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Abstract

The redshift-space distortion (RSD) in the observed distribution of galaxies is known as a powerful probe of
cosmology. Observations of large-scale RSD, caused by the coherent gravitational infall of galaxies, have given
tight constraints on the linear growth rate of the large-scale structures in the universe. On the other hand, the small-
scale RSD, caused by galaxy–random motions inside clusters, has not been much used in cosmology, but it also
has cosmological information because universes with different cosmological parameters have different halo mass
functions and virialized velocities. We focus on the projected correlation function w(rp) and the multipole moments
ξl on small scales (1.4–30 h−1 Mpc). Using simulated galaxy samples generated from a physically motivated most
bound particle (MBP)–galaxy correspondence scheme in the Multiverse Simulation, we examine the dependence
of the small-scale RSD on the cosmological matter density parameter Ωm; the satellite velocity bias with respect to
MBPs, bv

s; and the merger timescale parameter α. We find that α=1.5 gives an excellent fit to the w(rp) and ξl
measured from the Sloan Digital Sky Survey–Korea Institute for Advanced Study value-added galaxy catalog. We
also define the “strength” of the Fingers of God as the ratio of the parallel and perpendicular size of the contour in
the two-point correlation function set by a specific threshold value and show that the strength parameter helps
constrain ( )aW b, ,m v

s by breaking the degeneracy among them. The resulting parameter values from all
measurements are ( ) ( )W =  b, 0.272 0.013, 0.982 0.040m v

s , indicating a slight reduction of satellite galaxy
velocity relative to the MBP. However, considering that the average MBP speed inside halos is 0.94 times the dark
matter velocity dispersion, the main drivers behind the galaxy velocity bias are gravitational interactions, rather
than baryonic effects.

Unified Astronomy Thesaurus concepts: N-body simulations (1083); Cosmological parameters from large-scale
structure (340); Redshift surveys (1378)

1. Introduction

The accelerated expansion of the universe has been one of
the most profound mysteries in astronomy and physics since
observations confirmed it through the redshift–distance relation
of SNe Ia (Riess et al. 1998; Perlmutter et al. 1999). So far, the
ΛCDM model gives the best description for these observations,
although it involves several theoretical difficulties related to the
smallness and fine-tuning of Λ, the exotic form of the energy in
the universe (Frieman et al. 2008; Weinberg et al. 2013).
Another conceptual possibility for the apparent accelerated
expansion is that general relativity, on which the ΛCDM model
is built, may not be correct on cosmological scales. This idea
gave rise to the modified gravity theories, which realize the
same redshift–distance relation as that of the ΛCDM model
without relying on dark energy but predict a different
gravitational growth history of the matter content of the
universe (Joyce et al. 2016; Koyama 2016). Discriminating
between the dark energy and modified gravity scenarios is
essential to better understand the origin and history of our
universe.

The redshift-space distortion (RSD) is the phenomenon that
the observed distribution of galaxies is distorted from the real
one due to the noncosmological redshift caused by galaxy
peculiar motion (Kaiser 1987; Hamilton 1998). It affects the
statistical properties of galaxy clustering, such as the two-point

correlation function (2pCF) and the power spectrum, making
the line-of-sight direction a special one. As the galaxy peculiar
velocity field is governed by the gravity law and background
cosmological parameters, the anisotropy of the galaxy 2pCF is
sensitive to the change of cosmological models, making RSD a
powerful cosmological probe (Weinberg et al. 2013). Since the
galaxy catalog used in an RSD analysis can also be used for
other cosmological probes, such as large-scale structure
topology (Park & Kim 2010; Appleby et al. 2018), richness
and size distributions of structures (Hwang et al. 2016), baryon
acoustic oscillations, and the Alcock–Paczynski test (Reid et al.
2012; Li et al. 2016; Sánchez et al. 2017), there have been a
variety of galaxy redshift surveys (Sloan Digital Sky Survey
(SDSS), York et al. 2000; HectoMAP, Geller et al. 2011;
BOSS, Dawson et al. 2013; 6dF, Jones et al. 2005; WiggleZ,
Drinkwater et al. 2010; VIPERS, Guzzo et al. 2014; FastSound,
Tonegawa et al. 2015; eBOSS, Dawson et al. 2016). There are
also further large upcoming surveys (PFS, Takada et al. 2014;
DESI, DESI Collaboration et al. 2016; WFIRST, Spergel et al.
2015).
The large-scale RSD is caused by the infall motion of galaxies

during the structure formation, and it has been detected by various
redshift surveys, giving strong cosmological constraints on the
growth rate of the large-scale structure =f d D d aln ln
(Hawkins et al. 2003; Guzzo et al. 2008; Blake et al. 2011; Beutler
et al. 2012, 2014; de la Torre et al. 2013; Samushia et al. 2013;
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Okumura et al. 2016; Icaza-Lizaola et al. 2020), where D is the
growth factor and a is the scale factor of the universe, with a=1
at the present epoch. On the other hand, the small-scale RSD,
called the Finger-of-God (FoG) effect (Jackson 1972; Sargent &
Turner 1977), is caused by the orbital motion of galaxies inside
galaxy groups and clusters. It has not been studied as much as the
large-scale RSD but has rich cosmological information because
different cosmological parameters lead to different halo mass
functions and virialized velocities (Marzke et al. 1995). The
difficulty in using the small-scale RSD lies in the theoretical
prediction of the density and velocity field in highly nonlinear
scales. We cannot rely on the perturbation theory that is valid
down to the mildly nonlinear regime (Taruya et al. 2010) because
the FoG effect takes place in almost or completely relaxed objects.
There have been attempts to understand the pairwise velocity of
galaxies, which is an essential ingredient for the small-scale
redshift-space 2pCF (Sheth 1996; Juszkiewicz et al. 1998;
Tinker 2007; Bianchi et al. 2016; Kuruvilla & Porciani 2018).
While they gave illuminating insights on why the pairwise velocity
distribution has the shape of what we observe, their models
typically include free parameters that may depend on cosmological
models and are not easy to derive from the first principles thus far.
Nevertheless, because of the small statistical uncertainty, the use of
small-scale clustering will significantly enhance our constraining
power from the limited size of observational data sets.

