensemble LSF Fitting

We fit the diffracted order LSFs as an ensemble to maximize
the statistical power of the measured data. To formulate the
posterior probability of realizing the ensemble for the MCMC
sampler, we employ a formulation of Bayes’s theorem that
incorporates all three measurements:

( ∣ )
( ∣ ) ( ∣ ) ( ∣ ) ( ) ( )

q
q q q qµ

P D D D
P D P D P D P

, ,
, 10

27th 29th 30th

27th 29th 30th

where D27th, D29th, D30th are the 27th-, 29th-, and 30th-order
data, respectively. In other words, the posterior probability is

Figure 10. Grid of model fits to the zeroth-order LSF. Models consist of NC total components, with NG Gaussian components and NC−NG Lorentzian components.
Inset text in each of the panels details the number of components in each best-fit model, as well as the change in the BIC merit function. The inset panel at the lower
right shows ΔBIC over the model grid.
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proportional to the product of the individual order likelihoods
given a shared parameter set θ as given in Section 3.4.

Furthermore, given the dependence on the LSF model F(x, n,
θ) on the zeroth-order model F(x, n=0, θ), the posterior
probability distribution of the fit parameters is informed by the
fit to the zeroth-order data described in Section 3.5. We
therefore employ the posterior probability distribution of the
best-fit zeroth-order model fit described in Section 3.5 as a
prior P(θ) in the ensemble LSF fitting. This formulation does
not constrain the MCMC sampling to the zeroth-order best-fit
parameters shown in Figure 11, but instead enables the MCMC
chain to sample the full distribution of possible parameters
subject to the likelihood that those parameters also describe the
zeroth-order data. In essence, this incorporates errors associated
with the zeroth-order fit into the ensemble LSF fit.

The resulting fits to the 27th-, 29th-, and 30th-order data are
shown in Figure 12, while the distribution of the shared
parameter R is shown in Figure 13. Based on this posterior
distribution, we estimate R=2600 for this grating and
establish a lower bound of R>2200 (0.135%, 3σ equivalent).

4. Discussion

4.1. Achieved Resolution

The best-fit resolution R=2600 of this realized spectro-
meter system represents a factor of 2–6×improvement over
the spectral resolutions of the XMM RGS and the Chandra
HETG/LETG. This performance, however, falls short of the
Lynx performance requirement of R> 5000. The as-measured
grating resolution may be limited by (1) a geometric aberration
arising from path length differences across the width of the
grating, (2) defocus error due to measurements of the diffracted
LSFs at a focal plane displaced from the ideal, (3) a
displacement of the grating along the optical axis, resulting
in a mismatch of the beam’s convergence with the fanned
ruling of the grating grooves, or (4) period errors in the as-
fabricated grating.

The first limitation results from the path length difference
over the finite width of the grating for diffracted rays, which

Figure 11. Best-fit zeroth-order model based on the BIC merit function. Data
points with Poisson errors are shown in green, with the model shown as a
blue line.

Figure 12. Results of the ensemble fit to the diffracted orders. The measured
data are shown in green with Poisson error bars, and the best-fit model as the
thick blue line. A total of 500 model realizations (thin, light lines) are drawn
randomly from the MCMC chain to demonstrate the range of model fits
consistent with the posterior distribution.
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travel different distances to reach the focal plane. The result is a
purely geometric aberration to the diffracted LSF, rotating the
LSF about the chief ray and projecting the radial extent of the
optic’s PSF onto the dispersion direction. For a subapertured,
X-ray optic, the focus quality in the radial direction is worse
than the performance in the azimuthal direction Thus, this
geometric effect broadens the LSF in the dispersion direction.
Furthermore, the magnitude of the broadening is dependent on
the functional form of the optic’s PSF. The second potential
issue, defocus, results from a focal plane displaced from the
position of best focus, broadening the measured LSF. Third, a
displacement of the grating along the optical axis yields a
groove density that changes over the axial length of the grating
more or less rapidly than it should to match the convergence of
the telescope beam. Finally, period errors in the as-fabricated
grating would degrade the achieved resolution, as groove
period errors alter the dispersion ∂λ/∂x over the area of the
grating.

We assess potential limiting factors in the achieved grating
resolution by performing a ray-trace simulation of the
spectrometer system as assembled at PANTER using PyXFo-
cus.8 The ray-trace employs a single perfect grating illuminated
by an SPO and uses geometric parameters analogous to those
presented in Table 1 and distances as reported in Figure 3.
Wavelengths for the simulated rays are drawn from the
probability distribution function of the Al Kα1,2 line as
parameterized by Table 2. To facilitate direct comparison to
the measured LSFs, we simulate only as many photons as
detected during each PANTER measurement. The ray-traced
photons are binned to 40 μm to form an image, in keeping with
the measured photons. FWHM values are calculated from these
simulated images in the same manner as the measured CCD
images. Errors in the simulated FWHM values are estimated by
repeating the ray-trace simulation 100 times and computed
using the standard deviation of the FWHM values.

