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Abstract

The original concept of self-organized criticality, applied to solar flare statistics, assumed a slow-driven and
stationary flaring rate, which implies timescale separation (between flare durations and interflare waiting times).
The concept reproduces power-law distributions for flare peak fluxes and durations, but predicts an exponential
waiting time distribution. In contrast to these classical assumptions, we observe (i) multiple energy dissipation
episodes during most flares, (ii) violation of the principle of timescale separation, (iii) a fast-driven and
nonstationary flaring rate, (iv) a power-law distribution for waiting times Δt, with a slope of αΔt≈2.0, as
predicted from the universal reciprocality between mean flaring rates and mean waiting times, and (v) pulses with
rise times and decay times of the dissipated magnetic free energy on timescales of 12±6 minutes, and up to 13
times in long-duration (4 hr) flares. These results are inconsistent with coronal long-term energy storage, but
require photospheric–chromospheric current injections into the corona.

Unified Astronomy Thesaurus concepts: Solar corona (1483); Solar magnetic fields (1503); Solar flares (1496)

1. Introduction

Self-organized criticality (SOC) models are extremely useful
to obtain physical scaling laws from the statistics of nonlinear
energy dissipation processes (for reviews, see Charbonneau
et al. 2001; Aschwanden 2011a, 2019a; Pruessner 2012;
Charbonneau 2013; Aschwanden et al. 2016a, and references
therein). The original concept of avalanches that occur
randomly above some threshold, triggered by continuously
dripped sand grains on top of a sandpile in a critical state, is
due to Bak et al. (1987), while the first applications to solar
flare statistics were explored by Lu & Hamilton (1991) and
Crosby et al. (1993). SOC models can be tested by the power-
law distributions of various geometric, temporal, and other
physical parameters, which should reveal power-law slopes that
are consistent with the underlying physical scaling laws, as
well as with the functional shape of their waiting time
distributions. In a slow-driven SOC model, avalanches occur
rarely and are temporally separated, a condition that is called
timescale separation, where the avalanche duration is smaller
than the waiting time (τflare< τwait). This inequality is reversed
in fast-driven SOC systems by definition, i.e., τflare>τwait. In
this study, we will demonstrate that the timescale separation is
often violated in the case of solar flares. While the energy
build-up or storage time is much longer than the duration of an
avalanche in a classical slow-driven SOC system (Figure 1(a)),
we find here that the energy build-up or storage time is
comparable with the energy dissipation time (of free
magnetic energy), being a fraction of the flare duration only
(Figure 1(b)), and thus much shorter than the waiting time
between two subsequent flares.

This new aspect of fast-driven SOC systems has some far-
reaching consequences that have virtually not been investigated
yet. The power-law slope of flare durations, which typically has
a value of αT≈2.0, revealed higher values of –a » 2.0 5.0T

during solar cycle maximum years, which was interpreted as a
solar-cycle-dependent flare pile-up bias (Aschwanden 2011a,
2011b, 2011c; Aschwanden & Freeland 2012). Sufficiently
fast-driven sandpile models produce frequent occurrences,

where many avalanches mutually overlap in time, and
identification and definition of single events become proble-
matic due to the violation of timescale separation. This
temporal overlap problem is particularly problematic for one-
dimensional data (such as light curves of flares at a given
wavelength), but is much alleviated in two-dimensional data
(where near-simultaneous events can be separated in space
and time).
Another test bed of fast-driven SOC models is the waiting

time (or interflare time interval) distribution. In classical slow-
driven sandpile SOC models, individual avalanches occur
independently of each other, which predicts an exponential
(Poissonian) waiting time distribution for stationary flaring
rates. However, nonstationary flaring rates produce different
waiting time distributions, which depend on the variability
function of the flaring rate (Wheatland et al. 1998;
Wheatland 2000c, 2002, 2006). In this study, we emphasize
the novel model of the Poissonian nonstationary waiting time
distribution that is based on the universal reciprocality of
flaring rates and mean flare waiting times (Aschwanden &
McTiernan 2010). This universal model has no free parameters
(except for a normalization constant) and predicts a power-law
slope of αΔt=2, which mostly agrees with the observations of
solar flares (Wheatland et al. 1998; Moon et al. 2001;
Wheatland 2003; Aschwanden & McTiernan 2010; Kanazir
& Wheatland 2010).
The goal of this study is to gain a deeper understanding of

nonstandard SOC models applied to solar flares, addressing
slow-driven versus fast-driven SOC models, the timescale
separation, the multiplicity of energy-release pulses during a
single avalanche event, the violation of timescale separation,
and the universal Poissonian nonstationary waiting time
distribution. For this purpose, we use Helioseismic and
Magnetic Imager (HMI)/Solar Dynamics Observatory (SDO)
two-dimensional images for the analysis, which allows the free
magnetic energy released for each time step during the solar
flare to be computed. We present a brief description of both the
analytical and numerical theory of waiting time distributions
(Section 2), observations and data analysis of solar flare data
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used and magnetic field computations (Section 3), a discussion
of the new findings (Section 4), and conclusions (Section 5).