While the analytic prescription of the nonlinear structure
formation is a timely topic itself (Tinker 2007), N-body
simulations can serve as an alternative to small-scale
cosmology studies (DeRose et al. 2019). In this study, we
use the Multiverse Simulation (Shin et al. 2017; Park et al.
2019; Hong et al. 2020 for scientific applications), the Horizon
Run 4 Simulation (Kim et al. 2015), and a physically motivated
galaxy assigning scheme (Hong et al. 2016) to mock the galaxy
distributions in redshift space for different matter density
parameters Ωm, satellite velocity bias parameters bv

s, and
merger timescale parameters α. The galaxy–halo correspon-
dence in our model has more physical meaning than the halo
occupation distribution (HOD) approach. Reid et al. (2014)
adopted the HOD approach and successfully explained the
redshift-space clustering of the BOSS CMASS data, obtaining
a 2.5% constraint of the growth rate, which clearly proved the
usefulness the small-scale clustering information. Although it is
the standard method to connect galaxies and halos, the HOD
has several issues to examine carefully. The HOD prescribes
the probability of a halo of massM having N galaxies, ( ∣ )P N M ,
with typically five parameters and specific functional forms.
However, there is no particular reason for the number of
parameters and functions. The number N may also depend on
secondary parameters, such as halo age and galaxy assembly
history (Wang et al. 2013; Montero-Dorta et al. 2017; Beltz-
Mohrmann et al. 2020). By contrast, our galaxy–halo
corresponding scheme traces the merger tree and automatically
places galaxies into subhalos, which avoids the theoretical
uncertainties. We constrain the matter density parameter Ωm, as
well as the velocity bias parameter for satellite galaxies bv

s and
the merger timescale parameter α, by simultaneously matching
the measurements of the projected correlation function and the
multipole moments of the 2pCF between simulation and
observation. We also define the “strength” of FoG and show
that adding it helps us to constrain our model parameters more
strongly.

The structure of this paper is as follows. In Section 2, we
describe the simulation and observational data that we use. In
Section 3, we measure the correlation functions and covariance
matrix. We also quantify the FoG strength to extract
cosmological information from the small-scale 2pCF. In
Section 4, we show our constraints on the parameters of our
model, followed by discussions in Section 5. Finally, we
summarize our study in Section 6.

2. Data and Models

2.1. The KIAS-VAGC Catalog

We use the Korea Institute for Advanced Study Value-
Added Galaxy Catalog (KIAS-VAGC; Choi et al. 2010) as
observational data. This catalog is based on the New York
University Value-Added Galaxy Catalog (Blanton et al. 2005)
as part of the SDSS Data Release 7 (DR7; Abazajian et al.
2009) but supplements missing redshifts with other galaxy
redshift catalogs for better redshift completeness. The KIAS-
VAGC covers ∼8000 deg2 on the celestial plane and contains
593,514 redshifts of the SDSS main galaxies in an r-band
Petrosian magnitude of 10.0<mr<17.6. The supplementa-
tion increased the area with completeness higher than 0.97
from 39.8% to 54.3%. There are still missing redshifts even
after this supplementation, which is mainly caused by the fiber
collision effect and poor observing conditions. The fiber
collision rate is estimated to be ∼5% but lower in the
overlapping regions. In the KIAS-VAGC catalog, these
galaxies are marked and given the redshifts of the nearest
galaxy on the celestial plane.
We use the volume-limited sample “D5” with a redshift cut

0.025<z<0.10713 and an r-band absolute magnitude cut
< - +M h20.02 5 logr , as defined in Park & Choi (2009).

The number density is ( )- -h0.063 Mpc1 3, and the median
redshift is 0.083. Also, we restrict the sample to the largest area
that satisfies −65°.0<λ<65°.0 and −37°.0<η<43°.0,
where λ and η are the SDSS survey coordinates. The KIAS-
VAGC also provides the survey mask, which indicates the
spectroscopic completeness in each 0.025×0.025 deg2 patch
in the survey area. To avoid bad observing conditions and shot
noise, we only use the region where the completeness is above
0.8. All galaxies in the valid region are assigned the weight as
the inverse of the completeness. Some of the target galaxies are
not allocated fibers due to the mechanical limitation of the
minimum separation of two galaxies on the sky. This is called
the fiber collision effect; it occurs on small scales (∼0.1 Mpc)
and potentially weakens the FoG effect. If a spectroscopic
target cannot be allotted a fiber, the redshift of the nearest
neighbor (NN) galaxy is given to the galaxy. The validity of
this approach will be discussed in Appendix C.
The random catalog is needed to measure the correlation

function. Since we are using a volume-limited subsample, we
make random catalogs as the uniform distribution in a
comoving volume. The angular completeness mask is then
applied after the conversion from (X, Y, Z) to (λ, η) to discard
points on the region of completeness<0.8. The size of the
random catalog is ∼30 times larger than the corresp-
onding data.
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2.2. The Multiverse Simulation

The Multiverse Simulation is a collection of large-volume
cosmological N-body simulations with different cosmological
parameters (Shin et al. 2017; Park et al. 2019). There are five
realizations that have different matter density Ωm and equation of
state of the dark energy w—(Ωm, w)=(0.21,−1.0), (0.26,−1.0),
(0.31,−1.0), (0.26,−0.5), and (0.26,−1.5)—keeping Ωm+
ΩΛ=1, while other parameters are fixed to the Wilkinson
Microwave Anisotropy Probe (WMAP) 5 yr result (Dunkley
et al. 2009): Ωb=0.044, n= 0.96, H0=72 km s−1Mpc−1, and
σ8=0.79. We use the first three simulated models out of five
because the change in w will not be important for the clustering
properties on the scales that we are interested in. The comoving
box size is 10243 (h−1Mpc)3, and 20483 dark matter (DM)
particles are evolved inside, which leads to a particle mass of

( ) ☉´ W M9 10 0.26m
9 . The starting redshift is z=99, and 1980

snapshots are saved until z=0. Halos are identified through a
friends-of-friends (Davis et al. 1985) algorithm with a commonly
used linking length of b=0.2. The minimum number of particles
to be qualified as a halo is 30, which means a minimum halo mass
of ( ) ☉´ W M2.7 10 0.26m

11 . Halos in each snapshot are searched
for the most bound particle (MBP), which is located at the lowest
gravitational potential. The merger tree is built by tracking the
merger trajectories of MBPs.

Simulated galaxies are assigned to the DM halos by the
MBP–galaxy correspondence approach as described by Hong
et al. (2016). All MBPs marked in the merger tree are regarded
as galaxy proxies, and physical properties of MBPs such as
mass, position, and velocity are allocated to the modeled
galaxies. If a merger occurs, the roles of host and satellite are
assigned to each MBP according to the mass of the halos in the
previous time step. Then, the satellites are monitored to
determine their fates (i.e., escape from the gravitational
potential of its host or tidally disrupted) according to the
modified version of the merger timescale of Jiang et al. (2008),

( )
[ ( )]

( )
⎛
⎝⎜

⎞
⎠⎟=

+
+

at

t M M

M

M

0.94 0.60 0.86

ln 1
, 1

merge

dyn

0.60

host sat

host

sat

where ò,Mhost, andMsat are the circularity of the satellite’s orbit
and the mass of the host and satellite halos, and tdyn is the
dynamical timescale

( )=t
R

V
, 2dyn

vir

vir

with Rvir and Vvir being the virial radius and circular velocity,
respectively. The α parameter is the only fitting parameter that
controls the merger timescale of satellites. Increasing α, on
average, increases the number of satellite galaxies and will
enhance the overall amplitude of correlation functions, as well
as the FoG effect. Due to the limited computational resource,
only three implementations for α=1.0, 1.5, and 2.0 are
carried out. In Section 4, we will see that α=1.5 results in
the best agreement between simulation and observation for the
projected 2pCF of the volume-limited samples of galaxies with
r-band absolute magnitudes of Mr<−20. Therefore, we use
α=1.5 in this study as a fiducial model, but we also show
some results and comparisons with other α values.

