

H₂O₂-induced Greenhouse Warming on Oxidized Early Mars

Yuichi Ito^{1,2}, George L. Hashimoto³, Yoshiyuki O. Takahashi⁴, Masaki Ishiwatari², and Kiyoshi Kuramoto², Department of Physics and Astronomy, University College London, London WC1E 6BT, UK; yuichi.ito.kkyr@gmail.com

² Department of Cosmosciences, Hokkaido University, Sapporo 060-0810, Japan

³ Department of Earth Sciences, Okayama University, Okayama 700-8530, Japan

⁴ Department of Planetology, Kobe University, Kobe 657-8501, Japan

**Received 2019 August 1; revised 2020 February 25; accepted 2020 March 5; published 2020 April 28

Abstract

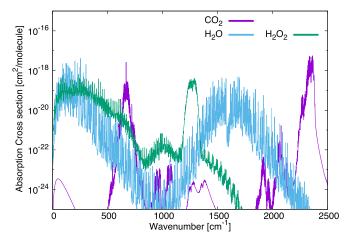
The existence of liquid water within an oxidized environment on early Mars has been inferred by the Mn-rich rocks found during recent explorations on Mars. The oxidized atmosphere implied by the Mn-rich rocks would basically be comprised of CO₂ and H₂O without any reduced greenhouse gases such as H₂ and CH₄. So far, however, it has been thought that early Mars could not have been warm enough to sustain water in liquid form without the presence of reduced greenhouse gases. Here, we propose that H₂O₂ could have been the gas responsible for warming the surface of the oxidized early Mars. Our one-dimensional atmospheric model shows that only 1 ppm of H₂O₂ is enough to warm the planetary surface because of its strong absorption at far-infrared wavelengths, in which the surface temperature could have reached over 273 K for a CO₂ atmosphere with a pressure of 3 bar. A wet and oxidized atmosphere is expected to maintain sufficient quantities of H₂O₂ gas in its upper atmosphere due to its rapid photochemical production in slow condensation conditions. Our results demonstrate that a warm and wet environment could have been maintained on an oxidized early Mars, thereby suggesting that there may be connections between its ancient atmospheric redox state and possible aqueous environment.

Unified Astronomy Thesaurus concepts: Inner planets (797); Mars (1007); Planetary atmospheres (1244)

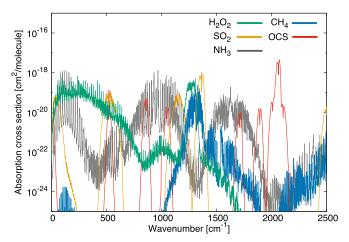
1. Introduction

One of the most intriguing and debatable problems in planetary science is elucidating how an early Martian surface environment could have been warm enough to sustain liquid water (Wordsworth 2016; Ramirez & Craddock 2018). Climate models have shown that a CO₂-H₂O atmosphere alone could not have kept early Mars warm enough to sustain liquid water globally even if any amount of atmospheric pressure is assumed (e.g., Kasting 1991). This suggests that the other greenhouse components could have played a key role in the early Martian atmosphere. Current theoretical models suggest that the warming of early Mars was caused by a CO₂-H₂O atmosphere combined with additional greenhouse substances: clouds (e.g., Forget & Pierrehumbert 1997; Wordsworth et al. 2013); reducing gases such as H₂, CH₄, and NH₃ (e.g., Sagan & Mullen 1972; Kasting et al. 1992; Ramirez et al. 2014; Ramirez 2017; Wordsworth et al. 2017); and/or volcanic gases such as H₂S and SO₂ (e.g., Postawko & Kuhn 1986; Johnson et al. 2008; Tian et al. 2010).

Recently, NASA's Curiosity rover discovered a high abundance of Mn in sedimentary rocks (Lanza et al. 2016). During the era in which the observed Mn-oxide-rich rocks at Gale crater would have precipitated out, Mars may have had both liquid water on its surface and a highly oxidized atmosphere (Lanza et al. 2016; Noda et al. 2019). Furthermore, the existence of rocks with a high concentration of Mn at Endeavour crater (Arvidson et al. 2016) suggests that such an oxidized and wet surface environment was a global phenomenon at that time. These findings suggest that the early Martian surface had once experienced a wet and warm environment, but with the absence of reduced gas species that would have enhanced the greenhouse effect of a CO2-H2O dominated Martian atmosphere to allow the existence of liquid water. One might consider SO₂ as a candidate greenhouse gas in an oxidized atmosphere (e.g., Johnson et al. 2008), but its


presence seems unlikely during this era because Mn and S are not correlated in the rocks found at Gale crater (Lanza et al. 2016).

In an attempt to address this uncertainty, in this study we investigate the greenhouse effect due to hydrogen peroxide (H_2O_2) gas in the early Martian atmosphere. Previously, it had been proposed that H_2O_2 gas was responsible for oxidizing the early Martian surface (e.g., Zahnle et al. 2008). Although the idea that H_2O_2 was one of the greenhouse gases responsible for the warming of early Mars has widely been ignored, H_2O_2 does absorb radiation at wavenumbers near $500 \, \mathrm{cm}^{-1}$, where the blackbody radiation at a temperature of $250 \, \mathrm{K}$ has peak intensity and CO_2 has an absorption window, as shown in Figure 1 (see also Figure 4 in Wordsworth 2016). Also, the absorption cross section of H_2O_2 is larger than those of known greenhouse gases such as SO_2 , NH_3 , CH_4 , and OCS in a wavenumber range from $250-450 \, \mathrm{cm}^{-1}$, as shown in Figure 2.


The remainder of this paper is organized as follows. In Section 2, we describe our atmospheric model and numerical setup. In Section 3 we show the surface temperature as a function of H_2O_2 abundance under the conditions that may have been present on early Mars. We discuss the photochemical production and condensation of H_2O_2 in a warm and wet early Martian atmosphere and the possible warming scenario of H_2O_2 in an oxidized early Martian environment in Section 4. Finally we summarize our results in Section 5.