2. Theory

2.1. Analytical Waiting Time Distribution

Waiting times Δt, the inter-event time intervals between two
subsequent events of a Poissonian point process, are expected
to exhibit an exponential function in the case of a stationary
random process. The time series sample may consist of time
intervals observed in statistically independent events and
sampled at different locations and times. Thus, the probability
distribution function p(Δt) is defined by

( ) ( )lD = l- Dp t exp , 1t
0 0

where λ0 represents the mean event occurrence rate and the
distribution is normalized to unity, i.e., ( )ò D D =

¥
p t d t 1

0
. A

random process can be called a stationary Poisson process
when the average flaring rate λ0 is time independent and stays
constant as a function of time.

A more general approach of waiting time distributions is the
concept of inhomogeneous or nonstationary Poisson processes,
where the mean flaring rate λ(t) becomes a function of time
itself (e.g., Scargle 1998; Wheatland et al. 1998, 2000;
Litvinenko & Wheatland 2001; Wheatland & Litvinenko 2002;
Jaynes 2003; Sivia & Skilling 2006). Applying Bayesian
statistics, a time series can be subdivided into Bayesian blocks,

during which the occurrence rate λi is assumed to be piecewise
stationary during a time interval [ti, ti + 1],
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The summation of the piecewise Bayesian blocks over discrete
time intervals can be converted into a continuous integral
function,

( ) ( ) ( ) ( )ò lD = Dp t t p t t dt, , 3
T

0

where the probability p(t, Δt) in each Bayesian block is
weighted by the number of events λ(t). The total duration of
the time series is T, and the normalization is given by the

total number of events, i.e., ( )ò l=N t dt
T

0
. Inserting the

time-dependent probability ( ) ( ) ( ) )lD = l- Dp t t t, exp t t into
Equation (3) yields
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Following Wheatland et al. (1998, 2000), we substitute the time
variable t with the event occurrence rate λ, by defining the
function f (λ)=(1/T) dt(λ)/dλ, which is equivalent to f (λ)
dλ=dt/T,
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We now make a special choice for the flaring rate
distribution f (λ) that contains (i) a reciprocal relationship
f (λ) ∝ λ−1 for small flaring rates λ  λ0 and (ii) contains an
exponential drop-off at large flaring rates λ  λ0 (see also
Equation 5.2.16 in Aschwanden 2011a),

⎛
⎝⎜

⎞
⎠⎟( ) ( )l l

l
l

= --f exp . 61

0

The scale-free range of λ<λ0 is visualized in Figure 2 (left
panel, solid line), together with the exponential component
(Figure 2, left panel, dashed line). The scale-free property with
the scaling f (λ) ∝ λ−1 is easy to understand, because the
number of events f (λ) is proportional to the mean waiting
time áD ñt , which in turn is reciprocal to the mean flaring
rate lá ñ, e.g., ( )l lµ á ñ µ áD ñ-f t1 , and thus is universally
valid for every waiting time distribution. In addition,
the exponential term in Equation (6) essentially produces an
upper boundary of the reciprocal function at λ  λ0.
The expression given in Equation (6) also fulfills the normal-
ization ( )ò l l l l=

¥
f d

0 0. The waiting time distribution
(Equation (5)) can then be written as

⎛
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which, by defining a=−(1+ λ0Δt)/λ0, corresponds to
the integral ( )( )/ò = -xe dx e a ax 1ax ax 2 and becomes

Figure 1. Definition of timescales for the slow-driven SOC model, according to
the Rosner & Vaiana (1978) model (top panel), and the fast-driven SOC model
proposed in this study (bottom panel). The x-axis represents the time, and the
y-axis represents the time evolution of the free energy Efree(t) that is dissipated
during flares.
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/ò =
¥

xe dx a1ax
0

2 when integrated over [ ]< < ¥x0 , yield-

ing the solution ( ) ( lD =p t a1 2
0
2), and we obtain for the

waiting time distribution,
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Note that this waiting time distribution contains no free
variables, except for the normalization constant λ0. Thus, this
model predicts universally a power-law slope of αΔt=2 for
any waiting time distribution. The only underlying assumption
is the reciprocality of flaring rates and waiting times, which
naturally emerges from the property of scale-freeness in SOC
models (Aschwanden & McTiernan 2010).