2.3. The Horizon Run 4 Simulation

The Horizon Run Simulations (Kim et al. 2009, 2015) are
large cosmological N-body simulations run by the KIAS. To
date, there are four realizations (Runs 1, 2, 3, and 4) with
different box sizes and particle numbers. The Horizon Run
4 (HR4) has evolved 63003 particles with a mass of
3.0×109M☉ in a 3150 h−1 Mpc long cubic box. The HR4
is 27 times larger than the Multiverse Simulation, allowing us
to estimate the covariance matrix more accurately. The adopted
cosmological parameters are the same as those of the
( ) ( )W = -w, 0.26, 1.0m case of the Multiverse Simulation.
While we use the Multiverse Simulation to investigate the
small-scale clustering property for different cosmological
parameters, we use the HR4 simulation to calculate the
covariance matrix and test systematics, including the fiber
collision effect. The galaxy assignment was performed in an
identical way to those of the Multiverse Simulation. To
estimate the covariance matrix, we divide the HR4 simulation
box into 5×9×5=405 subcubes. The choice of the
number is because of the geometry of the SDSS main galaxy
survey volume, whose length in one dimension is longer than
those of the other two. In each subcube, an origin is set,
and the galaxy positions are converted into (R.A., decl., z).
Then, the RSD effect is applied using the line-of-sight velocity
of galaxies (see the next subsection). We set α=1.5 and the
velocity bias parameter =b 1v

s for the calculation of the
covariance matrix. The covariance matrix may be a function of
these parameters, but we will ignore it. The parameter fitting in
Section 4.3 is performed using the covariance matrix obtained
here, and all error bars in the measurements of Figures 3, 4, 5,
and 7 are the square root of the diagonal elements of the
covariance matrix.

2.4. The RSD and Velocity Bias

While the mock galaxy distribution is simulated in real
space, the observed galaxy clustering statistics come from the
redshift-space distribution. Thus, we need to apply the RSD
effect to the simulation data.
The RSD alters the apparent galaxy position along the line of

sight due to the peculiar motion in the radial direction
(Hamilton 1998). As we take the third axis of the simulation
as the line-of-sight direction, the positions are modified as

( ) +x x v aH, 3g g g
3 3 3

where ( )=x x x x, ,g g gg
1 2 3 and ( )=v v v v, ,g g gg

1 2 3 are the comov-
ing position and peculiar velocity of a galaxy, and H is the
Hubble parameter at redshift z. The periodic boundary
condition is applied if the modified position exceeds the
boundary of the simulation box. For the first term of the right-
hand side, we use the MBP positions as a proxy of the galaxy
positions.
Recently, it has been argued, based on the observations and

simulations (Munari et al. 2013; Wu et al. 2013; Guo et al.
2015; Ye et al. 2017), that the galaxy velocity distribution may
not be the same as that of DM inside halos. Guo et al. (2015)
found that the speed of satellite galaxies inside halos was lower
(typically ∼80%) than the velocity dispersion of the DM, σv.
Possible origins of such a discrepancy include statistical bias,
dynamical friction, galaxy interactions, and hydrodynamic
effects. Also, central galaxies may not be at rest at halo
centers, with a velocity dispersion of ∼0.3σv. Given that, we
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parameterize the satellite velocity bias by a single parameter bv
s,

( ) ( )- = -v v v vb , 4v
sg h MBP h

where vMBP and vh are the MBP velocity of the galaxy and the
host halo velocity, respectively. The host halo velocity is
defined as the average velocity of the member particles.
Equation (4) means that, in the rest frame of the hosting halo,
the velocity of the visible part of the galaxies is different from
that of all of the matter (represented by MBPs) by a factor of
bv

s. Note that our definition of the velocity bias is different from
that of Guo et al. (2015). They referred to αv

s as the rms velocity
of satellites relative to the velocity dispersion of DM of their
hosts, ∣ ∣ a sá - ñ =v v v

s
v

g h , and used av
s to fit to the SDSS

volume-limited sample. Therefore, their av
s includes all factors

that cause the velocity difference between the baryonic
component of galaxies and DM inside halos. Some of the
factors for the velocity bias are hydrodynamic, and others are
gravitational. Because the MBP–galaxy assignment approach
naturally includes all gravitational effects, the difference
between ∣ ∣-v vMBP h and σv will reflect these effects. As in
Equation (4), our bv

s is defined as the difference between the
visible component and all of the matter of the galaxy
represented by MBPs inside the halo; hence, bv

s will indicate
only the baryonic effects that cause the velocity bias.
Combining av

s and bv
s will tell us to what degree each origin

contributes to the velocity bias. Figure 1 shows the relation
between the ∣ ∣-v vMBP h of centrals or satellites and σv of DM
halos in the case of Ωm=0.26. The colored lines show central
68th and 95th percentile intervals, which are obtained by
quantile regression using B-splines (Ng & Maechler 2020). The
galaxy density is set to be similar to the observation data we
use. The median of ∣ ∣ s-v vMBP h

v is 0.94 for satellite
galaxies; the center of mass of satellite galaxies moves slightly
slower than the velocity dispersion of DM inside the
hosting halo.

One might wonder that the trajectories of MBPs and galaxies
may diverge (i.e., the position of a galaxy in the next time step
would be inconsistent with the corresponding MBP) if MBPs
and galaxies have different velocities. Ideally, if the MBP
represents the galaxy position and velocity correctly over
cosmic time, bv has to be 1. Our logic behind Equation (4) is
that we try to absorb the secondary effects that may cause the
velocity difference between the N-body simulation and the real
observation, in response to the results of previous studies.
Although we expect that bv should be close to 1 even if such
effects are present, a significant deviation from bv∼1, if
detected, would indicate an incompleteness of using N-body
simulations to fit the observational data on small scales.