2. Atmospheric Model

We set up a vertical, one-dimensional CO₂-dominant atmospheric model and determine the surface temperature required to achieve balance between the absorbed solar radiation and the outgoing planetary radiation with approximated radiative–convective equilibrium temperature–pressure profiles and given compositions. The numerical scheme is based on the same line-by-line calculations used in the

Figure 1. Absorption cross sections of three oxidized gases, CO_2 (magenta), H_2O (cyan), and H_2O_2 (green) at 250 K and 1 bar, as functions of wavenumber. These cross sections are produced using the line profile calculation code EXOCROSS (Yurchenko et al. 2018). The absorption data and the assumed line profiles are described in Section 2.

Figure 2. Absorption cross sections of H_2O_2 (green) and four greenhouse gases, SO_2 (orange), NH_3 (gray), CH_4 (blue), and OCS (red) at 250 K and 1 bar, as functions of wavenumber. These cross sections are calculated using EXOCROSS (Yurchenko et al. 2018) and HITRAN2012 (Rothman et al. 2013), assuming a Voigt profile truncated at 25 cm $^{-1}$ from the line center.

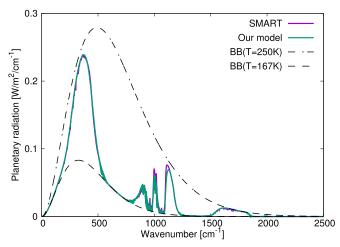
calculations of the surface temperature warmed by H_2O (Schaefer et al. 2016) and CO_2 – H_2 – CH_4 atmospheres (Wordsworth et al. 2017).

The atmosphere in hydrostatic equilibrium is vertically divided into 100 layers from the ground to the top of the atmosphere (1 \times 10 $^{-4}$ bar for the model atmosphere). The surface pressure ranges from 0.01 to 3 bar. The vertical grid of the atmosphere is set so that the logarithms of pressure are evenly spaced. Following previous models (Ramirez et al. 2014; Ramirez 2017), we set the modeled atmosphere to one composed of 95% CO2, fully saturated H2O, fully saturated or different mixing ratios of H2O2, and \leq 5% N2. For the saturated H2O2 amount, we calculate the vapor pressure using the Clausius—Clapeyron equation. Then, we use the thermal properties of H2O2 (Foley & Giguére 1951a) and its saturation vapor pressure of 4.69 \times 10 $^{-4}$ bar at the melting point (272.69 K) as a reference pressure (Manatt & Manatt 2004). In the other cases, the molar fraction of H2O2 is assumed to be vertically constant and its value was in the range from 10 ppb to 10 ppm. Additionally, the abundance of H2O is determined

by the saturation vapor pressure of water (Equations (11) and (12) in Kasting et al. 1984).

The atmospheric temperature profile is assumed to be that of a moist adiabat of H₂O and CO₂ from the surface to the tropopause and an isothermal stratosphere above the tropopause. Using the heat capacity, c_p , given by the Shomate equation,⁵ the vapor amount and latent heat of H_2O (Equation (12) in Kasting et al. 1984) and the gravity of Mars, g, the moist adiabat of H₂O is given by Equation (2.48) in Andrews (2000). Decreasing gravity with altitude is included in this model. The moist adiabat of CO₂ is adopted where the moist adiabat of H₂O is colder than the saturation vapor pressure of CO₂ using Equations (A5) and (A6) in Kasting (1991). We assume that the stratospheric temperature is 155 K $(\sim 167 \text{ K} \times 0.75^{1/4})$, which is based on the results of Kasting (1991), who uses 167 K as the stratospheric temperature for current solar heating and scales it for different solar heating rates by assuming that the stratospheric temperature is proportional to the skin temperature.

Using the atmospheric structure described above, we calculate the outgoing planetary radiation based on a line-by-line radiative transfer calculation. The outgoing planetary radiation is given by


$$F_{p} = 2\pi \int B_{\nu}(T_{\text{surf}}) \int_{0}^{1} \mu e^{-\tau_{\nu, \text{surf}}/\mu} d\mu d\nu + 2\pi \int \int_{0}^{\tau_{\nu, \text{surf}}} \int_{0}^{1} B_{\nu}(t_{\nu}) e^{-\tau_{\nu}/\mu} d\mu d\tau_{\nu} d\nu,$$
 (1)

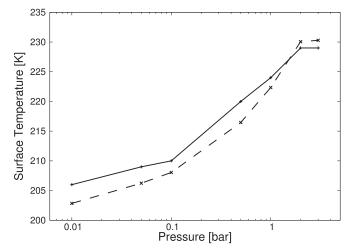
where $T_{\rm surf}$ is the surface temperature, μ is the cosine of the zenith angle, B_{ν} is the Planck function at wavenumber, ν , and τ_{ν} , surf is the total optical depth of the atmosphere. In hydrostatic equilibrium, the optical depth is given by

$$\frac{d\tau_{\nu}}{dP} = \frac{\sum \chi_{A} \sigma_{\nu,A}}{\bar{m}g},\tag{2}$$