We incorporate Gaussian slope errors into our ray-trace
model of the XOU to mimic the overall performance of the
telescope. While we do not match the functional form of the
SPO PSF, comparison between the measured SPO focus and
that produced via the ray-trace simulation (Figure 14) shows

good qualitative agreement. Moreover, the width of the
measured SPO PSF in the dispersion direction,
FWHMSPO

meas=106±2 μm, and the width of the simulated
SPO PSF, FWHMSPO

sim =107±2 μm, agree to within error.
We next employ the same ray-trace model to simulate the

diffracted 30th-order LSF. Figure 15 compares the measured
and simulated diffracted LSFs, as well as their projections
along the dispersion direction. We find that our ray-trace
simulation agrees with the measured 30th-order LSF to within
their estimated errors (FWHM30

meas=394±11 μm vs.
FWHM30

sim=411±38 μm). The ray-trace merely simulates
the diffraction geometry and does not include defocus, a
mismatched ruling of the grating grooves, or period error.
Based on the agreement between the ray-trace simulation and
the measured diffracted LSFs, we find that the geometric
aberration fully accounts for the calculated grating resolution in
this test configuration.
This has implications for the design of grating spectrometers

employing reflection gratings in a conical mounting. Previous
spectrometer design efforts idealize the PSF produced by the
telescope feeding the grating array. However, as demonstrated
with these measurements and the supporting ray-trace study, an
accurate parameterization is crucial, since the instrument
resolution may become limited by the performance of the
telescope in the radial direction owing to this geometric
aberration. This stands in contrast to design efforts that assume
that resolution is dependent on the performance of the optic in
the subapertured dimension alone.An accurate representation
of the PSF to be employed is needed to accurately assess the
achievable resolution for an X-ray reflection grating
spectrometer.
While the remaining potential factors that could limit the

measured resolution are unable to be constrained by these data
given the dominance of the geometric error term, we find that
they are unlikely to be major contributors given the magnitude
of the alignment or fabrication errors required to achieve
R=2600. To estimate the degree of defocus or grating
misalignment along the optical axis needed, we assume R∼x/
Δx, where x is the distance dispersed from zeroth order and Δx
is the growth of the LSF in the dispersion direction resulting
from misalignment. Based on the rate of convergence of the
SPO beam in the dispersion direction, we find that the focal
plane would need to be displaced by approximately 100 mm to
yield a Δx comparable to the achieved resolution. In contrast,
we estimate that the position of best focus of the diffracted
orders is known to±20 mm based on focus scans of the
detector along the optical axis during the diffracted order
measurement. Turning to the mismatch of beam convergence to
grating groove convergence, we employ the constructed ray-
trace of the PANTER system. We simulate a perfect optic and
grating but intentionally misalign the grating by translating it
along the chief ray of the telescope beam within the ray-trace
by an amount Δz. The rays are then diffracted and proceed to
the as-measured focal plane, and the resulting Δx is measured
by taking the FWHM of the resulting LSF. For a single grating,
a translationΔz of approximately 2 m is needed before yielding
a Δx large enough to yield R=2600. As this is two orders of
magnitude larger than the measurement error associated with
our measurement of the distance between the groove hub and
the center of the grating (see Figure 3), we dismiss this
misalignment as a significant limiting factor in the grating
resolution reported.

Figure 13. Full distribution of R values sampled by the MCMC chain. The
best-fit resolution R and the 3σ lower bound are drawn from this distribution.

8 https://github.com/rallured/PyXFocus
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Finally, we assess the possibility of groove period error by
computing the variation required to yield R=2600. As ∂λ/∂x
is linearly proportional to d−1, the period error required to yield
a resolution R can be estimated as R∼d/Δd. With a nominal
period of d=400 nm and R=2600, Δd=0.15 nm. While
we do not have direct measurements of the groove period error
of the grating tested, gratings with similar periods produced
using EBL for X-ray synchrotron applications have been
measured to have smaller Δd by two orders of magnitude
(Voronov et al. 2017). Thus, we posit that groove period error
is not the dominant limiting factor in the achieved resolution.
However, improving the constraints on groove period error
would place a definite bound on the achievable resolution
performance using EBL-written gratings. The patterning
fidelity of EBL-written gratings can be assessed directly by
interferometric measurements. By placing a parallel-groove
grating measured in the Littrow (back-diffracting) condition,
the groove placement accuracy over the entire grating surface
can be measured (Hutley 1982). This has the distinct advantage
of being performed at optical wavelengths without the

overhead of X-ray testing. A dedicated study of the patterning
accuracy achieved with the EBL process used for these
astronomical reflection gratings would constrain the resolutions
achievable with these gratings and be an important input into
grating spectroscopy missions.