Considering that the central galaxies have spent a relatively
longer time inside clusters and should be better relaxed
( ~v vg MBP), the MBP velocity would be a good representative
of the velocity of the baryonic part of the central galaxy.
Therefore, instead of making further sophistication, we use the
velocity of the central MBP as the central galaxy velocity for
most of our paper. As seen in Figure 1, the MBP velocity is in
the range of 30%–50% of σv. This compares with the estimate
on a ~ 0.3v

s in Guo et al. (2015). In Appendix B, we will
present the result obtained by modifying the MBP velocity for
central galaxies. Also, note that the velocity bias can be a

function of galaxy properties such as age and mass, and
studying the dependence of the velocity bias in detail would
help us to understand the dynamical aspects of the evolution of
galaxies, but we will only use a single parameter bv

s in
this work.
In summary, our model parameters are

1. matter density parameter 0.15<Ωm<0.37,
2. merger timescale parameter α=1.5, and
3. satellite velocity bias < <b0.3 1.7v

s .

Figure 1. The MBP’s velocity in the halo frame vs. the velocity dispersion
of the DM halo particles. The top panel is for central galaxies and bottom
panel for satellite galaxies. The colored lines indicate the median and the
68th and 95th percentile ranges. The black dotted lines correspond to
∣ ∣ s- =v v 1, 0.5v

MBP h , and 0.3. The model parameters are fixed to be
Ωm=0.26 and α=1.5.
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3. Measurements

3.1. Multipole Moments of the Correlation Function

As a statistical quantity of the redshift-space clustering, we
use the multipole moments of the correlation function. First, the
2pCF is given by the Landy–Szalay estimator (Landy &
Szalay 1993),

( ) ( )x =
- +

s
DD 2DR RR

RR
, 5

where DD, DR, and RR are the counts of galaxy–galaxy,
galaxy–random, and random–random pairs, respectively. The
vector s can be ( )= ps r r,p or (s, μ), where rp and rπ are the
transverse and parallel components of the separation of galaxy
pairs, while ∣ ∣= ss and m = pr s.

The multipole moments are calculated as

( ) ( ) ( ) ( )òx x m m m=
+

-
s

l
s L d

2 1

2
, , 6l l

1

1

where Ll(μ) is the Legendre polynomial of the lth degree. Because
the moments of odd numbers vanish due to the symmetry7 and
higher-order multipoles become less informative due to higher
measurement noises, we use only l=0 (monopole), 2 (quadru-
pole), and 4 (hexadecapole): L0=1, ( ) ( )m m= -L 3 12

1

2
2 , and

( ) ( – )m m m= +L 35 30 34
1

8
4 2 . Because of the Kaiser effect, ξ0 is

enhanced and ξ2 becomes negative in redshift space on scales
larger than - h10 Mpc1 , while the opposite holds at cluster
scales. We use a bin size ofΔμ=0.05 and eight logarithmic bins
from s=1.43 to 30 h−1Mpc.

3.2. The Projected Correlation Function

The projected correlation function is obtained by the
integration along the line of sight,

( ) ( ) ( )ò x= p p
- p

p
w r r r dr, . 7p

r

r

p
,max

,max

We set =p
-r h40 Mpc,max

1 and confirm that larger pr ,max

hardly changes w(rp). The projected correlation function is a
measure of clustering in real space, because the line-of-sight
projection eliminates the RSD effect, whereas the multipole
moments are the redshift-space quantities. It will be shown that
using the projected correlation function can break the
degeneracies between the cosmological matter density para-
meter (Ωm), the merger timescale parameter (α), and the
velocity bias (bv

s) that are not fully broken by using
multipoles only.

3.3. The FoG Ratio

The multipole moments of the correlation function are
measures of the RSD effects, but they are also affected by the
change of the overall clustering amplitude, which can vary due
to the cosmic variance and other systematics. Thus, we try to
extract pure RSD information that is independent of the
amplitude. We use a measure of the strength of the RSD effects

as follows,

( )∣
∣

∣
=x

p x

x
=

=

=
R

r

r
, 8

p
3

3

3

which is the ratio of the separations along and across the line of
sight from a point close to the origin to locations where the
correlation function drops to 3. The ratio for different threshold
values can be defined likewise. The schematic image is given
by Figure 2. By taking a ratio, the cosmic variance in density
fluctuations is expected to cancel out, giving a clean
measurement of the strength of the FoG effect.
We calculate the correlation functions for the Multiverse

Simulation and KIAS-VAGC catalogs, covering <-h0.1 Mpc1

< -r h30 Mpcp
1 and < <p

- -h r h0.1 Mpc 30 Mpc1 1 with
15×15 logarithmic bins. Then, we take the fourth-smallest
bins (~ -h0.4 Mpc1 ), ( )x pr0.4, and ξ(rp, 0.4), to locate the
point at which the correlation function becomes a certain
threshold value. The scale ~ -h0.4 Mpc1 is chosen to be
sufficiently small to capture the FoG feature while keeping the
statistical uncertainty small with enough pair counts.

3.4. The Covariance Matrix

The covariance matrix is necessary for evaluating the
goodness of fit. We use the mock galaxy catalogs created
from the HR4 data, which has a 31503 (h−1 Mpc)3 volume.
Using the 405 mock catalogs from HR4, we have found that the
distributions of our observables follow the Gaussian distribu-
tion. For each data point, we compared the distribution of mock
values to the Gaussian distribution of the same mean and
variance using the Kolmogorov–Smirnov test for the null
hypothesis of the mocks following Gaussian. The resulting
p-values are 0.4–0.9, indicating no evidence for non-Gaussian
distributions. Therefore, we can use the standard χ2 statistics to
evaluate the goodness of fit.

Figure 2. Conceptual image of the FoG ratio. The colored image is the
redshift-space correlation function of galaxies taken from the Multiverse
Simulation with Ωm=0.26. The blue line shows the contour at the level of ξ
(rp, rπ)=2. The arrows correspond to the numerator and denominator of
Equation (8).

7 The relativistic effect can cause asymmetry by breaking the symmetry along
the line of sight (Alam et al. 2017), but we do not consider it because the effect
is much smaller than RSD.
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We adopt the χ2 statistics to constrain the model parameters,

[ ( )] [ ( )] ( )q qc = - --X X X X , 9T2 obs th 1 obs th

where X is the data vector,  is the covariance matrix
corresponding to X , and the superscripts represent the observation
and model prediction for parameters ( )q a= W b, ,m v

s , respec-
tively. For example, if we use ξ0 and ξ2 for the fitting, X will be a
vector of 8×2=16 elements, and  will be a 16×16 sized
matrix. We apply the correction of Hartlap et al. (2007) to the
covariance matrix to account for the underestimation of the
covariance matrix due to the finite number of realizations.
Because we use 405 mock catalogs, the correction factor is
1.02–1.10, depending on the size of the data vector. Also, we
multiply the covariance matrix by ( )+ =V V1 1.02obs simu to
account for the uncertainty arising from the finite volume of the
simulation box Vsimu used to model the observation of volume
Vobs (Zheng & Guo 2016).