where P is atmospheric pressure, \bar{m} is the mean mass of the atmospheric gas particles, and χ_A and $\sigma_{\nu,A}$ are the molar fraction and absorption cross section of an absorber A, respectively. Following Ramirez (2017) and Kopparapu et al. (2013), the line absorption cross section profile of CO₂ is assumed to be a sub-Lorentzian (Perrin & Hartmann 1989) truncated at 500 cm⁻¹ from the line center, while that of H₂O is assumed to be a Voigt profile truncated at 25 cm⁻¹ from the line center. The line profile of H₂O₂ is also assumed to be a Voigt profile truncated at 25 cm⁻¹ from the line center. For the line absorption of each gas species, the line data given by HITRAN2012 (Rothman et al. 2013) and the line profile calculation code EXOCROSS (Yurchenko et al. 2018) are used in this model. Additionally, the collision-induced absorption of CO₂-CO₂ (Gruszka & Borysow 1997; Baranov et al. 2004) is considered. In practice, to save memory and CPU time, we have prepared a numerical table in which the absorption cross sections are given as functions of temperature, T, and $\log_{10} P$. The table was created using values of T = 150, 200, 250, 300,and 350 K, and $\log_{10}(P/\text{bar}) = -4, -3, -2, -1, 0, \text{ and } 1.$ We evaluate the integral shown in Equation (1) over a wavenumber range from 1 to 10,000 cm⁻¹ with a resolution of 1 cm⁻¹. The numerical integration of Equation (1) with respect to the zenith

⁵ http://old.vscht.cz/fch/cz/pomucky/fchab/Shomate.html

Figure 3. Outgoing planetary radiation as a function of wavenumber for a dry, 2 bar CO_2 atmosphere, comparing the result calculated by our line-by-line model (green) against the result produced with the SMARTS code (violet). In each model, a dry $CO_2(95\%)$ – $N_2(5\%)$ atmosphere with a pressure of 2 bar, a surface temperature of 250 K, and a stratospheric temperature of 167 K is assumed. Also, the assumed temperature profile follows the dry and moist adiabatic lapse rate of CO_2 . The plotted SMART data are the same with those shown in Figure S2 of Ramirez et al. (2014). The black dashed curves show blackbody radiation, of which the temperatures are indicated by BB(T).


angle is performed using the exponential integral calculation code presented by Press et al. (1996), while the other integrals are evaluated using trapezoidal integration.

We iteratively determine the surface temperature at which the outgoing planetary radiation balances the absorbed solar radiation. The absorbed solar radiation is given by $(1 - A_p)F_{\text{sol}}/4$, where A_p is the planetary albedo and F_{sol} is the solar flux. The solar flux is assumed to be $F_{\rm sol} = 590 \times 0.75 \; \mathrm{W \, m^{-2}}$, and we use the planetary albedo of a wet CO₂(95%)-N₂(5%) atmosphere not warmed by any additional greenhouse mechanism (Ramirez et al. 2014). Note that our assumed planetary albedo underestimates the surface temperature in a warm atmosphere with enhanced saturated-H₂O content more than the atmosphere not warmed by H₂O₂. This is because the absorption of solar radiation by H₂O decreases the planetary albedo (Kasting 1988), and H₂O₂ might work in the same way. While the Rayleigh scattering cross section per a H₂O₂ molecule is comparable with that of CO₂ based on its electric dipole polarizability (Maroulis 1992), the abundance of H_2O_2 in our model is too low (up to 10 ppm) to increase the planetary albedo. Also, though there is no public absorption data of H₂O₂ in the optical regime (see Al-Refaie et al. 2016; Tennyson & Yurchenko 2018), its absorption in the optical is likely to not be very strong (see also the MPI-Mainz UV/VIS Spectral Atlas⁶; Keller-Rudek et al. 2013).

2.1. Model Validation

We have performed two benchmark tests of our simulation code, and we have confirmed that our model reproduce the numerical solutions for the dry and wet CO_2 -rich atmospheres of early Mars shown in Ramirez et al. (2014).

We first compare our line-by-line model against a well-tested line-by-line model, SMART (Meadows & Crisp 1996), for a dry, 2 bar CO₂(95%)–N₂(5%) atmosphere. With the same temperature profile shown in Figure S1 of Ramirez et al.

Figure 4. Surface temperature as a function of surface pressure for wet $CO_2(95\%)-N_2(5\%)$ atmospheres, comparing the result calculated by our model (solid) against the result of Ramirez et al. (2014) (dotted).

(2014), we calculated the outgoing planetary radiation using our model. Figure 3 shows a comparison between the SMART result and that from our model. Our model spectra agree well with the SMART spectra, although there is some difference in the wavenumber region from $800{\text -}1200~\text{cm}^{-1}$, which is likely due to the different absorption data used in both studies. The total flux of our model is $87.2~\text{W m}^{-2}$, which agrees well with that found by SMART (88.4 W m $^{-2}$). Note that the calculated fluxes differ by at most 0.05%, even if we double the resolution of the wavenumber or the number of vertical layers.

Next, we compare the surface temperatures of a wet, 2 bar $CO_2(95\%)$ – $N_2(5\%)$ atmosphere with that calculated by the onedimensional radiative–convective model (Ramirez et al. 2014). Our results agree well with those of Ramirez et al. (2014), as shown in Figure 4, where the differences in the calculated surface temperatures are no more than 4 K. Because the results of our models agree to within 2% of the previous studies, we have confirmed that our model is consistent with these models.

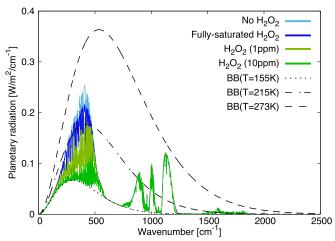
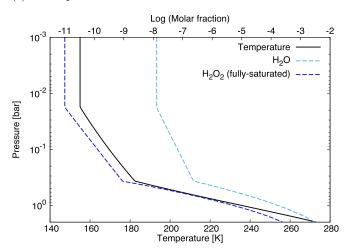

3. Results

Figure 5(a) shows the outgoing planetary radiation for a fixed surface pressure and temperature of 2 bar and 273 K, respectively. When the atmosphere consists of H_2O and CO_2 (cyan), there are atmospheric windows at wavenumbers below 500 cm⁻¹ and around 1000 cm^{-1} , which are consistent with the results of previous climate models (e.g., Wordsworth 2016; Ramirez 2017). The addition of H_2O_2 reduces the planetary radiation at wavenumbers below 500 cm^{-1} due to its strong far-infrared absorption (blue, olive, green). Although H_2O_2 effectively absorbs photons with wavenumbers around 1200 cm^{-1} (Figure 1), this only slightly affects the outgoing planetary radiation because CO_2 also absorbs photons at the same wavenumbers.