4.2. Implications for Soft X-Ray Spectroscopy Missions

The grating spectrometer system tested in this work meets
the threshold resolution requirement for the notional mission
outlined by B15. The figure of merit for the detection of a weak
absorption-line feature scales as ´ REA . Thus, adopting the
conservative 3σ lower bound on R while realizing the same
figure of merit as the threshold mission outlined by B15
requires an instrument EA of 300 cm2 at 0.5 keV.
We estimate the EA of an X-ray telescope and detector

system that would be required to meet this EA threshold and
enable this notional mission. We assume diffraction efficiencies
consistent with those reported by Miles et al. (2018) (�60%)
for X-ray diffraction gratings operated in an echelle mounting

Figure 14. Measurements of the measured SPO focus (top), the SPO focus simulated via ray-trace (middle), and the dispersion profiles of each (bottom).
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similar to the present work. We also assume 40% losses from
vignetting due to the grating support structure and gaps in
grating coverage of the aperture. Based on these assumptions,
an X-ray telescope and detector system with ∼850 cm2 of EA
at 0.5 keV would yield performance in keeping with the
mission outlined by B15. This is approximately 60% of the EA
of the XMM-Newton telescopes as measured at the beginning
of the mission (Gondoin et al. 2000) or 75% of the EA of the
MIDEX Arcus telescope and CCD system (Smith et al. 2019).
Thus, a soft X-ray grating spectrometer that uses X-ray
reflection gratings operated in an echelle mounting and meets
the performance requirements as outlined in B15 may be
feasible in a NASA format smaller than a dedicated flagship,
such as a Probe or Explorer.

5. Conclusions and Future Work

In the present work, we have measured the LSFs produced
by a large-format X-ray reflection grating designed for use in a
future soft X-ray spectrograph. This grating was fabricated

using EBL and was patterned to match the rate of convergence
for a grazing incidence X-ray telescope. Our measurements
were conducted at the PANTER X-ray Test Facility and used
single SPO XOU to form a single grating spectrometer. This
optical system permits the assessment of the spectral resolution
intrinsic to the grating. Our measurements were conducted with
the grating in an echelle-like mounting, permitting access to
high orders dispersed far from zeroth order.
We find evidence for broadening of the zeroth-order LSF on

the order of ∼1″ due to grating figure. This is supported by
optical figure measurements of the grating in the same
mounting as employed during X-ray testing. We model the
zeroth-order LSF, as well as the diffracted 27th-, 29th-, and
30th-order Al Kα1,2 LSFs, to assess the spectral resolution of
the grating. A Bayesian MCMC technique is used to explore
the range of spectral resolutions that are consistent with the
measured grating data.
We find a best-fit resolution of R=2600, with a 3σ lower

bound of R>2200. This resolution does not meet the Lynx
grating spectrometer requirement of R>5000. We posit that

Figure 15. Measurements of the measured 30th-order LSF (top), the 30th-order LSF simulated via ray-trace (middle), and the dispersion profiles of each (bottom).
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the spectral resolution of these gratings as tested is limited by
the geometry of the test configuration, as a ray-trace study of
the PANTER measurement configuration yields the observed
LSF broadening without defocus, misalignment, or groove
period error modeling. The designs of future X-ray reflection
grating spectrometers will need to assess this geometric term
with detailed ray-trace simulations of a realistic optic PSF and
in the context of a holistic error budget. However, X-ray
reflection gratings in echelle-like mountings at the currently
assessed spectral resolution of R>2000 enable smaller-scale
missions.

Given the success of EBL in fabricating high-resolution
gratings for synchrotron applications, adapting this technique
for the fabrication of X-ray gratings for astronomy is
promising. A dedicated study of the groove period error for
gratings made using this EBL fabrication process can be
performed using an optical interferometer by aligning the
grating such that the incidence and diffraction angles are
identical. These measurements would constrain the groove
period error of gratings written with the EBL process employed
here and therefore offer improved insight into the potential
performance limitations of X-ray reflection gratings.

While measurements of the groove period error provide an
upper bound on the resolution of X-ray reflection gratings,
additional X-ray measurements are needed to empirically
quantify the impact of other error terms that degrade spectral
resolution in an astronomical instrument. Assessing the
magnitude of these error terms in diffracted orders accurately
requires minimizing the contribution of the zeroth-order LSF to
these measurements. Hence, testing gratings with better optical
figure in conjunction with telescopes that have improved
angular resolution would be highly desirable. Moreover, such a
system would be more representative of a future high spectral
resolution grating spectroscopy mission such as Lynx.

Fabrication studies to produce a blazed conical reflection
grating are ongoing. Such a grating would enable deeper
measurements during the limited windows for X-ray testing,
improving the statistical power of the analysis performed here.
Furthermore, a blazed grating would improve measurement
throughput and hence would enable testing in conical
geometries in which γ and β are varied. These measurements
would serve as an empirical check on predicted geometric
aberrations and are important feedback to the X-ray spectro-
meter design process. Finally, and most crucially, blazed
conical reflection gratings would substantially increase spectro-
meter throughput at high orders for a flight instrument. This
would enable missions capable of detecting hot baryonic
material in the halos of galaxies and clusters in absorption and
hence could address outstanding problems in simulations of
large-scale structure and feedback.
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