A comparison of stationary and nonstationary waiting time
distributions is shown in Figure 3, as well as for a slow-driven
and fast-driven SOC model (Figure 3). Note the reciprocal
relationship between the flare occurrence rate (y-axis in
Figure 3) and the waiting time (x-axis in Figure 3), differing
by a factor of 102. A parametric set of theoretically predicted
waiting times with various values of l = 0.02 ,..., 0.120 is
shown in Figure 4(c).

2.2. Numerical Simulations of Waiting Time Distributions

It is customary to perform Monte Carlo simulations of
waiting time distributions N(Δt)dΔt or occurrence frequency
distributions N(x)dx by random generator values x=x1, x2,
..., xn that have a prescribed function of their frequency
distribution. Examples for exponential and power-law distribu-
tions are given in Section 7.1.4 of Aschwanden (2011a). The
normalization is given by the integral of the probability
function p(x),

( ) ( )ò =
¥

p x dx 1. 9
0

The total probability ρ(x) to have a value in the range of [0, x]
is then the integral

( ) ( ) ( )òr = ¢ ¢x p x dx . 10
x

0

Then, we invert the integral function ρ(x) and denote it by the
analytical inverse function ρ−1, so that

( ) ( [ ]) ( )r r r r= =- -x x , 111 1

yielding a transform that allows us to generate values xi from a
distribution of probability values ρi. There are many numerical
random generator algorithms available that produce a random
number ρi in a homogeneous range of [0, 1], which can then
be used to generate values xi with the mapping transform

Figure 2. Left: the distribution function f (λ) of the flaring rate is approximately reciprocal in the scale-free range λ  λ0 and shows a steep exponential drop-off at
larger flaring rates (λ  λ0). Right: the resulting waiting time distribution is predicted to have a power-law function P(Δt) ∝ Δt−2 at large waiting times Δt  Δt0,
shown here for a value of λ0=1.

Figure 3. Overview of waiting time distributions for slow-driven and fast-
driven, stationary and nonstationary SOC models.
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( )r r= -xi i
1 . The frequency distribution of these values xi will

then fulfill the prescribed function p(x).
In our case, we want to simulate the waiting time distribution

function that is given by the probability function p(Δt)
(Equation (8)),

( )
( )

( )l
l

D =
+ D

p t
t1

, 120

0
2

which fulfills the normalization
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The integral function ρ(Δt) of the probability function p(Δt) is
then
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The inversion of the probability function ρ(Δt) is then simply
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l r
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0

which can be used to simulate a set of waiting times Δti using
random numbers ρi in the homogeneous range [0, 1],
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Such a simulation for N=575 events and λ0=1.7 is shown
in Figure 4 (middle panel), along with the theoretical
distribution function p(Δt) (Equation (8)). An example of an
observed waiting distribution function is shown in Figure 4(a),
sampled from Geostationary Operational Environmental
Satellite (GOES) M- and X-class flares (histogram in
Figure 4(a)), which matches the predicted distribution (solid
curve in Figure 4(a)) according to Equation (8) within the
statistical uncertainties. A parametric set of the same type of
waiting time distributions (Equation (8)) is shown in
Figure 4(c), where the normalization constant λ0 is varied.

3. Data Analysis

3.1. Observations and Data Selection

We analyzed the same data set of 170 solar flares presented
in Aschwanden et al. (2014a), which includes all M- and
X-class flares observed with the SDO (Pesnell et al. 2011)
during the first 3.5 yr of the mission. This selection of events
has a heliographic longitude range of [−45°,+45°], for which
magnetic field modeling can be facilitated without too severe
foreshortening effects near the solar limb. We use the 45 s line-
of-sight magnetograms from the HMI/SDO and make use of
all coronal extreme-ultraviolet (EUV) channels of the Atmo-
spheric Imaging Assembly (AIA)/SDO (in the six wavelengths
94, 131, 171, 193, 211, 335 Å), which are sensitive to strong
iron lines (Fe VIII, IX, XII, XIV, XVI, XVIII, XXI, XXIV) in the
temperature range of T≈0.6–16 MK. For most of the analysis,
we analyzed images with a cadence of 6 minutes, but present
one event with the full AIA time cadence of 12 s.