The outgoing planetary radiation is $87.6~W~m^{-2}$ for an H_2O_2 -free atmosphere (cyan), which decreases drastically when H_2O_2 is added. For vertically constant molar fractions of 1 ppm (olive) and 10 ppm (green) of H_2O_2 , the outgoing planetary radiation is $68.8~W~m^{-2}$ and $56.5~W~m^{-2}$, respectively. If the abundance of H_2O_2 can be constrained by the saturation vapor pressure, the planetary radiation is $84.2~W~m^{-2}$ (blue), and the greenhouse effect of H_2O_2 is unremarkable. This is because the abundance of saturated H_2O_2

⁶ http://satellite.mpic.de/spectral_atlas/index.html

(a) Outgoing planetary radiation

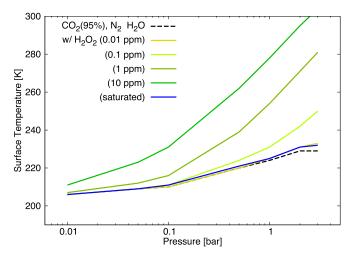

(b) Atmospheric structure

Figure 5. Impact of H_2O_2 on the outgoing planetary radiation for a surface pressure of 2 bar and a surface temperature of 273 K. (a) The outgoing planetary radiation as a function of wavenumber for the atmospheres without H_2O_2 and with different amounts of H_2O_2 . The black dashed curves show the blackbody radiation, the temperatures of which are indicated, BB(T). (b) The temperature–pressure profile and the vertical distributions of H_2O and saturated H_2O_2 in the atmosphere.

is too low in the low-pressure region to absorb photons effectively (Figure 5(b)).

Next, Figure 6 shows the surface temperature as a function of surface pressure. The differences in surface temperatures between the atmospheres without H₂O₂ (black) and with saturated H₂O₂ (blue) are at most 4 K. However, in the case of abundant H₂O₂, the planetary surface is warm enough to sustain liquid water (Figure 6). In particular, for the 2 bar atmosphere with added 1 ppm (olive) or 10 ppm (green) of H₂O₂, the surface temperature increases by about 40 or 65 K from that of the H_2O_2 -free case ($\sim 230 \text{ K}$), respectively. Our results show that a concentration of only 1 ppm level of H_2O_2 is sufficient to effectively cut off the outgoing planetary radiation and warm the planetary surface to temperatures above 273 K. Note that this H₂O₂ is supersaturated at high altitudes. For example, in the 2 bar atmosphere, 1 ppm of H₂O₂ is supersaturated below the pressure level of ~0.8 bar, and its supersaturation ratio is as high as 10⁵ at high altitudes where the pressure is ~ 0.02 bar or less (see the fully saturated H_2O_2

Figure 6. Surface temperature as a function of surface pressure. The dashed curve represents the atmosphere without H_2O_2 while the solid curves show the atmospheres containing a saturated amount and vertically constant molar fractions of H_2O_2 . Note that the case of 0.01 ppm of H_2O_2 (yellow) is almost identical to those of saturated (blue) and free H_2O_2 (black).

concentration shown in Figure 5(b)). Condensation of H_2O_2 in the high-altitude atmosphere is discussed in Section 4.2.

4. Discussion

4.1. H₂O₂ in a Wet and Oxidized Atmosphere

 H_2O_2 is much more abundant in a wet and oxidized atmosphere, though the concentration of H_2O_2 in the current dry Martian atmosphere is about 10 ppb (Encrenaz et al. 2004). Although chemical models suggest that the concentration of H_2O_2 reaches at most 0.1 ppm in dry atmospheres (Parkinson & Hunten 1972; Gao et al. 2015), a wet and oxidized atmosphere which is suitable for the formation of H_2O_2 would contain it in a concentration higher than 0.1 ppm. This is because H_2O_2 is produced through the chemical reactions of HO_x gas species such as H, OH, and HO_2 which originate from H_2O . Also, the abundance of H_2O_2 would be higher in an oxidized atmosphere because such an atmosphere inhibits the regeneration of H_2O from HO_x and enhances the production of H_2O_2 .

In a wet and oxidized Martian atmosphere, the photolysis of H_2O_2 is considered to be an effective pathway to regenerate CO_2 (Yung & Demore 1999). This regeneration is necessary because CO_2 is destroyed by far-UV irradiation ($\lambda \leqslant 227.5$ nm) from the Sun via

$$CO_2 + h\nu \rightarrow CO + O.$$
 (R1)

Indeed CO_2 regeneration is required to maintain the CO_2 atmosphere over geological timescales. In a wet atmosphere, H_2O_2 can be sufficiently produced as an intermediate product through the following catalytic cycle:

$$2(H + O_2 + M \rightarrow HO_2 + M),$$
 (R2)

$$2HO_2 \to H_2O_2 + O_2,$$
 (R3)

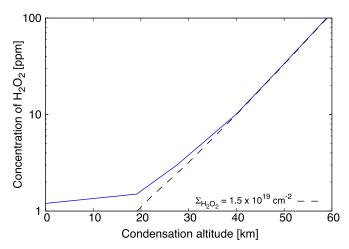
$$H_2O_2 + h\nu \rightarrow 2OH,$$
 (R4)

$$2(OH + CO \rightarrow CO_2 + H),$$
 (R5)

$$2CO + O_2 \rightarrow 2CO_2. \tag{S1}$$

Meanwhile, although a thick and dry CO₂-rich atmosphere is unstable (Zahnle et al. 2008), in a wet and oxidized atmosphere

of early Mars, CO_2 could have been stabilized by S1 (= R2 + R3 + R4 + R5) even if the atmosphere was thick.