4. Results

4.1. The Correlation Functions

The projected correlation function is shown in Figure 3.
Different colors correspond to different Ωm, while different line
types correspond to different α. Because we fix the overall
density perturbation amplitude, σ8=0.79, increasing Ωm shifts
the matter–radiation equality, resulting in weaker correlations
at the scales we are interested in. An increase in α enhances the
overall amplitude due to the increased number of satellite
galaxies. The change is more drastic on small scales than large
scales, implying that the small-scale information is useful to
discriminate different α scenarios, in turn giving a better
constraint on Ωm. Also, it should be mentioned that the
measurement error is small on smaller scales due to the larger
number of pairs. While α=1.0 and 2.0 fail to reproduce the

observation, the most probable value of α seems to be around
1.5. Note that w(rp) does not depend on bv

s because w(rp) is a
real-space quantity and not affected by RSD.
Figure 4 shows the dependence of multipole moments on Ωm

and bv
s. Different panels are for different multipole moments.

The dependence of multipoles on Ωm is complicated. Both
the Kaiser effect and FoG become stronger in a higher-Ωm

universe (Feldman et al. 2003; Linder 2005); thus, ξ0 should be
suppressed (enhanced) at small (large) scales, which is not the
case at relatively large scales (∼20 h−1 Mpc). This contra-
diction is caused by the weaker real-space clustering for higher
Ωm, as we saw in Figure 3, which is not fully compensated by
the stronger Kaiser effect. For ξ2, the positive (negative) sign
indicates the elongated (squashed) feature. On larger scales,
where the Kaiser effect dominates, ξ2<0, and on small scales,
where the FoG does, ξ2>0. Again, a contradictory trend is
seen in the middle panel of Figure 4, which we attribute to the
overall amplitude of the real-space clustering. Another notable
feature is the position of the peak of ξ2. If we increase bv

s,
the peak shifts toward larger s. This is because large bv

s leads to
a strong FoG effect, increasing the transition scale from the
FoG to the Kaiser effect. The position of the peak supports bv

s

close to 1.0.

4.2. The FoG Ratio

Figure 5 shows ∣xR for different Ωm and bv
s as a function of

the threshold value. Here ∣xR is smaller for lower thresholds
because lower thresholds correspond to larger scales where the
FoG effect is less dominant and the Kaiser effect becomes more
effective, which reduces ∣xR . A strong degeneracy between Ωm

and bv
s is seen. As Ωm becomes higher, both the population of

massive halos and the virialized velocity become higher too
(Marzke et al. 1995; Vikhlinin et al. 2009), which leads to the
stronger FoG effect. Also, a higher velocity bias means a higher
galaxy motion inside clusters and thus a stronger FoG. Within
the error bars of the observation, both ( ) ( )W =b, 0.21, 1.0m v

s

and (0.31, 0.7) reproduce the observed FoG ratio reasonably
well. If we had complete knowledge of α and bv

s, the FoG
ratios would give a constraint of ΔΩm∼0.02 with our data.
However, if we allow these to vary, using only the FoG ratio is
insufficient to obtain a meaningful constraint on Ωm.

4.3. The Fitting

Next, let us see how well the fittings work. The peak position
of the middle panel of Figure 4 tells us that ~b 1.0v

s will give
the best fit. Then, we notice that Ωm∼0.26 is preferred in the
top panel by comparing the observation with the solid colored
lines. Figure 6 shows the probability distribution of Ωm and bv

s

based on the χ2 statistics for α=1.5. Because we only have
three Ωm realizations, any statistical quantity (ξl, w(rp), and ∣xR )
for other Ωm is obtained by interpolation. Different lines
correspond to what type(s) of information is (are) used to fit.
The bold red contour is the combined result obtained by fitting
to the monopole, quadrupole, and hexadecapole moments and
the projected 2pCF. The thin blue contour is from the FoG
ratio, and the bold blue contour is the combination of these two.
Note that the projected 2pCF is the real-space quantity;
therefore, it cannot constrain bv

s but can indirectly contribute to
better determining bv

s by constraining Ωm. All contours overlap
one another in the α=1.5 case. This means that α=1.5
can explain all measurements simultaneously, supporting the

Figure 3. Projected correlation function w(rp) for different α and Ωm. The
values are multiplied by rp

0.7 for a visual purpose. The black line represents
the SDSS observation data, while the colored lines are obtained from the
Multiverse Simulation for corresponding Ωm values. Different line types are for
different merger timescales α. The dotted vertical line indicates the minimum
scale for our fittings.
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validity of our modeling of the galaxy clustering. The best-fit
values for the ( )x x x+ + + w rp0 2 4 case are ( )W =b,m v

s

( ) 0.262 0.014, 1.032 0.051 . As seen in Figure 6, includ-
ing ξ4 and w(rp) does not change the best fit within the

Figure 4. Multipole moments ξl (l=0, 2, and 4 for the top, middle, and
bottom panels, respectively). Black lines represent the observation data, while
colored lines are obtained from the Multiverse Simulation for corresponding
Ωm values. Different line types are for different satellite velocity bias bv

s. The α
parameter is fixed to be 1.5.

Figure 5. The FoG ratio R as a function of the correlation function threshold
level. The colored lines are obtained from the Multiverse Simulation for
different Ωm, while the black line is from the SDSS observation. Different line
styles indicate different satellite velocity bias bv

s. The α parameter is fixed to be
1.5. For reference, approximate scales for corresponding threshold levels are
shown on the top axis.

Figure 6. Constraints on (Ωm, bv
s) from the χ2 analysis for the case α=1.5.

The contours show 68% and 95% confidence levels. The constraints are
obtained by using different combinations of the measurements as given in
different line types and colors.
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statistical uncertainty or tighten the constraint significantly.
However, note that w(rp) has given a good constraint on α, as
seen in Figure 3. Adding the FoG ratio yields ( )W =b,m v

s

( ) 0.272 0.013, 0.982 0.040 .
Figure 7 gives a comparison between the observation and the

best-fit models for α=1.5 and 2.0. The fitting procedure for
α=2.0 is identical to that for α=1.5, except that we have
used α=2.0 in Equation (1) to produce the simulated galaxies
in the Multiverse Simulation. The top panel shows the
projected 2pCF, while the bottom panel shows the multipoles.
Except for a weak deviation (∼1σ) at s>10 h−1 Mpc, our
α=1.5 model reproduces w(rp), ξ0, and ξ2 very well. A
moderate deviation is seen at s∼1 h−1 Mpc of ξ4, which

mainly contributes to our χ2 (see Appendix A for detailed
discussions). Also, we can see a good fit of w(rp) at
rp<1 h−1 Mpc in spite of our fitting range, which also
supports our galaxy model. Figure 8 shows the 2D correlation
function for the best models. We can see an excellent
correspondence between the observation and our α=1.5
model at small scales. We see some deviation beyond
10 h−1 Mpc, but this will be within the 1σ uncertainty, as
explained in Figure 7.