3.2. Magnetic Field Computations

The coronal magnetic field is modeled by using the line-of-
sight magnetogram Bz(x, y) from HMI/SDO and (automatically
detected) projected loop coordinates [x(s), y(s)] in each EUV
wavelength of AIA. A full 3D magnetic field model B(x, y, z) is
computed for each time interval and flare with a cadence of
6 minutes (0.1 hr). The total duration of a flare is defined by the
GOES flare start and end times, including a margin of 0.5 hr
before and after each flare. Such a margin (commensurable
with the duration of the shortest flares; see Figure 8(d)) allows
us to study the time evolution of a flare more comprehensively,
because flare-related emission in soft X-rays often precedes the
NOAA flare start time and extends past the NOAA flare
end time.
The magnetic field is computed with the vertical-current

approximation nonlinear force-free field (VCA-NLFFF) code,
which is described for the original first version (Aschwanden
2013) and has been improved in accuracy in the second
(Aschwanden et al. 2016b) and third (VCA3-NLFFF) versions
(Aschwanden 2019b). Traditional nonlinear force-free field
(NLFFF) codes have been found to produce large uncertainties

Figure 4. (a) Observed waiting time distribution of GOES M- and X-class
flares (histogram) with predicted model (thick solid curve); (b) simulated
waiting time distribution for the same normalization constant λ0=0.07
(histogram) with predicted model (thick solid curve); and (c) parametric set of
waiting time distributions for l = 0.02, 0.04 ,..., 0.120 hr−1.
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in the horizontal (transverse to the line-of-sight) magnetic field
components (e.g., Wheatland et al. 2000; Wiegelmann 2004;
Wiegelmann et al. 2006, 2012), mostly due to the fact that the
force-free magnetic field is extrapolated from photospheric
magnetograms, although the photosphere is not force free
(Metcalf et al. 1995). Improvements have been attempted by
preprocessing of the line-of-sight magnetograms by additional
constraints that minimize the force-freeness and net torque
balance (Wiegelmann et al. 2012), by applying a magnetohy-
drostatic model (Zhu et al. 2013; Wiegelmann et al. 2017; Zhu
& Wiegelmann 2018) or different magnetic helicity computa-
tion methods (Thalmann et al. 2019). In contrast, our method of
the Vertical-Current Approximation (VCA) NLFFF code
circumvents this problem, because the magnetic modeling is
constrained by coronal loop structures, which are believed to be
force free in the low plasma-beta corona (although not during
flares, but before and after flares).

3.3. Time Evolution of Free Energy

The main physical parameter that we are interested in here is
the time evolution of the free energy, which is defined as the
difference between the potential and nonpotential magnetic
field, i.e., ( ) ( ) ( )= -E t E t E tnp pfree .

We show the time evolution of the free energy Efree(t) for 20
flare events (out of the 170 analyzed events) in Figures 5–7.
We decompose the time profiles into pulses that consist of
a rise time phase τrise=tp−ts and a decay time phase
τdecay=te−tp. The peak times tp are measured at the local
maxima of the time evolution function Efree(t), and the starting
times ts and end times are derived from the local minima
preceding and following each peak time. For clarity, we
represent the decay phases of the pulses with gray areas in
Figures 5 and 6. In Figure 5, we show relatively simple flare
events with one single peak (np= 1) or two peaks (np= 2),
while the 10 cases shown in Figure 6 were selected from the
flare events with the longest duration, which exhibit from
np=5 to np=13 peaks.

In Figure 7, we show the time profiles of the free energy
Efree(t) with higher time resolution: the nominal resolution
is 6 minutes (Figure 7(b)), an intermediate resolution is
1 minute (Figure 7(c)), and the full time resolution of AIA is
12 s (Figure 7(d)). The fluctuations visible at the highest
cadence (Figure 7(d)) show a mean and standard deviation of
Efree=(42± 7)×1030 erg, which indicates uncertainties of
σE≈7/42≈0.17. This uncertainty in the free energy
includes numerical noise, mostly caused by the decomposi-
tion of unipolar magnetic charges from the HMI magneto-
grams and from the automated detection of coronal loops in
the AIA images. Nevertheless, the time profiles shown in
Figure 7 reveal about one to three significant pulses for this
event, while Figure 6 shows 5–13 significant energy
dissipation pulses per flare.