We estimate the H_2O_2 abundance in a warm/wet and oxidized CO_2 atmosphere by assuming that S1 is the cycle most responsible for the regeneration of CO_2 against losses due to R1. We assume that the bulk CO_2 abundance in the atmosphere is in balance between its photodissociation flux (R1), and twice the H_2O_2 photodissociation flux (R4) that produces OH for oxidizing CO. Also, it is assumed that there is no optical shielding effect for photons with wavelengths longer than the shielded wavelength, $\lambda_{\rm sh}$, but there is complete shielding for all other UV photons to H_2O_2 , for simplicity. Then, the vertical column density of H_2O_2 , $\Sigma_{H_2O_2}$, can be written as

$$\Sigma_{\rm H_2O_2} = \frac{\int_{\lambda \leqslant 227.5 \, \rm nm} \hat{F}_{\lambda} d\lambda}{2 \int_{\lambda_{\rm ch}}^{\lambda_{\rm th}} \hat{F}_{\lambda} \sigma_{\rm diss},_{\lambda} d\lambda},\tag{3}$$

where \hat{F}_{λ} is the solar photon flux, and $\sigma_{\text{diss},\lambda}$ and λ_{th} are the photodissociation cross section and the threshold wavelength for a photon to effectively dissociate H_2O_2 , respectively. Owing to the low bonding energy of H_2O_2 (~ 50 kcal mol⁻¹ ~ 570 nm; Bach et al. 1996), the photodissociation is caused not only by UV but also by visible light photons. Therefore, H_2O_2 is not completely shielded from stellar irradiation by H_2O , O_2 , and CO_2 (Yung & Demore 1999). On the other hand, a developed O_3 layer may shield solar photons with wavelengths $\lesssim 300$ nm, as displayed on Earth today. Here we use $\lambda_{\text{sh}} = 227.5$ and 300 nm as fiducial values of a shielded wavelength.

The dissociation cross section of H_2O_2 has been measured only for photon wavelengths in the range \leqslant 410 nm (Kahan et al. 2012) because of the technical problem of measuring small absorption cross sections. Hence, we use $\lambda_{th}=410$ nm as a fiducial value of the threshold wavelength. Note that according to Kahan et al. (2012), the photolysis of H_2O_2 mainly occurs at photon wavelengths shorter than 350 nm. Therefore, inputting $\lambda_{sh}=227.5$ nm, the measured cross section with $\lambda_{th}=410$ nm (Lin et al. 1978; Kahan et al. 2012) and the solar spectral irradiance at 4 Ga developed by combining the observed spectrum from the Sun with those of solar-type stars at different ages (Claire et al. 2012) in Equation (3), we find $\Sigma_{H_2O_2} \sim 8 \times 10^{17} \, \mathrm{cm}^{-2}$. When we substitute $\lambda_{sh}=300$ nm into Equation (3), we find $\Sigma_{H_2O_2} \sim 5 \times 10^{18} \, \mathrm{cm}^{-2}$. These values change only 10% if the solar spectral irradiance at 3.5 Ga is used instead.

The column densities estimated here are significantly larger than the current typical value of $\sim\!\!2\times10^{15}\,\mathrm{cm}^{-2},$ which corresponds to 10 ppb at 6 mbar, in the present-day Martian atmosphere. These large column densities produce optical depths over wavenumbers $\nu=100\text{--}500~\mathrm{cm}^{-1}$ of $\tau_{\nu}=0.003\text{--}0.6$ for $\lambda_{\rm sh}=227.5~\mathrm{nm}$ and $\tau_{\nu}=0.02\text{--}4$ for $\lambda_{\rm sh}=300~\mathrm{nm},$ assuming a far-infrared absorption cross section of H_2O_2 , $\sigma_{\nu,H_2O_2}=(0.04\text{--}8)\times10^{-19}~\mathrm{cm}^2,$ which is shown in Figure 1. Thus, if the other gases such as O_3 sufficiently can reduce the photolysis of H_2O_2 , then the amount of H_2O_2 in the atmosphere would be large enough to warm the planetary surface. Note that the column density of H_2O_2 estimated by Equation (3) is just a typical value when S1 is the cycle most responsible for the stabilization of CO_2 , while this value could be increased if the self-shielding effect was taken into account

Figure 7. The concentration of H_2O_2 necessary to warm the planetary surface to 273 K in the 2 bar atmosphere as a function of the condensation altitude (see the text for the definitions of each term). The dashed line represents the column density of H_2O_2 with a constant concentration to reach $\Sigma_{H_2O_2}$ = 1.5×10^{19} cm⁻².

in Equation (3). This is because we impose the restriction that only the OH produced by the photolysis of H_2O_2 is used to oxidize CO via R5, but all other reactions which produce and remove OH are ignored. Also, the other process potentially affecting the concentration of H_2O_2 is discussed in Section 4.3.

4.2. Condensation of H_2O_2

It is likely that H_2O_2 in the warm and wet atmosphere of early Mars was supersaturated at high altitudes because the timescale for condensation is likely longer than that for photochemical production. As described later, a timescale for condensation would be much longer than that that governing the production and photodissociation of H_2O_2 , which was shown by Nair et al. (1994), who used a photochemical model, to be on the order of several hours.