5. Discussions

5.1. Interpretation of bv
s and Wm

As we have seen in the previous section, the inferred velocity
bias is = b 0.982 0.040v

s for α=1.5. This value is slightly
smaller than 1, but the deviation is not significant for the size of
the statistical error. We will discuss how this result compares
with other studies. As we mentioned in Section 2.4, our
parameter bv

s is different from the definition used in the
literature. The velocity bias is usually defined as the velocity of
the visible part of the galaxies relative to the DM velocity
dispersion inside their halos. Thus, it is the multiplication of
two factors: the velocity bias of the baryonic component of
galaxies (i.e., the observed galaxies) with respect to the whole
galaxies (represented by MBPs) and the MBPs’ velocity bias
relative to the DM velocity dispersion. The sources of the
galaxy velocity bias are also separated into two classes. The
first one is related to gravitational interactions such as
dynamical friction, tidal stripping, and mergers. The other
includes baryonic effects such as star formation, radiative
cooling, feedback from stars/supernovae/active galactic nuclei
(AGNs), and heat dissipation. Given the fact that N-body
simulations implement all gravitational effects, the velocity of
MBPs should reflect the velocity bias induced by gravitational

Figure 7. Projected correlation function (top) and multipole moments (bottom).
The solid lines are the measurements from the SDSS. The dashed line is the
best model for α=1.5, obtained from the combination of w(rp), ξ0, ξ2, and ξ4
(bold red contour in Figure 6). The dotted line is similar to the dashed line but
for the α=2.0 model. For the log-likelihood of parameters for α=2.0, see
Figure 9. The vertical lines show the minimum scale we used for the fittings.

Figure 8. The 2D correlation function ( )x pr r,p . The contour levels are 6, 2, 1,
0.6, and 0.3. Axes are expressed in a logarithmic scale to emphasize the small-
scale part. The solid lines are obtained from the measurements of the SDSS
data. The dashed lines are the best model for α=1.5, obtained from the
combination of w(rp), ξ0, ξ2, and ξ4 (bold red contour in Figure 6). The dotted
lines are similar to the dashed lines but for the α=2.0 model. For the log-
likelihood of parameters for α=2.0, see Figure 9.
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interactions. Since we have defined bv
s as the ratio between the

velocity of the baryonic component of galaxies and MBPs, bv
s

will indicate the velocity bias generated by hydrodynamic
effects. Figure 1 shows that the median velocity of MBPs for
satellite galaxies is 0.94 of the DM velocity dispersion. As a
result, the total velocity bias amounts to 0.94×0.982=0.93
and is broadly consistent with the one obtained by Guo et al.
(2015). Our results imply that the satellite velocity bias is
attributed more to dynamical effects than baryonic effects.

Munari et al. (2013) ran N-body simulations with and
without baryon cooling, star formation, and supernova and
AGN feedback. Although it is not straightforward to compare
their results with ours due to the different host halo mass
focused on, their Figure 8 suggests an ∼10% reduction of the
velocity bias for the simulation with hydrodynamic effects.
This is because the star formation and radiative emission cool
galaxies down, forming a dense core and making galaxies
resistant to tidal stripping. Tidal stripping selectively disrupts
slow-moving galaxies, leading to higher mean galaxy velocity.
Thus, adding baryon cooling counteracts it and thereby reduces
the average velocity. Wu et al. (2013) investigated the effect of
baryons on the galaxy velocity in their simulations, finding that
the reduction of galaxy velocity depends on the distance from
the cluster center, from 30% (close to halo center) to 0% (at the
virial radius of host halos). They suggested that the reasoning
for their result is similar to that of Munari et al. (2013) but also
mentioned the baryon dragging (Puchwein et al. 2005).
Considering that the fraction of satellite galaxies enclosed
within the innermost region around the halo center is
subdominant (Watson et al. 2012), the average reduction
would be at most 10%. Ye et al. (2017) found that the velocity
bias depended on the ratio between the stellar mass and host
halo mass, implying that the velocity bias is mostly caused by
dynamical effects. They argued that the dependence on stellar
mass is a result of dynamical friction (a high-mass galaxy
suffers from losing energy due to the two-body problem), and
the dependence on host halo mass is related to the halo
formation time (a high-mass halo is formed late, giving less
time for dynamical effects to operate). All of these studies
indicate that the velocity reduction caused by baryonic physics
will be less significant than that caused by dynamical effects,
which agrees with our results. Ye et al. (2017) also found that
the velocity bias was a complicated function of other physical
quantities, including age and color. Future studies can include
investigating such a dependence because knowing the detailed
properties of the galaxy velocity bias would be useful for future
surveys such as DESI and PFS, most of which apply color
selections of galaxies to define the observation strategies. It
would also push forward our understanding of the kinematic
perspectives of the galaxy formation and evolution. For
instance, we can classify galaxies by age using the spectral
energy distribution fitting technique and measure the velocity
bias through clustering measurements for each class.

Our constraint on Ωm is 0.272±0.013 when we use
α=1.5. The value is consistent with the WMAP5 result
(Ωm=0.26; Dunkley et al. 2009) but lower than that of the
Planck (Ωm=0.31; Planck Collaboration et al. 2018). In our
simulation, the normalization of the power spectrum is set to
give σ8=0.79, which is lower than the Planck results. Thus,
the correlation functions of our simulations are systematically
weaker. As we saw in Figures 3 and 4, the correlation is
stronger for lower Ωm, which explains our Ωm consistent with

the WMAP5 rather than the Planck. While we only run five
simulations due to the large amount of resources required,
efficient methods of searching parameter space using N-body
simulations are being studied by several projects (Nishimichi
et al. 2019; DeRose et al. 2019). A more comprehensive study,
including other cosmological parameters, would be beneficial.

5.2. The Usefulness of the FoG Ratio

We have introduced a measure of the FoG strength as
Equation (8). As discussed in Park (2000) and Tinker (2007),
taking a ratio removes the dependence on the overall amplitude
of the real-space correlation function. The clustering amplitude
depends on cosmological parameters such as Ωm, σ8, and the
linear growth rate f, which we usually wish to constrain, but
also on unwanted factors including cosmic variance and some
sort of systematic error. The cosmological parameters inferred
from only the multipole moments and projected 2pCF can be
contaminated by the latter factors. On the other hand, the FoG
ratio is free from these uncertainties after division if these
factors are universal. As seen in the previous section, we
should note that the constraining power is not strong because
our FoG ratio uses the correlation function along the μ=0 and
1 directions only.
The FoG ratio depends on cosmological parameters

differently from the multipoles and projected 2pCF. Figure 9
shows the probability distribution of ( )W b,m v

s for α=2.0,
which is to be compared with Figure 6. In each figure,
combining ξl and w(rp) gives preferred values of (Ωm, )bv

s .
However, the contour from the FoG ratio disagrees with those
from the others in the α=2 case, which supports α=1.5.
Noticeably, the contours from correlation functions and the
FoG ratio shift toward different directions when the parameters
are changed.