3.4. Statistics of Timescales

Statistics of timescales is given in Figure 8. The number of
energy dissipation pulses per flare ranges from np=1 to
np=13 (see Figures 5 and 6), as derived from the (slightly
smoothed) time profiles of the free energy, Efree(t). Each of the
pulses is characterized by the rise time (which can be
interpreted as magnetic energy loading time by new flux
emergence), τrise=0.1–1.2 hr=6–72 minutes (Figure 8(a));

the pulse decay time (which can be interpreted as magnetic
energy dissipation time), τdecay=0.1–0.7 hr=6–42 minutes
(Figure 8(b)); and the total pulse duration τpulse=0.2–
1.5 hr=12–90 minutes (Figure 8(c)). The lower limit of
τrise,min=τdecay,min=0.1 hr=6 minutes is caused by the
chosen cadence in the calculation of magnetic energies.
The flare duration times have a range of τflare=1.1–5.2 hr

(Figure 8(d)), which is about an order of magnitude longer than
the pulse rise or decay times. This difference can be explained
by the fact that the timescale of magnetic energy dissipation,
which is similar to the duration of hard X-ray emission, is
generally shorter than the timescale of soft X-ray emission,
which was used by NOAA to define the flare duration.
Finally, we also measure the waiting times of flare events,

using all GOES M- and X-class flare events during the first 3.5
yr of the SDO mission (from 2010 June 12 to 2014 November
16), including those events near the limb for which magnetic
modeling was not feasible. The range of waiting times derived
from the starting time difference of these 575 flares covers
Δt=0.2–2000 hr (Figure 8(e)). Note that truncation effects
due to solar rotation and the selected longitudinal range (±45°)
are ignored in the waiting time statistics here, although it could
affect the correct waiting time measurement for events near the
east or west limb. The waiting time distribution forms a power-
law distribution with a slope of αΔt=2.0 for timescales of
Δt  1 hr (Figure 8(e)) and closely follows the predicted
function derived theoretically (Equation (8)) for a normal-
ization constant of λ0=0.07 hr−1. According to the definitions
of waiting times Δt, energy storage times τstorage≈τrise, and
energy dissipation times τdiss≈τdecay given in Figure 1, most
of the storage times (Figure 8(a)) are much shorter than the
waiting times (Figure 8(e)) and thus are consistent with the
fast-driven SOC model (Figure 1(b)), rather than with the slow-
driven SOC model (Figure 1(a)).

3.5. Correlation of Free Energy with Hard X-Rays

If the magnetic free energy is the main energy input in solar
flares, and the energy converted into the acceleration of
(nonthermal) particles Enth conveys the major energy output,
we would expect some correlation between the free energy time
profile Efree(t) and the hard X-ray flux time profile FHXR(t),
which most easily can be inferred from the time derivative of
the GOES soft X-ray time profile, i.e., FHXR=∂FHXR(t)/∂t,
according to the Neupert effect (Neupert 1968; Dennis &
Zarro 1993).
We juxtapose these two time profiles Ediss(t) and FHXR(t) for

20 flare events in Figures 5 and 6, where the time profiles of the
energy dissipation (inferred from the pulse decay time intervals
marked with gray areas) and the GOES 1–8 Å flux (marked
with hatched areas) are shown. While there are obvious
correlations between the two time intervals in a number of
single-pulse flares (e.g., event #53 in Figure 5(a), #187
in Figure 5(c)), in double-pulse flares (e.g., event #367 in
Figure 5(i)), or in multipulse flares (e.g., event #54 in
Figure 6(d), #150 in Figure 6(e)), we see also surprising cases
where hard X-ray emission is detected for a single pulse only
when a sequence of five magnetic energy pulses is present (e.g.,
event #171 in Figure 6(j), #219 in Figure 6(i)). Thus, we find
both, well-correlated flare events as well as mismatching time
profiles. This outcome of our study indicates that the simple-
minded notion of magnetic energy dissipation with subsequent
particle acceleration does not always fit the data.
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Figure 5. The time evolution of the free energy Efree(t) in 10 flares with one or two peaks of the energy energy loading/dissipation episodes (thick black curves with
diamonds). The GOES flux curve is indicated with a dashed curve, and the time derivative of the GOES curve with a solid line with hatched areas. The time intervals
of energy dissipation are colored in gray.
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Figure 6. The time evolution of the free energy Efree(t) in 10 flares with the largest number of energy loading/dissipation episodes (Npeak = 5–13; thick black curves
with diamonds). The time intervals of energy dissipation are colored in gray; otherwise, similar presentation to Figure 5.
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Figure 7. (a) GOES flux (dashed curve) and time derivative (hatched curve). The evolution of the free energy is shown with different time resolutions: (b) 6 minute
cadence; (c) 1 minute cadence; (d) 12 s time cadence, where about three significant pulses are present (at 16.5–16.7, 16.8, and 16.95–17.15 UT).
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4. Discussion