The condensation time can be estimated by assuming that H_2O_2 condenses as soon as it collides with condensation nuclei, namely:

$$\tau_{\text{cond}} = (4\pi r^2 N_{\text{ccn}} \rho v_T)^{-1},\tag{4}$$

$$\sim 50 \text{ hr}$$

$$\times \left(\frac{N_{\text{cen}}}{10^5 \text{ kg}^{-1}}\right)^{-1} \left(\frac{P}{0.01 \text{bar}}\right)^{-1} \left(\frac{T}{200 \text{ K}}\right)^{\frac{1}{2}} \left(\frac{r}{1 \mu \text{m}}\right)^{-2}, \quad (5)$$

where r and $N_{\rm ccn}$ are the size and concentration of the condensation nuclei, respectively, ρ is the atmospheric mass density, and v_T is the thermal velocity of the gas. The timescale for condensation is longer at higher altitudes because the nuclei concentration decreases with increasing altitude. Note that the condensation timescale is underestimated in an atmospheric region with a mean free path smaller than the size of the nuclei (i.e., a dense region) because the diffusive motion of the gas around the nuclei delays the timescale (see Lohmann et al. 2016 for the diffusive case).

Achieving sufficient warming is possible even if $\rm H_2O_2$ condenses at lower altitudes due to the subsequent shorter condensation times. Figure 7 shows the minimum $\rm H_2O_2$ concentration necessary for maintaining a surface temperature of at least 273 K in a 2 bar atmosphere as a function of a

condensation altitude. The condensation altitude stands for an altitude above which the H₂O₂ concentration is constant and below which all the H₂O₂ gas is virtually removed by rainout through condensation. To warm the surface environment, the required concentration of H₂O₂ needs to be about 2 ppm when the condensation altitude is no higher than about 20 km. The 2 ppm of H₂O₂ in the upper atmosphere is comparable to 1.5×10^{19} cm⁻², which is also comparable to the H_2O_2 column density necessary to stabilize the CO₂ atmosphere (Section 4.1). Recent measurements of water vapor in the current Martian upper atmosphere indicate that the supersaturation of water vapor ranges from $1-10^2$ (Maltagliati et al. 2011; Fedorova et al. 2020), much smaller than 10⁵ that is the supersaturation of 1 ppm H₂O₂. However, it should be noted that the mechanism of supersaturation is completely different. On Mars today, the supersaturation of water vapor is generated by the transport of water vapor from the higher temperature region to the lower temperature region. On the other hand, the supersaturation of H₂O₂ would be generated by in situ photochemical production with a timescale of several hours. It is likely that the H₂O₂ production generates higher supersaturation than that generated by transport, though further studies are needed to quantitatively evaluate the degree of supersaturation.

Warming the planetary surface is still possible if the supersaturation is suppressed to a level of 10^3 . In the 2 bar atmosphere with a surface temperature of 273 K, 1 ppm of $\rm H_2O_2$ makes the outgoing radiation be 68.8 W m⁻², though the supersaturation is as high as 10^5 at a higher altitude (see Section 3). When the supersaturation has an upper limit of $S_c = 10^4$, 10^3 , or 10^2 , the outgoing radiation values in our model are 70.5 W m⁻², 74.5 W m⁻², or 79.5 W m⁻², respectively. The upper limit of supersaturation has rather little influence on the outgoing radiation since the photosphere for the wavenumbers of <500 cm⁻¹ is around a level of 0.3 bar where the supersaturation is $\sim 10^3$. Also, in the case of the 3 bar atmosphere with 1 ppm of $\rm H_2O_2$, $S_c > 2 \times 10^3$ is required to warm the surface temperature above 273 K.

The condensation timescale will not be significantly changed if the dilution effect of H₂O₂ in an H₂O solution is taken into account. When the temperature is above ~220 K, an H₂O-H₂O₂ solution can exist, and then the saturation vapor pressure of H₂O₂ will be lowered relative to that of pure H₂O₂ (Foley & Giguére 1951b; Manatt & Manatt 2004). However, the temperatures in the photosphere for photons with wavenumbers in the range $\geq 500 \text{ cm}^{-1}$ are lower than 220 K in thick and warm atmospheres (Figure 5). So it is likely that aqueous solutions would be frozen in the upper atmosphere where the concentration of H₂O₂ has the greatest influence on the surface temperature. Therefore, the dilution effect of H₂O₂ in an H₂O solution would barely affect the surface temperature. H₂O₂ clouds would affect the surface temperature if they are formed. In general, low-altitude clouds can cool the planetary surface and high-altitude clouds can warm the surface (Ramirez & Kasting 2017). It is important to discuss the detail of the H₂O₂ cloud radiative forcing but we have left it to the future studies since there is no public refractive index data of H₂O₂ particles (see the Refractive Index Database⁷).

4.3. Other Processes Possibly Affecting H_2O_2 Concentration

The atmospheric concentration of H_2O_2 can also be affected by several processes such as dissolution into water droplets, dry deposition, and photochemical reactions with volcanic and reactive species (e.g., SO_2 and NO_x) (Vione et al. 2003).

Although H₂O₂ is a minor species, at a level of at most 3.5 ppb in the Earth's atmosphere, which is mainly due to the dissolution of gaseous H₂O₂ into water droplets, where SO₂ enhances the dissolution rate (Vione et al. 2003), it might not have been a minor species on early Mars during the era in which the observed Mn-oxide-rich rocks at Gale crater would have precipitated out. Since the temperatures at high altitudes in the early Martian atmosphere would be so low that H₂O would freeze, its nondissolution into water droplets would not deplete H₂O₂. Meanwhile, at lower altitude regions, H₂O₂ would dissolve into water droplets, and precipitation would remove it. If the abundant sulfur-bearing gases were supplied to the early Martian atmosphere, SO₂ might have destroyed H₂O₂ (e.g., Spracklen et al. 2005; Galeazzo et al. 2018). Although Mn and S are not correlated in the rocks found at Gale crater (Lanza et al. 2016), sulfur deposits are present in large amounts all across the planet and they date to about the same period as Gale crater (e.g., Bibring et al. 2005; Gendrin et al. 2005).