Figure 9. Same as Figure 6 but for the case of α=2.0. Note that the contour
from the FoG ratio disagrees with those from others.
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For the case of ( )x + w rl p , increasing α results in lower Ωm

but higher bv
s. The reason is as follows. There are more satellite

galaxies when α is increased, leading to a higher amplitude of
the correlation function. On the other hand, increasing Ωm

decreases the amplitude of the galaxy 2pCF (see Figure 3). This
is because we fix σ8, which means that the integration of the
correlation over all scales remains the same. Increasing Ωm

increases the amplitude on very large scales, thus decreasing
the correlation at the scales of our interest. Therefore, α and Ωm

are anticorrelated. In contrast, the positive correlation between
α and bv

s stems from the amplitudes of ξl. Considering the error
bars of the observation, our constraints mainly come from
∼1–3 h−1 Mpc. At such scales, increasing bv

s reduces ξl due to
the enhanced FoG effect, which compensates for the α
increment. The degeneracies between the three parameters are
the result of the fact that ξl and w(rp) depend on the overall
clustering amplitude, unlike the FoG ratio. Increasing both α
and bv

s indeed results in a too-strong FoG effect, which can be
seen in Figure 8.

For the FoG ratio, on the other hand, an increase in α
decreases both Ωm and bv

s. This behavior is easily understood.
Increasing α increases the number of satellite galaxies,
resulting in stronger FoG. In order to cancel this out, both
Ωm and bv

s need to be smaller. Since the FoG ratio does not
depend on the overall clustering amplitude, how the parameters
degenerate with one another is totally different from the 2pCFs.
Although we have mainly used α=1.5 in our study, the FoG
ratio will tighten the constraints if we allow α to vary.
Changing α alters the galaxy–halo connection, which is
equivalent to changing the HOD parameters in that framework.
Therefore, the FoG ratio would also help to constrain the
parameters in the HOD approach. Another benefit of adding
the FoG ratio would be that it gives a consistency check. In the
absence of the cosmic variance and systematic errors, w(rp), ξl,
and the FoG ratio overlap in the parameter space if the correct
model is chosen. However, since w(rp) and ξl are subject to the
uncertainties of the clustering amplitude while the FoG ratio is
not, a discrepancy would be seen in the presence of systematic
errors caused by the cosmic variance, observations, and data
processing and analysis, even if the employed fitting model
were sufficiently accurate.

6. Conclusions

The small-scale galaxy clustering can provide a wealth of
information about the cosmological model and galaxy–halo
connection owing to the availability of precise measurements.
In this study, we used the Multiverse Simulation (Shin et al.
2017; Park et al. 2019), the HR4 Simulation (Kim et al. 2015),
and a physically motivated galaxy assignment scheme (Hong
et al. 2016) to study the small-scale redshift-space clustering.
Specifically, we measured the projected correlation function
w(rp) and the multipole moments ξl(s) of the correlation
function from 1.4 to 30 h−1 Mpc to examine their dependence
on the matter density parameter Ωm and the merger timescale
parameter α. We also implemented the satellite velocity bias
parameter bv

s to account for the possible velocity difference
between galaxies and DM inside halos (Munari et al. 2013; Wu
et al. 2013; Guo et al. 2015; Ye et al. 2017). We have measured
the correlation functions of a volume-limited sample from the
KIAS-VAGC catalog (Choi et al. 2010), which is based on
the SDSS DR7 spectroscopic data, to compare with those of the
Multiverse Simulation. In the comparison, we have newly

defined the strength of the FoG effect, ∣xR , which is free from
the change in the overall amplitude of the correlation function
due to the cosmic variance and systematic errors. We have
found that α=1.5 reproduces the observation well, with
( ) ( )W =  b, 0.272 0.013, 0.982 0.040m v

s . While our bv
s

broadly agreed with previous observational and simulation
studies (Munari et al. 2013; Wu et al. 2013; Guo et al. 2015; Ye
et al. 2017), Ωm was smaller than the Planck results (Planck
Collaboration et al. 2018), which we attributed to the lower σ8
that we assumed in the Multiverse Simulations. Considering
that the velocities of MBPs for satellite galaxies are 0.93 of that
of DM, the slow motions of galaxies relative to the DM
velocity dispersion found by Guo et al. (2015) are mainly
caused by dynamical effects rather than baryonic effects. The
FoG ratio was found to be useful to break the degeneracy
between the parameters and can be used to check the
consistency of the fit obtained by w(rp) and ξl(s).
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Appendix A
The χ2 Statistics

Table A1 shows the minimum χ2 values and those per
degree of freedom (dof), obtained from Equation (9) for
different sets of measurements. The best-fit c dof2 is 1.67 for
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the case where we use all measurements, which might be
slightly high. Here we give some possible reasons by
discussing our statistical treatment and suggest several ways
to improve it.

First, we used the covariance matrix estimated from the
mock galaxy catalogs rather than jackknife resampling. We
have also measured the covariance matrix using the jackknife
method and found that the diagonal elements from the mocks
are about half of those from the jackknife method, which means
that the size of our error bars is smaller by a factor of 2 .
Because doubling the covariance matrix halves χ2, this partly
describes the different χ2 values obtained by Guo et al. (2015)
and us. Then, why are the values of the covariance matrix from
mock catalogs smaller than the jackknife resampling? One
reason is related to the inherent feature of the jackknife;
Norberg et al. (2009) demonstrated that the jackknife returned
the error bars accurately beyond ∼10 h−1 Mpc but significantly
overestimated those below 100.5 h−1 Mpc for both w(rp) and
ξ(s), where our constraints mainly come from. Another possible
reason is specific to our data; it includes the Sloan Great Wall
(Gott et al. 2005), which is centered at z=0.08. The unusually
huge structure may lead to the large region-to-region variance,
enhancing the error bars from the jackknife.

Sinha et al. (2018) investigated the effect of the noise from
the limited number of mocks on the resulting χ2. Due to the
nonlinearity of the inverse operation of the covariance matrix,
this kind of noise enters into a χ2 analysis in an unpredictable
manner. Sinha et al. (2018) provided a solution to use principal
component analysis to extract some eigenvectors with large
signal-to-noise ratios and obtained smaller c dof2 values.

As is obvious from Table A1, ξ4 contributes hugely to the
large χ2 that we obtain. However, Figure 6 shows that the
inclusion of ξ4 does not improve the constraining power. These
facts might mean that the information of ξ4 is already included
in the combination of ξ0 and ξ2, or our model is insufficient to
reproduce up to ξ4. Improvements of our model can include
allowing the central galaxy velocity bias parameter bv

c to
change, but we will only try =b 0v

c in the next appendix and
leave the detailed analysis to future works.