4.1. Slow-driven SOC Models

We consider two different scenarios of the time evolution of
energy dissipation in solar flares: the slow-driven self-
organized criticality (SOC) model (Figure 1(a)) and the fast-
driven SOC model (Figure 1(b)). The slow-driven SOC model
corresponds to the model of cosmic transients proposed by
Rosner & Vaiana (1978), while their time evolution can also be
characterized by an exponential-growth model, a power-law

growth model, or a logistic-growth model (Section 3 of
Aschwanden 2011a). Besides the application to solar flare
observations, slow external driving of photospheric motion is
expected to lead to occasional relaxation events also, at random
times, with random amplitudes (Longcope & Sudan 1992). The
essential property of the slow SOC model is the exponential
growth of energy build-up during the time interval between two
subsequent flare events, which eventually creates a flare at a
random time interval, and then relaxes into a more stable state
than before. The exponential-growth function, together with
Poissonian random statistics, leads to the prediction of a power-
law function of the flare size distribution (Rosner &
Vaiana 1978). Moreover, the monotonic growth of the free
energy predicts a correlation between the flare size and the
interflare (waiting) time interval. However, observational
searches for such a correlation between the flare sizes and
flare waiting times turned out to be negative (Lu 1995; Crosby
et al. 1998; Wheatland 2000a; Moon et al. 2001; Lippiello et al.
2010). The only correlation found was that smaller active
regions produce smaller flare sizes (Wheatland 2000b) and that
small active regions produce deviations from power laws
(Wheatland 2010). There are also the problems that large flares
sometimes occur within shorter waiting times than the required
energy build-up times of the Rosner–Vaiana model: sometimes
a larger flare volume than available is required, or too many
e-folding growth times are necessary (Lu 1995). Nevertheless,
a correlation of the flare size with the time interval after a flare
(rather than before) was claimed for a small sample of flare
events in the same active region (Hudson 2019). In summary,
none of the predictions of the slow-driven SOC model of
Rosner & Vaiana (1978) could be confirmed by solar flare
observations.

4.2. Fast-driven SOC Models

Most of the simulations of the (frequency occurrence) size
distributions of SOC avalanches assume a separation of
timescales, which means that the avalanche duration τflare or
energy dissipation timescale τdiss is much shorter than the
waiting time between two subsequent avalanches, i.e., τflare =
Δtwait. If the input rate (e.g., of sand grains dripped on a
sandpile) is sufficiently slow, the statistical properties of
avalanche sizes and durations are expected not to change
(Pruessner 2012). However, the observed statistics of solar
flares was found to violate the timescale separation during the
solar cycle maximum era (Aschwanden 2011a, 2011b, 2011c;
Aschwanden & Freeland 2012), when the flare duration
exceeded the waiting times, i.e., τflare  Δtwait, which we call
a fast-driven SOC system. Because the mean waiting time
áD ñtwait is defined by the total duration T of the observations,
divided by the total number Nev of events (or intervals),

( )áD ñ =t
T

N
, 17wait

ev

the mean waiting time decreases reciprocally with the number
of events, and thus becomes shorter for a faster input rate, as
shown in Figure 3 for a fast driver that has a factor of 102

higher event number, but also a factor of 102 shorter mean
waiting time. As the 10 examples in Figure 6 demonstrate, a
number of Npeak=5–13 flare peaks occur in large flares,
which represent elementary flare substructures (Aschwanden
et al. 1998) that we interpret as individual energy dissipation

Figure 8. Number of events (per bin) as a function of (a) the free energy pulse
rise time, (b) pulse decay time, (c) pulse durations, (d) flare duration, and flare
waiting time distribution (bottom panel), along with the theoretical model for
λ0=0.07 (curve).
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events in a fast-driven SOC system. Thus, we detect rapid
fluctuations of the free energy Efree(t) before, during, and after
large flares in a fast-driven SOC system (Figures 5 and 6), but
the free energy does not monotonically increase between two
subsequent flares (Figure 1(a)). Hence, the fast-driven SOC
model (Figure 1(b)) is more consistent with the observations
than the slow-driven SOC model (Figure 1(a)).