In Earth's atmosphere, dry deposition is another removal process of atmospheric H_2O_2 at lower altitudes. The atmospheric H_2O_2 of early Mars would be vertically transported by eddy diffusion to the surface, whereby dry deposition and precipitation removed it. For the current Martian atmosphere at altitudes lower than 40 km, the scale height is $H \sim 10$ km and the vertical eddy diffusion coefficient is $K_{\rm ed} \leqslant 10^7$ cm² s⁻¹ (Nair et al. 1994); hence the diffusion timescale is $H^2/K_{\rm ed} \geqslant 1$ day. Since the timescale of H_2O_2 photochemical reactions is less than a day (Nair et al. 1994; Zahnle et al. 2008), the atmospheric concentration of H_2O_2 at high altitudes is likely to be controlled by photochemical reactions.

The actual eddy diffusion coefficient and dry deposition timescale on early Mars would depend on turbulence/large-scale winds and the compositions/oxidation states of the surface rocks, respectively. As such, a more detailed examination requires that photochemical calculations be done alongside those of the atmospheric thermal structure, which will be the focus of a future study.

4.4. Oxidized Early Martian Environment

An early surface environment warmed by the greenhouse effect of H_2O_2 (Section 4.1) is consistent with the global, highly oxidized, conditions implied by the high Mn materials found on the Martian surface by the Curiosity rover in Gale crater and by the Opportunity rover in Endeavour crater (Arvidson et al. 2016; Lanza et al. 2016).

The redox state of the early Martian atmosphere was likely controlled by the escape of atmospheric components into space. In the early Martian atmosphere, UV radiation from the young Sun would have enhanced hydrogen escape and effectively oxidized the atmosphere and the surface environment. In addition to hydrogen escape, the escape of atomic carbon might also have contributed to the oxidation of the early Martian atmosphere because its escape flux would not be limited by diffusion in a CO₂-rich atmosphere (N. Terada 2020, private communication). Further studies are required to determine the redox state of the early Martian atmosphere, which could also

https://refractiveindex.info

be affected by the supply of reduced gases (e.g., CO and H₂) through volcanic degassing, oxygen escape, and oxygen uptake through weathering of the planetary surface (Zahnle et al. 2008; Wetzel et al. 2013; Batalha et al. 2015).

It is interesting to note that H_2O_2 might be able to warm a frozen planet and melt water ice. Liang et al. (2006) demonstrated that a weak hydrological cycle coupled with photochemical reactions could give rise to sustained production of H_2O_2 during long and severe glacial intervals. Although an icy surface has a high albedo, the surface temperature can be warmed to temperatures above 273 K by 4 and 15 ppm levels of H_2O_2 in a 2 bar atmosphere when the planetary albedo is assumed to be $\leqslant 0.45$ and $\leqslant 0.5$, respectively, as demonstrated by our model.

It has also been suggested that H_2O_2 deposited on the planetary surface could be stored in the ice during the time of a global snowball episode (Liang et al. 2006). If early Mars was once a snowball, and a large amount of H_2O_2 was stored in the ice, it would be released into the atmosphere upon melting caused by any mechanism, such as meteor impacts, volcanic emissions, or obliquity changes (e.g., Wordsworth 2016 and references therein). The release of abundant H_2O_2 would cause not only a global oxidation event but also enhance greenhouse warming. If so, there might be geological evidence that oxidation and warming occurred simultaneously in the aftermath of a snowball Mars.

5. Summary and Conclusion

We investigated the possible impact of H_2O_2 as an additional greenhouse gas in a CO_2 -dominant atmosphere using a one-dimensional atmospheric model. Because the timescale for condensation is longer at higher altitudes (Section 4.2), photochemically-produced H_2O_2 would likely be supersaturated in the upper atmosphere. We found that a reasonable amount of H_2O_2 in the upper atmosphere effectively cuts off the outgoing planetary radiation in the far-infrared and warms the planetary surface to a temperature hot enough to retain liquid water (Section 3).

Our results demonstrated that a warm and wet surface environment is compatible with an oxidized atmosphere on early Mars. The coexistence of liquid water and an oxidized atmosphere on early Mars has been suggested by the recent discovery of a high level of Mn in some Martian rocks (Arvidson et al. 2016; Lanza et al. 2016). Our results also indicated a key relationship between the redox state of the atmosphere and the surface temperature on early Mars, where the coevolution of these factors may govern the surface environment over geological timescales. This important phenomenon will be the subject of future work, which will aim to understand the surface environment under an oxidized atmosphere on early Mars.

We thank Ramses Ramirez for sharing their albedo spectra and surface temperature data of CO₂ atmospheres with us. This work was supported by MEXT/JSPS KAKENHI grant Nos. 17H06457, 18K03719, and 19H01947 and by the NINS Astrobiology Center Project grant No. AB311025.