Appendix B
The Model with Zero Central Galaxy Velocity Bias

While we have assumed ~v vg MBP for central galaxies
in the main text, we show the fitting result when the central

velocity bias =b 0v
c ; i.e., the central galaxies are rest at the

center of halos (bv
c is defined similarly to Equation (4)).

Figure B1 shows the χ2 contour obtained in the same manner
as Figure 6. Although the final constraint (bold blue line) is
apparently consistent with that in the main text, it is simply a
coincidence because the contours for ξl do not overlap one
another.
The shift of the FoG ratio (thin blue line) can be interpreted

easily, owing to the fact that the FoG ratio is a pure
measurement of FoG. The degree of the FoG effect is governed
by the quadratic sum of the velocities of central and satellite
galaxies. Therefore, bv

s has to be larger to compensate for
nullifying central galaxy velocities inside halos. On the other
hand, understanding the shifts of the correlation functions is
not straightforward. On small scales, the higher velocity bias
takes the galaxy pairs to large separations in redshift space,
reducing the amplitudes of ξl. Similar to the FoG ratio, the
decrease of the central galaxy velocity can be partly canceled
out by the increase of the satellite velocity bias. However, not
only the increase of bv

s but also the decrease in Ωm can increase
the correlation amplitudes at such scales. Furthermore, the data
points from larger scales have to be fit simultaneously, making
the degeneracy of ( )W b b, ,m v

c
v
s complicated when we use the

correlation functions.
Note that only the diagonal elements of the covariance

matrix are used to produce Figure B1. Due to the strong
correlation and anticorrelation between each bin of ξl and w(rp),
the off-diagonal elements of - 1 are noisy. If the theoretical
model were reasonably correct, the contributions of off-
diagonal elements to [ ( )] [ ( )]q q- --X X X XTobs th 1 obs th

would not affect the best-fit values significantly because
∣ ( )∣q-X Xobs th is small. While we have confirmed that the
best-fit values in the main text were stable even if we used only
the diagonal components, we found that the bold blue line
was far from the rest of the contours when we used the full

Table A1
The χ2 Values (Top) and χ2 per dof (Bottom) for the Best-fit ( )W b,m v

s Cases
for α=1.5 and 2.0

α=1.5 α=2.0

w 5.50 6.73
x x+0 2 13.08 25.27

x x x+ +0 2 4 43.03 108.55

ξ0+ξ2+ξ4+w 47.45 114.56
x x x+ + + +w FoG0 2 4 55.03 171.02

w 0.92 1.12
ξ0+ξ2 0.93 1.81
ξ0+ξ2+ξ4 1.96 4.93
ξ0+ξ2+ξ4+w 1.58 3.82
ξ0+ξ2+ξ4+w+FoG 1.67 5.18

Figure B1. Similar to Figure 6, but =b 0v
c is assumed. Note that only the

diagonal elements of the covariance matrix are used.
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covariance matrix here. This implies that ac=0 is not a good
model, probably giving unstable behaviors of the off-diagonal
component of [ ( )] [ ( )]q q- --X X X XTobs th 1 obs th caused by
large ∣ ( )∣q-X Xobs th , which supports previous studies that
claim the existence of the central galaxy velocity bias.

Appendix C
The Fiber Collision Effect

Due to the mechanical limitation of the SDSS spectroscopic
instrument, when a galaxy pair is separated by an angular
separation less than 55″, only either one can be observed by a
single run. This is called a fiber collision effect and leads to
systematics in the correlation function measurements (Zehavi
et al. 2002; Guo et al. 2012). Because the so-called NN method
is adopted in our study and can cause systematic errors on
small-scale measurements (Reid et al. 2014), we have tested the
validity of it by simulating the fiber collision effect using the
HR4 simulation data. We use the concept of Guo et al. (2012)
to model the fiber collision effect. The angular friends-of-
friends grouping is performed for the objects on the celestial
plane with a linking length of 55″. Then, the objects are
classified into three groups:

1. D1: galaxies that are isolated.
2. D2: galaxies that collide with one close galaxy (typically

doublets).
3. D2’: galaxies that collide with more than one galaxy

(typically the middle one of triplets).

We divide the HR4 galaxy catalog into 18 boxes to create
“flux-limited” samples that correspond to the parent photo-
metric catalog of the KIAS-VAGC. Specifically, we select the
heaviest galaxies within the distance range, which goes from 10
to 800 Mpc h−1 with a bin size of 10 Mpc h−1 to obtain the
same number density. Because the fiber collision occurs in the
parent photometric catalog before any redshift and luminosity
cut, we require much more distant galaxies, which leads to the
small number of realizations (18) compared to the ones for the
covariance matrix (405).

We apply this classification to the KIAS-VAGC parent catalog
to estimate the fraction of fiber-allocated galaxies as a function of
the population (D1, D2, or D2’) and the number of plates
covering the position of objects (Ntile). Then, for each of the 18
realizations, the same classification code is run, and “observed”
galaxies are determined according to these fractions.

Then, we assign the NN redshift to the “unobserved”
galaxies, apply the redshift and mass cut, and measure the
correlation functions. The comparison is given in Figures C1
and C2. We also perform another fiber collision correction
method based on the pairwise inverse probability (PIP) weights
(Bianchi & Percival 2017). In this case, we repeat the selection
process 1000 times to create the logical array of length
Nbits=1000 for each galaxy, each element of which is either
zero (unobserved) or 1 (observed). The correlation function is
then measured using the pairwise weight given by Equation
(14) of Bianchi & Percival (2017).

The PIP scheme is accurate over almost all scales, as it is an
unbiased way of correcting for the missing observations. The
NN method is, however, still possible to use for our interested
scales. This result is different from the argument of Reid
et al. (2014) but can be explained by the difference of the
minimum scale probed and the different collision scale in
the comoving space (<0.1 and <0.4 Mpc h−1 for our and their

works, respectively). While the higher-redshift data such as
BOSS and eBOSS would require the PIP method for small-
scale clustering study, the NN method suffices for our study.

Figure C1. Fiber collision effect on the multipole moments. The black lines are
the fiducial data from the HR4 galaxy sample that we want to recover, while the
red and green lines are obtained by simulating the PIP and NN schemes for the
fiber collision correction, respectively. The vertical line shows the minimum
scale for our analysis in the main text. We adopt the NN scheme in this study.

Figure C2. Fiber collision effect on the FoG ratio. We show two threshold
levels, ξ=3 and 4. The x-axis gives the sample number density. For our
sample in the text, it is 6.1×10−3 (h−1 Mpc)3 and corresponds to the leftmost
points. The black lines are the fiducial data from the HR4 galaxy sample that
we want to recover, while the red and green lines are obtained by simulating the
PIP and NN schemes for the fiber collision correction, respectively. We adopt
the NN scheme in this study.
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