4.3. The Time Evolution of the Free Energy

If the free (magnetic) energy that is dissipated during a solar
flare would all be stored in the corona, we should see a
negatively dropping step function of the free energy Efree(t)
during the flare duration (Figure 1(a)). One of the most detailed
studies on the time evolution of the free energy shows a gradual
build-up of free energy over two days, culminating with an
X2.2 GOES-class flare and a simultaneous downward step in
the free energy (Sun et al. 2012; Aschwanden et al. 2014b).
However, discrepancies up to a factor of 10 have been
noticed in the decrease of free energy during flares, when the
standard Wiegelmann-NLFFF code (with preprocessing) was
employed in addition to our VCA-NLFFF code (Aschwanden
et al. 2014b), which was reduced down to a factor of 3 in
recent refined magnetic modeling (Aschwanden 2019b).
Besides the expected step functions, we also observe in the
present study a number of pulses in the free energy that have a
short rise time and decay time, on the order of t t» »rise decay
t » 2 0.2 0.1 hrpulse =12±6 minutes (Figures 8(a), (b),
(c)).

A puzzling question is what mechanism causes the relatively
short rise time of the free energy? One mechanism that we
know produces an increase of the free energy is the helical
twisting by vertical currents (as it is incorporated in the VCA-
NLFFF code used here), but then the twisting with subsequent
untwisting produces a time-symmetric pulse in the free energy
without a net energy transfer. Another possible mechanism is
the coronal illumination effect, where the twisted loops are not
visible in the initial flare phase, but become detectable when
chromospheric evaporation starts to fill up the flare loops
(Aschwanden et al. 2014a). A third possibility is chromo-
spheric energy injection into the corona produced by energy
transferred from the turbulent convection zone and photosphere
into the corona, e.g., via anomalous current dissipation (Rosner
et al. 1978). Such a scenario, with the ultimate energy source in
the convection zone rather than in the corona, can draw large
amounts of free energy to generate a flare without requiring
coronal storage. Magneto-convection as seen in photospheric
granulation cells has typical spatial scales of ≈1000 km and
turnover times of ≈7 minutes, which produces new emerging
flux on timescales close to the observed pulse rise times of
τpulse≈12±6 minutes (Figure 8(a)). In conclusion, the time
evolution of the free energy Efree(t) provides crucial constraints
on how and where the flare energy is stored.

4.4. Nonstationary Driver and Waiting Time

From the waiting time distribution, we can learn whether an
SOC system is stationary or nonstationary, which means whether
or not the mean flaring rate is constant, as a function of time. In
the original SOC concepts of Bak et al. (1987), it was assumed
that individual avalanches are statistically independent events,
and thus the waiting time distribution should form a Poissonian
(or exponential) distribution function. If there is a deviation from

a Poissonian distribution apparent, individual avalanche events
could not be independent events, such as in sympathetic flares
(Moon et al. 2002, 2003; Wheatland 2002, 2006; Wheatland &
Craig 2006). However, when the flaring rate is not constant, the
resulting waiting time distribution can be calculated by summing
the partial waiting time distributions for each flaring rate
(Wheatland et al. 1998; Wheatland & Glukhov 1998;
Wheatland 2000c) as we summarize in Section 2 of this paper
(and in Section 5 of Aschwanden 2011a). Waiting time
distributions of solar flare data generally show a power-law
distribution with a slope of αΔw≈2–3, (Wheatland et al. 1998;
Moon et al. 2001; Wheatland 2003; Aschwanden & McTiernan
2010; Kanazir & Wheatland 2010), which is explained here with
a model that is based on on the universal reciprocal relationship
between the (time-varying) mean flaring rate and the (time-
varying) waiting time, and predicts a slope of αΔt=2. In
summary, the nonstationary Poissonian model provides the most
natural explanation for the observed power-law-like waiting time
distributions.
Besides the nonstationary Poissonian model of a fast-driven

SOC model, some alternative interpretations have been
explored, too, by other studies in the literature. An energy
balance model in terms of a master equation between energy
build-up and energy loss by dissipation of free energy has
been proposed (Wheatland & Glukhov 1998; Wheatland &
Litvinenko 2001, 2002; Wheatland 2008, 2009, 2009). Other
approaches use scaling laws from magnetic reconnection
processes (Litvinenko 1996; Wheatland & Craig 2003, 2006).
Alternative functions for waiting time distributions were also
tested, finding that lognormal and inverse Gaussian distribution
functions are more likely to fit the observations than the
exponential function (Kubo 2008).