ORCID iDs

Yuichi Ito https://orcid.org/0000-0002-0598-3021

```
3821-6881
Yoshiyuki O. Takahashi https://orcid.org/0000-0003-
4060-7379
Masaki Ishiwatari https://orcid.org/0000-0001-7490-4676
Kiyoshi Kuramoto https://orcid.org/0000-0002-6757-8064
                              References
Al-Refaie, A. F., Polyansky, O. L., Ovsyannikov, R. I., Tennyson, J., &
   Yurchenko, S. N. 2016, MNRAS, 461, 1012
Andrews, D. G. 2000, An Introduction to Atmospheric Physics (Cambridge:
  Cambridge Univ. Press)
Arvidson, R. E., Squyres, S. W., Morris, R. V., et al. 2016, AmMin, 101, 1389
Bach, R. D., Ayala, P. Y., & Schlegel, H. B. 1996, JAChS, 118, 12758
Baranov, Y. I., Lafferty, W. J., & Fraser, G. T. 2004, JMoSp, 228, 432
Batalha, N., Domagal-Goldman, S. D., Ramirez, R., & Kasting, J. F. 2015,
   Icar, 258, 337
Bibring, J.-P., Langevin, Y., Gendrin, A., et al. 2005, Sci, 307, 1576
Claire, M. W., Sheets, J., Cohen, M., et al. 2012, ApJ, 757, 95
Encrenaz, T., Bézard, B., Greathouse, T. K., et al. 2004, Icar, 170, 424
Fedorova, A. A., Montmessin, F., Korablev, O., et al. 2020, Sci, 367, 297
Foley, W. T., & Giguére, P. A. 1951a, CaJCh, 29, 895
Foley, W. T., & Giguére, P. A. 1951b, CaJCh, 29, 123
Forget, F., & Pierrehumbert, R. T. 1997, Sci, 278, 1273
Galeazzo, T., Bekki, S., Martin, E., Savarino, J., & Arnold, S. R. 2018, ACP,
   18, 17909
Gao, P., Hu, R., Robinson, T. D., Li, C., & Yung, Y. L. 2015, ApJ, 806, 249
Gendrin, A., Mangold, N., Bibring, J.-P., et al. 2005, Sci, 307, 1587
Gruszka, M., & Borysow, A. 1997, Icar, 129, 172
Johnson, S. S., Mischna, M. A., Grove, T. L., & Zuber, M. T. 2008, JGRE,
   113, E08005
Kahan, T. F., Washenfelder, R. A., Vaida, V., & Brown, S. S. 2012, JPCA,
   116, 5941
Kasting, J. F. 1988, Icar, 74, 472
Kasting, J. F. 1991, Icar, 94, 1
Kasting, J. F., Brown, L. L., Acord, J. M., & Pollack, J. B. 1992, in Lunar and
   Planetary Institute Workshop, ed. R. M. Haberle & B. M. Jakosky
   (Houston, TX: Lunar and Planetary Institute), 84
Kasting, J. F., Pollack, J. B., & Ackerman, T. P. 1984, Icar, 57, 335
Keller-Rudek, H., Moortgat, G. K., Sander, R., & Sörensen, R. 2013, ESSD,
   5, 365
Kopparapu, R. K., Ramirez, R., Kasting, J. F., et al. 2013, ApJ, 765, 131
Lanza, N. L., Wiens, R. C., Arvidson, R. E., et al. 2016, GeoRL, 43, 7398
Liang, M.-C., Hartman, H., Kopp, R. E., Kirschvink, J. L., & Yung, Y. L.
   2006, P
            AS, 103, 18896
Lin, C. L., Rohatgi, N. K., & Demore, W. B. 1978, GeoRL, 5, 113
Lohmann, U., Lüönd, F., & Mahrt, F. 2016, An Introduction to Clouds: From
   the Microscale to Climate (Cambridge: Cambridge Univ. Press),
Maltagliati, L., Montmessin, F., Fedorova, A., et al. 2011, Sci, 333, 1868
Manatt, S. L., & Manatt, M. R. R. 2004, CEJ, 10, 6540
Maroulis, G. 1992, JChPh, 96, 6048
Meadows, V. S., & Crisp, D. 1996, JGR, 101, 4595
Nair, H., Allen, M., Anbar, A. D., Yung, Y. L., & Clancy, R. T. 1994, Icar,
   111, 124
Noda, N., Imamura, S., Sekine, Y., et al. 2019, JGRE, 124, 1282
Parkinson, T. D., & Hunten, D. M. 1972, JAtS, 29, 1380
Perrin, M. Y., & Hartmann, J. M. 1989, JQSRT, 42, 311
Postawko, S. E., & Kuhn, W. R. 1986, JGR, 91, D431
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1996,
   Numerical Recipes in Fortran 77: the Art of Scientific Computing, Vol. 1
   (2nd ed.; Cambridge: Cambridge Univ. Press)
Ramirez, R. M. 2017, Icar, 297, 71
Ramirez, R. M., & Craddock, R. A. 2018, NatGe, 11, 230
Ramirez, R. M., & Kasting, J. F. 2017, Icar, 281, 248
Ramirez, R. M., Kopparapu, R., Zugger, M. E., et al. 2014, NatGe, 7, 59
Rothman, L. S., Gordon, I. E., Babikov, Y., et al. 2013, JQSRT, 130, 4
Sagan, C., & Mullen, G. 1972, Sci, 177, 52
Schaefer, L., Wordsworth, R. D., Berta-Thompson, Z., & Sasselov, D. 2016,
    vpJ. 829, 63
Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Chipperfield, M. P., &
  Mann, G. W. 2005, ACP, 5, 2227
Tennyson, J., & Yurchenko, S. N. 2018, Atoms, 6, 26
Tian, F., Claire, M. W., Haqq-Misra, J. D., et al. 2010, E&PSL, 295, 412
```

George L. Hashimoto https://orcid.org/0000-0002-

- Vione, D., Maurino, V., Minero, C., & Pelizzetti, E. 2003, Annali di Chimica, 93, 477
- Wetzel, D. T., Rutherford, M. J., Jacobsen, S. D., Hauri, E. H., & Saal, A. E. 2013, PNAS, 110, 8010
- Wordsworth, R., Forget, F., Millour, E., et al. 2013, Icar, 222, 1
- Wordsworth, R., Kalugina, Y., Lokshtanov, S., et al. 2017, GeoRL, 44, 665
- Wordsworth, R. D. 2016, AREPS, 44, 381
- Yung, Y. L., & Demore, W. B. (ed.) 1999, Photochemistry of Planetary Atmospheres (Oxford: Oxford Univ. Press)
- Yurchenko, S. N., Al-Refaie, A. F., & Tennyson, J. 2018, A&A, 614, A131 Zahnle, K., Haberle, R. M., Catling, D. C., & Kasting, J. F. 2008, JGRE, 113,
 - E11004