5. Conclusions

Standard SOC models, mostly inspired by the paradigm of
sandpile avalanches introduced by Bak et al. (1987), assume a
slow-driven energy dissipation system, a stationary energy
input rate, a fixed (critical) threshold for triggering of
avalanches, timescale separation between avalanche time
durations τdur and inter-event waiting times Δt, i.e.,
τdur?Δt, and statistical independence of individual ava-
lanche events. These assumptions predict power-law distribu-
tion functions for most avalanche parameters (such as the size
and duration) and exponential distributions for the waiting
times. In reality, however, most of these assumptions are
violated, but it appears that SOC models are sufficiently robust
to preserve some power-law characteristics, even in the
presence of violated assumptions. In this study, we explore
nonstandard SOC models that account for the violated
assumptions, in particular for the phenomenon of solar flares.
Our findings are the following:

1. The waiting time distribution: one not understood
problem is the functional shape of the waiting time
distribution, because the assumption of statistical inde-
pendence of individual avalanche events predicts an
exponential function, while the observations exhibit a
power-law distribution with a slope of –a »D 2 3t . One
possible solution of this problem is the nonstationary
Poisson model, introduced by Wheatland & Litvinenko
(2002), but the functional shape of the flaring rate λ(t)
has not been constrained. The shape of observed
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waiting time distributions has been reconciled empirically
with the near-reciprocal flaring rate function ( )l =f

( )l l l-- exp1
0 (Equation (6)) in the previous study of

Aschwanden & McTiernan (2010). In the present study,
we provide a physical reason in terms of the universally
valid reciprocal relationship between the mean flaring
rate lá ñ and the mean waiting time áD ñt , i.e.,

( )l lµ á ñ = áD ñ-f t1 . The reciprocal relationship pre-
dicts then a power-law distribution for the waiting time
distribution, with a power-law slope of αΔt=2, without
any free parameters, except for a normalization constant
λ0.

2. Nonstationarity of the SOC model: the power-law shape
of the waiting time distribution thus yields a sufficient
(but not necessary) condition for the nonstationarity of
the flare rate that drives the generation of solar flares. The
flare rate varies up to two orders of magnitude between
the minimum or maximum of the solar magnetic (Hale)
cycle. There are also large variations in the flaring rate on
shorter timescales, down to weeks, days, or hours. All
this variability produces power-law-like distributions of
waiting times. Moreover, it also produces power-law
distributions for the sizes and durations of flares, which
appears to be a very robust feature of SOC models,
regardless of whether the driver is stationary or
nonstationary.

3. Slow-driven and fast-driven SOC models: while the
duration of an avalanche (e.g., a solar flare) is much
shorter than the waiting time between two subsequent
avalanche events in standard SOC models, we find that
this behavior is only true in quiescent periods during the
solar cycle minimum, especially when the SOC threshold
is high and the flaring rate is low. However, the flare rate
during solar maximum conditions is often so high that
near-simultaneous flare events overlap in time, and thus
the flare duration becomes comparable with the waiting
time or even exceeds the waiting time. The solar dynamo
thus produces an SOC system that oscillates between
slow-driven and fast-driven operation cycles.

4. The Rosner & Vaiana (1978) model: this model predicts a
continuously growing energy storage between two flare
events and thus a correlation between the waiting time
and dissipated energy during the following event.
Observations do not confirm that energy is stored
between two flares, nor is there any correlation between
storage time and energy dissipation. Although we can
measure free (magnetic) energy before, during, and after
flares, we rarely see a simple step function of the free
energy that drops from a high preflare level to a low
postflare level.

5. Pulsed free energy dissipation: instead of a step function
in the time evolution of the free energy, we observe that
the free energy exhibits pulses with rise times and decay
times of ≈12±6 minutes, which occur between 1 and
13 times during a flare, depending on the flare duration
(1.1–5.2 hr). The fact that each pulse exhibits a fast rise
(rather than a slow rise as expected in storage models)
indicates that free energy is intermittently generated
(rather than stored over long time intervals), for instance
by photospheric convection, which shows similar turn-
over times of order ≈7 minutes in the photospheric
granulation layer.

Based on these results, we recommend modifying numerical
simulations of SOC models with the following features, in
order to obtain a more realistic representation of solar flare
data: (i) a nonstationary driver that varies from slow-driven
dynamics during the solar minimum to fast-driven dynamics
during the solar maximum; (ii) separate fitting of time
periods with low and high flaring rates, possibly measuring
the flaring rate distribution λ(t) as a function of time; (iii) fitting
of the predicted waiting time distribution model p(Δt)=
λ0/(1+ λ0Δt)2 (rather than fitting a straight power-law
function); (iv) localization of photospheric convection vortices
during flares in magnetogram data that contribute most
significantly to local increases in the free energy during flares;
and (v) spatiotemporal disentangling of near-simultaneous flare
sites during fast-driven time periods.

Part of the work was supported by NASA contract NNG
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